| /* | 
 |  * Copyright 2014 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 | #include "PathOpsTestCommon.h" | 
 | #include "SkIntersections.h" | 
 | #include "SkPathOpsCubic.h" | 
 | #include "SkPathOpsLine.h" | 
 | #include "SkPathOpsQuad.h" | 
 | #include "SkRandom.h" | 
 | #include "SkReduceOrder.h" | 
 | #include "Test.h" | 
 |  | 
 | static bool gPathOpsCubicLineIntersectionIdeasVerbose = false; | 
 |  | 
 | static struct CubicLineFailures { | 
 |     SkDCubic c; | 
 |     double t; | 
 |     SkDPoint p; | 
 | } cubicLineFailures[] = { | 
 |     {{{{-164.3726806640625, 36.826904296875}, {-189.045166015625, -953.2220458984375}, | 
 |         {926.505859375, -897.36175537109375}, {-139.33489990234375, 204.40771484375}}}, | 
 |         0.37329583, {107.54935269006289, -632.13736293162208}}, | 
 |     {{{{784.056884765625, -554.8350830078125}, {67.5489501953125, 509.0224609375}, | 
 |         {-447.713134765625, 751.375}, {415.7784423828125, 172.22265625}}}, | 
 |         0.660005242, {-32.973148967736151, 478.01341797403569}}, | 
 |     {{{{-580.6834716796875, -127.044921875}, {-872.8983154296875, -945.54302978515625}, | 
 |         {260.8092041015625, -909.34991455078125}, {-976.2125244140625, -18.46551513671875}}}, | 
 |         0.578826774, {-390.17910153915489, -687.21144412296007}}, | 
 | }; | 
 |  | 
 | int cubicLineFailuresCount = (int) SK_ARRAY_COUNT(cubicLineFailures); | 
 |  | 
 | double measuredSteps[] = { | 
 |     9.15910731e-007, 8.6600277e-007, 7.4122059e-007, 6.92087618e-007, 8.35290245e-007, | 
 |     3.29763199e-007, 5.07547773e-007, 4.41294224e-007, 0, 0, | 
 |     3.76879167e-006, 1.06126249e-006, 2.36873967e-006, 1.62421134e-005, 3.09103599e-005, | 
 |     4.38917976e-005, 0.000112348938, 0.000243149242, 0.000433174114, 0.00170880232, | 
 |     0.00272619724, 0.00518844604, 0.000352621078, 0.00175960064, 0.027875185, | 
 |     0.0351329803, 0.103964925, | 
 | }; | 
 |  | 
 | /* last output : errors=3121 | 
 |     9.1796875e-007 8.59375e-007 7.5e-007 6.875e-007 8.4375e-007 | 
 |     3.125e-007 5e-007 4.375e-007 0 0 | 
 |     3.75e-006 1.09375e-006 2.1875e-006 1.640625e-005 3.0859375e-005 | 
 |     4.38964844e-005 0.000112304687 0.000243164063 0.000433181763 0.00170898437 | 
 |     0.00272619247 0.00518844604 0.000352621078 0.00175960064 0.027875185 | 
 |     0.0351329803 0.103964925 | 
 | */ | 
 |  | 
 | static double binary_search(const SkDCubic& cubic, double step, const SkDPoint& pt, double t, | 
 |         int* iters) { | 
 |     double firstStep = step; | 
 |     do { | 
 |         *iters += 1; | 
 |         SkDPoint cubicAtT = cubic.ptAtT(t); | 
 |         if (cubicAtT.approximatelyEqual(pt)) { | 
 |             break; | 
 |         } | 
 |         double calcX = cubicAtT.fX - pt.fX; | 
 |         double calcY = cubicAtT.fY - pt.fY; | 
 |         double calcDist = calcX * calcX + calcY * calcY; | 
 |         if (step == 0) { | 
 |             SkDebugf("binary search failed: step=%1.9g cubic=", firstStep); | 
 |             cubic.dump(); | 
 |             SkDebugf(" t=%1.9g ", t); | 
 |             pt.dump(); | 
 |             SkDebugf("\n"); | 
 |             return -1; | 
 |         } | 
 |         double lastStep = step; | 
 |         step /= 2; | 
 |         SkDPoint lessPt = cubic.ptAtT(t - lastStep); | 
 |         double lessX = lessPt.fX - pt.fX; | 
 |         double lessY = lessPt.fY - pt.fY; | 
 |         double lessDist = lessX * lessX + lessY * lessY; | 
 |         // use larger x/y difference to choose step | 
 |         if (calcDist > lessDist) { | 
 |             t -= step; | 
 |             t = SkTMax(0., t); | 
 |         } else { | 
 |             SkDPoint morePt = cubic.ptAtT(t + lastStep); | 
 |             double moreX = morePt.fX - pt.fX; | 
 |             double moreY = morePt.fY - pt.fY; | 
 |             double moreDist = moreX * moreX + moreY * moreY; | 
