blob: aeca3b0e8069b4567594b504c150c52a065c969d [file] [log] [blame]
/*
*******************************************************************************
* Copyright (C) 1997-2001, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*
* File DECIMFMT.CPP
*
* Modification History:
*
* Date Name Description
* 02/19/97 aliu Converted from java.
* 03/20/97 clhuang Implemented with new APIs.
* 03/31/97 aliu Moved isLONG_MIN to DigitList, and fixed it.
* 04/3/97 aliu Rewrote parsing and formatting completely, and
* cleaned up and debugged. Actually works now.
* Implemented NAN and INF handling, for both parsing
* and formatting. Extensive testing & debugging.
* 04/10/97 aliu Modified to compile on AIX.
* 04/16/97 aliu Rewrote to use DigitList, which has been resurrected.
* Changed DigitCount to int per code review.
* 07/09/97 helena Made ParsePosition into a class.
* 08/26/97 aliu Extensive changes to applyPattern; completely
* rewritten from the Java.
* 09/09/97 aliu Ported over support for exponential formats.
* 07/20/98 stephen JDK 1.2 sync up.
* Various instances of '0' replaced with 'NULL'
* Check for grouping size in subFormat()
* Brought subParse() in line with Java 1.2
* Added method appendAffix()
* 08/24/1998 srl Removed Mutex calls. This is not a thread safe class!
* 02/22/99 stephen Removed character literals for EBCDIC safety
* 06/24/99 helena Integrated Alan's NF enhancements and Java2 bug fixes
* 06/28/99 stephen Fixed bugs in toPattern().
* 06/29/99 stephen Fixed operator= to copy fFormatWidth, fPad,
* fPadPosition
********************************************************************************
*/
#include "unicode/decimfmt.h"
#include "digitlst.h"
#include "unicode/dcfmtsym.h"
#include "unicode/resbund.h"
#include "unicode/unicode.h"
#include "cmemory.h"
U_NAMESPACE_BEGIN
//#define FMT_DEBUG
#ifdef FMT_DEBUG
#include <stdio.h>
static void debugout(UnicodeString s) {
char buf[2000];
s.extract((UTextOffset) 0, s.length(), buf);
printf("%s", buf);
}
#define debug(x) printf("%s", x);
#else
#define debugout(x)
#define debug(x)
#endif
// *****************************************************************************
// class DecimalFormat
// *****************************************************************************
const char DecimalFormat::fgClassID = 0; // Value is irrelevant
// Constants for characters used in programmatic (unlocalized) patterns.
const UChar DecimalFormat::kPatternZeroDigit = 0x0030 /*'0'*/;
const UChar DecimalFormat::kPatternGroupingSeparator = 0x002C /*','*/;
const UChar DecimalFormat::kPatternDecimalSeparator = 0x002E /*'.'*/;
const UChar DecimalFormat::kPatternPerMill = 0x2030;
const UChar DecimalFormat::kPatternPercent = 0x0025 /*'%'*/;
const UChar DecimalFormat::kPatternDigit = 0x0023 /*'#'*/;
const UChar DecimalFormat::kPatternSeparator = 0x003B /*';'*/;
const UChar DecimalFormat::kPatternExponent = 0x0045 /*'E'*/;
const UChar DecimalFormat::kPatternPlus = 0x002B /*'+'*/;
const UChar DecimalFormat::kPatternMinus = 0x002D /*'-'*/;
const UChar DecimalFormat::kPatternPadEscape = 0x002A /*'*'*/;
const UChar DecimalFormat::kCurrencySign = 0x00A4;
const UChar DecimalFormat::kQuote = 0x0027 /*'\''*/;
//const int8_t DecimalFormat::fgMaxDigit = 9;
const int32_t DecimalFormat::kDoubleIntegerDigits = 309;
const int32_t DecimalFormat::kDoubleFractionDigits = 340;
/**
* These are the tags we expect to see in normal resource bundle files associated
* with a locale.
*/
const char DecimalFormat::fgNumberPatterns[]="NumberPatterns";
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance in the default locale.
DecimalFormat::DecimalFormat(UErrorCode& status)
: NumberFormat(),
fPosPrefixPattern(0),
fPosSuffixPattern(0),
fNegPrefixPattern(0),
fNegSuffixPattern(0),
fSymbols(0)
{
UParseError parseError;
construct(status, parseError);
}
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance with the specified number format
// pattern in the default locale.
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
UErrorCode& status)
: NumberFormat(),
fPosPrefixPattern(0),
fPosSuffixPattern(0),
fNegPrefixPattern(0),
fNegSuffixPattern(0),
fSymbols(0)
{
UParseError parseError;
construct(status, parseError, &pattern);
}
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance with the specified number format
// pattern and the number format symbols in the default locale. The
// created instance owns the symbols.
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
DecimalFormatSymbols* symbolsToAdopt,
UErrorCode& status)
: NumberFormat(),
fPosPrefixPattern(0),
fPosSuffixPattern(0),
fNegPrefixPattern(0),
fNegSuffixPattern(0),
fSymbols(0)
{
UParseError parseError;
if (symbolsToAdopt == NULL)
status = U_ILLEGAL_ARGUMENT_ERROR;
construct(status, parseError, &pattern, symbolsToAdopt);
}
DecimalFormat::DecimalFormat( const UnicodeString& pattern,
DecimalFormatSymbols* symbolsToAdopt,
UParseError& parseErr,
UErrorCode& status)
: NumberFormat(),
fPosPrefixPattern(0),
fPosSuffixPattern(0),
fNegPrefixPattern(0),
fNegSuffixPattern(0),
fSymbols(0)
{
if (symbolsToAdopt == NULL)
status = U_ILLEGAL_ARGUMENT_ERROR;
construct(status,parseErr, &pattern, symbolsToAdopt);
}
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance with the specified number format
// pattern and the number format symbols in the default locale. The
// created instance owns the clone of the symbols.
