blob: 55960047b13e4e9ca61b4c89b0110f91d6ab13fc [file] [log] [blame]
/*
*******************************************************************************
*
* Copyright (C) 1999-2001, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: store.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 1999dec11
* created by: Markus W. Scherer
*
* Store Unicode character properties efficiently for
* random access.
*/
#include <stdio.h>
#include <stdlib.h>
#include "unicode/utypes.h"
#include "unicode/uchar.h"
#include "cmemory.h"
#include "cstring.h"
#include "filestrm.h"
#include "unicode/udata.h"
#include "unewdata.h"
#include "genprops.h"
#define DO_DEBUG_OUT 0
/* Unicode character properties file format ------------------------------------
The file format prepared and written here contains several data
structures that store indexes or data.
Before the data contents described below, there are the headers required by
the udata API for loading ICU data. Especially, a UDataInfo structure
precedes the actual data. It contains platform properties values and the
file format version.
The following is a description of format version 1.1 .
Data contents:
The contents is a parsed, binary form of several Unicode character
database files, most prominently UnicodeData.txt.
Any Unicode code point from 0 to 0x10ffff can be looked up to get
the properties, if any, for that code point. This means that the input
to the lookup are 21-bit unsigned integers, with not all of the
21-bit range used.
It is assumed that client code keeps a uint16_t pointer
to the beginning of the data:
const uint16 *p16;
Some indexes assume 32-bit units; although client code should only
cast the above pointer to (const uint32_t *), it is easier here
to talk about the result of the indexing with the definition of
another pointer variable for this:
const uint32_t *p32=(const uint32_t *)p16;
Formally, the file contains the following structures:
A0 const uint16_t STAGE_2_BITS(=6);
A1 const uint16_t STAGE_3_BITS(=4);
(STAGE_1_BITS(=11) not stored, implicitly=21-(STAGE_2_BITS+STAGE_3_BITS))
A2 const uint16_t exceptionsIndex; -- 32-bit unit index
A3 const uint16_t stage3Index; -- 16-bit unit index of stage3, new in formatVersion 1.1
A4 const uint16_t propsIndex; -- 32-bit unit index, new in formatVersion 1.1
A5 const uint16_t exceptionsTopIndex; -- 32-bit unit index to the first unit after exceptions units, new in formatVersion 1.1
A6 const uint16_t ucharsTopIndex; -- 32-bit unit index to the first unit after the array of UChars for special casing
A7 const uint16_t reservedIndex;
S1 const uint16_t stage1[0x440]; -- 0x440=0x110000>>10
S2 const uint16_t stage2[variable size];
S3 const uint16_t stage3[variable size];
(possible 1*uint16_t for padding to 4-alignment)
P const uint32_t props32[variable size];
E const uint32_t exceptions[variable size];
3-stage lookup and properties:
In order to condense the data for the 21-bit code space, several properties of
the Unicode code assignment are exploited:
- The code space is sparse.
- There are several 10k of consecutive codes with the same properties.
- Characters and scripts are allocated in groups of 16 code points.
- Inside blocks for scripts the properties are often repetitive.
- The 21-bit space is not fully used for Unicode.
The three-stage lookup organizes code points in groups of 16 in stage 3.
64 such groups are grouped again, resulting in blocks of 64 indexes
for a total of 1k code points in stage 2.
The first stage is limited according to all code points being <0x110000.
Each stage contains indexes to groups or blocks of the next stage
in an n:1 manner, i.e., multiple entries of one stage may index the same
group or block in the next one.
In the second and third stages, groups of 64 or 16 may partially or completely
overlap to save space with repetitive properties.
In the properties table, only unique 32-bit words are stored to exploit
non-adjacent overlapping. This is why the third stage does not directly
contain the 32-bit properties words but only indexes to them.
The indexes in each stage take the offset in the data of the next block into
account to save additional arithmetic in the access.
With a given Unicode code point
uint32_t c;
and 0<=c<0x110000, the lookup uses the three stage tables to
arrive at an index into the props32[] table containing the character
properties for c.
For some characters, not all of the properties can be efficiently encoded
using 32 bits. For them, the 32-bit word contains an index into the exceptions[]
array.
The first stage consumes the 11 most significant bits of the 21-bit code point
and results in an index into the second stage:
uint16_t i2=p16[8+c>>10];
The second stage consumes bits 9 to 4 of c and results in an index into the
third stage:
uint16_t i3=p16[i2+((c>>4)&0x3f)];
The third stage consumes bits 3 to 0 of c and results in a code point-
specific value, which itself is only an index into the props32[] table:
uint16_t i=p16[i3+(c&0xf)];
Note that the bit numbers and shifts actually depend on the STAGE_2/3_BITS
in p16[0..1].
There is finally the 32-bit encoded set of properties for c:
uint32_t props=p32[i];
For some characters, this contains an index into the exceptions array:
if(props&EXCEPTION_BIT)) {
uint16_t e=(uint16_t)(props>>VALUE_SHIFT);
...
