| /* |
| * Copyright 2016 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkColor.h" |
| #include "include/core/SkPath.h" |
| #include "include/core/SkPathTypes.h" |
| #include "include/core/SkRect.h" |
| #include "include/private/base/SkAlign.h" |
| #include "include/private/base/SkAssert.h" |
| #include "include/private/base/SkDebug.h" |
| #include "include/private/base/SkFixed.h" |
| #include "include/private/base/SkMath.h" |
| #include "include/private/base/SkSafe32.h" |
| #include "include/private/base/SkTo.h" |
| #include "src/base/SkTSort.h" |
| #include "src/core/SkAlphaRuns.h" |
| #include "src/core/SkAnalyticEdge.h" |
| #include "src/core/SkBlitter.h" |
| #include "src/core/SkEdge.h" |
| #include "src/core/SkEdgeBuilder.h" |
| #include "src/core/SkMask.h" |
| #include "src/core/SkScan.h" |
| #include "src/core/SkScanPriv.h" |
| |
| #include <algorithm> |
| #include <cstdint> |
| #include <cstring> |
| |
| /* |
| |
| The following is a high-level overview of our analytic anti-aliasing |
| algorithm. We consider a path as a collection of line segments, as |
| quadratic/cubic curves are converted to small line segments. Without loss of |
| generality, let's assume that the draw region is [0, W] x [0, H]. |
| |
| Our algorithm is based on horizontal scan lines (y = c_i) as the previous |
| sampling-based algorithm did. However, our algorithm uses non-equal-spaced |
| scan lines, while the previous method always uses equal-spaced scan lines, |
| such as (y = 1/2 + 0, 1/2 + 1, 1/2 + 2, ...) in the previous non-AA algorithm, |
| and (y = 1/8 + 1/4, 1/8 + 2/4, 1/8 + 3/4, ...) in the previous |
| 16-supersampling AA algorithm. |
| |
| Our algorithm contains scan lines y = c_i for c_i that is either: |
| |
| 1. an integer between [0, H] |
| |
| 2. the y value of a line segment endpoint |
| |
| 3. the y value of an intersection of two line segments |
| |
| For two consecutive scan lines y = c_i, y = c_{i+1}, we analytically computes |
| the coverage of this horizontal strip of our path on each pixel. This can be |
| done very efficiently because the strip of our path now only consists of |
| trapezoids whose top and bottom edges are y = c_i, y = c_{i+1} (this includes |
| rectangles and triangles as special cases). |
| |
| We now describe how the coverage of single pixel is computed against such a |
| trapezoid. That coverage is essentially the intersection area of a rectangle |
| (e.g., [0, 1] x [c_i, c_{i+1}]) and our trapezoid. However, that intersection |
| could be complicated, as shown in the example region A below: |
| |
| +-----------\----+ |
| | \ C| |
| | \ | |
| \ \ | |
| |\ A \| |
| | \ \ |
| | \ | |
| | B \ | |
| +----\-----------+ |
| |
| However, we don't have to compute the area of A directly. Instead, we can |
| compute the excluded area, which are B and C, quite easily, because they're |
| just triangles. In fact, we can prove that an excluded region (take B as an |
| example) is either itself a simple trapezoid (including rectangles, triangles, |
| and empty regions), or its opposite (the opposite of B is A + C) is a simple |
| trapezoid. In any case, we can compute its area efficiently. |
| |
| In summary, our algorithm has a higher quality because it generates ground- |
| truth coverages analytically. It is also faster because it has much fewer |
| unnessasary horizontal scan lines. For example, given a triangle path, the |
| number of scan lines in our algorithm is only about 3 + H while the |
| 16-supersampling algorithm has about 4H scan lines. |
| |
| */ |
| |
| static void add_alpha(SkAlpha* alpha, SkAlpha delta) { |
| SkASSERT(*alpha + delta <= 256); |
| *alpha = SkAlphaRuns::CatchOverflow(*alpha + delta); |
| } |
| |
| static void safely_add_alpha(SkAlpha* alpha, SkAlpha delta) { |
| *alpha = std::min(0xFF, *alpha + delta); |
| } |
| |
| class AdditiveBlitter : public SkBlitter { |
| public: |
| ~AdditiveBlitter() override {} |
| |
| virtual SkBlitter* getRealBlitter(bool forceRealBlitter = false) = 0; |
| |
| virtual void blitAntiH(int x, int y, const SkAlpha antialias[], int len) = 0; |
| virtual void blitAntiH(int x, int y, const SkAlpha alpha) = 0; |
| virtual void blitAntiH(int x, int y, int width, const SkAlpha alpha) = 0; |
| |
| void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) override { |
| SkDEBUGFAIL("Please call real blitter's blitAntiH instead."); |
| } |
| |
| void blitV(int x, int y, int height, SkAlpha alpha) override { |
| SkDEBUGFAIL("Please call real blitter's blitV instead."); |
| } |
| |
| void blitH(int x, int y, int width) override { |
| SkDEBUGFAIL("Please call real blitter's blitH instead."); |
| } |
| |
| void blitRect(int x, int y, int width, int height) override { |
| SkDEBUGFAIL("Please call real blitter's blitRect instead."); |
| } |
| |
| void blitAntiRect(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) |
| override { |
| SkDEBUGFAIL("Please call real blitter's blitAntiRect instead."); |
| } |
| |
| virtual int getWidth() = 0; |
| |
| // Flush the additive alpha cache if floor(y) and floor(nextY) is different |
| // (i.e., we'll start working on a new pixel row). |
| virtual void flush_if_y_changed(SkFixed y, SkFixed nextY) = 0; |
| }; |
| |
| // We need this mask blitter because it significantly accelerates small path filling. |
| class MaskAdditiveBlitter : public AdditiveBlitter { |
| public: |
| MaskAdditiveBlitter(SkBlitter* realBlitter, |
| const SkIRect& ir, |
| const SkIRect& clipBounds, |
| bool isInverse); |
| ~MaskAdditiveBlitter() override { fRealBlitter->blitMask(fMask, fClipRect); } |
| |
| // Most of the time, we still consider this mask blitter as the real blitter |
| // so we can accelerate blitRect and others. But sometimes we want to return |
| // the absolute real blitter (e.g., when we fall back to the old code path). |
| SkBlitter* getRealBlitter(bool forceRealBlitter) override { |
| return forceRealBlitter ? fRealBlitter : this; |
| } |
| |
| // Virtual function is slow. So don't use this. Directly add alpha to the mask instead. |
| void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
| |
| // Allowing following methods are used to blit rectangles during aaa_walk_convex_edges |
| // Since there aren't many rectangles, we can still bear the slow speed of virtual functions. |
| void blitAntiH(int x, int y, const SkAlpha alpha) override; |
| void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
| void blitV(int x, int y, int height, SkAlpha alpha) override; |
| void blitRect(int x, int y, int width, int height) override; |
| void blitAntiRect(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) |
| override; |
| |
| // The flush is only needed for RLE (RunBasedAdditiveBlitter) |
| void flush_if_y_changed(SkFixed y, SkFixed nextY) override {} |
| |
| int getWidth() override { return fClipRect.width(); } |
| |
| static bool CanHandleRect(const SkIRect& bounds) { |
| int width = bounds.width(); |
| if (width > MaskAdditiveBlitter::kMAX_WIDTH) { |
| return false; |
| } |
| int64_t rb = SkAlign4(width); |
| // use 64bits to detect overflow |
| int64_t storage = rb * bounds.height(); |
| |
| return (width <= MaskAdditiveBlitter::kMAX_WIDTH) && |
| (storage <= MaskAdditiveBlitter::kMAX_STORAGE); |
| } |
| |
| // Return a pointer where pointer[x] corresonds to the alpha of (x, y) |
| uint8_t* getRow(int y) { |
| if (y != fY) { |
| fY = y; |
| fRow = fMask.image() + (y - fMask.fBounds.fTop) * fMask.fRowBytes - fMask.fBounds.fLeft; |
| } |
| return fRow; |
| } |
| |
| private: |
| // so we don't try to do very wide things, where the RLE blitter would be faster |
| static const int kMAX_WIDTH = 32; |
| static const int kMAX_STORAGE = 1024; |
| |
| SkBlitter* fRealBlitter; |
| SkMaskBuilder fMask; |
| SkIRect fClipRect; |
| // we add 2 because we can write 1 extra byte at either end due to precision error |
| uint32_t fStorage[(kMAX_STORAGE >> 2) + 2]; |
| |
| uint8_t* fRow; |
| int fY; |
| }; |
| |