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
const DecimalFormatSymbols& symbols,
UErrorCode& status)
: NumberFormat(),
fPosPrefixPattern(0),
fPosSuffixPattern(0),
fNegPrefixPattern(0),
fNegSuffixPattern(0),
fSymbols(0)
{
UParseError parseError;
construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
}
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance with the specified number format
// pattern and the number format symbols in the desired locale. The
// created instance owns the symbols.
void
DecimalFormat::construct(UErrorCode& status,
UParseError& parseErr,
const UnicodeString* pattern,
DecimalFormatSymbols* symbolsToAdopt,
const Locale& locale)
{
fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!!
// fDigitList = new DigitList(); // Do this BEFORE aborting on status failure!!!
fRoundingIncrement = NULL;
fRoundingDouble = 0.0;
fRoundingMode = kRoundHalfEven;
fPad = kPatternPadEscape;
fPadPosition = kPadBeforePrefix;
if (U_FAILURE(status))
return;
fPosPrefixPattern = fPosSuffixPattern = NULL;
fNegPrefixPattern = fNegSuffixPattern = NULL;
fMultiplier = 1;
fGroupingSize = 3;
fGroupingSize2 = 0;
fDecimalSeparatorAlwaysShown = FALSE;
fIsCurrencyFormat = FALSE;
fUseExponentialNotation = FALSE;
fMinExponentDigits = 0;
if (fSymbols == NULL)
{
fSymbols = new DecimalFormatSymbols(locale, status);
}
UnicodeString str;
// Uses the default locale's number format pattern if there isn't
// one specified.
if (pattern == NULL)
{
ResourceBundle resource((char *)0, Locale::getDefault(), status);
str = resource.get(fgNumberPatterns, status).getStringEx((int32_t)0, status);
pattern = &str;
}
if (U_FAILURE(status))
{
return;
}
applyPattern(*pattern, FALSE /*not localized*/,parseErr, status);
}
//------------------------------------------------------------------------------
DecimalFormat::~DecimalFormat()
{
// delete fDigitList;
delete fPosPrefixPattern;
delete fPosSuffixPattern;
delete fNegPrefixPattern;
delete fNegSuffixPattern;
delete fSymbols;
delete fRoundingIncrement;
}
//------------------------------------------------------------------------------
// copy constructor
DecimalFormat::DecimalFormat(const DecimalFormat &source)
: NumberFormat(source),
// fDigitList(NULL),
fPosPrefixPattern(NULL),
fPosSuffixPattern(NULL),
fNegPrefixPattern(NULL),
fNegSuffixPattern(NULL),
fSymbols(NULL),
fRoundingIncrement(NULL)
{
*this = source;
}
//------------------------------------------------------------------------------
// assignment operator
// Note that fDigitList is not considered a significant part of the
// DecimalFormat because it's used as a buffer to process the numbers.
static void _copy_us_ptr(UnicodeString** pdest, const UnicodeString* source) {
if (source == NULL) {
delete *pdest;
*pdest = NULL;
} else if (*pdest == NULL) {
*pdest = new UnicodeString(*source);
} else {
**pdest = *source;
}
}
DecimalFormat&
DecimalFormat::operator=(const DecimalFormat& rhs)
{
if(this != &rhs) {
NumberFormat::operator=(rhs);
fPositivePrefix = rhs.fPositivePrefix;
fPositiveSuffix = rhs.fPositiveSuffix;
fNegativePrefix = rhs.fNegativePrefix;
fNegativeSuffix = rhs.fNegativeSuffix;
_copy_us_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
_copy_us_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
_copy_us_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
_copy_us_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
if(rhs.fRoundingIncrement == NULL) {
delete fRoundingIncrement;
fRoundingIncrement = NULL;
}
else if(fRoundingIncrement == NULL) {
fRoundingIncrement = new DigitList(*rhs.fRoundingIncrement);
}
else {
*fRoundingIncrement = *rhs.fRoundingIncrement;
}
fRoundingDouble = rhs.fRoundingDouble;
fMultiplier = rhs.fMultiplier;
fGroupingSize = rhs.fGroupingSize;
fGroupingSize2 = rhs.fGroupingSize2;
fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown;
if(fSymbols == NULL)
fSymbols = new DecimalFormatSymbols(*rhs.fSymbols);
else
*fSymbols = *rhs.fSymbols;
fUseExponentialNotation = rhs.fUseExponentialNotation;
/*Bertrand A. D. Update 98.03.17*/
fIsCurrencyFormat = rhs.fIsCurrencyFormat;
/*end of Update*/
fMinExponentDigits = rhs.fMinExponentDigits;
// if (fDigitList == NULL)
// fDigitList = new DigitList();
/* sfb 990629 */
fFormatWidth = rhs.fFormatWidth;
fPad = rhs.fPad;
fPadPosition = rhs.fPadPosition;
/* end sfb */
}
return *this;
}
//------------------------------------------------------------------------------
UBool
DecimalFormat::operator==(const Format& that) const
{
if (this == &that)
return TRUE;
if (getDynamicClassID() != that.getDynamicClassID())
return FALSE;
const DecimalFormat* other = (DecimalFormat*)&that;
#ifdef FMT_DEBUG
// This code makes it easy to determine why two format objects that should
// be equal aren't.
