blob: a8f516e4d0baae25f18f90306a102b4d35c78100 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/effects/GrYUVtoRGBEffect.h"
#include "src/core/SkYUVMath.h"
#include "src/gpu/GrTexture.h"
#include "src/gpu/effects/GrMatrixEffect.h"
#include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLProgramBuilder.h"
#include "src/sksl/SkSLCPP.h"
#include "src/sksl/SkSLUtil.h"
static void border_colors(SkYUVColorSpace cs,
const SkYUVAInfo::YUVALocations& locations,
float planeBorders[4][4]) {
float m[20];
SkColorMatrix_RGB2YUV(cs, m);
int i = 0;
for (auto [plane, channel] : locations) {
if (plane == -1) {
continue;
}
auto c = static_cast<int>(channel);
planeBorders[plane][c] = m[i*5 + 4];
++i;
}
}
std::unique_ptr<GrFragmentProcessor> GrYUVtoRGBEffect::Make(
GrSurfaceProxyView views[],
const SkYUVAInfo::YUVALocations& locations,
SkYUVColorSpace yuvColorSpace,
GrSamplerState samplerState,
const GrCaps& caps,
const SkMatrix& localMatrix,
const SkRect* subset,
const SkRect* domain) {
int numPlanes;
SkAssertResult(SkYUVAInfo::YUVALocation::AreValidLocations(locations, &numPlanes));
const SkISize yDimensions =
views[locations[SkYUVAInfo::YUVAChannels::kY].fPlane].proxy()->dimensions();
bool usesBorder = samplerState.wrapModeX() == GrSamplerState::WrapMode::kClampToBorder ||
samplerState.wrapModeY() == GrSamplerState::WrapMode::kClampToBorder;
float planeBorders[4][4] = {};
if (usesBorder) {
border_colors(yuvColorSpace, locations, planeBorders);
}
bool snap[2] = {false, false};
std::unique_ptr<GrFragmentProcessor> planeFPs[4];
for (int i = 0; i < numPlanes; ++i) {
SkISize dimensions = views[i].proxy()->dimensions();
SkTCopyOnFirstWrite<SkMatrix> planeMatrix(&SkMatrix::I());
SkRect planeSubset;
SkRect planeDomain;
bool makeLinearWithSnap = false;
float sx = 1.f,
sy = 1.f;
if (dimensions != yDimensions) {
// JPEG chroma subsampling of odd dimensions produces U and V planes with the ceiling of
// the image size divided by the subsampling factor (2). Our API for creating YUVA
// doesn't capture the intended subsampling (and we should fix that). This fixes up 2x
// subsampling for images with odd widths/heights (e.g. JPEG 420 or 422).
sx = (float)dimensions.width() / yDimensions.width();
sy = (float)dimensions.height() / yDimensions.height();
if ((yDimensions.width() & 0b1) && dimensions.width() == yDimensions.width() / 2 + 1) {
sx = 0.5f;
}
if ((yDimensions.height() & 0b1) &&
dimensions.height() == yDimensions.height() / 2 + 1) {
sy = 0.5f;
}
*planeMatrix.writable() = SkMatrix::Scale(sx, sy);
if (subset) {
planeSubset = {subset->fLeft * sx,
subset->fTop * sy,
subset->fRight * sx,
subset->fBottom * sy};
}
if (domain) {
planeDomain = {domain->fLeft * sx,
domain->fTop * sy,
domain->fRight * sx,
domain->fBottom * sy};
}
// This promotion of nearest to linear filtering for UV planes exists to mimic
// libjpeg[-turbo]'s do_fancy_upsampling option. We will filter the subsampled plane,
// however we want to filter at a fixed point for each logical image pixel to simulate
// nearest neighbor.
if (samplerState.filter() == GrSamplerState::Filter::kNearest) {
bool snapX = (sx != 1.f),
snapY = (sy != 1.f);
makeLinearWithSnap = snapX || snapY;
snap[0] |= snapX;
snap[1] |= snapY;
if (domain) {
// The outer YUVToRGB effect will ensure sampling happens at pixel centers
// within this plane.
planeDomain = {std::floor(planeDomain.fLeft) + 0.5f,
std::floor(planeDomain.fTop) + 0.5f,
std::floor(planeDomain.fRight) + 0.5f,
std::floor(planeDomain.fBottom) + 0.5f};
}
}
} else {
if (subset) {
planeSubset = *subset;
}
if (domain) {
planeDomain = *domain;
}
}
if (subset) {
SkASSERT(samplerState.mipmapped() == GrMipmapped::kNo);
if (makeLinearWithSnap) {
// The plane is subsampled and we have an overall subset on the image. We're
// emulating do_fancy_upsampling using linear filtering but snapping look ups to the
// y-plane pixel centers. Consider a logical image pixel at the edge of the subset.