| MaskAdditiveBlitter::MaskAdditiveBlitter(SkBlitter* realBlitter, |
| const SkIRect& ir, |
| const SkIRect& clipBounds, |
| bool isInverse) |
| : fRealBlitter(realBlitter) |
| , fMask((uint8_t*)fStorage + 1, ir, ir.width(), SkMask::kA8_Format) |
| , fRow(nullptr) |
| , fY(ir.fTop - 1) |
| { |
| SkASSERT(CanHandleRect(ir)); |
| SkASSERT(!isInverse); |
| |
| fClipRect = ir; |
| if (!fClipRect.intersect(clipBounds)) { |
| SkASSERT(0); |
| fClipRect.setEmpty(); |
| } |
| |
| memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 2); |
| } |
| |
| void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) { |
| SK_ABORT("Don't use this; directly add alphas to the mask."); |
| } |
| |
| void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
| SkASSERT(x >= fMask.fBounds.fLeft - 1); |
| add_alpha(&this->getRow(y)[x], alpha); |
| } |
| |
| void MaskAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) { |
| SkASSERT(x >= fMask.fBounds.fLeft - 1); |
| uint8_t* row = this->getRow(y); |
| for (int i = 0; i < width; ++i) { |
| add_alpha(&row[x + i], alpha); |
| } |
| } |
| |
| void MaskAdditiveBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
| if (alpha == 0) { |
| return; |
| } |
| SkASSERT(x >= fMask.fBounds.fLeft - 1); |
| // This must be called as if this is a real blitter. |
| // So we directly set alpha rather than adding it. |
| uint8_t* row = this->getRow(y); |
| for (int i = 0; i < height; ++i) { |
| row[x] = alpha; |
| row += fMask.fRowBytes; |
| } |
| } |
| |
| void MaskAdditiveBlitter::blitRect(int x, int y, int width, int height) { |
| SkASSERT(x >= fMask.fBounds.fLeft - 1); |
| // This must be called as if this is a real blitter. |
| // So we directly set alpha rather than adding it. |
| uint8_t* row = this->getRow(y); |
| for (int i = 0; i < height; ++i) { |
| memset(row + x, 0xFF, width); |
| row += fMask.fRowBytes; |
| } |
| } |
| |
| void MaskAdditiveBlitter::blitAntiRect(int x, |
| int y, |
| int width, |
| int height, |
| SkAlpha leftAlpha, |
| SkAlpha rightAlpha) { |
| blitV(x, y, height, leftAlpha); |
| blitV(x + 1 + width, y, height, rightAlpha); |
| blitRect(x + 1, y, width, height); |
| } |
| |
| class RunBasedAdditiveBlitter : public AdditiveBlitter { |
| public: |
| RunBasedAdditiveBlitter(SkBlitter* realBlitter, |
| const SkIRect& ir, |
| const SkIRect& clipBounds, |
| bool isInverse); |
| |
| ~RunBasedAdditiveBlitter() override { this->flush(); } |
| |
| SkBlitter* getRealBlitter(bool forceRealBlitter) override { return fRealBlitter; } |
| |
| void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
| void blitAntiH(int x, int y, const SkAlpha alpha) override; |
| void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
| |
| int getWidth() override { return fWidth; } |
| |
| void flush_if_y_changed(SkFixed y, SkFixed nextY) override { |
| if (SkFixedFloorToInt(y) != SkFixedFloorToInt(nextY)) { |
| this->flush(); |
| } |
| } |
| |
| protected: |
| SkBlitter* fRealBlitter; |
| |
| int fCurrY; // Current y coordinate. |
| int fWidth; // Widest row of region to be blitted |
| int fLeft; // Leftmost x coordinate in any row |
| int fTop; // Initial y coordinate (top of bounds) |
| |
| // The next three variables are used to track a circular buffer that |
| // contains the values used in SkAlphaRuns. These variables should only |
| // ever be updated in advanceRuns(), and fRuns should always point to |
| // a valid SkAlphaRuns... |
| int fRunsToBuffer; |
| void* fRunsBuffer; |
| int fCurrentRun; |
| SkAlphaRuns fRuns; |
| |
| int fOffsetX; |
| |
| bool check(int x, int width) const { return x >= 0 && x + width <= fWidth; } |
| |
| // extra one to store the zero at the end |
| int getRunsSz() const { return (fWidth + 1 + (fWidth + 2) / 2) * sizeof(int16_t); } |
| |
| // This function updates the fRuns variable to point to the next buffer space |
| // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun |
| // and resets fRuns to point to an empty scanline. |
| void advanceRuns() { |
| const size_t kRunsSz = this->getRunsSz(); |
| fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer; |
| fRuns.fRuns = reinterpret_cast<int16_t*>(reinterpret_cast<uint8_t*>(fRunsBuffer) + |
| fCurrentRun * kRunsSz); |
| fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1); |
| fRuns.reset(fWidth); |
| } |
| |
| // Blitting 0xFF and 0 is much faster so we snap alphas close to them |
| SkAlpha snapAlpha(SkAlpha alpha) { return alpha > 247 ? 0xFF : alpha < 8 ? 0x00 : alpha; } |
| |
| void flush() { |
| if (fCurrY >= fTop) { |
| SkASSERT(fCurrentRun < fRunsToBuffer); |
| for (int x = 0; fRuns.fRuns[x]; x += fRuns.fRuns[x]) { |
| // It seems that blitting 255 or 0 is much faster than blitting 254 or 1 |
| fRuns.fAlpha[x] = snapAlpha(fRuns.fAlpha[x]); |
| } |
| if (!fRuns.empty()) { |
| // SkDEBUGCODE(fRuns.dump();) |
| fRealBlitter->blitAntiH(fLeft, fCurrY, fRuns.fAlpha, fRuns.fRuns); |
| this->advanceRuns(); |
| fOffsetX = 0; |
| } |
| fCurrY = fTop - 1; |
| } |
| } |
| |
| void checkY(int y) { |
| if (y != fCurrY) { |
| this->flush(); |
| fCurrY = y; |
| } |
| } |
| }; |
| |
| RunBasedAdditiveBlitter::RunBasedAdditiveBlitter(SkBlitter* realBlitter, |
| const SkIRect& ir, |
| const SkIRect& clipBounds, |
| bool isInverse) { |
| fRealBlitter = realBlitter; |
| |
| SkIRect sectBounds; |
| if (isInverse) { |
| // We use the clip bounds instead of the ir, since we may be asked to |
| // draw outside of the rect when we're a inverse filltype |
| sectBounds = clipBounds; |
| } else { |
| if (!sectBounds.intersect(ir, clipBounds)) { |
| sectBounds.setEmpty(); |
| } |
| } |
| |
| const int left = sectBounds.left(); |
| const int right = sectBounds.right(); |
| |
| fLeft = left; |
| fWidth = right - left; |
| fTop = sectBounds.top(); |
| fCurrY = fTop - 1; |
| |
| fRunsToBuffer = realBlitter->requestRowsPreserved(); |
| fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz()); |
| fCurrentRun = -1; |
| |
| this->advanceRuns(); |
| |
| fOffsetX = 0; |
| } |
| |
| void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) { |
| checkY(y); |
| x -= fLeft; |
| |
| if (x < 0) { |
| len += x; |
| antialias -= x; |
| x = 0; |
| } |
| len = std::min(len, fWidth - x); |
| SkASSERT(check(x, len)); |
| |
| if (x < fOffsetX) { |
| fOffsetX = 0; |
| } |
| |
| fOffsetX = fRuns.add(x, 0, len, 0, 0, fOffsetX); // Break the run |
| for (int i = 0; i < len; i += fRuns.fRuns[x + i]) { |
| for (int j = 1; j < fRuns.fRuns[x + i]; j++) { |
| fRuns.fRuns[x + i + j] = 1; |
| fRuns.fAlpha[x + i + j] = fRuns.fAlpha[x + i]; |
| } |
| fRuns.fRuns[x + i] = 1; |
| } |
| for (int i = 0; i < len; ++i) { |
| add_alpha(&fRuns.fAlpha[x + i], antialias[i]); |
| } |
| } |
| |
| void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
| checkY(y); |
| x -= fLeft; |
| |
| if (x < fOffsetX) { |
| fOffsetX = 0; |
| } |
| |
| if (this->check(x, 1)) { |
| fOffsetX = fRuns.add(x, 0, 1, 0, alpha, fOffsetX); |
| } |
| } |
| |
| void RunBasedAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) { |
| checkY(y); |
| x -= fLeft; |
| |
| if (x < fOffsetX) { |
| fOffsetX = 0; |
| } |
| |
| if (this->check(x, width)) { |
| fOffsetX = fRuns.add(x, 0, width, 0, alpha, fOffsetX); |
| } |
| } |
| |
| // This exists specifically for concave path filling. |
| // In those cases, we can easily accumulate alpha greater than 0xFF. |
| class SafeRLEAdditiveBlitter : public RunBasedAdditiveBlitter { |
| public: |
| SafeRLEAdditiveBlitter(SkBlitter* realBlitter, |
| const SkIRect& ir, |
| const SkIRect& clipBounds, |
| bool isInverse) |
| : RunBasedAdditiveBlitter(realBlitter, ir, clipBounds, isInverse) {} |
| |
| void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
| void blitAntiH(int x, int y, const SkAlpha alpha) override; |
| void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
| }; |
| |
| void SafeRLEAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) { |
| checkY(y); |
| x -= fLeft; |
| |
| if (x < 0) { |
| len += x; |
| antialias -= x; |
