blob: 7b7b69943ce2a15631a65308e95c47f2800f2075 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SKSL_PROGRAM
#define SKSL_PROGRAM
#include <vector>
#include <memory>
#include "include/private/SkTHash.h"
#include "src/sksl/SkSLAnalysis.h"
#include "src/sksl/ir/SkSLBoolLiteral.h"
#include "src/sksl/ir/SkSLExpression.h"
#include "src/sksl/ir/SkSLFloatLiteral.h"
#include "src/sksl/ir/SkSLIntLiteral.h"
#include "src/sksl/ir/SkSLModifiers.h"
#include "src/sksl/ir/SkSLProgramElement.h"
#include "src/sksl/ir/SkSLSymbolTable.h"
#ifdef SK_VULKAN
#include "src/gpu/vk/GrVkCaps.h"
#endif
// name of the render target width uniform
#define SKSL_RTWIDTH_NAME "u_skRTWidth"
// name of the render target height uniform
#define SKSL_RTHEIGHT_NAME "u_skRTHeight"
namespace SkSL {
class Context;
class Pool;
/**
* Side-car class holding mutable information about a Program's IR
*/
class ProgramUsage {
public:
struct VariableCounts { int fRead = 0; int fWrite = 0; };
VariableCounts get(const Variable&) const;
bool isDead(const Variable&) const;
int get(const FunctionDeclaration&) const;
void replace(const Expression* oldExpr, const Expression* newExpr);
void add(const Statement* stmt);
void remove(const Expression* expr);
void remove(const Statement* stmt);
void remove(const ProgramElement& element);
SkTHashMap<const Variable*, VariableCounts> fVariableCounts;
SkTHashMap<const FunctionDeclaration*, int> fCallCounts;
};
/**
* Represents a fully-digested program, ready for code generation.
*/
struct Program {
struct Settings {
struct Value {
Value(bool b)
: fKind(kBool_Kind)
, fValue(b) {}
Value(int i)
: fKind(kInt_Kind)
, fValue(i) {}
Value(unsigned int i)
: fKind(kInt_Kind)
, fValue(i) {}
Value(float f)
: fKind(kFloat_Kind)
, fValueF(f) {}
std::unique_ptr<Expression> literal(const Context& context, int offset) const {
switch (fKind) {
case Program::Settings::Value::kBool_Kind:
return std::unique_ptr<Expression>(new BoolLiteral(context,
offset,
fValue));
case Program::Settings::Value::kInt_Kind:
return std::unique_ptr<Expression>(new IntLiteral(context,
offset,
fValue));
case Program::Settings::Value::kFloat_Kind:
return std::unique_ptr<Expression>(new FloatLiteral(context,
offset,
fValueF));
default:
SkASSERT(false);
return nullptr;
}
}
enum {
kBool_Kind,
kInt_Kind,
kFloat_Kind,
} fKind;
union {
int fValue; // for kBool_Kind and kInt_Kind
float fValueF; // for kFloat_Kind
};
};
// if false, sk_FragCoord is exactly the same as gl_FragCoord. If true, the y coordinate
// must be flipped.
bool fFlipY = false;
// if false, sk_FragCoord is exactly the same as gl_FragCoord. If true, the w coordinate
// must be inversed.
bool fInverseW = false;
// If true the destination fragment color is read sk_FragColor. It must be declared inout.
bool fFragColorIsInOut = false;
// if true, Setting objects (e.g. sk_Caps.fbFetchSupport) should be replaced with their
// constant equivalents during compilation
bool fReplaceSettings = true;
// if true, all halfs are forced to be floats
bool fForceHighPrecision = false;
// if true, add -0.5 bias to LOD of all texture lookups
bool fSharpenTextures = false;
// if the program needs to create an RTHeight uniform, this is its offset in the uniform
// buffer
int fRTHeightOffset = -1;
// if the program needs to create an RTHeight uniform and is creating spriv, this is the
// binding and set number of the uniform buffer.
int fRTHeightBinding = -1;
int fRTHeightSet = -1;
// If true, remove any uncalled functions other than main(). Note that a function which
// starts out being used may end up being uncalled after optimization.
bool fRemoveDeadFunctions = true;
// Functions larger than this (measured in IR nodes) will not be inlined. The default value
// is arbitrary. A value of zero will disable the inliner entirely.
int fInlineThreshold = 49;
// true to enable optimization passes
bool fOptimize = true;
// If true, implicit conversions to lower precision numeric types are allowed
// (eg, float to half)
bool fAllowNarrowingConversions = false;
// If true, then Debug code will run SPIR-V output through the validator to ensure its
// correctness
bool fValidateSPIRV = true;
};
struct Inputs {
// if true, this program requires the render target width uniform to be defined
bool fRTWidth;
// if true, this program requires the render target height uniform to be defined
bool fRTHeight;
// if true, this program must be recompiled if the flipY setting changes. If false, the
// program will compile to the same code regardless of the flipY setting.