}
The exception values are a variable number of uint32_t starting at
const uint32_t *pe=p32+exceptionsIndex+e;
The first uint32_t there contains flags about what values actually follow it.
Some of the exception values are UChar32 code points for the case mappings,
others are numeric values etc.
32-bit properties sets:
Each 32-bit properties word contains:
0.. 4 general category
5 has exception values
6..10 BiDi category
11 is mirrored
12..19 reserved
20..31 value according to bits 0..5:
if(has exception) {
exception index;
} else switch(general category) {
case Ll: delta to uppercase; -- same as titlecase
case Lu: -delta to lowercase; -- titlecase is same as c
case Lt: -delta to lowercase; -- uppercase is same as c
case Mn: combining class;
case Nd: value=numeric value==decimal digit value=digit value;
case Nl:
case No: value=numeric value - but decimal digit value and digit value are not defined;
default:
if(is mirrored) {
delta to mirror
} else {
0
};
}
Exception values:
In the first uint32_t exception word for a code point,
bits
31..24 reserved
23..16 combining class
15..0 flags that indicate which values follow:
bit
0 has uppercase mapping
1 has lowercase mapping
2 has titlecase mapping
3 has digit value(s)
4 has numeric value (numerator)
5 has denominator value
6 has a mirror-image Unicode code point
7 has SpecialCasing.txt entries
8 has CaseFolding.txt entries
According to the flags in this word, one or more uint32_t words follow it
in the sequence of the bit flags in the flags word; if a flag is not set,
then the value is missing or 0:
For the case mappings and the mirror-image Unicode code point,
one uint32_t or UChar32 each is the code point.
If the titlecase mapping is missing, then it is the same as the uppercase mapping.
For the digit values, bits 31..16 contain the decimal digit value, and
bits 15..0 contain the digit value. A value of -1 indicates that
this value is missing.
For the numeric/numerator value, an int32_t word contains the value directly,
except for when there is no numerator but a denominator, then the numerator
is implicitly 1. This means:
numerator denominator result
none none none
x none x
none y 1/y
x y x/y
For the denominator value, a uint32_t word contains the value directly.
For special casing mappings, the 32-bit exception word contains:
31 if set, this character has complex, conditional mappings
that are not stored;
otherwise, the mappings are stored according to the following bits
30..24 number of UChars used for mappings
23..16 reserved
15.. 0 UChar offset from the beginning of the UChars array where the
UChars for the special case mappings are stored in the following format:
Format of special casing UChars:
One UChar value with lengths as follows:
14..10 number of UChars for titlecase mapping
9.. 5 number of UChars for uppercase mapping
4.. 0 number of UChars for lowercase mapping
Followed by the UChars for lowercase, uppercase, titlecase mappings in this order.
For case folding mappings, the 32-bit exception word contains:
31..24 number of UChars used for the full mapping
23..16 reserved
15.. 0 UChar offset from the beginning of the UChars array where the
UChars for the special case mappings are stored in the following format:
Format of case folding UChars:
Two UChars contain the simple mapping as follows:
0, 0 no simple mapping
BMP,0 a simple mapping to a BMP code point
s1, s2 a simple mapping to a supplementary code point stored as two surrogates
This is followed by the UChars for the full case folding mappings.
Example:
U+2160, ROMAN NUMERAL ONE, needs an exception because it has a lowercase
mapping and a numeric value.
Its exception values would be stored as 3 uint32_t words:
- flags=0x0a (see above) with combining class 0
- lowercase mapping 0x2170
- numeric value=1
----------------------------------------------------------------------------- */
/* UDataInfo cf. udata.h */
static UDataInfo dataInfo={
sizeof(UDataInfo),
0,
U_IS_BIG_ENDIAN,
U_CHARSET_FAMILY,
U_SIZEOF_UCHAR,
0,
{0x55, 0x50, 0x72, 0x6f}, /* dataFormat="UPro" */
{1, 3, 0, 0}, /* formatVersion */
{3, 0, 0, 0} /* dataVersion */
};
/* definitions and arrays for the 3-stage lookup */
enum {
STAGE_2_BITS=6, STAGE_3_BITS=4,
STAGE_1_BITS=21-(STAGE_2_BITS+STAGE_3_BITS),
STAGE_2_SHIFT=STAGE_3_BITS,