| x = 0; |
| } |
| len = std::min(len, fWidth - x); |
| SkASSERT(check(x, len)); |
| |
| if (x < fOffsetX) { |
| fOffsetX = 0; |
| } |
| |
| fOffsetX = fRuns.add(x, 0, len, 0, 0, fOffsetX); // Break the run |
| for (int i = 0; i < len; i += fRuns.fRuns[x + i]) { |
| for (int j = 1; j < fRuns.fRuns[x + i]; j++) { |
| fRuns.fRuns[x + i + j] = 1; |
| fRuns.fAlpha[x + i + j] = fRuns.fAlpha[x + i]; |
| } |
| fRuns.fRuns[x + i] = 1; |
| } |
| for (int i = 0; i < len; ++i) { |
| safely_add_alpha(&fRuns.fAlpha[x + i], antialias[i]); |
| } |
| } |
| |
| void SafeRLEAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
| checkY(y); |
| x -= fLeft; |
| |
| if (x < fOffsetX) { |
| fOffsetX = 0; |
| } |
| |
| if (check(x, 1)) { |
| // Break the run |
| fOffsetX = fRuns.add(x, 0, 1, 0, 0, fOffsetX); |
| safely_add_alpha(&fRuns.fAlpha[x], alpha); |
| } |
| } |
| |
| void SafeRLEAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) { |
| checkY(y); |
| x -= fLeft; |
| |
| if (x < fOffsetX) { |
| fOffsetX = 0; |
| } |
| |
| if (check(x, width)) { |
| // Break the run |
| fOffsetX = fRuns.add(x, 0, width, 0, 0, fOffsetX); |
| for (int i = x; i < x + width; i += fRuns.fRuns[i]) { |
| safely_add_alpha(&fRuns.fAlpha[i], alpha); |
| } |
| } |
| } |
| |
| // Return the alpha of a trapezoid whose height is 1 |
| static SkAlpha trapezoid_to_alpha(SkFixed l1, SkFixed l2) { |
| SkASSERT(l1 >= 0 && l2 >= 0); |
| SkFixed area = (l1 + l2) / 2; |
| return SkTo<SkAlpha>(area >> 8); |
| } |
| |
| // The alpha of right-triangle (a, a*b) |
| static SkAlpha partial_triangle_to_alpha(SkFixed a, SkFixed b) { |
| SkASSERT(a <= SK_Fixed1); |
| #if 0 |
| // TODO(mtklein): skia:8877 |
| SkASSERT(b <= SK_Fixed1); |
| #endif |
| |
| // Approximating... |
| // SkFixed area = SkFixedMul(a, SkFixedMul(a,b)) / 2; |
| SkFixed area = (a >> 11) * (a >> 11) * (b >> 11); |
| |
| #if 0 |
| // TODO(mtklein): skia:8877 |
| return SkTo<SkAlpha>(area >> 8); |
| #else |
| return SkTo<SkAlpha>((area >> 8) & 0xFF); |
| #endif |
| } |
| |
| static SkAlpha get_partial_alpha(SkAlpha alpha, SkFixed partialHeight) { |
| return SkToU8(SkFixedRoundToInt(alpha * partialHeight)); |
| } |
| |
| static SkAlpha get_partial_alpha(SkAlpha alpha, SkAlpha fullAlpha) { |
| return (alpha * fullAlpha) >> 8; |
| } |
| |
| // For SkFixed that's close to SK_Fixed1, we can't convert it to alpha by just shifting right. |
| // For example, when f = SK_Fixed1, right shifting 8 will get 256, but we need 255. |
| // This is rarely the problem so we'll only use this for blitting rectangles. |
| static SkAlpha fixed_to_alpha(SkFixed f) { |
| SkASSERT(f <= SK_Fixed1); |
| return get_partial_alpha(0xFF, f); |
| } |
| |
| // Suppose that line (l1, y)-(r1, y+1) intersects with (l2, y)-(r2, y+1), |
| // approximate (very coarsely) the x coordinate of the intersection. |
| static SkFixed approximate_intersection(SkFixed l1, SkFixed r1, SkFixed l2, SkFixed r2) { |
| if (l1 > r1) { |
| std::swap(l1, r1); |
| } |
| if (l2 > r2) { |
| std::swap(l2, r2); |
| } |
| return (std::max(l1, l2) + std::min(r1, r2)) / 2; |
| } |
| |
| // Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0] |
| static void compute_alpha_above_line(SkAlpha* alphas, |
| SkFixed l, |
| SkFixed r, |
| SkFixed dY, |
| SkAlpha fullAlpha) { |
| SkASSERT(l <= r); |
| SkASSERT(l >> 16 == 0); |
| int R = SkFixedCeilToInt(r); |
| if (R == 0) { |
| return; |
| } else if (R == 1) { |
| alphas[0] = get_partial_alpha(((R << 17) - l - r) >> 9, fullAlpha); |
| } else { |
| SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle |
| SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle |
| SkFixed firstH = SkFixedMul(first, dY); // vertical edge of the left-most triangle |
| alphas[0] = SkFixedMul(first, firstH) >> 9; // triangle alpha |
| SkFixed alpha16 = firstH + (dY >> 1); // rectangle plus triangle |
| for (int i = 1; i < R - 1; ++i) { |
| alphas[i] = alpha16 >> 8; |
| alpha16 += dY; |
| } |
| alphas[R - 1] = fullAlpha - partial_triangle_to_alpha(last, dY); |
| } |
| } |
| |
| // Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0] |
| static void compute_alpha_below_line(SkAlpha* alphas, |
| SkFixed l, |
| SkFixed r, |
| SkFixed dY, |
| SkAlpha fullAlpha) { |
| SkASSERT(l <= r); |
| SkASSERT(l >> 16 == 0); |
| int R = SkFixedCeilToInt(r); |
| if (R == 0) { |
| return; |
| } else if (R == 1) { |
| alphas[0] = get_partial_alpha(trapezoid_to_alpha(l, r), fullAlpha); |
| } else { |
| SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle |
| SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle |
| SkFixed lastH = SkFixedMul(last, dY); // vertical edge of the right-most triangle |
| alphas[R - 1] = SkFixedMul(last, lastH) >> 9; // triangle alpha |
| SkFixed alpha16 = lastH + (dY >> 1); // rectangle plus triangle |
| for (int i = R - 2; i > 0; i--) { |
| alphas[i] = (alpha16 >> 8) & 0xFF; |
| alpha16 += dY; |
| } |
| alphas[0] = fullAlpha - partial_triangle_to_alpha(first, dY); |
| } |
| } |
| |
| // Note that if fullAlpha != 0xFF, we'll multiply alpha by fullAlpha |
| static void blit_single_alpha(AdditiveBlitter* blitter, |
| int y, |
| int x, |
| SkAlpha alpha, |
| SkAlpha fullAlpha, |
| SkAlpha* maskRow, |
| bool isUsingMask, |
| bool noRealBlitter, |
| bool needSafeCheck) { |
| if (isUsingMask) { |
| if (fullAlpha == 0xFF && !noRealBlitter) { // noRealBlitter is needed for concave paths |
| maskRow[x] = alpha; |
| } else if (needSafeCheck) { |
| safely_add_alpha(&maskRow[x], get_partial_alpha(alpha, fullAlpha)); |
| } else { |
| add_alpha(&maskRow[x], get_partial_alpha(alpha, fullAlpha)); |
| } |
| } else { |
| if (fullAlpha == 0xFF && !noRealBlitter) { |
| blitter->getRealBlitter()->blitV(x, y, 1, alpha); |
| } else { |
| blitter->blitAntiH(x, y, get_partial_alpha(alpha, fullAlpha)); |
| } |
| } |
| } |
| |
| static void blit_two_alphas(AdditiveBlitter* blitter, |
| int y, |
| int x, |
| SkAlpha a1, |
| SkAlpha a2, |
| SkAlpha fullAlpha, |
| SkAlpha* maskRow, |
| bool isUsingMask, |
| bool noRealBlitter, |
| bool needSafeCheck) { |
| if (isUsingMask) { |
| if (needSafeCheck) { |
| safely_add_alpha(&maskRow[x], a1); |
| safely_add_alpha(&maskRow[x + 1], a2); |
| } else { |
| add_alpha(&maskRow[x], a1); |
| add_alpha(&maskRow[x + 1], a2); |
| } |
| } else { |
| if (fullAlpha == 0xFF && !noRealBlitter) { |
| blitter->getRealBlitter()->blitAntiH2(x, y, a1, a2); |
| } else { |
| blitter->blitAntiH(x, y, a1); |
| blitter->blitAntiH(x + 1, y, a2); |
| } |
| } |
| } |
| |
| static void blit_full_alpha(AdditiveBlitter* blitter, |
| int y, |
| int x, |
| int len, |
| SkAlpha fullAlpha, |
| SkAlpha* maskRow, |
| bool isUsingMask, |
| bool noRealBlitter, |
| bool needSafeCheck) { |
| if (isUsingMask) { |
| for (int i = 0; i < len; ++i) { |
| if (needSafeCheck) { |
| safely_add_alpha(&maskRow[x + i], fullAlpha); |
| } else { |
| add_alpha(&maskRow[x + i], fullAlpha); |
| } |
| } |
| } else { |
| if (fullAlpha == 0xFF && !noRealBlitter) { |
| blitter->getRealBlitter()->blitH(x, y, len); |
| } else { |
| blitter->blitAntiH(x, y, len, fullAlpha); |
| } |
| } |
| } |
| |
| static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, |
| int y, |
| SkFixed ul, |
| SkFixed ur, |
| SkFixed ll, |
| SkFixed lr, |
| SkFixed lDY, |
| SkFixed rDY, |
| SkAlpha fullAlpha, |
| SkAlpha* maskRow, |
| bool isUsingMask, |
| bool noRealBlitter, |
| bool needSafeCheck) { |
| int L = SkFixedFloorToInt(ul), R = SkFixedCeilToInt(lr); |
| int len = R - L; |
| |
| if (len == 1) { |
| SkAlpha alpha = trapezoid_to_alpha(ur - ul, lr - ll); |
| blit_single_alpha(blitter, |
| y, |
| L, |
| alpha, |
| fullAlpha, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| needSafeCheck); |
| return; |
| } |
| |
| const int kQuickLen = 31; |
| alignas(2) char quickMemory[(sizeof(SkAlpha) * 2 + sizeof(int16_t)) * (kQuickLen + 1)]; |
| SkAlpha* alphas; |
| |
| if (len <= kQuickLen) { |
| alphas = (SkAlpha*)quickMemory; |
| } else { |
