| /* | 
 |  * Copyright 2006 The Android Open Source Project | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #ifndef SkAnalyticEdge_DEFINED | 
 | #define SkAnalyticEdge_DEFINED | 
 |  | 
 | #include "include/private/SkTo.h" | 
 | #include "src/core/SkEdge.h" | 
 |  | 
 | #include <utility> | 
 |  | 
 | struct SkAnalyticEdge { | 
 |     // Similar to SkEdge, the conic edges will be converted to quadratic edges | 
 |     enum Type { | 
 |         kLine_Type, | 
 |         kQuad_Type, | 
 |         kCubic_Type | 
 |     }; | 
 |  | 
 |     SkAnalyticEdge* fNext; | 
 |     SkAnalyticEdge* fPrev; | 
 |  | 
 |     // During aaa_walk_edges, if this edge is a left edge, | 
 |     // then fRiteE is its corresponding right edge. Otherwise it's nullptr. | 
 |     SkAnalyticEdge* fRiteE; | 
 |  | 
 |     SkFixed fX; | 
 |     SkFixed fDX; | 
 |     SkFixed fUpperX;        // The x value when y = fUpperY | 
 |     SkFixed fY;             // The current y | 
 |     SkFixed fUpperY;        // The upper bound of y (our edge is from y = fUpperY to y = fLowerY) | 
 |     SkFixed fLowerY;        // The lower bound of y (our edge is from y = fUpperY to y = fLowerY) | 
 |     SkFixed fDY;            // abs(1/fDX); may be SK_MaxS32 when fDX is close to 0. | 
 |                             // fDY is only used for blitting trapezoids. | 
 |  | 
 |     SkFixed fSavedX;        // For deferred blitting | 
 |     SkFixed fSavedY;        // For deferred blitting | 
 |     SkFixed fSavedDY;       // For deferred blitting | 
 |  | 
 |     int8_t  fCurveCount;    // only used by kQuad(+) and kCubic(-) | 
 |     uint8_t fCurveShift;    // appled to all Dx/DDx/DDDx except for fCubicDShift exception | 
 |     uint8_t fCubicDShift;   // applied to fCDx and fCDy only in cubic | 
 |     int8_t  fWinding;       // 1 or -1 | 
 |  | 
 |     static const int kDefaultAccuracy = 2; // default accuracy for snapping | 
 |  | 
 |     static inline SkFixed SnapY(SkFixed y) { | 
 |         const int accuracy = kDefaultAccuracy; | 
 |         // This approach is safer than left shift, round, then right shift | 
 |         return ((unsigned)y + (SK_Fixed1 >> (accuracy + 1))) >> (16 - accuracy) << (16 - accuracy); | 
 |     } | 
 |  | 
 |     // Update fX, fY of this edge so fY = y | 
 |     inline void goY(SkFixed y) { | 
 |         if (y == fY + SK_Fixed1) { | 
 |             fX = fX + fDX; | 
 |             fY = y; | 
 |         } else if (y != fY) { | 
 |             // Drop lower digits as our alpha only has 8 bits | 
 |             // (fDX and y - fUpperY may be greater than SK_Fixed1) | 
 |             fX = fUpperX + SkFixedMul(fDX, y - fUpperY); | 
 |             fY = y; | 
 |         } | 
 |     } | 
 |  | 
 |     inline void goY(SkFixed y, int yShift) { | 
 |         SkASSERT(yShift >= 0 && yShift <= kDefaultAccuracy); | 
 |         SkASSERT(fDX == 0 || y - fY == SK_Fixed1 >> yShift); | 
 |         fY = y; | 
 |         fX += fDX >> yShift; | 
 |     } | 
 |  | 
 |     inline void saveXY(SkFixed x, SkFixed y, SkFixed dY) { | 
 |         fSavedX = x; | 
 |         fSavedY = y; | 
 |         fSavedDY = dY; | 
 |     } | 
 |  | 
 |     bool setLine(const SkPoint& p0, const SkPoint& p1); | 
 |     bool updateLine(SkFixed ax, SkFixed ay, SkFixed bx, SkFixed by, SkFixed slope); | 
 |  | 
 |     // return true if we're NOT done with this edge | 
 |     bool update(SkFixed last_y, bool sortY = true); | 
 |  | 
 | #ifdef SK_DEBUG | 
 |     void dump() const { | 
 |         SkDebugf("edge: upperY:%d lowerY:%d y:%g x:%g dx:%g w:%d\n", | 
 |                  fUpperY, fLowerY, SkFixedToFloat(fY), SkFixedToFloat(fX), | 
 |                  SkFixedToFloat(fDX), fWinding); | 
 |     } | 
 |  | 
 |     void validate() const { | 