STAGE_1_SHIFT=(STAGE_2_SHIFT+STAGE_2_BITS),
/* number of entries per sub-table in each stage */
STAGE_1_BLOCK=0x110000>>STAGE_1_SHIFT,
STAGE_2_BLOCK=1<<STAGE_2_BITS,
STAGE_3_BLOCK=1<<STAGE_3_BITS,
/* number of code points per stage 1 index */
STAGE_2_3_AREA=1<<STAGE_1_SHIFT,
MAX_PROPS_COUNT=25000,
MAX_UCHAR_COUNT=10000,
MAX_EXCEPTIONS_COUNT=4096,
MAX_STAGE_2_COUNT=MAX_PROPS_COUNT
};
/* definitions for the properties words */
enum {
EXCEPTION_SHIFT=5,
BIDI_SHIFT,
MIRROR_SHIFT=BIDI_SHIFT+5,
VALUE_SHIFT=20,
EXCEPTION_BIT=1UL<<EXCEPTION_SHIFT,
VALUE_BITS=32-VALUE_SHIFT
};
static const int32_t MAX_VALUE=(1L<<(VALUE_BITS-1))-1;
static const int32_t MIN_VALUE=-(1L<<(VALUE_BITS-1));
static uint16_t stage1[STAGE_1_BLOCK], stage2[MAX_STAGE_2_COUNT],
stage3[MAX_PROPS_COUNT], map[MAX_PROPS_COUNT];
/* stage1Top=STAGE_1_BLOCK never changes, stage2Top starts after the empty-properties-group */
static uint16_t stage2Top=STAGE_2_BLOCK, stage3Top;
/* props[] is used before, props32[] after compacting the array of properties */
static uint32_t props[MAX_PROPS_COUNT], props32[MAX_PROPS_COUNT];
static uint16_t propsTop=STAGE_3_BLOCK; /* the first props[] are always empty */
/* exceptions values */
static uint32_t exceptions[MAX_EXCEPTIONS_COUNT+20];
static uint16_t exceptionsTop=0;
/* Unicode characters, e.g. for special casing or decomposition */
static UChar uchars[MAX_UCHAR_COUNT+20];
static uint32_t ucharsTop=0;
/* statistics */
static uint16_t exceptionsCount=0;
/* prototypes --------------------------------------------------------------- */
static void
repeatFromStage2(uint16_t i2, uint32_t start, uint32_t limit, uint16_t i3Repeat, uint32_t x);
static void
repeatFromStage3(uint16_t i3, uint32_t start, uint32_t limit, uint32_t x);
static uint16_t
compactStage(uint16_t *stage, uint16_t stageTop, uint16_t blockSize,
uint16_t *parent, uint16_t parentTop);
static int
compareProps(const void *l, const void *r);
#if DO_DEBUG_OUT
static uint32_t
getProps2(uint32_t c, uint16_t *pI1, uint16_t *pI2, uint16_t *pI3, uint16_t *pI4);
static uint32_t
getProps(uint32_t c, uint16_t *pI1, uint16_t *pI2, uint16_t *pI3);
#endif
static void
setProps(uint32_t c, uint32_t x, uint16_t *pI1, uint16_t *pI2, uint16_t *pI3);
static uint16_t
allocStage2(void);
static uint16_t
allocProps(void);
static uint32_t
addUChars(const UChar *s, uint32_t length);
/* -------------------------------------------------------------------------- */
extern void
setUnicodeVersion(const char *v) {
UVersionInfo version;
u_versionFromString(version, v);
uprv_memcpy(dataInfo.dataVersion, version, 4);
}
extern void
initStore() {
uprv_memset(stage1, 0, sizeof(stage1));
uprv_memset(stage2, 0, sizeof(stage2));
uprv_memset(stage3, 0, sizeof(stage3));
uprv_memset(map, 0, sizeof(map));
uprv_memset(props, 0, sizeof(props));
uprv_memset(props32, 0, sizeof(props32));
}
/* store a character's properties ------------------------------------------- */
extern uint32_t
makeProps(Props *p) {
uint32_t x;
int32_t value;
uint16_t count;
UBool isNumber;
/*
* Simple ideas for reducing the number of bits for one character's
* properties:
*
* Some fields are only used for characters of certain
* general categories:
* - casing fields for letters and others, not for
* numbers & Mn
* + uppercase not for uppercase letters
* + lowercase not for lowercase letters
* + titlecase not for titlecase letters
*
* * most of the time, uppercase=titlecase
* - numeric fields for various digit & other types
* - canonical combining classes for non-spacing marks (Mn)
* * the above is not always true, for all three cases
*
* Using the same bits for alternate fields saves some space.
*
* For the canonical categories, there are only few actually used
* most of the time.
* They can be stored using 5 bits.
*
* In the BiDi categories, the 5 explicit codes are only ever
* assigned 1:1 to 5 well-known code points. Storing only one
* value for all "explicit codes" gets this down to 4 bits.
* Client code then needs to check for this special value
* and replace it by the real one using a 5-element table.
*
* The general categories Mn & Me, non-spacing & enclosing marks,
* are always NSM, and NSM are always of those categories.
*
* Digit values can often be derived from the code point value
* itself in a simple way.