UBool first = TRUE;
if (!NumberFormat::operator==(that)) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("NumberFormat::!=");
}
if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null
fPositivePrefix == other->fPositivePrefix)
|| (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
*fPosPrefixPattern == *other->fPosPrefixPattern))) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Pos Prefix !=");
}
if (!((fPosSuffixPattern == other->fPosSuffixPattern && // both null
fPositiveSuffix == other->fPositiveSuffix)
|| (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
*fPosSuffixPattern == *other->fPosSuffixPattern))) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Pos Suffix !=");
}
if (!((fNegPrefixPattern == other->fNegPrefixPattern && // both null
fNegativePrefix == other->fNegativePrefix)
|| (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
*fNegPrefixPattern == *other->fNegPrefixPattern))) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Neg Prefix ");
if (fNegPrefixPattern == NULL) {
debug("NULL(");
debugout(fNegativePrefix);
debug(")");
} else {
debugout(*fNegPrefixPattern);
}
debug(" != ");
if (other->fNegPrefixPattern == NULL) {
debug("NULL(");
debugout(other->fNegativePrefix);
debug(")");
} else {
debugout(*other->fNegPrefixPattern);
}
}
if (!((fNegSuffixPattern == other->fNegSuffixPattern && // both null
fNegativeSuffix == other->fNegativeSuffix)
|| (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
*fNegSuffixPattern == *other->fNegSuffixPattern))) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Neg Suffix ");
if (fNegSuffixPattern == NULL) {
debug("NULL(");
debugout(fNegativeSuffix);
debug(")");
} else {
debugout(*fNegSuffixPattern);
}
debug(" != ");
if (other->fNegSuffixPattern == NULL) {
debug("NULL(");
debugout(other->fNegativeSuffix);
debug(")");
} else {
debugout(*other->fNegSuffixPattern);
}
}
if (!((fRoundingIncrement == other->fRoundingIncrement) // both null
|| (fRoundingIncrement != NULL &&
other->fRoundingIncrement != NULL &&
*fRoundingIncrement == *other->fRoundingIncrement))) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Rounding Increment !=");
}
if (fMultiplier != other->fMultiplier) {
if (first) { printf("[ "); first = FALSE; }
printf("Multiplier %ld != %ld", fMultiplier, other->fMultiplier);
}
if (fGroupingSize != other->fGroupingSize) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
printf("Grouping Size %ld != %ld", fGroupingSize, other->fGroupingSize);
}
if (fGroupingSize2 != other->fGroupingSize2) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
printf("Secondary Grouping Size %ld != %ld", fGroupingSize2, other->fGroupingSize2);
}
if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
printf("Dec Sep Always %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
}
if (fUseExponentialNotation != other->fUseExponentialNotation) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Use Exp !=");
}
if (!(!fUseExponentialNotation ||
fMinExponentDigits != other->fMinExponentDigits)) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Exp Digits !=");
}
if (*fSymbols != *(other->fSymbols)) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Symbols !=");
}
if (!first) { printf(" ]"); }
#endif
return (NumberFormat::operator==(that) &&
((fPosPrefixPattern == other->fPosPrefixPattern && // both null
fPositivePrefix == other->fPositivePrefix)
|| (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
*fPosPrefixPattern == *other->fPosPrefixPattern)) &&
((fPosSuffixPattern == other->fPosSuffixPattern && // both null
fPositiveSuffix == other->fPositiveSuffix)
|| (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
*fPosSuffixPattern == *other->fPosSuffixPattern)) &&
((fNegPrefixPattern == other->fNegPrefixPattern && // both null
fNegativePrefix == other->fNegativePrefix)
|| (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
*fNegPrefixPattern == *other->fNegPrefixPattern)) &&
((fNegSuffixPattern == other->fNegSuffixPattern && // both null
fNegativeSuffix == other->fNegativeSuffix)
|| (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
*fNegSuffixPattern == *other->fNegSuffixPattern)) &&
((fRoundingIncrement == other->fRoundingIncrement) // both null
|| (fRoundingIncrement != NULL &&
other->fRoundingIncrement != NULL &&
*fRoundingIncrement == *other->fRoundingIncrement)) &&
fMultiplier == other->fMultiplier &&
fGroupingSize == other->fGroupingSize &&
fGroupingSize2 == other->fGroupingSize2 &&
fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown &&
fUseExponentialNotation == other->fUseExponentialNotation &&
(!fUseExponentialNotation ||
fMinExponentDigits == other->fMinExponentDigits) &&
*fSymbols == *(other->fSymbols));
}
//------------------------------------------------------------------------------
Format*
DecimalFormat::clone() const
{
return new DecimalFormat(*this);
}
//------------------------------------------------------------------------------
UnicodeString&
DecimalFormat::format(int32_t number,
UnicodeString& result,
FieldPosition& fieldPosition) const
{
DigitList digits;
// Clears field positions.
fieldPosition.setBeginIndex(0);
fieldPosition.setEndIndex(0);
// If we are to do rounding, we need to move into the BigDecimal
// domain in order to do divide/multiply correctly.
