|  | /* | 
|  | * Copyright 2012 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #ifndef SkTLList_DEFINED | 
|  | #define SkTLList_DEFINED | 
|  |  | 
|  | #include "SkTInternalLList.h" | 
|  | #include "SkTypes.h" | 
|  | #include <utility> | 
|  |  | 
|  | /** Doubly-linked list of objects. The objects' lifetimes are controlled by the list. I.e. the | 
|  | the list creates the objects and they are deleted upon removal. This class block-allocates | 
|  | space for entries based on a param passed to the constructor. | 
|  |  | 
|  | Elements of the list can be constructed in place using the following macros: | 
|  | SkNEW_INSERT_IN_LLIST_BEFORE(list, location, type_name, args) | 
|  | SkNEW_INSERT_IN_LLIST_AFTER(list, location, type_name, args) | 
|  | where list is a SkTLList<type_name>*, location is an iterator, and args is the paren-surrounded | 
|  | constructor arguments for type_name. These macros behave like addBefore() and addAfter(). | 
|  |  | 
|  | allocCnt is the number of objects to allocate as a group. In the worst case fragmentation | 
|  | each object is using the space required for allocCnt unfragmented objects. | 
|  | */ | 
|  | template <typename T, unsigned int N> class SkTLList : SkNoncopyable { | 
|  | private: | 
|  | struct Block; | 
|  | struct Node { | 
|  | char fObj[sizeof(T)]; | 
|  | SK_DECLARE_INTERNAL_LLIST_INTERFACE(Node); | 
|  | Block* fBlock; // owning block. | 
|  | }; | 
|  | typedef SkTInternalLList<Node> NodeList; | 
|  |  | 
|  | public: | 
|  | class Iter; | 
|  |  | 
|  | SkTLList() : fCount(0) { | 
|  | fFirstBlock.fNodesInUse = 0; | 
|  | for (unsigned int i = 0; i < N; ++i) { | 
|  | fFreeList.addToHead(fFirstBlock.fNodes + i); | 
|  | fFirstBlock.fNodes[i].fBlock = &fFirstBlock; | 
|  | } | 
|  | this->validate(); | 
|  | } | 
|  |  | 
|  | ~SkTLList() { | 
|  | this->validate(); | 
|  | typename NodeList::Iter iter; | 
|  | Node* node = iter.init(fList, Iter::kHead_IterStart); | 
|  | while (node) { | 
|  | SkTCast<T*>(node->fObj)->~T(); | 
|  | Block* block = node->fBlock; | 
|  | node = iter.next(); | 
|  | if (0 == --block->fNodesInUse) { | 
|  | for (unsigned int i = 0; i < N; ++i) { | 
|  | block->fNodes[i].~Node(); | 
|  | } | 
|  | if (block != &fFirstBlock) { | 
|  | sk_free(block); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** Adds a new element to the list at the head. */ | 
|  | template <typename... Args> T* addToHead(Args&&... args) { | 
|  | this->validate(); | 
|  | Node* node = this->createNode(); | 
|  | fList.addToHead(node); | 
|  | this->validate(); | 
|  | return new (node->fObj)  T(std::forward<Args>(args)...); | 
|  | } | 
|  |  | 
|  | /** Adds a new element to the list at the tail. */ | 
|  | template <typename... Args> T* addToTail(Args&&... args) { | 
|  | this->validate(); | 
|  | Node* node = this->createNode(); | 
|  | fList.addToTail(node); | 
|  | this->validate(); | 
|  | return new (node->fObj) T(std::forward<Args>(args)...); | 
|  | } | 
|  |  | 
|  | /** Adds a new element to the list before the location indicated by the iterator. If the | 
|  | iterator refers to a nullptr location then the new element is added at the tail */ | 
|  | template <typename... Args> T* addBefore(Iter location, Args&&... args) { | 
|  | this->validate(); | 
|  | Node* node = this->createNode(); | 
|  | fList.addBefore(node, location.getNode()); | 
|  | this->validate(); | 
|  | return new (node->fObj) T(std::forward<Args>(args)...); | 
|  | } | 
|  |  | 
|  | /** Adds a new element to the list after the location indicated by the iterator. If the | 
|  | iterator refers to a nullptr location then the new element is added at the head */ | 
|  | template <typename... Args> T* addAfter(Iter location, Args&&... args) { | 
