| /* |
| * Copyright 2021 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/graphite/geom/IntersectionTree.h" |
| |
| #include "include/private/base/SkTPin.h" |
| #include "src/base/SkVx.h" |
| |
| #include <algorithm> |
| #include <limits> |
| |
| namespace skgpu::graphite { |
| |
| // BSP node. Space is partitioned by an either vertical or horizontal line. Note that if a rect |
| // straddles the partition line, it will need to go on both sides of the tree. |
| template<IntersectionTree::SplitType kSplitType> |
| class IntersectionTree::TreeNode final : public Node { |
| public: |
| TreeNode(float splitCoord, Node* lo, Node* hi) |
| : fSplitCoord(splitCoord), fLo(lo), fHi(hi) { |
| } |
| |
| bool intersects(Rect rect) override { |
| if (GetLoVal(rect) < fSplitCoord && fLo->intersects(rect)) { |
| return true; |
| } |
| if (GetHiVal(rect) > fSplitCoord && fHi->intersects(rect)) { |
| return true; |
| } |
| return false; |
| } |
| |
| Node* addNonIntersecting(Rect rect, SkArenaAlloc* arena) override { |
| if (GetLoVal(rect) < fSplitCoord) { |
| fLo = fLo->addNonIntersecting(rect, arena); |
| } |
| if (GetHiVal(rect) > fSplitCoord) { |
| fHi = fHi->addNonIntersecting(rect, arena); |
| } |
| return this; |
| } |
| |
| private: |
| SK_ALWAYS_INLINE static float GetLoVal(const Rect& rect) { |
| return (kSplitType == SplitType::kX) ? rect.left() : rect.top(); |
| } |
| SK_ALWAYS_INLINE static float GetHiVal(const Rect& rect) { |
| return (kSplitType == SplitType::kX) ? rect.right() : rect.bot(); |
| } |
| |
| float fSplitCoord; |
| Node* fLo; |
| Node* fHi; |
| }; |
| |
| // Leaf node. Rects are kept in a simple list and intersection testing is performed by brute force. |
| class IntersectionTree::LeafNode final : public Node { |
| public: |
| // Max number of rects to store in this node before splitting. With SSE/NEON optimizations, ~64 |
| // brute force rect comparisons seems to be the optimal number. |
| constexpr static int kMaxRectsInList = 64; |
| |
| LeafNode() { |
| this->popAll(); |
| // Initialize our arrays with maximally negative rects. These have the advantage of always |
| // failing intersection tests, thus allowing us to test for intersection beyond fNumRects |
| // without failing. |
| constexpr static float infinity = std::numeric_limits<float>::infinity(); |
| std::fill_n(fLefts, kMaxRectsInList, infinity); |
| std::fill_n(fTops, kMaxRectsInList, infinity); |
| std::fill_n(fNegRights, kMaxRectsInList, infinity); |
| std::fill_n(fNegBots, kMaxRectsInList, infinity); |
| } |
| |
| void popAll() { |
| fNumRects = 0; |
| fSplittableBounds = -std::numeric_limits<float>::infinity(); |
| fRectValsSum = 0; |
| // Leave the rect arrays untouched. Since we know they are either already valid in the tree, |
| // or else maximally negative, this allows the future list to check for intersection beyond |
| // fNumRects without failing. |
| } |
| |
| bool intersects(Rect rect) override { |
| // Test for intersection in sets of 4. Since all the data in our rect arrays is either |
| // maximally negative, or valid from somewhere else in the tree, we can test beyond |
| // fNumRects without failing. |
| static_assert(kMaxRectsInList % 4 == 0); |
| SkASSERT(fNumRects <= kMaxRectsInList); |
| auto comp = Rect::ComplementRect(rect).fVals; |
| for (int i = 0; i < fNumRects; i += 4) { |
| auto l = skvx::float4::Load(fLefts + i); |
| auto t = skvx::float4::Load(fTops + i); |
| auto nr = skvx::float4::Load(fNegRights + i); |
| auto nb = skvx::float4::Load(fNegBots + i); |
| if (any((l < comp[0]) & |
| (t < comp[1]) & |
| (nr < comp[2]) & |
| (nb < comp[3]))) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| Node* addNonIntersecting(Rect rect, SkArenaAlloc* arena) override { |
| if (fNumRects == kMaxRectsInList) { |
| // The new rect doesn't fit. Split our rect list first and then add. |
| return this->split(arena)->addNonIntersecting(rect, arena); |
| } |
| this->appendToList(rect); |
| return this; |