// ||
// In general, long values always represent real finite numbers, so
// we don't have to check for +/- Infinity or NaN. However, there
// is one case we have to be careful of: The multiplier can push
// a number near MIN_VALUE or MAX_VALUE outside the legal range. We
// check for this before multiplying, and if it happens we use doubles
// instead, trading off accuracy for range.
if (fRoundingIncrement != NULL
|| (fMultiplier != 0 && (number > (INT32_MAX / fMultiplier)
|| number < (INT32_MIN / fMultiplier))))
{
digits.set(((double)number) * fMultiplier,
fUseExponentialNotation ?
getMinimumIntegerDigits() + getMaximumFractionDigits() : 0,
!fUseExponentialNotation);
}
else
{
digits.set(number * fMultiplier,
fUseExponentialNotation ?
getMinimumIntegerDigits() + getMaximumFractionDigits() : 0);
}
return subformat(result, fieldPosition, digits, TRUE);
}
//------------------------------------------------------------------------------
UnicodeString&
DecimalFormat::format( double number,
UnicodeString& result,
FieldPosition& fieldPosition) const
{
// Clears field positions.
fieldPosition.setBeginIndex(0);
fieldPosition.setEndIndex(0);
// Special case for NaN, sets the begin and end index to be the
// the string length of localized name of NaN.
if (uprv_isNaN(number))
{
if (fieldPosition.getField() == NumberFormat::kIntegerField)
fieldPosition.setBeginIndex(result.length());
result += fSymbols->getSymbol(DecimalFormatSymbols::kNaNSymbol);
if (fieldPosition.getField() == NumberFormat::kIntegerField)
fieldPosition.setEndIndex(result.length());
addPadding(result, fieldPosition, FALSE, FALSE /*ignored*/);
return result;
}
/* Detecting whether a double is negative is easy with the exception of
* the value -0.0. This is a double which has a zero mantissa (and
* exponent), but a negative sign bit. It is semantically distinct from
* a zero with a positive sign bit, and this distinction is important
* to certain kinds of computations. However, it's a little tricky to
* detect, since (-0.0 == 0.0) and !(-0.0 < 0.0). How then, you may
* ask, does it behave distinctly from +0.0? Well, 1/(-0.0) ==
* -Infinity. Proper detection of -0.0 is needed to deal with the
* issues raised by bugs 4106658, 4106667, and 4147706. Liu 7/6/98.
*/
UBool isNegative = uprv_isNegative(number);
// Do this BEFORE checking to see if value is infinite! Sets the
// begin and end index to be length of the string composed of
// localized name of Infinite and the positive/negative localized
// signs.
number *= fMultiplier;
// Apply rounding after multiplier
if (fRoundingIncrement != NULL) {
if (isNegative) // For rounding in the correct direction
number = -number;
number = fRoundingDouble
* round(number / fRoundingDouble, fRoundingMode, isNegative);
if (isNegative)
number = -number;
}
// Special case for INFINITE,
if (uprv_isInfinite(number))
{
result += (isNegative ? fNegativePrefix : fPositivePrefix);
if (fieldPosition.getField() == NumberFormat::kIntegerField)
fieldPosition.setBeginIndex(result.length());
result += fSymbols->getSymbol(DecimalFormatSymbols::kInfinitySymbol);
if (fieldPosition.getField() == NumberFormat::kIntegerField)
fieldPosition.setEndIndex(result.length());
result += (isNegative ? fNegativeSuffix : fPositiveSuffix);
addPadding(result, fieldPosition, TRUE, isNegative);
return result;
}
DigitList digits;
// This detects negativity too.
digits.set(number, fUseExponentialNotation ?
getMinimumIntegerDigits() + getMaximumFractionDigits() :
getMaximumFractionDigits(),
!fUseExponentialNotation);
return subformat(result, fieldPosition, digits, FALSE);
}
/**
* Round a double value to the nearest integer according to the
* given mode.
* @param a the absolute value of the number to be rounded
* @param mode a BigDecimal rounding mode
* @param isNegative true if the number to be rounded is negative
* @return the absolute value of the rounded result
*/
double DecimalFormat::round(double a, ERoundingMode mode, UBool isNegative) {
switch (mode) {
case kRoundCeiling:
return isNegative ? uprv_floor(a) : uprv_ceil(a);
case kRoundFloor:
return isNegative ? uprv_ceil(a) : uprv_floor(a);
case kRoundDown:
return uprv_floor(a);
case kRoundUp:
return uprv_ceil(a);
case kRoundHalfEven:
{
double f = uprv_floor(a);
if ((a - f) != 0.5) {
return uprv_floor(a + 0.5);
}
double g = f / 2.0;
return (g == uprv_floor(g)) ? f : (f + 1.0);
}
case kRoundHalfDown:
return ((a - uprv_floor(a)) <= 0.5) ? uprv_floor(a) : uprv_ceil(a);
case kRoundHalfUp:
return ((a - uprv_floor(a)) < 0.5) ? uprv_floor(a) : uprv_ceil(a);
}
return 1.0;
}
UnicodeString&
DecimalFormat::format( const Formattable& obj,
UnicodeString& result,
FieldPosition& fieldPosition,
UErrorCode& status) const
{
return NumberFormat::format(obj, result, fieldPosition, status);
}
/**
* Return true if a grouping separator belongs at the given
* position, based on whether grouping is in use and the values of
* the primary and secondary grouping interval.