| alphas = new SkAlpha[(len + 1) * (sizeof(SkAlpha) * 2 + sizeof(int16_t))]; |
| } |
| |
| SkAlpha* tempAlphas = alphas + len + 1; |
| int16_t* runs = (int16_t*)(alphas + (len + 1) * 2); |
| |
| for (int i = 0; i < len; ++i) { |
| runs[i] = 1; |
| alphas[i] = fullAlpha; |
| } |
| runs[len] = 0; |
| |
| int uL = SkFixedFloorToInt(ul); |
| int lL = SkFixedCeilToInt(ll); |
| if (uL + 2 == lL) { // We only need to compute two triangles, accelerate this special case |
| SkFixed first = SkIntToFixed(uL) + SK_Fixed1 - ul; |
| SkFixed second = ll - ul - first; |
| SkAlpha a1 = fullAlpha - partial_triangle_to_alpha(first, lDY); |
| SkAlpha a2 = partial_triangle_to_alpha(second, lDY); |
| alphas[0] = alphas[0] > a1 ? alphas[0] - a1 : 0; |
| alphas[1] = alphas[1] > a2 ? alphas[1] - a2 : 0; |
| } else { |
| compute_alpha_below_line( |
| tempAlphas + uL - L, ul - SkIntToFixed(uL), ll - SkIntToFixed(uL), lDY, fullAlpha); |
| for (int i = uL; i < lL; ++i) { |
| if (alphas[i - L] > tempAlphas[i - L]) { |
| alphas[i - L] -= tempAlphas[i - L]; |
| } else { |
| alphas[i - L] = 0; |
| } |
| } |
| } |
| |
| int uR = SkFixedFloorToInt(ur); |
| int lR = SkFixedCeilToInt(lr); |
| if (uR + 2 == lR) { // We only need to compute two triangles, accelerate this special case |
| SkFixed first = SkIntToFixed(uR) + SK_Fixed1 - ur; |
| SkFixed second = lr - ur - first; |
| SkAlpha a1 = partial_triangle_to_alpha(first, rDY); |
| SkAlpha a2 = fullAlpha - partial_triangle_to_alpha(second, rDY); |
| alphas[len - 2] = alphas[len - 2] > a1 ? alphas[len - 2] - a1 : 0; |
| alphas[len - 1] = alphas[len - 1] > a2 ? alphas[len - 1] - a2 : 0; |
| } else { |
| compute_alpha_above_line( |
| tempAlphas + uR - L, ur - SkIntToFixed(uR), lr - SkIntToFixed(uR), rDY, fullAlpha); |
| for (int i = uR; i < lR; ++i) { |
| if (alphas[i - L] > tempAlphas[i - L]) { |
| alphas[i - L] -= tempAlphas[i - L]; |
| } else { |
| alphas[i - L] = 0; |
| } |
| } |
| } |
| |
| if (isUsingMask) { |
| for (int i = 0; i < len; ++i) { |
| if (needSafeCheck) { |
| safely_add_alpha(&maskRow[L + i], alphas[i]); |
| } else { |
| add_alpha(&maskRow[L + i], alphas[i]); |
| } |
| } |
| } else { |
| if (fullAlpha == 0xFF && !noRealBlitter) { |
| // Real blitter is faster than RunBasedAdditiveBlitter |
| blitter->getRealBlitter()->blitAntiH(L, y, alphas, runs); |
| } else { |
| blitter->blitAntiH(L, y, alphas, len); |
| } |
| } |
| |
| if (len > kQuickLen) { |
| delete[] alphas; |
| } |
| } |
| |
| static void blit_trapezoid_row(AdditiveBlitter* blitter, |
| int y, |
| SkFixed ul, |
| SkFixed ur, |
| SkFixed ll, |
| SkFixed lr, |
| SkFixed lDY, |
| SkFixed rDY, |
| SkAlpha fullAlpha, |
| SkAlpha* maskRow, |
| bool isUsingMask, |
| bool noRealBlitter = false, |
| bool needSafeCheck = false) { |
| SkASSERT(lDY >= 0 && rDY >= 0); // We should only send in the absolte value |
| |
| if (ul > ur) { |
| return; |
| } |
| |
| // Edge crosses. Approximate it. This should only happend due to precision limit, |
| // so the approximation could be very coarse. |
| if (ll > lr) { |
| ll = lr = approximate_intersection(ul, ll, ur, lr); |
| } |
| |
| if (ul == ur && ll == lr) { |
| return; // empty trapzoid |
| } |
| |
| // We're going to use the left line ul-ll and the rite line ur-lr |
| // to exclude the area that's not covered by the path. |
| // Swapping (ul, ll) or (ur, lr) won't affect that exclusion |
| // so we'll do that for simplicity. |
| if (ul > ll) { |
| std::swap(ul, ll); |
| } |
| if (ur > lr) { |
| std::swap(ur, lr); |
| } |
| |
| SkFixed joinLeft = SkFixedCeilToFixed(ll); |
| SkFixed joinRite = SkFixedFloorToFixed(ur); |
| if (joinLeft <= joinRite) { // There's a rect from joinLeft to joinRite that we can blit |
| if (ul < joinLeft) { |
| int len = SkFixedCeilToInt(joinLeft - ul); |
| if (len == 1) { |
| SkAlpha alpha = trapezoid_to_alpha(joinLeft - ul, joinLeft - ll); |
| blit_single_alpha(blitter, |
| y, |
| ul >> 16, |
| alpha, |
| fullAlpha, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| needSafeCheck); |
| } else if (len == 2) { |
| SkFixed first = joinLeft - SK_Fixed1 - ul; |
| SkFixed second = ll - ul - first; |
| SkAlpha a1 = partial_triangle_to_alpha(first, lDY); |
| SkAlpha a2 = fullAlpha - partial_triangle_to_alpha(second, lDY); |
| blit_two_alphas(blitter, |
| y, |
| ul >> 16, |
| a1, |
| a2, |
| fullAlpha, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| needSafeCheck); |
| } else { |
| blit_aaa_trapezoid_row(blitter, |
| y, |
| ul, |
| joinLeft, |
| ll, |
| joinLeft, |
| lDY, |
| SK_MaxS32, |
| fullAlpha, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| needSafeCheck); |
| } |
| } |
| // SkAAClip requires that we blit from left to right. |
| // Hence we must blit [ul, joinLeft] before blitting [joinLeft, joinRite] |
| if (joinLeft < joinRite) { |
| blit_full_alpha(blitter, |
| y, |
| SkFixedFloorToInt(joinLeft), |
| SkFixedFloorToInt(joinRite - joinLeft), |
| fullAlpha, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| needSafeCheck); |
| } |
| if (lr > joinRite) { |
| int len = SkFixedCeilToInt(lr - joinRite); |
| if (len == 1) { |
| SkAlpha alpha = trapezoid_to_alpha(ur - joinRite, lr - joinRite); |
| blit_single_alpha(blitter, |
| y, |
| joinRite >> 16, |
| alpha, |
| fullAlpha, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| needSafeCheck); |
| } else if (len == 2) { |
| SkFixed first = joinRite + SK_Fixed1 - ur; |
| SkFixed second = lr - ur - first; |
| SkAlpha a1 = fullAlpha - partial_triangle_to_alpha(first, rDY); |
| SkAlpha a2 = partial_triangle_to_alpha(second, rDY); |
| blit_two_alphas(blitter, |
| y, |
| joinRite >> 16, |
| a1, |
| a2, |
| fullAlpha, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| needSafeCheck); |
| } else { |
| blit_aaa_trapezoid_row(blitter, |
| y, |
| joinRite, |
| ur, |
| joinRite, |
| lr, |
| SK_MaxS32, |
| rDY, |
| fullAlpha, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| needSafeCheck); |
| } |
| } |
| } else { |
| blit_aaa_trapezoid_row(blitter, |
| y, |
| ul, |
| ur, |
| ll, |
| lr, |
| lDY, |
| rDY, |
| fullAlpha, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| needSafeCheck); |
| } |
| } |
| |
| static bool operator<(const SkAnalyticEdge& a, const SkAnalyticEdge& b) { |
| int valuea = a.fUpperY; |
| int valueb = b.fUpperY; |
| |
| if (valuea == valueb) { |
| valuea = a.fX; |
| valueb = b.fX; |
| } |
| |
| if (valuea == valueb) { |
| valuea = a.fDX; |
| valueb = b.fDX; |
| } |
| |
| return valuea < valueb; |
| } |
| |
| static SkAnalyticEdge* sort_edges(SkAnalyticEdge* list[], int count, SkAnalyticEdge** last) { |
| SkTQSort(list, list + count); |
| |
| // now make the edges linked in sorted order |
| for (int i = 1; i < count; ++i) { |
| list[i - 1]->fNext = list[i]; |
| list[i]->fPrev = list[i - 1]; |
| } |
| |
| *last = list[count - 1]; |
| return list[0]; |
| } |
| |
| static void validate_sort(const SkAnalyticEdge* edge) { |
| #ifdef SK_DEBUG |
| SkFixed y = SkIntToFixed(-32768); |
| |
| while (edge->fUpperY != SK_MaxS32) { |
| edge->validate(); |
| SkASSERT(y <= edge->fUpperY); |
| |
| y = edge->fUpperY; |
| edge = (SkAnalyticEdge*)edge->fNext; |
| } |
| #endif |
| } |
| |
| // For an edge, we consider it smooth if the Dx doesn't change much, and Dy is large enough |
| // For curves that are updating, the Dx is not changing much if fQDx/fCDx and fQDy/fCDy are |
| // relatively large compared to fQDDx/QCDDx and fQDDy/fCDDy |
| static bool is_smooth_enough(SkAnalyticEdge* thisEdge, SkAnalyticEdge* nextEdge, int stop_y) { |
| if (thisEdge->fCurveCount < 0) { |
| const SkCubicEdge& cEdge = static_cast<SkAnalyticCubicEdge*>(thisEdge)->fCEdge; |
| int ddshift = cEdge.fCurveShift; |
| return SkAbs32(cEdge.fCDx) >> 1 >= SkAbs32(cEdge.fCDDx) >> ddshift && |
| SkAbs32(cEdge.fCDy) >> 1 >= SkAbs32(cEdge.fCDDy) >> ddshift && |
| // current Dy is (fCDy - (fCDDy >> ddshift)) >> dshift |
| (cEdge.fCDy - (cEdge.fCDDy >> ddshift)) >> cEdge.fCubicDShift >= SK_Fixed1; |
| } else if (thisEdge->fCurveCount > 0) { |