 |             if (calcDist <= moreDist) { | 
 |                 continue; | 
 |             } | 
 |             t += step; | 
 |             t = SkTMin(1., t); | 
 |         } | 
 |     } while (true); | 
 |     return t; | 
 | } | 
 |  | 
 | #if 0 | 
 | static bool r2check(double A, double B, double C, double D, double* R2MinusQ3Ptr) { | 
 |     if (approximately_zero(A) | 
 |             && approximately_zero_when_compared_to(A, B) | 
 |             && approximately_zero_when_compared_to(A, C) | 
 |             && approximately_zero_when_compared_to(A, D)) {  // we're just a quadratic | 
 |         return false; | 
 |     } | 
 |     if (approximately_zero_when_compared_to(D, A) | 
 |             && approximately_zero_when_compared_to(D, B) | 
 |             && approximately_zero_when_compared_to(D, C)) {  // 0 is one root | 
 |         return false; | 
 |     } | 
 |     if (approximately_zero(A + B + C + D)) {  // 1 is one root | 
 |         return false; | 
 |     } | 
 |     double a, b, c; | 
 |     { | 
 |         double invA = 1 / A; | 
 |         a = B * invA; | 
 |         b = C * invA; | 
 |         c = D * invA; | 
 |     } | 
 |     double a2 = a * a; | 
 |     double Q = (a2 - b * 3) / 9; | 
 |     double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; | 
 |     double R2 = R * R; | 
 |     double Q3 = Q * Q * Q; | 
 |     double R2MinusQ3 = R2 - Q3; | 
 |     *R2MinusQ3Ptr = R2MinusQ3; | 
 |     return true; | 
 | } | 
 | #endif | 
 |  | 
 | /* What is the relationship between the accuracy of the root in range and the magnitude of all | 
 |    roots? To find out, create a bunch of cubics, and measure */ | 
 |  | 
 | DEF_TEST(PathOpsCubicLineRoots, reporter) { | 
 |     if (!gPathOpsCubicLineIntersectionIdeasVerbose) {  // slow; exclude it by default | 
 |         return; | 
 |     } | 
 |     SkRandom ran; | 
 |     double worstStep[256] = {0}; | 
 |     int errors = 0; | 
 |     int iters = 0; | 
 |     double smallestR2 = 0; | 
 |     double largestR2 = 0; | 
 |     for (int index = 0; index < 1000000000; ++index) { | 
 |         SkDPoint origin = {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}; | 
 |         SkDCubic cubic = {{origin, | 
 |                 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, | 
 |                 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, | 
 |                 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)} | 
 |         }}; | 
 |         // construct a line at a known intersection | 
 |         double t = ran.nextRangeF(0, 1); | 
 |         SkDPoint pt = cubic.ptAtT(t); | 
 |         // skip answers with no intersections (although note the bug!) or two, or more | 
 |         // see if the line / cubic has a fun range of roots | 
 |         double A, B, C, D; | 
 |         SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D); | 
 |         D -= pt.fY; | 
 |         double allRoots[3] = {0}, validRoots[3] = {0}; | 
 |         int realRoots = SkDCubic::RootsReal(A, B, C, D, allRoots); | 
 |         int valid = SkDQuad::AddValidTs(allRoots, realRoots, validRoots); | 
 |         if (valid != 1) { | 
 |             continue; | 
 |         } | 
 |         if (realRoots == 1) { | 
 |             continue; | 
 |         } | 
 |         t = validRoots[0]; | 
 |         SkDPoint calcPt = cubic.ptAtT(t); | 
 |         if (calcPt.approximatelyEqual(pt)) { | 
 |             continue; | 
 |         } | 
 | #if 0 | 
 |         double R2MinusQ3; | 
 |         if (r2check(A, B, C, D, &R2MinusQ3)) { | 
 |             smallestR2 = SkTMin(smallestR2, R2MinusQ3); | 
 |             largestR2 = SkTMax(largestR2, R2MinusQ3); | 
 |         } | 
 | #endif | 
 |         double largest = SkTMax(fabs(allRoots[0]), fabs(allRoots[1])); | 
 |         if (realRoots == 3) { | 
 |             largest = SkTMax(largest, fabs(allRoots[2])); | 
 |         } | 