* @param pos the number of integer digits to the right of
* the current position. Zero indicates the position after the
* rightmost integer digit.
* @return true if a grouping character belongs at the current
* position.
*/
UBool DecimalFormat::isGroupingPosition(int32_t pos) const {
UBool result = FALSE;
if (isGroupingUsed() && (pos > 0) && (fGroupingSize > 0)) {
if ((fGroupingSize2 > 0) && (pos > fGroupingSize)) {
result = ((pos - fGroupingSize) % fGroupingSize2) == 0;
} else {
result = pos % fGroupingSize == 0;
}
}
return result;
}
//------------------------------------------------------------------------------
/**
* Complete the formatting of a finite number. On entry, the fDigitList must
* be filled in with the correct digits.
*/
UnicodeString&
DecimalFormat::subformat(UnicodeString& result,
FieldPosition& fieldPosition,
DigitList& digits,
UBool isInteger) const
{
// Gets the localized zero Unicode character.
UChar32 zero = fSymbols->getSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
int32_t zeroDelta = zero - '0'; // '0' is the DigitList representation of zero
UnicodeString grouping(fSymbols->getSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
UnicodeString decimal(fIsCurrencyFormat ?
fSymbols->getSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol) :
fSymbols->getSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol));
int32_t maxIntDig = getMaximumIntegerDigits();
int32_t minIntDig = getMinimumIntegerDigits();
/* Per bug 4147706, DecimalFormat must respect the sign of numbers which
* format as zero. This allows sensible computations and preserves
* relations such as signum(1/x) = signum(x), where x is +Infinity or
* -Infinity. Prior to this fix, we always formatted zero values as if
* they were positive. Liu 7/6/98.
*/
if (digits.isZero())
{
digits.fDecimalAt = digits.fCount = 0; // Normalize
}
// Appends the prefix.
result += (digits.fIsPositive ? fPositivePrefix : fNegativePrefix);
if (fUseExponentialNotation)
{
// Record field information for caller.
if (fieldPosition.getField() == NumberFormat::kIntegerField)
{
fieldPosition.setBeginIndex(result.length());
fieldPosition.setEndIndex(-1);
}
else if (fieldPosition.getField() == NumberFormat::kFractionField)
{
fieldPosition.setBeginIndex(-1);
}
// Minimum integer digits are handled in exponential format by
// adjusting the exponent. For example, 0.01234 with 3 minimum
// integer digits is "123.4E-4".
// Maximum integer digits are interpreted as indicating the
// repeating range. This is useful for engineering notation, in
// which the exponent is restricted to a multiple of 3. For
// example, 0.01234 with 3 maximum integer digits is "12.34e-3".
// If maximum integer digits are defined and are larger than
// minimum integer digits, then minimum integer digits are
// ignored.
int32_t exponent = digits.fDecimalAt;
if (maxIntDig > 1 && maxIntDig != minIntDig) {
// A exponent increment is defined; adjust to it.
exponent = (exponent > 0) ? (exponent - 1) / maxIntDig
: (exponent / maxIntDig) - 1;
exponent *= maxIntDig;
} else {
// No exponent increment is defined; use minimum integer digits.
// If none is specified, as in "#E0", generate 1 integer digit.
exponent -= (minIntDig > 0 || getMinimumFractionDigits() > 0)
? minIntDig : 1;
}
// We now output a minimum number of digits, and more if there
// are more digits, up to the maximum number of digits. We
// place the decimal point after the "integer" digits, which
// are the first (decimalAt - exponent) digits.
int32_t minimumDigits = minIntDig + getMinimumFractionDigits();
// The number of integer digits is handled specially if the number
// is zero, since then there may be no digits.
int32_t integerDigits = digits.isZero() ? minIntDig :
digits.fDecimalAt - exponent;
int32_t totalDigits = digits.fCount;
if (minimumDigits > totalDigits)
totalDigits = minimumDigits;
if (integerDigits > totalDigits)
totalDigits = integerDigits;
// totalDigits records total number of digits needs to be processed
int32_t i;
for (i=0; i<totalDigits; ++i)
{
if (i == integerDigits)
{
// Record field information for caller.
if (fieldPosition.getField() == NumberFormat::kIntegerField)
fieldPosition.setEndIndex(result.length());
result += (decimal);
// Record field information for caller.
if (fieldPosition.getField() == NumberFormat::kFractionField)
fieldPosition.setBeginIndex(result.length());
}
// Restores the digit character or pads the buffer with zeros.
UChar32 c = (UChar32)((i < digits.fCount) ?
(digits.fDigits[i] + zeroDelta) :
zero);
result += c;
}
// Record field information
if (fieldPosition.getField() == NumberFormat::kIntegerField)
{
if (fieldPosition.getEndIndex() < 0)
fieldPosition.setEndIndex(result.length());
}
else if (fieldPosition.getField() == NumberFormat::kFractionField)
{
if (fieldPosition.getBeginIndex() < 0)
fieldPosition.setBeginIndex(result.length());
fieldPosition.setEndIndex(result.length());
}
// The exponent is output using the pattern-specified minimum
// exponent digits. There is no maximum limit to the exponent
// digits, since truncating the exponent would result in an
// unacceptable inaccuracy.
result += fSymbols->getSymbol(DecimalFormatSymbols::kExponentialSymbol);
// For zero values, we force the exponent to zero. We
// must do this here, and not earlier, because the value
// is used to determine integer digit count above.
if (digits.isZero())
exponent = 0;
if (exponent < 0) {
result += fSymbols->getSymbol(DecimalFormatSymbols::kMinusSignSymbol);
} else if (fExponentSignAlwaysShown) {
result += fSymbols->getSymbol(DecimalFormatSymbols::kPlusSignSymbol);
}
DigitList expDigits;
expDigits.set(exponent);
for (i=expDigits.fDecimalAt; i<fMinExponentDigits; ++i)
result += (zero);
for (i=0; i<expDigits.fDecimalAt; ++i)
{
UChar32 c = (UChar32)((i < expDigits.fCount) ?