*
*/
/* count the case mappings and other values competing for the value bit field */
x=0;
value=0;
count=0;
isNumber= (UBool)(genCategoryNames[p->generalCategory][0]=='N');
if(p->upperCase!=0) {
/* verify that no numbers and no Mn have case mappings */
if(p->generalCategory==U_LOWERCASE_LETTER) {
value=(int32_t)p->code-(int32_t)p->upperCase;
} else {
x=EXCEPTION_BIT;
}
++count;
}
if(p->lowerCase!=0) {
/* verify that no numbers and no Mn have case mappings */
if(p->generalCategory==U_UPPERCASE_LETTER || p->generalCategory==U_TITLECASE_LETTER) {
value=(int32_t)p->lowerCase-(int32_t)p->code;
} else {
x=EXCEPTION_BIT;
}
++count;
}
if(p->upperCase!=p->titleCase) {
x=EXCEPTION_BIT;
++count;
}
if(p->canonicalCombining>0) {
/* verify that only Mn has a canonical combining class */
if(p->generalCategory==U_NON_SPACING_MARK) {
value=p->canonicalCombining;
} else {
x=EXCEPTION_BIT;
}
++count;
}
if(p->generalCategory==U_DECIMAL_DIGIT_NUMBER) {
/* verify that all numeric fields contain the same value */
if(p->decimalDigitValue!=-1 && p->digitValue==p->decimalDigitValue &&
p->hasNumericValue && p->numericValue==p->decimalDigitValue &&
p->denominator==0
) {
value=p->decimalDigitValue;
} else {
x=EXCEPTION_BIT;
}
++count;
} else if(p->generalCategory==U_LETTER_NUMBER || p->generalCategory==U_OTHER_NUMBER) {
/* verify that only the numeric value field itself contains a value */
if(p->decimalDigitValue==-1 && p->digitValue==-1 && p->hasNumericValue) {
value=p->numericValue;
} else {
x=EXCEPTION_BIT;
}
++count;
} else if(p->decimalDigitValue!=-1 || p->digitValue!=-1 || p->hasNumericValue) {
/* verify that only numeric categories have numeric values */
x=EXCEPTION_BIT;
++count;
}
if(p->denominator!=0) {
/* verification for numeric category covered by the above */
x=EXCEPTION_BIT;
++count;
}
if(p->isMirrored) {
if(p->mirrorMapping!=0) {
value=(int32_t)p->mirrorMapping-(int32_t)p->code;
}
++count;
}
if(p->specialCasing!=NULL) {
x=EXCEPTION_BIT;
++count;
}
if(p->caseFolding!=NULL) {
x=EXCEPTION_BIT;
++count;
}
/* handle exceptions */
if(count>1 || x!=0 || value<MIN_VALUE || MAX_VALUE<value) {
/* this code point needs exception values */
if(beVerbose) {
if(x!=0) {
printf("*** code 0x%06x needs an exception because it is irregular\n", p->code);
} else if(count==1) {
printf("*** code 0x%06x needs an exception because its value would be %ld\n",
p->code, (long)value);
} else if(value<MIN_VALUE || MAX_VALUE<value) {
printf("*** code 0x%06x needs an exception because its value is out-of-bounds at %ld (not [%ld..%ld]\n",
p->code, (long)value, (long)MIN_VALUE, (long)MAX_VALUE);
} else {
printf("*** code 0x%06x needs an exception because it has %u values\n", p->code, count);
}
}
++exceptionsCount;
x=EXCEPTION_BIT;
/* allocate and create exception values */
value=exceptionsTop;
if(value>=4096) {
fprintf(stderr, "genprops: out of exceptions memory at U+%06x. (%d exceeds allocated space)\n",
p->code, value);
exit(U_MEMORY_ALLOCATION_ERROR);
} else {
uint32_t first=(uint32_t)p->canonicalCombining<<16;
uint16_t length=1;
if(p->upperCase!=0) {
first|=1;
exceptions[value+length++]=p->upperCase;
}
if(p->lowerCase!=0) {
first|=2;
exceptions[value+length++]=p->lowerCase;
}
if(p->upperCase!=p->titleCase) {
first|=4;
if(p->titleCase!=0) {
exceptions[value+length++]=p->titleCase;
} else {
exceptions[value+length++]=p->code;
}
}
if(p->decimalDigitValue!=-1 || p->digitValue!=-1) {
first|=8;
exceptions[value+length++]=
(uint32_t)p->decimalDigitValue<<16|
(uint16_t)p->digitValue;
}
if(p->hasNumericValue) {
if(p->denominator==0) {
first|=0x10;
exceptions[value+length++]=(uint32_t)p->numericValue;
} else {
if(p->numericValue!=1) {
first|=0x10;
exceptions[value+length++]=(uint32_t)p->numericValue;
}
first|=0x20;
exceptions[value+length++]=p->denominator;
}
}
if(p->isMirrored) {
first|=0x40;
exceptions[value+length++]=p->mirrorMapping;
}
if(p->specialCasing!=NULL) {
first|=0x80;
if(p->specialCasing->isComplex) {
/* complex special casing */
exceptions[value+length++]=0x80000000;
} else {
/* unconditional special casing */