| const SkQuadraticEdge& qEdge = static_cast<SkAnalyticQuadraticEdge*>(thisEdge)->fQEdge; |
| return SkAbs32(qEdge.fQDx) >> 1 >= SkAbs32(qEdge.fQDDx) && |
| SkAbs32(qEdge.fQDy) >> 1 >= SkAbs32(qEdge.fQDDy) && |
| // current Dy is (fQDy - fQDDy) >> shift |
| (qEdge.fQDy - qEdge.fQDDy) >> qEdge.fCurveShift >= SK_Fixed1; |
| } |
| return SkAbs32(nextEdge->fDX - thisEdge->fDX) <= SK_Fixed1 && // DDx should be small |
| nextEdge->fLowerY - nextEdge->fUpperY >= SK_Fixed1; // Dy should be large |
| } |
| |
| // Check if the leftE and riteE are changing smoothly in terms of fDX. |
| // If yes, we can later skip the fractional y and directly jump to integer y. |
| static bool is_smooth_enough(SkAnalyticEdge* leftE, |
| SkAnalyticEdge* riteE, |
| SkAnalyticEdge* currE, |
| int stop_y) { |
| if (currE->fUpperY >= SkLeftShift(stop_y, 16)) { |
| return false; // We're at the end so we won't skip anything |
| } |
| if (leftE->fLowerY + SK_Fixed1 < riteE->fLowerY) { |
| return is_smooth_enough(leftE, currE, stop_y); // Only leftE is changing |
| } else if (leftE->fLowerY > riteE->fLowerY + SK_Fixed1) { |
| return is_smooth_enough(riteE, currE, stop_y); // Only riteE is changing |
| } |
| |
| // Now both edges are changing, find the second next edge |
| SkAnalyticEdge* nextCurrE = currE->fNext; |
| if (nextCurrE->fUpperY >= stop_y << 16) { // Check if we're at the end |
| return false; |
| } |
| // Ensure that currE is the next left edge and nextCurrE is the next right edge. Swap if not. |
| if (nextCurrE->fUpperX < currE->fUpperX) { |
| std::swap(currE, nextCurrE); |
| } |
| return is_smooth_enough(leftE, currE, stop_y) && is_smooth_enough(riteE, nextCurrE, stop_y); |
| } |
| |
| static void aaa_walk_convex_edges(SkAnalyticEdge* prevHead, |
| AdditiveBlitter* blitter, |
| int start_y, |
| int stop_y, |
| SkFixed leftBound, |
| SkFixed riteBound, |
| bool isUsingMask) { |
| validate_sort((SkAnalyticEdge*)prevHead->fNext); |
| |
| SkAnalyticEdge* leftE = (SkAnalyticEdge*)prevHead->fNext; |
| SkAnalyticEdge* riteE = (SkAnalyticEdge*)leftE->fNext; |
| SkAnalyticEdge* currE = (SkAnalyticEdge*)riteE->fNext; |
| |
| SkFixed y = std::max(leftE->fUpperY, riteE->fUpperY); |
| |
| for (;;) { |
| // We have to check fLowerY first because some edges might be alone (e.g., there's only |
| // a left edge but no right edge in a given y scan line) due to precision limit. |
| while (leftE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges |
| if (!leftE->update(y)) { |
| if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
| goto END_WALK; |
| } |
| leftE = currE; |
| currE = (SkAnalyticEdge*)currE->fNext; |
| } |
| } |
| while (riteE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges |
| if (!riteE->update(y)) { |
| if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
| goto END_WALK; |
| } |
| riteE = currE; |
| currE = (SkAnalyticEdge*)currE->fNext; |
| } |
| } |
| |
| SkASSERT(leftE); |
| SkASSERT(riteE); |
| |
| // check our bottom clip |
| if (SkFixedFloorToInt(y) >= stop_y) { |
| break; |
| } |
| |
| SkASSERT(SkFixedFloorToInt(leftE->fUpperY) <= stop_y); |
| SkASSERT(SkFixedFloorToInt(riteE->fUpperY) <= stop_y); |
| |
| leftE->goY(y); |
| riteE->goY(y); |
| |
| if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX && leftE->fDX > riteE->fDX)) { |
| std::swap(leftE, riteE); |
| } |
| |
| SkFixed local_bot_fixed = std::min(leftE->fLowerY, riteE->fLowerY); |
| if (is_smooth_enough(leftE, riteE, currE, stop_y)) { |
| local_bot_fixed = SkFixedCeilToFixed(local_bot_fixed); |
| } |
| local_bot_fixed = std::min(local_bot_fixed, SkIntToFixed(stop_y)); |
| |
| SkFixed left = std::max(leftBound, leftE->fX); |
| SkFixed dLeft = leftE->fDX; |
| SkFixed rite = std::min(riteBound, riteE->fX); |
| SkFixed dRite = riteE->fDX; |
| if (0 == (dLeft | dRite)) { |
| int fullLeft = SkFixedCeilToInt(left); |
| int fullRite = SkFixedFloorToInt(rite); |
| SkFixed partialLeft = SkIntToFixed(fullLeft) - left; |
| SkFixed partialRite = rite - SkIntToFixed(fullRite); |
| int fullTop = SkFixedCeilToInt(y); |
| int fullBot = SkFixedFloorToInt(local_bot_fixed); |
| SkFixed partialTop = SkIntToFixed(fullTop) - y; |
| SkFixed partialBot = local_bot_fixed - SkIntToFixed(fullBot); |
| if (fullTop > fullBot) { // The rectangle is within one pixel height... |
| partialTop -= (SK_Fixed1 - partialBot); |
| partialBot = 0; |
| } |
| |
| if (fullRite >= fullLeft) { |
| if (partialTop > 0) { // blit first partial row |
| if (partialLeft > 0) { |
| blitter->blitAntiH(fullLeft - 1, |
| fullTop - 1, |
| fixed_to_alpha(SkFixedMul(partialTop, partialLeft))); |
| } |
| blitter->blitAntiH( |
| fullLeft, fullTop - 1, fullRite - fullLeft, fixed_to_alpha(partialTop)); |
| if (partialRite > 0) { |
| blitter->blitAntiH(fullRite, |
| fullTop - 1, |
| fixed_to_alpha(SkFixedMul(partialTop, partialRite))); |
| } |
| blitter->flush_if_y_changed(y, y + partialTop); |
| } |
| |
| // Blit all full-height rows from fullTop to fullBot |
| if (fullBot > fullTop && |
| // SkAAClip cannot handle the empty rect so check the non-emptiness here |
| // (bug chromium:662800) |
| (fullRite > fullLeft || fixed_to_alpha(partialLeft) > 0 || |
| fixed_to_alpha(partialRite) > 0)) { |
| blitter->getRealBlitter()->blitAntiRect(fullLeft - 1, |
| fullTop, |
| fullRite - fullLeft, |
| fullBot - fullTop, |
| fixed_to_alpha(partialLeft), |
| fixed_to_alpha(partialRite)); |
| } |
| |
| if (partialBot > 0) { // blit last partial row |
| if (partialLeft > 0) { |
| blitter->blitAntiH(fullLeft - 1, |
| fullBot, |
| fixed_to_alpha(SkFixedMul(partialBot, partialLeft))); |
| } |
| blitter->blitAntiH( |
| fullLeft, fullBot, fullRite - fullLeft, fixed_to_alpha(partialBot)); |
| if (partialRite > 0) { |
| blitter->blitAntiH(fullRite, |
| fullBot, |
| fixed_to_alpha(SkFixedMul(partialBot, partialRite))); |
| } |
| } |
| } else { |
| // Normal conditions, this means left and rite are within the same pixel, but if |
| // both left and rite were < leftBounds or > rightBounds, both edges are clipped and |
| // we should not do any blitting (particularly since the negative width saturates to |
| // full alpha). |
| SkFixed width = rite - left; |
| if (width > 0) { |
| if (partialTop > 0) { |
| blitter->blitAntiH(fullLeft - 1, |
| fullTop - 1, |
| 1, |
| fixed_to_alpha(SkFixedMul(partialTop, width))); |
| blitter->flush_if_y_changed(y, y + partialTop); |
| } |
| if (fullBot > fullTop) { |
| blitter->getRealBlitter()->blitV( |
| fullLeft - 1, fullTop, fullBot - fullTop, fixed_to_alpha(width)); |
| } |
| if (partialBot > 0) { |
| blitter->blitAntiH(fullLeft - 1, |
| fullBot, |
| 1, |
| fixed_to_alpha(SkFixedMul(partialBot, width))); |
| } |
| } |
| } |
| |
| y = local_bot_fixed; |
| } else { |
| // The following constant are used to snap X |
| // We snap X mainly for speedup (no tiny triangle) and |
| // avoiding edge cases caused by precision errors |
| const SkFixed kSnapDigit = SK_Fixed1 >> 4; |
| const SkFixed kSnapHalf = kSnapDigit >> 1; |
| const SkFixed kSnapMask = (-1 ^ (kSnapDigit - 1)); |
| left += kSnapHalf; |
| rite += kSnapHalf; // For fast rounding |
| |
| // Number of blit_trapezoid_row calls we'll have |
| int count = SkFixedCeilToInt(local_bot_fixed) - SkFixedFloorToInt(y); |
| |
| // If we're using mask blitter, we advance the mask row in this function |
| // to save some "if" condition checks. |
| SkAlpha* maskRow = nullptr; |
| if (isUsingMask) { |
| maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16); |
| } |
| |
| // Instead of writing one loop that handles both partial-row blit_trapezoid_row |
| // and full-row trapezoid_row together, we use the following 3-stage flow to |
| // handle partial-row blit and full-row blit separately. It will save us much time |
| // on changing y, left, and rite. |
| if (count > 1) { |
| if ((int)(y & 0xFFFF0000) != y) { // There's a partial-row on the top |
| count--; |
| SkFixed nextY = SkFixedCeilToFixed(y + 1); |
| SkFixed dY = nextY - y; |
