blob: e2d506e121b9888024ff0839912f39cab6c54bd1 [file] [log] [blame]
/*
* Copyright 2020 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrThreadSafeCache_DEFINED
#define GrThreadSafeCache_DEFINED
#include "include/private/SkSpinlock.h"
#include "src/core/SkArenaAlloc.h"
#include "src/core/SkTDynamicHash.h"
#include "src/core/SkTInternalLList.h"
#include "src/gpu/GrSurfaceProxyView.h"
// Ganesh creates a lot of utility textures (e.g., blurred-rrect masks) that need to be shared
// between the direct context and all the DDL recording contexts. This thread-safe cache
// allows this sharing.
//
// In operation, each thread will first check if the threaded cache possesses the required texture.
//
// If a DDL thread doesn't find a needed texture it will go off and create it on the cpu and then
// attempt to add it to the cache. If another thread had added it in the interim, the losing thread
// will discard its work and use the texture the winning thread had created.
//
// If the thread in possession of the direct context doesn't find the needed texture it should
// add a place holder view and then queue up the draw calls to complete it. In this way the
// gpu-thread has precedence over the recording threads.
//
// The invariants for this cache differ a bit from those of the proxy and resource caches.
// For this cache:
//
// only this cache knows the unique key - neither the proxy nor backing resource should
// be discoverable in any other cache by the unique key
// if a backing resource resides in the resource cache then there should be an entry in this
// cache
// an entry in this cache, however, doesn't guarantee that there is a corresponding entry in
// the resource cache - although the entry here should be able to generate that entry
// (i.e., be a lazy proxy)
//
// Wrt interactions w/ GrContext/GrResourceCache purging, we have:
//
// Both GrContext::abandonContext and GrContext::releaseResourcesAndAbandonContext will cause
// all the refs held in this cache to be dropped prior to clearing out the resource cache.
//
// For the size_t-variant of GrContext::purgeUnlockedResources, after an initial attempt
// to purge the requested amount of resources fails, uniquely held resources in this cache
// will be dropped in LRU to MRU order until the cache is under budget. Note that this
// prioritizes the survival of resources in this cache over those just in the resource cache.
//
// For the 'scratchResourcesOnly' variant of GrContext::purgeUnlockedResources, this cache
// won't be modified in the scratch-only case unless the resource cache is over budget (in
// which case it will purge uniquely-held resources in LRU to MRU order to get
// back under budget). In the non-scratch-only case, all uniquely held resources in this cache
// will be released prior to the resource cache being cleared out.
//
// For GrContext::setResourceCacheLimit, if an initial pass through the resource cache doesn't
// reach the budget, uniquely held resources in this cache will be released in LRU to MRU order.
//
// For GrContext::performDeferredCleanup, any uniquely held resources that haven't been accessed
// w/in 'msNotUsed' will be released from this cache prior to the resource cache being cleaned.
class GrThreadSafeCache {
public:
GrThreadSafeCache();
~GrThreadSafeCache();
#if GR_TEST_UTILS
int numEntries() const SK_EXCLUDES(fSpinLock);
size_t approxBytesUsedForHash() const SK_EXCLUDES(fSpinLock);
#endif
void dropAllRefs() SK_EXCLUDES(fSpinLock);
// Drop uniquely held refs until under the resource cache's budget.
// A null parameter means drop all uniquely held refs.