// When computing the logical pixel color value we should use a 50/50 blend of two
// values from the subsampled plane. Depending on where the subset edge falls in
// actual subsampled plane, one of those values may come from outside the subset.
// Hence, we use this custom inset factory which applies the wrap mode to
// planeSubset but allows linear filtering to read pixels from the plane that are
// just outside planeSubset.
SkRect* domainRect = domain ? &planeDomain : nullptr;
planeFPs[i] = GrTextureEffect::MakeCustomLinearFilterInset(
views[i], kUnknown_SkAlphaType, *planeMatrix, samplerState.wrapModeX(),
samplerState.wrapModeY(), planeSubset, domainRect, {sx / 2.f, sy / 2.f},
caps, planeBorders[i]);
} else if (domain) {
planeFPs[i] = GrTextureEffect::MakeSubset(views[i], kUnknown_SkAlphaType,
*planeMatrix, samplerState, planeSubset,
planeDomain, caps, planeBorders[i]);
} else {
planeFPs[i] = GrTextureEffect::MakeSubset(views[i], kUnknown_SkAlphaType,
*planeMatrix, samplerState, planeSubset,
caps, planeBorders[i]);
}
} else {
GrSamplerState planeSampler = samplerState;
if (makeLinearWithSnap) {
planeSampler.setFilterMode(GrSamplerState::Filter::kLinear);
}
planeFPs[i] = GrTextureEffect::Make(views[i], kUnknown_SkAlphaType, *planeMatrix,
planeSampler, caps, planeBorders[i]);
}
}
auto fp = std::unique_ptr<GrFragmentProcessor>(
new GrYUVtoRGBEffect(planeFPs, numPlanes, locations, snap, yuvColorSpace));
return GrMatrixEffect::Make(localMatrix, std::move(fp));
}
static SkAlphaType alpha_type(const SkYUVAInfo::YUVALocations locations) {
return locations[SkYUVAInfo::YUVAChannels::kA].fPlane >= 0 ? kPremul_SkAlphaType
: kOpaque_SkAlphaType;
}
GrYUVtoRGBEffect::GrYUVtoRGBEffect(std::unique_ptr<GrFragmentProcessor> planeFPs[4],
int numPlanes,
const SkYUVAInfo::YUVALocations& locations,
const bool snap[2],
SkYUVColorSpace yuvColorSpace)
: GrFragmentProcessor(kGrYUVtoRGBEffect_ClassID,
ModulateForClampedSamplerOptFlags(alpha_type(locations)))
, fLocations(locations)
, fYUVColorSpace(yuvColorSpace) {
std::copy_n(snap, 2, fSnap);
if (fSnap[0] || fSnap[1]) {
// Need this so that we can access coords in SKSL to perform snapping.
this->setUsesSampleCoordsDirectly();
for (int i = 0; i < numPlanes; ++i) {
this->registerChild(std::move(planeFPs[i]), SkSL::SampleUsage::Explicit());
}
} else {
for (int i = 0; i < numPlanes; ++i) {
this->registerChild(std::move(planeFPs[i]));
}
}
}
#if GR_TEST_UTILS
SkString GrYUVtoRGBEffect::onDumpInfo() const {
SkString str("(");
for (int i = 0; i < SkYUVAInfo::kYUVAChannelCount; ++i) {
str.appendf("Locations[%d]=%d %d, ",
i, fLocations[i].fPlane, static_cast<int>(fLocations[i].fChannel));
}
str.appendf("YUVColorSpace=%d, snap=(%d, %d))",
static_cast<int>(fYUVColorSpace), fSnap[0], fSnap[1]);
return str;
}
#endif
GrGLSLFragmentProcessor* GrYUVtoRGBEffect::onCreateGLSLInstance() const {
class GrGLSLYUVtoRGBEffect : public GrGLSLFragmentProcessor {
public:
GrGLSLYUVtoRGBEffect() {}
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
const GrYUVtoRGBEffect& yuvEffect = args.fFp.cast<GrYUVtoRGBEffect>();
int numPlanes = yuvEffect.numChildProcessors();
const char* sampleCoords = "";
if (yuvEffect.fSnap[0] || yuvEffect.fSnap[1]) {
fragBuilder->codeAppendf("float2 snappedCoords = %s;", args.fSampleCoord);
if (yuvEffect.fSnap[0]) {
fragBuilder->codeAppend("snappedCoords.x = floor(snappedCoords.x) + 0.5;");
}
if (yuvEffect.fSnap[1]) {
fragBuilder->codeAppend("snappedCoords.y = floor(snappedCoords.y) + 0.5;");
}
sampleCoords = "snappedCoords";
}
fragBuilder->codeAppendf("half4 planes[%d];", numPlanes);