| SkFixed nextLeft = left + SkFixedMul(dLeft, dY); |
| SkFixed nextRite = rite + SkFixedMul(dRite, dY); |
| SkASSERT((left & kSnapMask) >= leftBound && (rite & kSnapMask) <= riteBound && |
| (nextLeft & kSnapMask) >= leftBound && |
| (nextRite & kSnapMask) <= riteBound); |
| blit_trapezoid_row(blitter, |
| y >> 16, |
| left & kSnapMask, |
| rite & kSnapMask, |
| nextLeft & kSnapMask, |
| nextRite & kSnapMask, |
| leftE->fDY, |
| riteE->fDY, |
| get_partial_alpha(0xFF, dY), |
| maskRow, |
| isUsingMask); |
| blitter->flush_if_y_changed(y, nextY); |
| left = nextLeft; |
| rite = nextRite; |
| y = nextY; |
| } |
| |
| while (count > 1) { // Full rows in the middle |
| count--; |
| if (isUsingMask) { |
| maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16); |
| } |
| SkFixed nextY = y + SK_Fixed1, nextLeft = left + dLeft, nextRite = rite + dRite; |
| SkASSERT((left & kSnapMask) >= leftBound && (rite & kSnapMask) <= riteBound && |
| (nextLeft & kSnapMask) >= leftBound && |
| (nextRite & kSnapMask) <= riteBound); |
| blit_trapezoid_row(blitter, |
| y >> 16, |
| left & kSnapMask, |
| rite & kSnapMask, |
| nextLeft & kSnapMask, |
| nextRite & kSnapMask, |
| leftE->fDY, |
| riteE->fDY, |
| 0xFF, |
| maskRow, |
| isUsingMask); |
| blitter->flush_if_y_changed(y, nextY); |
| left = nextLeft; |
| rite = nextRite; |
| y = nextY; |
| } |
| } |
| |
| if (isUsingMask) { |
| maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16); |
| } |
| |
| SkFixed dY = local_bot_fixed - y; // partial-row on the bottom |
| SkASSERT(dY <= SK_Fixed1); |
| // Smooth jumping to integer y may make the last nextLeft/nextRite out of bound. |
| // Take them back into the bound here. |
| // Note that we substract kSnapHalf later so we have to add them to leftBound/riteBound |
| SkFixed nextLeft = std::max(left + SkFixedMul(dLeft, dY), leftBound + kSnapHalf); |
| SkFixed nextRite = std::min(rite + SkFixedMul(dRite, dY), riteBound + kSnapHalf); |
| SkASSERT((left & kSnapMask) >= leftBound && (rite & kSnapMask) <= riteBound && |
| (nextLeft & kSnapMask) >= leftBound && (nextRite & kSnapMask) <= riteBound); |
| blit_trapezoid_row(blitter, |
| y >> 16, |
| left & kSnapMask, |
| rite & kSnapMask, |
| nextLeft & kSnapMask, |
| nextRite & kSnapMask, |
| leftE->fDY, |
| riteE->fDY, |
| get_partial_alpha(0xFF, dY), |
| maskRow, |
| isUsingMask); |
| blitter->flush_if_y_changed(y, local_bot_fixed); |
| left = nextLeft; |
| rite = nextRite; |
| y = local_bot_fixed; |
| left -= kSnapHalf; |
| rite -= kSnapHalf; |
| } |
| |
| leftE->fX = left; |
| riteE->fX = rite; |
| leftE->fY = riteE->fY = y; |
| } |
| |
| END_WALK:; |
| } |
| |
| static void update_next_next_y(SkFixed y, SkFixed nextY, SkFixed* nextNextY) { |
| *nextNextY = y > nextY && y < *nextNextY ? y : *nextNextY; |
| } |
| |
| static void check_intersection(const SkAnalyticEdge* edge, SkFixed nextY, SkFixed* nextNextY) { |
| if (edge->fPrev->fPrev && edge->fPrev->fX + edge->fPrev->fDX > edge->fX + edge->fDX) { |
| *nextNextY = nextY + (SK_Fixed1 >> SkAnalyticEdge::kDefaultAccuracy); |
| } |
| } |
| |
| #if !defined(SK_USE_LEGACY_DEFERRED_BLIT) |
| static void check_intersection_fwd(const SkAnalyticEdge* edge, SkFixed nextY, SkFixed* nextNextY) { |
| if (edge->fNext->fNext && edge->fX + edge->fDX > edge->fNext->fX + edge->fNext->fDX) { |
| *nextNextY = nextY + (SK_Fixed1 >> SkAnalyticEdge::kDefaultAccuracy); |
| } |
| } |
| #endif |
| |
| static void insert_new_edges(SkAnalyticEdge* newEdge, SkFixed y, SkFixed* nextNextY) { |
| if (newEdge->fUpperY > y) { |
| update_next_next_y(newEdge->fUpperY, y, nextNextY); |
| return; |
| } |
| SkAnalyticEdge* prev = newEdge->fPrev; |
| if (prev->fX <= newEdge->fX) { |
| while (newEdge->fUpperY <= y) { |
| check_intersection(newEdge, y, nextNextY); |
| update_next_next_y(newEdge->fLowerY, y, nextNextY); |
| newEdge = newEdge->fNext; |
| } |
| update_next_next_y(newEdge->fUpperY, y, nextNextY); |
| return; |
| } |
| // find first x pos to insert |
| SkAnalyticEdge* start = backward_insert_start(prev, newEdge->fX); |
| // insert the lot, fixing up the links as we go |
| do { |
| SkAnalyticEdge* next = newEdge->fNext; |
| do { |
| if (start->fNext == newEdge) { |
| goto nextEdge; |
| } |
| SkAnalyticEdge* after = start->fNext; |
| if (after->fX >= newEdge->fX) { |
| break; |
| } |
| SkASSERT(start != after); |
| start = after; |
| } while (true); |
| remove_edge(newEdge); |
| insert_edge_after(newEdge, start); |
| nextEdge: |
| check_intersection(newEdge, y, nextNextY); |
| #if !defined(SK_USE_LEGACY_DEFERRED_BLIT) |
| check_intersection_fwd(newEdge, y, nextNextY); |
| #endif |
| update_next_next_y(newEdge->fLowerY, y, nextNextY); |
| start = newEdge; |
| newEdge = next; |
| } while (newEdge->fUpperY <= y); |
| update_next_next_y(newEdge->fUpperY, y, nextNextY); |
| } |
| |
| static void validate_edges_for_y(const SkAnalyticEdge* edge, SkFixed y) { |
| #ifdef SK_DEBUG |
| while (edge->fUpperY <= y) { |
| SkASSERT(edge->fPrev && edge->fNext); |
| SkASSERT(edge->fPrev->fNext == edge); |
| SkASSERT(edge->fNext->fPrev == edge); |
| SkASSERT(edge->fUpperY <= edge->fLowerY); |
| SkASSERT(edge->fPrev->fPrev == nullptr || edge->fPrev->fX <= edge->fX); |
| edge = edge->fNext; |
| } |
| #endif |
| } |
| |
| // Return true if prev->fX, next->fX are too close in the current pixel row. |
| static bool edges_too_close(SkAnalyticEdge* prev, SkAnalyticEdge* next, SkFixed lowerY) { |
| // When next->fDX == 0, prev->fX >= next->fX - SkAbs32(next->fDX) would be false |
| // even if prev->fX and next->fX are close and within one pixel (e.g., prev->fX == 0.1, |
| // next->fX == 0.9). Adding SLACK = 1 to the formula would guarantee it to be true if two |
| // edges prev and next are within one pixel. |
| constexpr SkFixed SLACK = SK_Fixed1; |
| |
| // Note that even if the following test failed, the edges might still be very close to each |
| // other at some point within the current pixel row because of prev->fDX and next->fDX. |
| // However, to handle that case, we have to sacrafice more performance. |
| // I think the current quality is good enough (mainly by looking at Nebraska-StateSeal.svg) |
| // so I'll ignore fDX for performance tradeoff. |
| return next && prev && next->fUpperY < lowerY && |
| prev->fX + SLACK >= next->fX - SkAbs32(next->fDX); |
| // The following is more accurate but also slower. |
| // return (prev && prev->fPrev && next && next->fNext != nullptr && next->fUpperY < lowerY && |
| // prev->fX + SkAbs32(prev->fDX) + SLACK >= next->fX - SkAbs32(next->fDX)); |
| } |
| |
| // This function exists for the case where the previous rite edge is removed because |
| // its fLowerY <= nextY |
| static bool edges_too_close(int prevRite, SkFixed ul, SkFixed ll) { |
| return prevRite > SkFixedFloorToInt(ul) || prevRite > SkFixedFloorToInt(ll); |
| } |
| |
| static void blit_saved_trapezoid(SkAnalyticEdge* leftE, |
| SkFixed lowerY, |
| SkFixed lowerLeft, |
| SkFixed lowerRite, |
| AdditiveBlitter* blitter, |
| SkAlpha* maskRow, |
| bool isUsingMask, |
| bool noRealBlitter, |
| SkFixed leftClip, |
| SkFixed rightClip) { |
| SkAnalyticEdge* riteE = leftE->fRiteE; |
| SkASSERT(riteE); |
| SkASSERT(riteE->fNext == nullptr || leftE->fSavedY == riteE->fSavedY); |
| SkASSERT(SkFixedFloorToInt(lowerY - 1) == SkFixedFloorToInt(leftE->fSavedY)); |
| int y = SkFixedFloorToInt(leftE->fSavedY); |
| // Instead of using fixed_to_alpha(lowerY - leftE->fSavedY), we use the following fullAlpha |
| // to elimiate cumulative error: if there are many fractional y scan lines within the |
| // same row, the former may accumulate the rounding error while the later won't. |
| SkAlpha fullAlpha = fixed_to_alpha(lowerY - SkIntToFixed(y)) - |
| fixed_to_alpha(leftE->fSavedY - SkIntToFixed(y)); |
| // We need fSavedDY because the (quad or cubic) edge might be updated |
| blit_trapezoid_row( |
| blitter, |
| y, |
| std::max(leftE->fSavedX, leftClip), |
| std::min(riteE->fSavedX, rightClip), |
| std::max(lowerLeft, leftClip), |