| } |
| |
| private: |
| void appendToList(Rect rect) { |
| SkASSERT(fNumRects < kMaxRectsInList); |
| int i = fNumRects++; |
| // [maxLeft, maxTop, -minRight, -minBot] |
| fSplittableBounds = max(fSplittableBounds, rect.vals()); |
| fRectValsSum += rect.vals(); // [sum(left), sum(top), -sum(right), -sum(bot)] |
| fLefts[i] = rect.vals()[0]; |
| fTops[i] = rect.vals()[1]; |
| fNegRights[i] = rect.vals()[2]; |
| fNegBots[i] = rect.vals()[3]; |
| } |
| |
| Rect loadRect(int i) const { |
| return Rect::FromVals({fLefts[i], fTops[i], fNegRights[i], fNegBots[i]}); |
| } |
| |
| // Splits this node with a new LeafNode, then returns a TreeNode that reuses our "this" pointer |
| // along with the new node. |
| IntersectionTree::Node* split(SkArenaAlloc* arena) { |
| // This should only get called when our list is full. |
| SkASSERT(fNumRects == kMaxRectsInList); |
| |
| // Since rects cannot overlap, there will always be a split that places at least one pairing |
| // of rects on opposite sides. The region: |
| // |
| // fSplittableBounds == [maxLeft, maxTop, -minRight, -minBot] == [r, b, -l, -t] |
| // |
| // Represents the region of splits that guarantee a strict subdivision of our rect list. |
| auto splittableSize = fSplittableBounds.xy() + fSplittableBounds.zw(); // == [r-l, b-t] |
| SkASSERT(max(splittableSize) >= 0); |
| SplitType splitType = (splittableSize.x() > splittableSize.y()) ? SplitType::kX |
| : SplitType::kY; |
| |
| float splitCoord; |
| const float *loVals, *negHiVals; |
| if (splitType == SplitType::kX) { |
| // Split horizontally, at the geometric midpoint if it falls within the splittable |
| // bounds. |
| splitCoord = (fRectValsSum.x() - fRectValsSum.z()) * (.5f/kMaxRectsInList); |
| splitCoord = SkTPin(splitCoord, -fSplittableBounds.z(), fSplittableBounds.x()); |
| loVals = fLefts; |
| negHiVals = fNegRights; |
| } else { |
| // Split vertically, at the geometric midpoint if it falls within the splittable bounds. |
| splitCoord = (fRectValsSum.y() - fRectValsSum.w()) * (.5f/kMaxRectsInList); |
| splitCoord = SkTPin(splitCoord, -fSplittableBounds.w(), fSplittableBounds.y()); |
| loVals = fTops; |
| negHiVals = fNegBots; |
| } |
| |
| // Split "this", leaving all rects below "splitCoord" in this, and placing all rects above |
| // splitCoord in "hiNode". There may be some reduncancy between lists, but we made sure to |
| // select a split that would leave both lists strictly smaller than the original. |
| LeafNode* hiNode = arena->make<LeafNode>(); |
| int numCombinedRects = fNumRects; |
| float negSplitCoord = -splitCoord; |
| this->popAll(); |
| for (int i = 0; i < numCombinedRects; ++i) { |
| Rect rect = this->loadRect(i); |
| if (loVals[i] < splitCoord) { |
| this->appendToList(rect); |
| } |
| if (negHiVals[i] < negSplitCoord) { |
| hiNode->appendToList(rect); |
| } |
| } |
| |
| SkASSERT(0 < fNumRects && fNumRects < numCombinedRects); |
| SkASSERT(0 < hiNode->fNumRects && hiNode->fNumRects < numCombinedRects); |
| |
| return (splitType == SplitType::kX) |
| ? (Node*)arena->make<TreeNode<SplitType::kX>>(splitCoord, this, hiNode) |
| : (Node*)arena->make<TreeNode<SplitType::kY>>(splitCoord, this, hiNode); |
| } |
| |
| int fNumRects; |
| skvx::float4 fSplittableBounds; // [maxLeft, maxTop, -minRight, -minBot] |
| skvx::float4 fRectValsSum; // [sum(left), sum(top), -sum(right), -sum(bot)] |
| alignas(Rect) float fLefts[kMaxRectsInList]; |
| alignas(Rect) float fTops[kMaxRectsInList]; |
| alignas(Rect) float fNegRights[kMaxRectsInList]; |
| alignas(Rect) float fNegBots[kMaxRectsInList]; |
| static_assert((kMaxRectsInList * sizeof(float)) % sizeof(Rect) == 0); |
| }; |
| |
| IntersectionTree::IntersectionTree() |
| : fRoot(fArena.make<LeafNode>()) { |
| static_assert(kTreeNodeSize == sizeof(TreeNode<SplitType::kX>)); |
| static_assert(kTreeNodeSize == sizeof(TreeNode<SplitType::kY>)); |
| static_assert(kLeafNodeSize == sizeof(LeafNode)); |
| } |
| |
| } // namespace skgpu::graphite |