UChar u[128];
uint32_t i;
uint16_t j, entry;
i=1;
entry=0;
j=p->specialCasing->lowerCase[0];
if(j>0) {
uprv_memcpy(u+1, p->specialCasing->lowerCase+1, 2*j);
i+=j;
entry=j;
}
j=p->specialCasing->upperCase[0];
if(j>0) {
uprv_memcpy(u+i, p->specialCasing->upperCase+1, 2*j);
i+=j;
entry|=j<<5;
}
j=p->specialCasing->titleCase[0];
if(j>0) {
uprv_memcpy(u+i, p->specialCasing->titleCase+1, 2*j);
i+=j;
entry|=j<<10;
}
u[0]=entry;
exceptions[value+length++]=(i<<24)|addUChars(u, i);
}
}
if(p->caseFolding!=NULL) {
first|=0x100;
if(p->caseFolding->simple==0 && p->caseFolding->full[0]==0) {
/* special case folding, store only a marker */
exceptions[value+length++]=0;
} else {
/* normal case folding with a simple and a full mapping */
UChar u[128];
uint16_t i;
/* store the simple mapping into the first two UChars */
i=0;
u[1]=0;
UTF_APPEND_CHAR_UNSAFE(u, i, p->caseFolding->simple);
/* store the full mapping after that */
i=p->caseFolding->full[0];
if(i>0) {
uprv_memcpy(u+2, p->caseFolding->full+1, 2*i);
}
exceptions[value+length++]=(i<<24)|addUChars(u, 2+i);
}
}
exceptions[value]=first;
exceptionsTop+=length;
}
}
/* put together the 32-bit word of encoded properties */
x|=
(uint32_t)p->generalCategory |
(uint32_t)p->bidi<<BIDI_SHIFT |
(uint32_t)p->isMirrored<<MIRROR_SHIFT |
(uint32_t)value<<VALUE_SHIFT;
if(beVerbose && p->code<=0x9f) {
if(p->code==0) {
printf("static uint32_t staticProps32Table[0xa0]={\n");
}
if(x&EXCEPTION_BIT) {
/* ### TODO: do something more intelligent if there is an exception */
printf(" /* 0x%02lx */ 0x%lx, /* has exception */\n",
(unsigned long)p->code, (unsigned long)x&~EXCEPTION_BIT);
} else {
printf(" /* 0x%02lx */ 0x%lx,\n",
(unsigned long)p->code, (unsigned long)x);
}
if(p->code==0x9f) {
printf("};\n");
}
}
return x;
/*
* "Higher-hanging fruit" (not implemented):
*
* For some sets of fields, there are fewer sets of values
* than the product of the numbers of values per field.
* This means that storing one single value for more than
* one field and later looking up both field values in a table
* saves space.
* Examples:
* - general category & BiDi
*
* There are only few common displacements between a code point
* and its case mappings. Store deltas. Store codes for few
* occuring deltas.
*/
}
extern void
addProps(uint32_t c, uint32_t x) {
uint16_t notUsed;
setProps(c, x, &notUsed, &notUsed, &notUsed);
}
/* areas of same properties ------------------------------------------------- */
extern void
repeatProps(uint32_t first, uint32_t last, uint32_t x) {
/*
* Set the repetitive properties for the big, known areas of all the same
* character properties. Most of those will share the same stage 2 and 3
* tables.
*
* Assumptions:
* - each area starts at a code point that is a multiple of 16
* - there may be some properties already stored for some code points,
* especially in the Private Use areas
*/
uint16_t i1, i2, j3, i1Limit, i2Repeat, i3Repeat;
uint32_t start, next, limit;
/* fill in the repetitive properties */
start=first;
limit=last+1;
/* allocate a stage 3 block and set all of its properties to x */
i3Repeat=allocProps();
for(j3=0; j3<STAGE_3_BLOCK; ++j3) {
props[i3Repeat+j3]=x;
}
/* we will need to allocate a stage 2 block if we use an entire one at all */
i2Repeat=0;
i1=(uint16_t)(start>>STAGE_1_SHIFT);
i1Limit=(uint16_t)(limit>>STAGE_1_SHIFT);
/*
* now there are up to three sub-areas:
* - a range of code points before the first full block for
* one stage 1 index
* - a (big) range of code points within full blocks for
* stage 1 indexes
* - a range of code points after the last full block for
* one stage 1 index
*/
if((start&(STAGE_2_3_AREA-1))!=0) {
/* incomplete stage 2 block at the beginning */
/* allocate the stage 2 block if necessary */
i2=stage1[i1];
if(i2==0) {
stage1[i1]=i2=allocStage2();
}
/* fill stages 2 & 3 of this sub-area */
if(i1<i1Limit) {
/* the stage 2 block goes to the end */
next=(i1+1)<<STAGE_1_SHIFT;
repeatFromStage2(i2, start, next, i3Repeat, x);
start=next;
/* advance i1 to the first full block */
++i1;
} else {
/* there is only one stage 2 block at all */