| std::min(lowerRite, rightClip), |
| leftE->fSavedDY, |
| riteE->fSavedDY, |
| fullAlpha, |
| maskRow, |
| isUsingMask, |
| noRealBlitter || (fullAlpha == 0xFF && (edges_too_close(leftE->fPrev, leftE, lowerY) || |
| edges_too_close(riteE, riteE->fNext, lowerY))), |
| true); |
| leftE->fRiteE = nullptr; |
| } |
| |
| static void deferred_blit(SkAnalyticEdge* leftE, |
| SkAnalyticEdge* riteE, |
| SkFixed left, |
| SkFixed leftDY, // don't save leftE->fX/fDY as they may have been updated |
| SkFixed y, |
| SkFixed nextY, |
| bool isIntegralNextY, |
| bool leftEnds, |
| bool riteEnds, |
| AdditiveBlitter* blitter, |
| SkAlpha* maskRow, |
| bool isUsingMask, |
| bool noRealBlitter, |
| SkFixed leftClip, |
| SkFixed rightClip, |
| int yShift) { |
| if (leftE->fRiteE && leftE->fRiteE != riteE) { |
| // leftE's right edge changed. Blit the saved trapezoid. |
| SkASSERT(leftE->fRiteE->fNext == nullptr || leftE->fRiteE->fY == y); |
| blit_saved_trapezoid(leftE, |
| y, |
| left, |
| leftE->fRiteE->fX, |
| blitter, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| leftClip, |
| rightClip); |
| } |
| if (!leftE->fRiteE) { |
| // Save and defer blitting the trapezoid |
| SkASSERT(riteE->fRiteE == nullptr); |
| SkASSERT(leftE->fPrev == nullptr || leftE->fY == nextY); |
| SkASSERT(riteE->fNext == nullptr || riteE->fY == y); |
| leftE->saveXY(left, y, leftDY); |
| riteE->saveXY(riteE->fX, y, riteE->fDY); |
| leftE->fRiteE = riteE; |
| } |
| SkASSERT(leftE->fPrev == nullptr || leftE->fY == nextY); |
| riteE->goY(nextY, yShift); |
| // Always blit when edges end or nextY is integral |
| if (isIntegralNextY || leftEnds || riteEnds) { |
| blit_saved_trapezoid(leftE, |
| nextY, |
| leftE->fX, |
| riteE->fX, |
| blitter, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| leftClip, |
| rightClip); |
| } |
| } |
| |
| static void aaa_walk_edges(SkAnalyticEdge* prevHead, |
| SkAnalyticEdge* nextTail, |
| SkPathFillType fillType, |
| AdditiveBlitter* blitter, |
| int start_y, |
| int stop_y, |
| SkFixed leftClip, |
| SkFixed rightClip, |
| bool isUsingMask, |
| bool forceRLE, |
| bool useDeferred, |
| bool skipIntersect) { |
| prevHead->fX = prevHead->fUpperX = leftClip; |
| nextTail->fX = nextTail->fUpperX = rightClip; |
| SkFixed y = std::max(prevHead->fNext->fUpperY, SkIntToFixed(start_y)); |
| SkFixed nextNextY = SK_MaxS32; |
| |
| { |
| SkAnalyticEdge* edge; |
| for (edge = prevHead->fNext; edge->fUpperY <= y; edge = edge->fNext) { |
| edge->goY(y); |
| update_next_next_y(edge->fLowerY, y, &nextNextY); |
| } |
| update_next_next_y(edge->fUpperY, y, &nextNextY); |
| } |
| |
| int windingMask = SkPathFillType_IsEvenOdd(fillType) ? 1 : -1; |
| bool isInverse = SkPathFillType_IsInverse(fillType); |
| |
| if (isInverse && SkIntToFixed(start_y) != y) { |
| int width = SkFixedFloorToInt(rightClip - leftClip); |
| if (SkFixedFloorToInt(y) != start_y) { |
| blitter->getRealBlitter()->blitRect( |
| SkFixedFloorToInt(leftClip), start_y, width, SkFixedFloorToInt(y) - start_y); |
| start_y = SkFixedFloorToInt(y); |
| } |
| SkAlpha* maskRow = |
| isUsingMask ? static_cast<MaskAdditiveBlitter*>(blitter)->getRow(start_y) : nullptr; |
| blit_full_alpha(blitter, |
| start_y, |
| SkFixedFloorToInt(leftClip), |
| width, |
| fixed_to_alpha(y - SkIntToFixed(start_y)), |
| maskRow, |
| isUsingMask, |
| false, |
| false); |
| } |
| |
| while (true) { |
| int w = 0; |
| bool in_interval = isInverse; |
| SkFixed prevX = prevHead->fX; |
| SkFixed nextY = std::min(nextNextY, SkFixedCeilToFixed(y + 1)); |
| bool isIntegralNextY = (nextY & (SK_Fixed1 - 1)) == 0; |
| SkAnalyticEdge* currE = prevHead->fNext; |
| SkAnalyticEdge* leftE = prevHead; |
| SkFixed left = leftClip; |
| SkFixed leftDY = 0; |
| bool leftEnds = false; |
| int prevRite = SkFixedFloorToInt(leftClip); |
| |
| nextNextY = SK_MaxS32; |
| |
| SkASSERT((nextY & ((SK_Fixed1 >> 2) - 1)) == 0); |
| int yShift = 0; |
| if ((nextY - y) & (SK_Fixed1 >> 2)) { |
| yShift = 2; |
| nextY = y + (SK_Fixed1 >> 2); |
| } else if ((nextY - y) & (SK_Fixed1 >> 1)) { |
| yShift = 1; |
| SkASSERT(nextY == y + (SK_Fixed1 >> 1)); |
| } |
| |
| SkAlpha fullAlpha = fixed_to_alpha(nextY - y); |
| |
| // If we're using mask blitter, we advance the mask row in this function |
| // to save some "if" condition checks. |
| SkAlpha* maskRow = nullptr; |
| if (isUsingMask) { |
| maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(SkFixedFloorToInt(y)); |
| } |
| |
| SkASSERT(currE->fPrev == prevHead); |
| validate_edges_for_y(currE, y); |
| |
| // Even if next - y == SK_Fixed1, we can still break the left-to-right order requirement |
| // of the SKAAClip: |\| (two trapezoids with overlapping middle wedges) |
| bool noRealBlitter = forceRLE; // forceRLE && (nextY - y != SK_Fixed1); |
| |
| while (currE->fUpperY <= y) { |
| SkASSERT(currE->fLowerY >= nextY); |
| SkASSERT(currE->fY == y); |
| |
| w += currE->fWinding; |
| bool prev_in_interval = in_interval; |
| in_interval = !(w & windingMask) == isInverse; |
| |
| bool isLeft = in_interval && !prev_in_interval; |
| bool isRite = !in_interval && prev_in_interval; |
| bool currEnds = currE->fLowerY == nextY; |
| |
| if (useDeferred) { |
| if (currE->fRiteE && !isLeft) { |
| // currE is a left edge previously, but now it's not. |
| // Blit the trapezoid between fSavedY and y. |
| SkASSERT(currE->fRiteE->fY == y); |
| blit_saved_trapezoid(currE, |
| y, |
| currE->fX, |
| currE->fRiteE->fX, |
| blitter, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| leftClip, |
| rightClip); |
| } |
| if (leftE->fRiteE == currE && !isRite) { |
| // currE is a right edge previously, but now it's not. |
| // Moreover, its corresponding leftE doesn't change (otherwise we'll handle it |
| // in the previous if clause). Hence we blit the trapezoid. |
| blit_saved_trapezoid(leftE, |
| y, |
| left, |
| currE->fX, |
| blitter, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| leftClip, |
| rightClip); |
| } |
| } |
| |
| if (isRite) { |
| if (useDeferred) { |
| deferred_blit(leftE, |
| currE, |
| left, |
| leftDY, |
| y, |
| nextY, |
| isIntegralNextY, |
| leftEnds, |
| currEnds, |
| blitter, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| leftClip, |
| rightClip, |
| yShift); |
| } else { |
| SkFixed rite = currE->fX; |
| currE->goY(nextY, yShift); |
| SkFixed nextLeft = std::max(leftClip, leftE->fX); |
| rite = std::min(rightClip, rite); |
| SkFixed nextRite = std::min(rightClip, currE->fX); |
| blit_trapezoid_row( |
| blitter, |
| y >> 16, |
| left, |
| rite, |
| nextLeft, |
| nextRite, |
| leftDY, |
| currE->fDY, |
| fullAlpha, |
| maskRow, |
| isUsingMask, |
| noRealBlitter || (fullAlpha == 0xFF && |
| (edges_too_close(prevRite, left, leftE->fX) || |
| edges_too_close(currE, currE->fNext, nextY))), |
| true); |
| prevRite = SkFixedCeilToInt(std::max(rite, currE->fX)); |
| } |
| } else { |
| if (isLeft) { |
| left = std::max(currE->fX, leftClip); |
| leftDY = currE->fDY; |
| leftE = currE; |
| leftEnds = leftE->fLowerY == nextY; |
| } |
| currE->goY(nextY, yShift); |
| } |
| |
| SkAnalyticEdge* next = currE->fNext; |
| SkFixed newX; |
| |
| while (currE->fLowerY <= nextY) { |
| if (currE->fCurveCount < 0) { |
| SkAnalyticCubicEdge* cubicEdge = (SkAnalyticCubicEdge*)currE; |
| cubicEdge->keepContinuous(); |
| if (!cubicEdge->updateCubic()) { |
| break; |
| } |
| } else if (currE->fCurveCount > 0) { |
| SkAnalyticQuadraticEdge* quadEdge = (SkAnalyticQuadraticEdge*)currE; |
| quadEdge->keepContinuous(); |
| if (!quadEdge->updateQuadratic()) { |
| break; |
| } |
| } else { |
| break; |
| } |
| } |
| SkASSERT(currE->fY == nextY); |
| |
| if (currE->fLowerY <= nextY) { |
| remove_edge(currE); |
| } else { |
| update_next_next_y(currE->fLowerY, nextY, &nextNextY); |
| newX = currE->fX; |
| SkASSERT(currE->fLowerY > nextY); |
| if (newX < prevX) { // ripple currE backwards until it is x-sorted |
| // If the crossing edge is a right edge, blit the saved trapezoid. |