bool fFlipY;
void reset() {
fRTWidth = false;
fRTHeight = false;
fFlipY = false;
}
bool isEmpty() {
return !fRTWidth && !fRTHeight && !fFlipY;
}
};
enum Kind {
kFragment_Kind,
kVertex_Kind,
kGeometry_Kind,
kFragmentProcessor_Kind,
kPipelineStage_Kind,
kGeneric_Kind,
};
Program(Kind kind,
std::unique_ptr<String> source,
Settings settings,
const ShaderCapsClass* caps,
std::shared_ptr<Context> context,
std::vector<std::unique_ptr<ProgramElement>> elements,
std::vector<const ProgramElement*> sharedElements,
std::unique_ptr<ModifiersPool> modifiers,
std::shared_ptr<SymbolTable> symbols,
std::unique_ptr<Pool> pool,
Inputs inputs)
: fKind(kind)
, fSource(std::move(source))
, fSettings(settings)
, fCaps(caps)
, fContext(context)
, fSymbols(symbols)
, fPool(std::move(pool))
, fInputs(inputs)
, fElements(std::move(elements))
, fSharedElements(std::move(sharedElements))
, fModifiers(std::move(modifiers)) {
fUsage = Analysis::GetUsage(*this);
}
~Program() {
// Some or all of the program elements are in the pool. To free them safely, we must attach
// the pool before destroying any program elements. (Otherwise, we may accidentally call
// delete on a pooled node.)
fPool->attachToThread();
fElements.clear();
fContext.reset();
fSymbols.reset();
fModifiers.reset();
fPool->detachFromThread();
}
class ElementsCollection {
public:
class iterator {
public:
const ProgramElement* operator*() {
if (fShared != fSharedEnd) {
return *fShared;
} else {
return fOwned->get();
}
}
iterator& operator++() {
if (fShared != fSharedEnd) {
++fShared;
} else {
++fOwned;
}
return *this;
}
bool operator==(const iterator& other) const {
return fOwned == other.fOwned && fShared == other.fShared;
}
bool operator!=(const iterator& other) const {
return !(*this == other);
}
private:
using Owned = std::vector<std::unique_ptr<ProgramElement>>::const_iterator;
using Shared = std::vector<const ProgramElement*>::const_iterator;
friend class ElementsCollection;
iterator(Owned owned, Owned ownedEnd, Shared shared, Shared sharedEnd)
: fOwned(owned), fOwnedEnd(ownedEnd), fShared(shared), fSharedEnd(sharedEnd) {}
Owned fOwned;
Owned fOwnedEnd;
Shared fShared;
Shared fSharedEnd;
};
iterator begin() const {
return iterator(fProgram.fElements.begin(), fProgram.fElements.end(),
fProgram.fSharedElements.begin(), fProgram.fSharedElements.end());
}
iterator end() const {
return iterator(fProgram.fElements.end(), fProgram.fElements.end(),
fProgram.fSharedElements.end(), fProgram.fSharedElements.end());
}
private:
friend struct Program;
ElementsCollection(const Program& program) : fProgram(program) {}
const Program& fProgram;
};
// Can be used to iterate over *all* elements in this Program, both owned and shared (builtin).
// The iterator's value type is 'const ProgramElement*', so it's clear that you *must not*
// modify anything (as you might be mutating shared data).
ElementsCollection elements() const { return ElementsCollection(*this); }
// Can be used to iterate over *just* the elements owned by the Program, not shared builtins.
// The iterator's value type is 'std::unique_ptr<ProgramElement>', and mutation is allowed.
const std::vector<std::unique_ptr<ProgramElement>>& ownedElements() { return fElements; }
Kind fKind;
std::unique_ptr<String> fSource;
Settings fSettings;
const ShaderCapsClass* fCaps;
std::shared_ptr<Context> fContext;
// it's important to keep fElements defined after (and thus destroyed before) fSymbols,
// because destroying elements can modify reference counts in symbols
std::shared_ptr<SymbolTable> fSymbols;
std::unique_ptr<Pool> fPool;
Inputs fInputs;
private:
std::vector<std::unique_ptr<ProgramElement>> fElements;
std::vector<const ProgramElement*> fSharedElements;
std::unique_ptr<ModifiersPool> fModifiers;
std::unique_ptr<ProgramUsage> fUsage;
friend class ByteCodeGenerator; // fModifiers
friend class Compiler;
friend class Inliner; // fUsage
friend class SPIRVCodeGenerator; // fModifiers
};
} // namespace SkSL
#endif