void dropUniqueRefs(GrResourceCache* resourceCache) SK_EXCLUDES(fSpinLock);
// Drop uniquely held refs that were last accessed before 'purgeTime'
void dropUniqueRefsOlderThan(GrStdSteadyClock::time_point purgeTime) SK_EXCLUDES(fSpinLock);
GrSurfaceProxyView find(const GrUniqueKey&) SK_EXCLUDES(fSpinLock);
std::tuple<GrSurfaceProxyView, sk_sp<SkData>> findWithData(
const GrUniqueKey&) SK_EXCLUDES(fSpinLock);
GrSurfaceProxyView add(const GrUniqueKey&, const GrSurfaceProxyView&) SK_EXCLUDES(fSpinLock);
std::tuple<GrSurfaceProxyView, sk_sp<SkData>> addWithData(
const GrUniqueKey&, const GrSurfaceProxyView&) SK_EXCLUDES(fSpinLock);
GrSurfaceProxyView findOrAdd(const GrUniqueKey&,
const GrSurfaceProxyView&) SK_EXCLUDES(fSpinLock);
std::tuple<GrSurfaceProxyView, sk_sp<SkData>> findOrAddWithData(
const GrUniqueKey&, const GrSurfaceProxyView&) SK_EXCLUDES(fSpinLock);
void remove(const GrUniqueKey&) SK_EXCLUDES(fSpinLock);
// To allow gpu-created resources to have priority, we pre-emptively place a lazy proxy
// in the thread-safe cache (with findOrAdd). The Trampoline object allows that lazy proxy to
// be instantiated with some later generated rendering result.
class Trampoline : public SkRefCnt {
public:
sk_sp<GrTextureProxy> fProxy;
};
static std::tuple<GrSurfaceProxyView, sk_sp<Trampoline>> CreateLazyView(GrDirectContext*,
GrColorType,
SkISize dimensions,
GrSurfaceOrigin,
SkBackingFit);
private:
struct Entry {
Entry(const GrUniqueKey& key, const GrSurfaceProxyView& view)
: fKey(key)
, fView(view)
, fTag(Entry::kView) {
}
bool uniquelyHeld() const {
SkASSERT(fTag != kEmpty);
if (fTag == kView && fView.proxy()->unique()) {
return true;
}
return false;
}
const GrUniqueKey& key() const {
SkASSERT(fTag != kEmpty);
return fKey;
}
sk_sp<SkData> refCustomData() const {
SkASSERT(fTag != kEmpty);
return fKey.refCustomData();
}
GrSurfaceProxyView view() {
SkASSERT(fTag == kView);
return fView;
}
void set(const GrUniqueKey& key, const GrSurfaceProxyView& view) {
SkASSERT(fTag == kEmpty);
fKey = key;
fView = view;
fTag = kView;
}
void makeEmpty() {
SkASSERT(fTag != kEmpty);
fKey.reset();
fView.reset();
fTag = kEmpty;
}
// The thread-safe cache gets to manipulate the llist and last-access members
GrStdSteadyClock::time_point fLastAccess;
SK_DECLARE_INTERNAL_LLIST_INTERFACE(Entry);
// for SkTDynamicHash
static const GrUniqueKey& GetKey(const Entry& e) {
SkASSERT(e.fTag != kEmpty);
return e.fKey;
}
static uint32_t Hash(const GrUniqueKey& key) { return key.hash(); }
private:
// Note: the unique key is stored here bc it is never attached to a proxy or a GrTexture
GrUniqueKey fKey;
GrSurfaceProxyView fView;
enum {
kEmpty,
kView,
} fTag { kEmpty };
};
Entry* getEntry(const GrUniqueKey&, const GrSurfaceProxyView&) SK_REQUIRES(fSpinLock);
void recycleEntry(Entry*) SK_REQUIRES(fSpinLock);
std::tuple<GrSurfaceProxyView, sk_sp<SkData>> internalFind(
const GrUniqueKey&) SK_REQUIRES(fSpinLock);
std::tuple<GrSurfaceProxyView, sk_sp<SkData>> internalAdd(
const GrUniqueKey&, const GrSurfaceProxyView&) SK_REQUIRES(fSpinLock);
mutable SkSpinlock fSpinLock;
SkTDynamicHash<Entry, GrUniqueKey> fUniquelyKeyedEntryMap SK_GUARDED_BY(fSpinLock);
// The head of this list is the MRU
SkTInternalLList<Entry> fUniquelyKeyedEntryList SK_GUARDED_BY(fSpinLock);
// TODO: empirically determine this from the skps
static const int kInitialArenaSize = 64 * sizeof(Entry);
char fStorage[kInitialArenaSize];
SkArenaAlloc fEntryAllocator{fStorage, kInitialArenaSize, kInitialArenaSize};
Entry* fFreeEntryList SK_GUARDED_BY(fSpinLock);
};
#endif // GrThreadSafeCache_DEFINED