 |         int largeBits; | 
 |         if (largest <= 1) { | 
 | #if 0 | 
 |             SkDebugf("realRoots=%d (%1.9g, %1.9g, %1.9g) valid=%d (%1.9g, %1.9g, %1.9g)\n", | 
 |                 realRoots, allRoots[0], allRoots[1], allRoots[2], valid, validRoots[0], | 
 |                 validRoots[1], validRoots[2]); | 
 | #endif | 
 |             double smallest = SkTMin(allRoots[0], allRoots[1]); | 
 |             if (realRoots == 3) { | 
 |                 smallest = SkTMin(smallest, allRoots[2]); | 
 |             } | 
 |             SK_ALWAYSBREAK(smallest < 0); | 
 |             SK_ALWAYSBREAK(smallest >= -1); | 
 |             largeBits = 0; | 
 |         } else { | 
 |             frexp(largest, &largeBits); | 
 |             SK_ALWAYSBREAK(largeBits >= 0); | 
 |             SK_ALWAYSBREAK(largeBits < 256); | 
 |         } | 
 |         double step = 1e-6; | 
 |         if (largeBits > 21) { | 
 |             step = 1e-1; | 
 |         } else if (largeBits > 18) { | 
 |             step = 1e-2; | 
 |         } else if (largeBits > 15) { | 
 |             step = 1e-3; | 
 |         } else if (largeBits > 12) { | 
 |             step = 1e-4; | 
 |         } else if (largeBits > 9) { | 
 |             step = 1e-5; | 
 |         } | 
 |         double diff; | 
 |         do { | 
 |             double newT = binary_search(cubic, step, pt, t, &iters); | 
 |             if (newT >= 0) { | 
 |                 diff = fabs(t - newT); | 
 |                 break; | 
 |             } | 
 |             step *= 1.5; | 
 |             SK_ALWAYSBREAK(step < 1); | 
 |         } while (true); | 
 |         worstStep[largeBits] = SkTMax(worstStep[largeBits], diff); | 
 | #if 0 | 
 |         { | 
 |             cubic.dump(); | 
 |             SkDebugf("\n"); | 
 |             SkDLine line = {{{pt.fX - 1, pt.fY}, {pt.fX + 1, pt.fY}}}; | 
 |             line.dump(); | 
 |             SkDebugf("\n"); | 
 |         } | 
 | #endif | 
 |         ++errors; | 
 |     } | 
 |     SkDebugf("errors=%d avgIter=%1.9g", errors, (double) iters / errors); | 
 |     SkDebugf(" steps: "); | 
 |     int worstLimit = SK_ARRAY_COUNT(worstStep); | 
 |     while (worstStep[--worstLimit] == 0) ; | 
 |     for (int idx2 = 0; idx2 <= worstLimit; ++idx2) { | 
 |         SkDebugf("%1.9g ", worstStep[idx2]); | 
 |     } | 
 |     SkDebugf("\n"); | 
 |     SkDebugf("smallestR2=%1.9g largestR2=%1.9g\n", smallestR2, largestR2); | 
 | } | 
 |  | 
 | static double testOneFailure(const CubicLineFailures& failure) { | 
 |     const SkDCubic& cubic = failure.c; | 
 |     const SkDPoint& pt = failure.p; | 
 |     double A, B, C, D; | 
 |     SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D); | 
 |     D -= pt.fY; | 
 |     double allRoots[3] = {0}, validRoots[3] = {0}; | 
 |     int realRoots = SkDCubic::RootsReal(A, B, C, D, allRoots); | 
 |     int valid = SkDQuad::AddValidTs(allRoots, realRoots, validRoots); | 
 |     SK_ALWAYSBREAK(valid == 1); | 
 |     SK_ALWAYSBREAK(realRoots != 1); | 
 |     double t = validRoots[0]; | 
 |     SkDPoint calcPt = cubic.ptAtT(t); | 
 |     SK_ALWAYSBREAK(!calcPt.approximatelyEqual(pt)); | 
 |     int iters = 0; | 
 |     double newT = binary_search(cubic, 0.1, pt, t, &iters); | 
 |     return newT; | 
 | } | 
 |  | 
 | DEF_TEST(PathOpsCubicLineFailures, reporter) { | 
 |     return;  // disable for now | 
 |     for (int index = 0; index < cubicLineFailuresCount; ++index) { | 
 |         const CubicLineFailures& failure = cubicLineFailures[index]; | 
 |         double newT = testOneFailure(failure); | 
 |         SK_ALWAYSBREAK(newT >= 0); | 
 |     } | 
 | } | 
 |  | 
 | DEF_TEST(PathOpsCubicLineOneFailure, reporter) { | 
 |     return;  // disable for now | 
 |     const CubicLineFailures& failure = cubicLineFailures[1]; | 
 |     double newT = testOneFailure(failure); | 
 |     SK_ALWAYSBREAK(newT >= 0); | 
 | } |