repeatFromStage2(i2, start, limit, i3Repeat, x);
return;
}
}
while(i1<i1Limit) {
/* fill complete stage 2 blocks */
next=start+STAGE_2_3_AREA;
i2=stage1[i1];
if(i2==0) {
/* set the index for common repeat block for stage 2 */
if(i2Repeat==0) {
/* allocate and fill a stage 2 block for this */
uint16_t j2;
i2Repeat=allocStage2();
for(j2=0; j2<STAGE_2_BLOCK; ++j2) {
stage2[i2Repeat+j2]=i3Repeat;
}
}
stage1[i1]=i2Repeat;
} else {
repeatFromStage2(i2, start, next, i3Repeat, x);
}
start=next;
++i1;
}
if(start<limit) {
/* fill the area after the last full block */
i2=stage1[i1];
if(i2==0) {
stage1[i1]=i2=allocStage2();
}
repeatFromStage2(i2, start, limit, i3Repeat, x);
}
}
/* set a section of a stage 2 table and its properties to x */
static void
repeatFromStage2(uint16_t i2, uint32_t start, uint32_t limit, uint16_t i3Repeat, uint32_t x) {
uint32_t next;
uint16_t i2Limit, i3;
/* remove irrelevant bits from start and limit */
start&=STAGE_2_3_AREA-1;
limit=((limit-1)&(STAGE_2_3_AREA-1))+1;
i2Limit=(uint16_t)(i2+(limit>>STAGE_3_BITS));
i2+=(uint16_t)(start>>STAGE_3_BITS);
/* similar to repeatProps(), there may be 3 sub-areas */
if((start&(STAGE_3_BLOCK-1))!=0) {
/* incomplete stage 3 block at the beginning */
i3=stage2[i2];
if(i3==0) {
stage2[i2]=i3=allocProps();
}
if(i2<i2Limit) {
/* the stage 3 block goes to the end */
next=(i2+1)<<STAGE_3_BITS;
repeatFromStage3(i3, start, next, x);
start=next;
++i2;
} else {
/* there is only one stage 3 block at all */
repeatFromStage3(i3, start, limit, x);
return;
}
}
while(i2<i2Limit) {
/* fill complete stage 3 blocks */
next=start+STAGE_3_BLOCK;
i3=stage2[i2];
if(i3==0) {
stage2[i2]=i3Repeat;
} else {
repeatFromStage3(i3, start, next, x);
}
start=next;
++i2;
}
if(start<limit) {
i3=stage2[i2];
if(i3==0) {
stage2[i2]=i3=allocProps();
}
repeatFromStage3(i3, start, limit, x);
}
}
static void
repeatFromStage3(uint16_t i3, uint32_t start, uint32_t limit, uint32_t x) {
uint16_t i3End;
i3End=(uint16_t)(i3+((limit-1)&(STAGE_3_BLOCK-1)));
i3+=(uint16_t)(start&(STAGE_3_BLOCK-1));
while(i3<=i3End) {
/* some properties may be set in this stage 3 block */
if(props[i3]==0) {
props[i3]=x;
}
++i3;
}
}
/* compacting --------------------------------------------------------------- */
extern void
compactStage2(void) {
uint16_t newTop=compactStage(stage2, stage2Top, STAGE_2_BLOCK, stage1, STAGE_1_BLOCK);
/* we saved some space */
if(beVerbose) {
printf("compactStage2() reduced stage2Top from %u to %u\n", stage2Top, newTop);
}
stage2Top=newTop;
#if DO_DEBUG_OUT
{
/* debug output */
uint16_t i1, i2, i3, i4;
uint32_t c;
for(c=0; c<0xffff; c+=307) {
printf("properties(0x%06x)=0x%06x\n", c, getProps2(c, &i1, &i2, &i3, &i4));
}
}
#endif
}
extern void
compactStage3(void) {
uint16_t newTop=compactStage(stage3, stage3Top, STAGE_3_BLOCK, stage2, stage2Top);
/* we saved some space */
if(beVerbose) {
printf("compactStage3() reduced stage3Top from %u to %u\n", stage3Top, newTop);
}
stage3Top=newTop;
#if DO_DEBUG_OUT
{
/* debug output */
uint16_t i1, i2, i3, i4;
uint32_t c;
for(c=0; c<0xffff; c+=307) {
printf("properties(0x%06x)=0x%06x\n", c, getProps2(c, &i1, &i2, &i3, &i4));
}
}
#endif
}
static uint16_t
compactStage(uint16_t *stage, uint16_t stageTop, uint16_t blockSize,
uint16_t *parent, uint16_t parentTop) {
/*
* This function is the common implementation for compacting
* a stage table.
* There are stageTop entries (indexes) in stage[].
* stageTop is a multiple of blockSize, and there are always blockSize stage[] entries
* per parent stage entry which do not overlap - yet.
* The first blockSize stage[] entries are always the empty ones.
* We make the blocks overlap appropriately here and fill every blockSize-th entry in
* map[] with the mapping from old to new properties indexes
* in order to adjust the parent stage tables.
* This simple algorithm does not find arbitrary overlaps, but only those
* where the last i entries of the previous block and the first i of the
* current one all have the same value.
* This seems reasonable and yields linear performance.