|  | this->validate(); | 
|  | Node* node = this->createNode(); | 
|  | fList.addAfter(node, location.getNode()); | 
|  | this->validate(); | 
|  | return new (node->fObj) T(std::forward<Args>(args)...); | 
|  | } | 
|  |  | 
|  | /** Convenience methods for getting an iterator initialized to the head/tail of the list. */ | 
|  | Iter headIter() const { return Iter(*this, Iter::kHead_IterStart); } | 
|  | Iter tailIter() const { return Iter(*this, Iter::kTail_IterStart); } | 
|  |  | 
|  | T* head() { return Iter(*this, Iter::kHead_IterStart).get(); } | 
|  | T* tail() { return Iter(*this, Iter::kTail_IterStart).get(); } | 
|  | const T* head() const { return Iter(*this, Iter::kHead_IterStart).get(); } | 
|  | const T* tail() const { return Iter(*this, Iter::kTail_IterStart).get(); } | 
|  |  | 
|  | void popHead() { | 
|  | this->validate(); | 
|  | Node* node = fList.head(); | 
|  | if (node) { | 
|  | this->removeNode(node); | 
|  | } | 
|  | this->validate(); | 
|  | } | 
|  |  | 
|  | void popTail() { | 
|  | this->validate(); | 
|  | Node* node = fList.head(); | 
|  | if (node) { | 
|  | this->removeNode(node); | 
|  | } | 
|  | this->validate(); | 
|  | } | 
|  |  | 
|  | void remove(T* t) { | 
|  | this->validate(); | 
|  | Node* node = reinterpret_cast<Node*>(t); | 
|  | SkASSERT(reinterpret_cast<T*>(node->fObj) == t); | 
|  | this->removeNode(node); | 
|  | this->validate(); | 
|  | } | 
|  |  | 
|  | void reset() { | 
|  | this->validate(); | 
|  | Iter iter(*this, Iter::kHead_IterStart); | 
|  | while (iter.get()) { | 
|  | Iter next = iter; | 
|  | next.next(); | 
|  | this->remove(iter.get()); | 
|  | iter = next; | 
|  | } | 
|  | SkASSERT(0 == fCount); | 
|  | this->validate(); | 
|  | } | 
|  |  | 
|  | int count() const { return fCount; } | 
|  | bool isEmpty() const { this->validate(); return 0 == fCount; } | 
|  |  | 
|  | bool operator== (const SkTLList& list) const { | 
|  | if (this == &list) { | 
|  | return true; | 
|  | } | 
|  | if (fCount != list.fCount) { | 
|  | return false; | 
|  | } | 
|  | for (Iter a(*this, Iter::kHead_IterStart), b(list, Iter::kHead_IterStart); | 
|  | a.get(); | 
|  | a.next(), b.next()) { | 
|  | SkASSERT(b.get()); // already checked that counts match. | 
|  | if (!(*a.get() == *b.get())) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | bool operator!= (const SkTLList& list) const { return !(*this == list); } | 
|  |  | 
|  | /** The iterator becomes invalid if the element it refers to is removed from the list. */ | 
|  | class Iter : private NodeList::Iter { | 
|  | private: | 
|  | typedef typename NodeList::Iter INHERITED; | 
|  |  | 
|  | public: | 
|  | typedef typename INHERITED::IterStart IterStart; | 
|  | //!< Start the iterator at the head of the list. | 
|  | static const IterStart kHead_IterStart = INHERITED::kHead_IterStart; | 
|  | //!< Start the iterator at the tail of the list. | 
|  | static const IterStart kTail_IterStart = INHERITED::kTail_IterStart; | 
|  |  | 
|  | Iter() {} | 
|  |  | 
|  | Iter(const SkTLList& list, IterStart start = kHead_IterStart) { | 
|  | INHERITED::init(list.fList, start); | 
|  | } | 
|  |  | 
|  | T* init(const SkTLList& list, IterStart start = kHead_IterStart) { | 
|  | return this->nodeToObj(INHERITED::init(list.fList, start)); | 
|  | } | 
|  |  | 
|  | T* get() { return this->nodeToObj(INHERITED::get()); } | 
|  |  | 
|  | T* next() { return this->nodeToObj(INHERITED::next()); } | 
|  |  | 
|  | T* prev() { return this->nodeToObj(INHERITED::prev()); } | 
|  |  | 
|  | Iter& operator= (const Iter& iter) { INHERITED::operator=(iter); return *this; } | 
|  |  | 
|  | private: | 
|  | friend class SkTLList; | 
|  | Node* getNode() { return INHERITED::get(); } | 
|  |  | 
|  | T* nodeToObj(Node* node) { | 