for (int i = 0; i < numPlanes; ++i) {
SkString tempVar = this->invokeChild(i, args, sampleCoords);
fragBuilder->codeAppendf("planes[%d] = %s;", i, tempVar.c_str());
}
bool hasAlpha = yuvEffect.fLocations[SkYUVAInfo::YUVAChannels::kA].fPlane >= 0;
SkString rgba[4];
rgba[3] = "1";
for (int i = 0; i < (hasAlpha ? 4 : 3); ++i) {
auto [plane, channel] = yuvEffect.fLocations[i];
auto letter = "rgba"[static_cast<int>(channel)];
rgba[i].printf("planes[%d].%c", plane, letter);
}
fragBuilder->codeAppendf("half4 color = half4(%s, %s, %s, %s);",
rgba[0].c_str(), rgba[1].c_str(), rgba[2].c_str(), rgba[3].c_str());
if (kIdentity_SkYUVColorSpace != yuvEffect.fYUVColorSpace) {
fColorSpaceMatrixVar = args.fUniformHandler->addUniform(&yuvEffect,
kFragment_GrShaderFlag, kHalf3x3_GrSLType, "colorSpaceMatrix");
fColorSpaceTranslateVar = args.fUniformHandler->addUniform(&yuvEffect,
kFragment_GrShaderFlag, kHalf3_GrSLType, "colorSpaceTranslate");
fragBuilder->codeAppendf(
"color.rgb = saturate(color.rgb * %s + %s);",
args.fUniformHandler->getUniformCStr(fColorSpaceMatrixVar),
args.fUniformHandler->getUniformCStr(fColorSpaceTranslateVar));
}
if (hasAlpha) {
// premultiply alpha
fragBuilder->codeAppendf("color.rgb *= color.a;");
}
fragBuilder->codeAppendf("return color;");
}
private:
void onSetData(const GrGLSLProgramDataManager& pdman,
const GrFragmentProcessor& proc) override {
const GrYUVtoRGBEffect& yuvEffect = proc.cast<GrYUVtoRGBEffect>();
if (yuvEffect.fYUVColorSpace != kIdentity_SkYUVColorSpace) {
SkASSERT(fColorSpaceMatrixVar.isValid());
float yuvM[20];
SkColorMatrix_YUV2RGB(yuvEffect.fYUVColorSpace, yuvM);
// We drop the fourth column entirely since the transformation
// should not depend on alpha. The fifth column is sent as a separate
// vector. The fourth row is also dropped entirely because alpha should
// never be modified.
SkASSERT(yuvM[3] == 0 && yuvM[8] == 0 && yuvM[13] == 0 && yuvM[18] == 1);
SkASSERT(yuvM[15] == 0 && yuvM[16] == 0 && yuvM[17] == 0 && yuvM[19] == 0);
float mtx[9] = {
yuvM[ 0], yuvM[ 1], yuvM[ 2],
yuvM[ 5], yuvM[ 6], yuvM[ 7],
yuvM[10], yuvM[11], yuvM[12],
};
float v[3] = {yuvM[4], yuvM[9], yuvM[14]};
pdman.setMatrix3f(fColorSpaceMatrixVar, mtx);
pdman.set3fv(fColorSpaceTranslateVar, 1, v);
}
}
UniformHandle fColorSpaceMatrixVar;
UniformHandle fColorSpaceTranslateVar;
};
return new GrGLSLYUVtoRGBEffect;
}
void GrYUVtoRGBEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
uint32_t packed = 0;
int i = 0;
for (auto [plane, channel] : fLocations) {
if (plane < 0) {
continue;
}
uint8_t chann = static_cast<int>(channel);
SkASSERT(plane < 4 && chann < 4);
packed |= (plane | (chann << 2)) << (i++ * 4);
}
if (fYUVColorSpace == kIdentity_SkYUVColorSpace) {
packed |= 1 << 16;
}
if (fSnap[0]) {
packed |= 1 << 17;
}
if (fSnap[1]) {
packed |= 1 << 18;
}
b->add32(packed);
}
bool GrYUVtoRGBEffect::onIsEqual(const GrFragmentProcessor& other) const {
const GrYUVtoRGBEffect& that = other.cast<GrYUVtoRGBEffect>();
return fLocations == that.fLocations &&
std::equal(fSnap, fSnap + 2, that.fSnap) &&
fYUVColorSpace == that.fYUVColorSpace;
}
GrYUVtoRGBEffect::GrYUVtoRGBEffect(const GrYUVtoRGBEffect& src)
: GrFragmentProcessor(kGrYUVtoRGBEffect_ClassID, src.optimizationFlags())
, fLocations((src.fLocations))
, fYUVColorSpace(src.fYUVColorSpace) {
this->cloneAndRegisterAllChildProcessors(src);
if (src.fSnap[0] || src.fSnap[1]) {
this->setUsesSampleCoordsDirectly();
}
std::copy_n(src.fSnap, 2, fSnap);
}
std::unique_ptr<GrFragmentProcessor> GrYUVtoRGBEffect::clone() const {
return std::unique_ptr<GrFragmentProcessor>(new GrYUVtoRGBEffect(*this));
}