(expDigits.fDigits[i] + zeroDelta) : zero);
result += c;
}
}
else // Not using exponential notation
{
// Record field information for caller.
if (fieldPosition.getField() == NumberFormat::kIntegerField)
fieldPosition.setBeginIndex(result.length());
// Output the integer portion. Here 'count' is the total
// number of integer digits we will display, including both
// leading zeros required to satisfy getMinimumIntegerDigits,
// and actual digits present in the number.
int32_t count = minIntDig;
int32_t digitIndex = 0; // Index into digits.fDigits[]
if (digits.fDecimalAt > 0 && count < digits.fDecimalAt)
count = digits.fDecimalAt;
// Handle the case where getMaximumIntegerDigits() is smaller
// than the real number of integer digits. If this is so, we
// output the least significant max integer digits. For example,
// the value 1997 printed with 2 max integer digits is just "97".
if (count > maxIntDig)
{
count = maxIntDig;
digitIndex = digits.fDecimalAt - count;
}
int32_t sizeBeforeIntegerPart = result.length();
int32_t i;
for (i=count-1; i>=0; --i)
{
if (i < digits.fDecimalAt && digitIndex < digits.fCount)
{
// Output a real digit
result += ((UChar32)(digits.fDigits[digitIndex++] + zeroDelta));
}
else
{
// Output a leading zero
result += (zero);
}
// Output grouping separator if necessary.
if (isGroupingPosition(i)) {
result.append(grouping);
}
}
// Record field information for caller.
if (fieldPosition.getField() == NumberFormat::kIntegerField)
fieldPosition.setEndIndex(result.length());
// Determine whether or not there are any printable fractional
// digits. If we've used up the digits we know there aren't.
UBool fractionPresent = (getMinimumFractionDigits() > 0) ||
(!isInteger && digitIndex < digits.fCount);
// If there is no fraction present, and we haven't printed any
// integer digits, then print a zero. Otherwise we won't print
// _any_ digits, and we won't be able to parse this string.
if (!fractionPresent && result.length() == sizeBeforeIntegerPart)
result += (zero);
// Output the decimal separator if we always do so.
if (fDecimalSeparatorAlwaysShown || fractionPresent)
result += (decimal);
// Record field information for caller.
if (fieldPosition.getField() == NumberFormat::kFractionField)
fieldPosition.setBeginIndex(result.length());
int32_t maxFracDigits = getMaximumFractionDigits();
int32_t negDecimalAt = -digits.fDecimalAt;
for (i=0; i < maxFracDigits; ++i)
{
if (!isInteger && digitIndex < digits.fCount)
{
if (i >= negDecimalAt)
{
// Output a digit
result += ((UChar32)(digits.fDigits[digitIndex++] + zeroDelta));
}
else
{
// Output leading fractional zeros. These are zeros that come after
// the decimal but before any significant digits. These are only
// output if abs(number being formatted) < 1.0.
result += zero;
}
}
else
{
// Here is where we escape from the loop. We escape if we've output
// the maximum fraction digits (specified in the for expression above).
// We also stop when we've output the minimum digits and either:
// we have an integer, so there is no fractional stuff to display,
// or we're out of significant digits.
if (i >= getMinimumFractionDigits())
break;
// No precision is left.
result += zero;
}
}
// Record field information for caller.
if (fieldPosition.getField() == NumberFormat::kFractionField)
fieldPosition.setEndIndex(result.length());
}
result += (digits.fIsPositive ? fPositiveSuffix : fNegativeSuffix);
addPadding(result, fieldPosition, TRUE, !digits.fIsPositive);
return result;
}
/**
* Inserts the character fPad as needed to expand result to fFormatWidth.
* @param result the string to be padded
* @param hasAffixes if true, padding is positioned appropriately before or
* after affixes. If false, then isNegative is ignored, and there are only
* two effective pad positions: kPadBeforePrefix/kPadAfterPrefix and
* kPadBeforeSuffix/kPadAfterSuffix.
* @param isNegative must be true if result contains a formatted negative
* number, and false otherwise. Ignored if hasAffixes is false.