|  | if (node) { | 
|  | return reinterpret_cast<T*>(node->fObj); | 
|  | } else { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | private: | 
|  | struct Block { | 
|  | int fNodesInUse; | 
|  | Node fNodes[N]; | 
|  | }; | 
|  |  | 
|  | Node* createNode() { | 
|  | Node* node = fFreeList.head(); | 
|  | if (node) { | 
|  | fFreeList.remove(node); | 
|  | ++node->fBlock->fNodesInUse; | 
|  | } else { | 
|  | // Should not get here when count == 0 because we always have the preallocated first | 
|  | // block. | 
|  | SkASSERT(fCount > 0); | 
|  | Block* block = reinterpret_cast<Block*>(sk_malloc_throw(sizeof(Block))); | 
|  | node = &block->fNodes[0]; | 
|  | new (node) Node; | 
|  | node->fBlock = block; | 
|  | block->fNodesInUse = 1; | 
|  | for (unsigned int i = 1; i < N; ++i) { | 
|  | new (block->fNodes + i) Node; | 
|  | fFreeList.addToHead(block->fNodes + i); | 
|  | block->fNodes[i].fBlock = block; | 
|  | } | 
|  | } | 
|  | ++fCount; | 
|  | return node; | 
|  | } | 
|  |  | 
|  | void removeNode(Node* node) { | 
|  | SkASSERT(node); | 
|  | fList.remove(node); | 
|  | SkTCast<T*>(node->fObj)->~T(); | 
|  | Block* block = node->fBlock; | 
|  | // Don't ever elease the first block, just add its nodes to the free list | 
|  | if (0 == --block->fNodesInUse && block != &fFirstBlock) { | 
|  | for (unsigned int i = 0; i < N; ++i) { | 
|  | if (block->fNodes + i != node) { | 
|  | fFreeList.remove(block->fNodes + i); | 
|  | } | 
|  | block->fNodes[i].~Node(); | 
|  | } | 
|  | sk_free(block); | 
|  | } else { | 
|  | fFreeList.addToHead(node); | 
|  | } | 
|  | --fCount; | 
|  | this->validate(); | 
|  | } | 
|  |  | 
|  | void validate() const { | 
|  | #ifdef SK_DEBUG | 
|  | SkASSERT((0 == fCount) == fList.isEmpty()); | 
|  | if (0 == fCount) { | 
|  | // Should only have the nodes from the first block in the free list. | 
|  | SkASSERT(fFreeList.countEntries() == N); | 
|  | } | 
|  | fList.validate(); | 
|  | fFreeList.validate(); | 
|  | typename NodeList::Iter iter; | 
|  | Node* freeNode = iter.init(fFreeList, Iter::kHead_IterStart); | 
|  | while (freeNode) { | 
|  | SkASSERT(fFreeList.isInList(freeNode)); | 
|  | Block* block = freeNode->fBlock; | 
|  | // Only the first block is allowed to have all its nodes in the free list. | 
|  | SkASSERT(block->fNodesInUse > 0 || block == &fFirstBlock); | 
|  | SkASSERT((unsigned)block->fNodesInUse < N); | 
|  | int activeCnt = 0; | 
|  | int freeCnt = 0; | 
|  | for (unsigned int i = 0; i < N; ++i) { | 
|  | bool free = fFreeList.isInList(block->fNodes + i); | 
|  | bool active = fList.isInList(block->fNodes + i); | 
|  | SkASSERT(free != active); | 
|  | activeCnt += active; | 
|  | freeCnt += free; | 
|  | } | 
|  | SkASSERT(activeCnt == block->fNodesInUse); | 
|  | freeNode = iter.next(); | 
|  | } | 
|  |  | 
|  | int count = 0; | 
|  | Node* activeNode = iter.init(fList, Iter::kHead_IterStart); | 
|  | while (activeNode) { | 
|  | ++count; | 
|  | SkASSERT(fList.isInList(activeNode)); | 
|  | Block* block = activeNode->fBlock; | 
|  | SkASSERT(block->fNodesInUse > 0 && (unsigned)block->fNodesInUse <= N); | 
|  |  | 
|  | int activeCnt = 0; | 
|  | int freeCnt = 0; | 
|  | for (unsigned int i = 0; i < N; ++i) { | 
|  | bool free = fFreeList.isInList(block->fNodes + i); | 
|  | bool active = fList.isInList(block->fNodes + i); | 
|  | SkASSERT(free != active); | 
|  | activeCnt += active; | 
|  | freeCnt += free; | 
|  | } | 
|  | SkASSERT(activeCnt == block->fNodesInUse); | 
|  | activeNode = iter.next(); | 
|  | } | 
|  | SkASSERT(count == fCount); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | NodeList fList; | 
|  | NodeList fFreeList; | 
|  | Block    fFirstBlock; | 
|  | int fCount; | 
|  | }; | 
|  |  | 
|  | #endif |