| if (leftE->fRiteE == currE && useDeferred) { |
| SkASSERT(leftE->fY == nextY && currE->fY == nextY); |
| blit_saved_trapezoid(leftE, |
| nextY, |
| leftE->fX, |
| currE->fX, |
| blitter, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| leftClip, |
| rightClip); |
| } |
| backward_insert_edge_based_on_x(currE); |
| } else { |
| prevX = newX; |
| } |
| if (!skipIntersect) { |
| check_intersection(currE, nextY, &nextNextY); |
| } |
| } |
| |
| currE = next; |
| SkASSERT(currE); |
| } |
| |
| // was our right-edge culled away? |
| if (in_interval) { |
| if (useDeferred) { |
| deferred_blit(leftE, |
| nextTail, |
| left, |
| leftDY, |
| y, |
| nextY, |
| isIntegralNextY, |
| leftEnds, |
| false, |
| blitter, |
| maskRow, |
| isUsingMask, |
| noRealBlitter, |
| leftClip, |
| rightClip, |
| yShift); |
| } else { |
| blit_trapezoid_row(blitter, |
| y >> 16, |
| left, |
| rightClip, |
| std::max(leftClip, leftE->fX), |
| rightClip, |
| leftDY, |
| 0, |
| fullAlpha, |
| maskRow, |
| isUsingMask, |
| noRealBlitter || (fullAlpha == 0xFF && |
| edges_too_close(leftE->fPrev, leftE, nextY)), |
| true); |
| } |
| } |
| |
| if (forceRLE) { |
| ((RunBasedAdditiveBlitter*)blitter)->flush_if_y_changed(y, nextY); |
| } |
| |
| y = nextY; |
| if (y >= SkIntToFixed(stop_y)) { |
| break; |
| } |
| |
| // now currE points to the first edge with a fUpperY larger than the previous y |
| insert_new_edges(currE, y, &nextNextY); |
| } |
| } |
| |
| static void aaa_fill_path(const SkPath& path, |
| const SkIRect& clipRect, |
| AdditiveBlitter* blitter, |
| int start_y, |
| int stop_y, |
| bool pathContainedInClip, |
| bool isUsingMask, |
| bool forceRLE) { // forceRLE implies that SkAAClip is calling us |
| SkASSERT(blitter); |
| |
| SkAnalyticEdgeBuilder builder; |
| int count = builder.buildEdges(path, pathContainedInClip ? nullptr : &clipRect); |
| SkAnalyticEdge** list = builder.analyticEdgeList(); |
| |
| SkIRect rect = clipRect; |
| if (0 == count) { |
| if (path.isInverseFillType()) { |
| /* |
| * Since we are in inverse-fill, our caller has already drawn above |
| * our top (start_y) and will draw below our bottom (stop_y). Thus |
| * we need to restrict our drawing to the intersection of the clip |
| * and those two limits. |
| */ |
| if (rect.fTop < start_y) { |
| rect.fTop = start_y; |
| } |
| if (rect.fBottom > stop_y) { |
| rect.fBottom = stop_y; |
| } |
| if (!rect.isEmpty()) { |
| blitter->getRealBlitter()->blitRect( |
| rect.fLeft, rect.fTop, rect.width(), rect.height()); |
| } |
| } |
| return; |
| } |
| |
| SkAnalyticEdge headEdge, tailEdge, *last; |
| // this returns the first and last edge after they're sorted into a dlink list |
| SkAnalyticEdge* edge = sort_edges(list, count, &last); |
| |
| headEdge.fRiteE = nullptr; |
| headEdge.fPrev = nullptr; |
| headEdge.fNext = edge; |
| headEdge.fUpperY = headEdge.fLowerY = SK_MinS32; |
| headEdge.fX = SK_MinS32; |
| headEdge.fDX = 0; |
| headEdge.fDY = SK_MaxS32; |
| headEdge.fUpperX = SK_MinS32; |
| edge->fPrev = &headEdge; |
| |
| tailEdge.fRiteE = nullptr; |
| tailEdge.fPrev = last; |
| tailEdge.fNext = nullptr; |
| tailEdge.fUpperY = tailEdge.fLowerY = SK_MaxS32; |
| tailEdge.fX = SK_MaxS32; |
| tailEdge.fDX = 0; |
| tailEdge.fDY = SK_MaxS32; |
| tailEdge.fUpperX = SK_MaxS32; |
| last->fNext = &tailEdge; |
| |
| // now edge is the head of the sorted linklist |
| |
| if (!pathContainedInClip && start_y < clipRect.fTop) { |
| start_y = clipRect.fTop; |
| } |
| if (!pathContainedInClip && stop_y > clipRect.fBottom) { |
| stop_y = clipRect.fBottom; |
| } |
| |
| SkFixed leftBound = SkIntToFixed(rect.fLeft); |
| SkFixed rightBound = SkIntToFixed(rect.fRight); |
| if (isUsingMask) { |
| // If we're using mask, then we have to limit the bound within the path bounds. |
| // Otherwise, the edge drift may access an invalid address inside the mask. |
| SkIRect ir; |
| path.getBounds().roundOut(&ir); |
| leftBound = std::max(leftBound, SkIntToFixed(ir.fLeft)); |
| rightBound = std::min(rightBound, SkIntToFixed(ir.fRight)); |
| } |
| |
| if (!path.isInverseFillType() && path.isConvex() && count >= 2) { |
| aaa_walk_convex_edges( |
| &headEdge, blitter, start_y, stop_y, leftBound, rightBound, isUsingMask); |
| } else { |
| // Only use deferred blitting if there are many edges. |
| bool useDeferred = |
| #if defined(SK_USE_LEGACY_DEFERRED_BLIT) |
| count > |
| (SkFixedFloorToInt(tailEdge.fPrev->fLowerY - headEdge.fNext->fUpperY) + 1) * 4; |
| #else |
| false; |
| #endif |
| |
| // We skip intersection computation if there are many points which probably already |
| // give us enough fractional scan lines. |
| bool skipIntersect = path.countPoints() > (stop_y - start_y) * 2; |
| |
| aaa_walk_edges(&headEdge, |
| &tailEdge, |
| path.getFillType(), |
| blitter, |
| start_y, |
| stop_y, |
| leftBound, |
| rightBound, |
| isUsingMask, |
| forceRLE, |
| useDeferred, |
| skipIntersect); |
| } |
| } |
| |
| // Check if the path is a rect and fat enough after clipping; if so, blit it. |
| static inline bool try_blit_fat_anti_rect(SkBlitter* blitter, |
| const SkPath& path, |
| const SkIRect& clip) { |
| SkRect rect; |
| if (!path.isRect(&rect)) { |
| return false; // not rect |
| } |
| if (!rect.intersect(SkRect::Make(clip))) { |
| return true; // The intersection is empty. Hence consider it done. |
| } |
| SkIRect bounds = rect.roundOut(); |
| if (bounds.width() < 3) { |
| return false; // not fat |
| } |
| blitter->blitFatAntiRect(rect); |
| return true; |
| } |
| |
| void SkScan::AAAFillPath(const SkPath& path, |
| SkBlitter* blitter, |
| const SkIRect& ir, |
| const SkIRect& clipBounds, |
| bool forceRLE) { |
| bool containedInClip = clipBounds.contains(ir); |
| bool isInverse = path.isInverseFillType(); |
| |
| // The mask blitter (where we store intermediate alpha values directly in a mask, and then call |
| // the real blitter once in the end to blit the whole mask) is faster than the RLE blitter when |
| // the blit region is small enough (i.e., CanHandleRect(ir)). When isInverse is true, the blit |
| // region is no longer the rectangle ir so we won't use the mask blitter. The caller may also |
| // use the forceRLE flag to force not using the mask blitter. Also, when the path is a simple |
| // rect, preparing a mask and blitting it might have too much overhead. Hence we'll use |
| // blitFatAntiRect to avoid the mask and its overhead. |
| if (MaskAdditiveBlitter::CanHandleRect(ir) && !isInverse && !forceRLE) { |
| // blitFatAntiRect is slower than the normal AAA flow without MaskAdditiveBlitter. |
| // Hence only tryBlitFatAntiRect when MaskAdditiveBlitter would have been used. |
| if (!try_blit_fat_anti_rect(blitter, path, clipBounds)) { |
| MaskAdditiveBlitter additiveBlitter(blitter, ir, clipBounds, isInverse); |
| aaa_fill_path(path, |
| clipBounds, |
| &additiveBlitter, |
| ir.fTop, |
| ir.fBottom, |
| containedInClip, |
| true, |
| forceRLE); |
| } |
| } else if (!isInverse && path.isConvex()) { |
| // If the filling area is convex (i.e., path.isConvex && !isInverse), our simpler |
| // aaa_walk_convex_edges won't generate alphas above 255. Hence we don't need |
| // SafeRLEAdditiveBlitter (which is slow due to clamping). The basic RLE blitter |
| // RunBasedAdditiveBlitter would suffice. |
| RunBasedAdditiveBlitter additiveBlitter(blitter, ir, clipBounds, isInverse); |
| aaa_fill_path(path, |
| clipBounds, |
| &additiveBlitter, |
| ir.fTop, |
| ir.fBottom, |
| containedInClip, |
| false, |
| forceRLE); |
| } else { |
| // If the filling area might not be convex, the more involved aaa_walk_edges would |
| // be called and we have to clamp the alpha downto 255. The SafeRLEAdditiveBlitter |
| // does that at a cost of performance. |
| SafeRLEAdditiveBlitter additiveBlitter(blitter, ir, clipBounds, isInverse); |
| aaa_fill_path(path, |
| clipBounds, |
| &additiveBlitter, |
| ir.fTop, |
| ir.fBottom, |
| containedInClip, |
| false, |
| forceRLE); |
| } |
| } |