*/
void DecimalFormat::addPadding(UnicodeString& result,
FieldPosition& fieldPosition,
UBool hasAffixes,
UBool isNegative) const
{
if (fFormatWidth > 0) {
int32_t len = fFormatWidth - result.length();
if (len > 0) {
UnicodeString padding;
for (int32_t i=0; i<len; ++i) {
padding += fPad;
}
switch (fPadPosition) {
case kPadAfterPrefix:
if (hasAffixes) {
result.insert(isNegative ? fNegativePrefix.length()
: fPositivePrefix.length(),
padding);
break;
} // else fall through to next case
case kPadBeforePrefix:
result.insert(0, padding);
break;
case kPadBeforeSuffix:
if (hasAffixes) {
result.insert(result.length() -
(isNegative ? fNegativeSuffix.length()
: fPositiveSuffix.length()),
padding);
break;
} // else fall through to next case
case kPadAfterSuffix:
result += padding;
break;
}
fieldPosition.setBeginIndex(len + fieldPosition.getBeginIndex());
fieldPosition.setEndIndex(len + fieldPosition.getEndIndex());
}
}
}
//------------------------------------------------------------------------------
void
DecimalFormat::parse(const UnicodeString& text,
Formattable& result,
UErrorCode& status) const
{
NumberFormat::parse(text, result, status);
}
void
DecimalFormat::parse(const UnicodeString& text,
Formattable& result,
ParsePosition& parsePosition) const
{
int32_t backup = parsePosition.getIndex();
int32_t i;
int32_t padLen = fPad.length();
// Skip padding characters, if any
if (fFormatWidth > 0) {
i = parsePosition.getIndex();
while (i < text.length() && !text.compare(i, padLen, fPad, 0, padLen)) {
i += padLen;
}
parsePosition.setIndex(i);
}
// special case NaN
// If the text is composed of the representation of NaN, returns NaN.length
UnicodeString nan(fSymbols->getSymbol(DecimalFormatSymbols::kNaNSymbol));
int32_t nanLen = (text.compare(parsePosition.getIndex(), nan.length(), nan)
? 0 : nan.length());
if (nanLen) {
parsePosition.setIndex(parsePosition.getIndex() + nanLen);
result.setDouble(uprv_getNaN());
return;
}
// status is used to record whether a number is infinite.
UBool status[fgStatusLength];
DigitList digits;
if (!subparse(text, parsePosition, digits, status)) {
parsePosition.setIndex(backup);
return;
}
if (fFormatWidth < 0) {
i = parsePosition.getIndex();
while (i < text.length() && !text.compare(i, padLen, fPad, 0, padLen)) {
i += padLen;
}
parsePosition.setIndex(i);
}
// Handle infinity
if (status[fgStatusInfinite]) {
double inf = uprv_getInfinity();
result.setDouble(digits.fIsPositive ? inf : -inf);
return;
}
// Do as much of the multiplier conversion as possible without
// losing accuracy.
int32_t mult = fMultiplier; // Don't modify this.multiplier
while (mult % 10 == 0) {
mult /= 10;
--digits.fDecimalAt;
}
// Handle integral values. We want to return the most
// parsimonious type that will accommodate all of the result's
// precision. We therefore only return a long if the result fits
// entirely within a long (taking into account the multiplier) --
// otherwise we fall through and return a double. When more
// numeric types are supported by Formattable (e.g., 64-bit
// integers, bignums) we will extend this logic to include them.
if (digits.fitsIntoLong(isParseIntegerOnly())) {
int32_t n = digits.getLong();
if (n % mult == 0) {
result.setLong(n / mult);
return;
}
else { // else handle the remainder
result.setDouble(((double)n) / mult);
return;
}
}
else {
// Handle non-integral or very large values
// Dividing by one is okay and not that costly.
result.setDouble(digits.getDouble() / mult);
return;
}
}
/*
This is an old implimentation that was preparing for 64-bit numbers in ICU.
It is very slow, and 64-bit numbers are not ANSI-C compatible. This code
is here if we change our minds.
*/
/**
* Parse the given text into a number. The text is parsed beginning at
* parsePosition, until an unparseable character is seen.
* @param text The string to parse.
* @param parsePosition The position at which to being parsing. Upon
* return, the first unparseable character.
* @param digits The DigitList to set to the parsed value.
* @param isExponent If true, parse an exponent. This means no
* infinite values and integer only. By default it's really false.
* @param status Upon return contains boolean status flags indicating
* whether the value was infinite and whether it was positive.
*/
UBool DecimalFormat::subparse(const UnicodeString& text, ParsePosition& parsePosition,
DigitList& digits, UBool* status) const
{
UTextOffset position = parsePosition.getIndex();
UTextOffset oldStart = position;
// check for positivePrefix; take longest
UBool gotPositive = text.compare(position,fPositivePrefix.length(),fPositivePrefix,0,
fPositivePrefix.length()) == 0;
UBool gotNegative = text.compare(position,fNegativePrefix.length(),fNegativePrefix,0,
fNegativePrefix.length()) == 0;
// If the number is positive and negative at the same time,
// 1. the number is positive if the positive prefix is longer
// 2. the number is negative if the negative prefix is longer
if (gotPositive && gotNegative) {
if (fPositivePrefix.length() > fNegativePrefix.length())
gotNegative = FALSE;
else if (fPositivePrefix.length() < fNegativePrefix.length())
gotPositive = FALSE;
}
if(gotPositive)
position += fPositivePrefix.length();
else if(gotNegative)
position += fNegativePrefix.length();
else {
parsePosition.setErrorIndex(position);
return FALSE;
}
// process digits or Inf, find decimal position
UnicodeString inf(fSymbols->getSymbol(DecimalFormatSymbols::kInfinitySymbol));
int32_t infLen = (text.compare(position, inf.length(), inf)
? 0 : inf.length());
position += infLen; // infLen is non-zero when it does equal to infinity
status[fgStatusInfinite] = (UBool)infLen;
if (!infLen)
{
// We now have a string of digits, possibly with grouping symbols,
// and decimal points. We want to process these into a DigitList.