 |          SkASSERT(fPrev && fNext); | 
 |          SkASSERT(fPrev->fNext == this); | 
 |          SkASSERT(fNext->fPrev == this); | 
 |  | 
 |          SkASSERT(fUpperY < fLowerY); | 
 |          SkASSERT(SkAbs32(fWinding) == 1); | 
 |     } | 
 | #endif | 
 | }; | 
 |  | 
 | struct SkAnalyticQuadraticEdge : public SkAnalyticEdge { | 
 |     SkQuadraticEdge fQEdge; | 
 |  | 
 |     // snap y to integer points in the middle of the curve to accelerate AAA path filling | 
 |     SkFixed fSnappedX, fSnappedY; | 
 |  | 
 |     bool setQuadratic(const SkPoint pts[3]); | 
 |     bool updateQuadratic(); | 
 |     inline void keepContinuous() { | 
 |         // We use fX as the starting x to ensure the continuouty. | 
 |         // Without it, we may break the sorted edge list. | 
 |         SkASSERT(SkAbs32(fX - SkFixedMul(fY - fSnappedY, fDX) - fSnappedX) < SK_Fixed1); | 
 |         SkASSERT(SkAbs32(fY - fSnappedY) < SK_Fixed1); // This may differ due to smooth jump | 
 |         fSnappedX = fX; | 
 |         fSnappedY = fY; | 
 |     } | 
 | }; | 
 |  | 
 | struct SkAnalyticCubicEdge : public SkAnalyticEdge { | 
 |     SkCubicEdge fCEdge; | 
 |  | 
 |     SkFixed fSnappedY; // to make sure that y is increasing with smooth jump and snapping | 
 |  | 
 |     bool setCubic(const SkPoint pts[4], bool sortY = true); | 
 |     bool updateCubic(bool sortY = true); | 
 |     inline void keepContinuous() { | 
 |         SkASSERT(SkAbs32(fX - SkFixedMul(fDX, fY - SnapY(fCEdge.fCy)) - fCEdge.fCx) < SK_Fixed1); | 
 |         fCEdge.fCx = fX; | 
 |         fSnappedY = fY; | 
 |     } | 
 | }; | 
 |  | 
 | struct SkBezier { | 
 |     int fCount; // 2 line, 3 quad, 4 cubic | 
 |     SkPoint fP0; | 
 |     SkPoint fP1; | 
 |  | 
 |     // See if left shift, covert to SkFDot6, and round has the same top and bottom y. | 
 |     // If so, the edge will be empty. | 
 |     static inline bool IsEmpty(SkScalar y0, SkScalar y1, int shift = 2) { | 
 | #ifdef SK_RASTERIZE_EVEN_ROUNDING | 
 |         return SkScalarRoundToFDot6(y0, shift) == SkScalarRoundToFDot6(y1, shift); | 
 | #else | 
 |         SkScalar scale = (1 << (shift + 6)); | 
 |         return SkFDot6Round(int(y0 * scale)) == SkFDot6Round(int(y1 * scale)); | 
 | #endif | 
 |     } | 
 | }; | 
 |  | 
 | struct SkLine : public SkBezier { | 
 |     bool set(const SkPoint pts[2]){ | 
 |         if (IsEmpty(pts[0].fY, pts[1].fY)) { | 
 |             return false; | 
 |         } | 
 |         fCount = 2; | 
 |         fP0 = pts[0]; | 
 |         fP1 = pts[1]; | 
 |         return true; | 
 |     } | 
 | }; | 
 |  | 
 | struct SkQuad : public SkBezier { | 
 |     SkPoint fP2; | 
 |  | 
 |     bool set(const SkPoint pts[3]){ | 
 |         if (IsEmpty(pts[0].fY, pts[2].fY)) { | 
 |             return false; | 
 |         } | 
 |         fCount = 3; | 
 |         fP0 = pts[0]; | 
 |         fP1 = pts[1]; | 
 |         fP2 = pts[2]; | 
 |         return true; | 
 |     } | 
 | }; | 
 |  | 
 | struct SkCubic : public SkBezier { | 
 |     SkPoint fP2; | 
 |     SkPoint fP3; | 
 |  | 
 |     bool set(const SkPoint pts[4]){ | 
 |         // We do not chop at y extrema for cubics so pts[0], pts[1], pts[2], pts[3] may not be | 
 |         // monotonic. Therefore, we have to check the emptiness for all three pairs, instead of just | 
 |         // checking IsEmpty(pts[0].fY, pts[3].fY). | 
 |         if (IsEmpty(pts[0].fY, pts[1].fY) && IsEmpty(pts[1].fY, pts[2].fY) && | 
 |                 IsEmpty(pts[2].fY, pts[3].fY)) { | 
 |             return false; | 
 |         } | 
 |         fCount = 4; | 
 |         fP0 = pts[0]; | 
 |         fP1 = pts[1]; | 
 |         fP2 = pts[2]; | 
 |         fP3 = pts[3]; | 
 |         return true; | 
 |     } | 
 | }; | 
 |  | 
 | #endif |