*/
uint16_t i, start, prevEnd, newStart, x;
map[0]=0;
newStart=blockSize;
for(start=newStart; start<stageTop;) {
prevEnd=(uint16_t)(newStart-1);
x=stage[start];
if(x==stage[prevEnd]) {
/* overlap by at least one */
for(i=1; i<blockSize && x==stage[start+i] && x==stage[prevEnd-i]; ++i) {}
/* overlap by i */
map[start]=(uint16_t)(newStart-i);
/* move the non-overlapping indexes to their new positions */
start+=i;
for(i=(uint16_t)(blockSize-i); i>0; --i) {
stage[newStart++]=stage[start++];
}
} else if(newStart<start) {
/* move the indexes to their new positions */
map[start]=newStart;
for(i=blockSize; i>0; --i) {
stage[newStart++]=stage[start++];
}
} else /* no overlap && newStart==start */ {
map[start]=start;
newStart+=blockSize;
start=newStart;
}
}
/* now adjust the parent stage table */
for(i=0; i<parentTop; ++i) {
parent[i]=map[parent[i]];
}
/* we saved some space */
return (uint16_t)(stageTop-(start-newStart));
}
extern void
compactProps(void) {
/*
* At this point, all the propsTop properties are in props[], but they
* are not all unique.
* Now we sort them, reduce them to unique ones in props32[], and
* build an index in stage3[] from the old to the new indexes.
* (The quick sort averages at N*log(N) with N=propsTop. The inverting
* yields linear performance.)
*/
/*
* We are going to sort only an index table in map[] because we need this
* index table anyway and qsort() does not allow to sort two tables together
* directly. This will thus also reduce the amount of data moved around.
*/
uint16_t i, oldIndex, newIndex;
uint32_t x;
#if DO_DEBUG_OUT
{
/* debug output */
uint16_t i1, i2, i3;
uint32_t c;
for(c=0; c<0xffff; c+=307) {
printf("properties(0x%06x)=0x%06x\n", c, getProps(c, &i1, &i2, &i3));
}
}
#endif
/* build the index table */
for(i=propsTop; i>0;) {
--i;
map[i]=i;
}
/* do not reorder the first, empty entries */
qsort(map+STAGE_3_BLOCK, propsTop-STAGE_3_BLOCK, 2, compareProps);
/*
* Now invert the reordered table and compact it in the same step.
* The result will be props32[] having only unique properties words
* and stage3[] having indexes to them.
*/
newIndex=0;
for(i=0; i<propsTop;) {
/* set the first of a possible series of the same properties */
oldIndex=map[i];
props32[newIndex]=x=props[oldIndex];
stage3[oldIndex]=newIndex;
/* set the following same properties only in stage3 */
while(++i<propsTop && x==props[map[i]]) {
stage3[map[i]]=newIndex;
}
++newIndex;
}
/* we saved some space */
stage3Top=propsTop;
propsTop=newIndex;
if(beVerbose) {
printf("compactProps() reduced propsTop from %u to %u\n", stage3Top, propsTop);
}
#if DO_DEBUG_OUT
{
/* debug output */
uint16_t i1, i2, i3, i4;
uint32_t c;
for(c=0; c<0xffff; c+=307) {
printf("properties(0x%06x)=0x%06x\n", c, getProps2(c, &i1, &i2, &i3, &i4));
}
}
#endif
}
static int
compareProps(const void *l, const void *r) {
uint32_t left=props[*(const uint16_t *)l], right=props[*(const uint16_t *)r];
/* compare general categories first */
int rc=(int)(left&0x1f)-(int)(right&0x1f);
if(rc==0 && left!=right) {
rc= left<right ? -1 : 1;
}
return rc;
}
/* generate output data ----------------------------------------------------- */
extern void
generateData(const char *dataDir) {
static uint16_t indexes[8]={
STAGE_2_BITS, STAGE_3_BITS,
0, 0,
0, 0, 0, 0
};
UNewDataMemory *pData;
UErrorCode errorCode=U_ZERO_ERROR;
uint32_t size;
long dataLength;
uint16_t i, offset;
/* fix up the indexes in the stage tables to include the table offsets in the data */
offset=8+STAGE_1_BLOCK; /* uint16_t offset to stage2[] */
for(i=0; i<STAGE_1_BLOCK; ++i) {
stage1[i]+=offset;
}
offset+=stage2Top; /* uint16_t offset to stage3[] */
indexes[3]=offset;
for(i=0; i<stage2Top; ++i) {
stage2[i]+=offset;
}
offset=(uint16_t)((offset+stage3Top+1)/2); /* uint32_t offset to props[], include padding */
indexes[4]=offset; /* uint32_t offset to props[] */
for(i=0; i<stage3Top; ++i) {
stage3[i]+=offset;
}
offset+=propsTop;
indexes[2]=offset; /* uint32_t offset to exceptions[] */
offset+=exceptionsTop; /* uint32_t offset to the first unit after exceptions[] */
indexes[5]=offset;
ucharsTop=(ucharsTop+1)&~1;
offset+=(uint16_t)(ucharsTop/2); /* uint32_t offset to the first unit after uchars[] */
indexes[6]=offset;
size=4*offset; /* total size of data */
if(beVerbose) {
printf("number of stage 2 entries: %5u\n", stage2Top);
printf("number of stage 3 entries: %5u\n", stage3Top);
printf("number of unique properties values: %5u\n", propsTop);
printf("number of code points with exceptions: %5u\n", exceptionsCount);
printf("size in bytes of exceptions: %5u\n", 4*exceptionsTop);
printf("data size: %6lu\n", (unsigned long)size);
}
/* write the data */
pData=udata_create(dataDir, DATA_TYPE, DATA_NAME, &dataInfo,
haveCopyright ? U_COPYRIGHT_STRING : NULL, &errorCode);
if(U_FAILURE(errorCode)) {
fprintf(stderr, "genprops: unable to create data memory, error %d\n", errorCode);
exit(errorCode);
}
udata_writeBlock(pData, indexes, sizeof(indexes));
udata_writeBlock(pData, stage1, sizeof(stage1));
udata_writeBlock(pData, stage2, 2*stage2Top);
udata_writeBlock(pData, stage3, 2*stage3Top);
udata_writePadding(pData, 2*((stage2Top+stage3Top)&1));
udata_writeBlock(pData, props32, 4*propsTop);
udata_writeBlock(pData, exceptions, 4*exceptionsTop);
udata_writeBlock(pData, uchars, 2*ucharsTop);
/* finish up */
dataLength=udata_finish(pData, &errorCode);
if(U_FAILURE(errorCode)) {
fprintf(stderr, "genprops: error %d writing the output file\n", errorCode);
exit(errorCode);
}
if(dataLength!=(long)size) {
fprintf(stderr, "genprops: data length %ld != calculated size %lu\n",
dataLength, (unsigned long)size);
exit(U_INTERNAL_PROGRAM_ERROR);
}
}
/* helpers ------------------------------------------------------------------ */
/* get properties after compacting them */
#if DO_DEBUG_OUT
static uint32_t
getProps2(uint32_t c, uint16_t *pI1, uint16_t *pI2, uint16_t *pI3, uint16_t *pI4) {
uint16_t i1, i2, i3, i4;
*pI1=i1=(uint16_t)(c>>STAGE_1_SHIFT);
*pI2=i2=(uint16_t)(stage1[i1]+((c>>STAGE_2_SHIFT)&(STAGE_2_BLOCK-1)));
*pI3=i3=(uint16_t)(stage2[i2]+(c&(STAGE_3_BLOCK-1)));
*pI4=i4=stage3[i3];
return props32[i4];
}
/* get properties before compacting them */
static uint32_t
getProps(uint32_t c, uint16_t *pI1, uint16_t *pI2, uint16_t *pI3) {
uint16_t i1, i2, i3;
*pI1=i1=(uint16_t)(c>>STAGE_1_SHIFT);
*pI2=i2=(uint16_t)(stage1[i1]+((c>>STAGE_2_SHIFT)&(STAGE_2_BLOCK-1)));
*pI3=i3=(uint16_t)(stage2[i2]+(c&(STAGE_3_BLOCK-1)));
return props[i3];
}
#endif
/* set properties before compacting them */
static void
setProps(uint32_t c, uint32_t x, uint16_t *pI1, uint16_t *pI2, uint16_t *pI3) {
uint16_t i1, i2, i3;
*pI1=i1=(uint16_t)(c>>STAGE_1_SHIFT);
i2=stage1[i1];
if(i2==0) {
stage1[i1]=i2=allocStage2();
}
*pI2=i2+=(uint16_t)((c>>STAGE_2_SHIFT)&(STAGE_2_BLOCK-1));
i3=stage2[i2];
if(i3==0) {
stage2[i2]=i3=allocProps();
}
*pI3=i3+=(uint16_t)(c&(STAGE_3_BLOCK-1));
props[i3]=x;
}
static uint16_t
allocStage2(void) {
uint16_t i=stage2Top;
stage2Top+=STAGE_2_BLOCK;
if(stage2Top>=MAX_STAGE_2_COUNT) {
fprintf(stderr, "genprops: stage 2 overflow\n");
exit(U_MEMORY_ALLOCATION_ERROR);
}
return i;
}
static uint16_t
allocProps(void) {
uint16_t i=propsTop;
propsTop+=STAGE_3_BLOCK;
if(propsTop>=MAX_PROPS_COUNT) {
fprintf(stderr, "genprops: properties overflow\n");
exit(U_MEMORY_ALLOCATION_ERROR);
}
return i;
}
static uint32_t
addUChars(const UChar *s, uint32_t length) {
uint32_t top=(uint16_t)(ucharsTop+length);
UChar *p;
if(top>=MAX_UCHAR_COUNT) {
fprintf(stderr, "genprops: out of UChars memory\n");
exit(U_MEMORY_ALLOCATION_ERROR);
}
p=uchars+ucharsTop;
uprv_memcpy(p, s, 2*length);
ucharsTop=top;
return (uint32_t)(p-uchars);
}
/*
* Hey, Emacs, please set the following:
*
* Local Variables:
* indent-tabs-mode: nil
* End:
*
*/