// We don't want to put a bunch of leading zeros into the DigitList
// though, so we keep track of the location of the decimal point,
// put only significant digits into the DigitList, and adjust the
// exponent as needed.
digits.fDecimalAt = digits.fCount = 0;
UChar32 zero = fSymbols->getSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
UnicodeString decimal(fIsCurrencyFormat
? fSymbols->getSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol)
: fSymbols->getSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol));
UnicodeString grouping(fSymbols->getSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
UnicodeString exponentChar(fSymbols->getSymbol(DecimalFormatSymbols::kExponentialSymbol));
UBool sawDecimal = FALSE;
UBool sawDigit = FALSE;
int32_t backup = -1;
UChar32 ch;
int32_t digit;
int32_t textLength = text.length(); // One less pointer to follow
int32_t groupingLen = grouping.length();
int32_t decimalLen = decimal.length();
// We have to track digitCount ourselves, because digits.fCount will
// pin when the maximum allowable digits is reached.
int32_t digitCount = 0;
for (; position < textLength; position += 1 + UTF_NEED_MULTIPLE_UCHAR(ch))
{
ch = text.char32At(position);
/* We recognize all digit ranges, not only the Latin digit range
* '0'..'9'. We do so by using the Character.digit() method,
* which converts a valid Unicode digit to the range 0..9.
*
* The character 'ch' may be a digit. If so, place its value
* from 0 to 9 in 'digit'. First try using the locale digit,
* which may or MAY NOT be a standard Unicode digit range. If
* this fails, try using the standard Unicode digit ranges by
* calling Character.digit(). If this also fails, digit will
* have a value outside the range 0..9.
*/
digit = ch - zero;
if (digit < 0 || digit > 9)
{
digit = u_charDigitValue(ch);
}
if (digit > 0 && digit <= 9)
{
// Cancel out backup setting (see grouping handler below)
backup = -1;
sawDigit = TRUE;
// output a regular non-zero digit.
++digitCount;
digits.append((char)(digit + '0'));
}
else if (digit == 0)
{
// Cancel out backup setting (see grouping handler below)
backup = -1;
sawDigit = TRUE;
// Check for leading zeros
if (digits.fCount != 0)
{
// output a regular zero digit.
++digitCount;
digits.append((char)(digit + '0'));
}
else if (sawDecimal)
{
// If we have seen the decimal, but no significant digits yet,
// then we account for leading zeros by decrementing the
// digits.fDecimalAt into negative values.
--digits.fDecimalAt;
}
// else ignore leading zeros in integer part of number.
}
else if (!text.compare(position, groupingLen, grouping) && isGroupingUsed())
{
// Ignore grouping characters, if we are using them, but require
// that they be followed by a digit. Otherwise we backup and
// reprocess them.
backup = position;
}
else if (!text.compare(position, decimalLen, decimal) && !isParseIntegerOnly() && !sawDecimal)
{
// If we're only parsing integers, or if we ALREADY saw the
// decimal, then don't parse this one.
digits.fDecimalAt = digitCount; // Not digits.fCount!
sawDecimal = TRUE;
}
else if (!text.compare(position,
fSymbols->getSymbol(DecimalFormatSymbols::kExponentialSymbol).length(),
fSymbols->getSymbol(DecimalFormatSymbols::kExponentialSymbol))) // error code is set below if !sawDigit
{
// Parse sign, if present
int32_t pos = position + 1; // position + exponentSep.length();
DigitList exponentDigits;
if (pos < textLength)
{
if (!text.compare(pos,
fSymbols->getSymbol(DecimalFormatSymbols::kPlusSignSymbol).length(),
fSymbols->getSymbol(DecimalFormatSymbols::kPlusSignSymbol)))
{
++pos;
}
else if (!text.compare(pos,
fSymbols->getSymbol(DecimalFormatSymbols::kMinusSignSymbol).length(),
fSymbols->getSymbol(DecimalFormatSymbols::kMinusSignSymbol)))
{
++pos;
exponentDigits.fIsPositive = FALSE;
}
}
while (pos < textLength) {
ch = text[(UTextOffset)pos];
digit = ch - zero;
if (digit < 0 || digit > 9) {
digit = u_charDigitValue(ch);
}
if (0 <= digit && digit <= 9) {
++pos;
exponentDigits.append((char)(digit + '0'));
} else {
break;
}
}
if (exponentDigits.fCount > 0) {
exponentDigits.fDecimalAt = exponentDigits.fCount;
digits.fDecimalAt += exponentDigits.getLong();
position = pos; // Advance past the exponent
}
break; // Whether we fail or succeed, we exit this loop
}
else
break;
}
if (backup != -1)
{
position = backup;
}
// If there was no decimal point we have an integer
if (!sawDecimal)
{
digits.fDecimalAt += digitCount; // Not digits.fCount!
}
// If none of the text string was recognized. For example, parse
// "x" with pattern "#0.00" (return index and error index both 0)
// parse "$" with pattern "$#0.00". (return index 0 and error index
// 1).
if (!sawDigit && digitCount == 0) {
parsePosition.setIndex(oldStart);
parsePosition.setErrorIndex(oldStart);
return FALSE;
}
}
// check for positiveSuffix
if (gotPositive && fPositiveSuffix.length() > 0)
{
gotPositive = text.compare(position,fPositiveSuffix.length(),fPositiveSuffix,0,
fPositiveSuffix.length()) == 0;
}
if (gotNegative && fNegativeSuffix.length() > 0)
{
gotNegative = text.compare(position,fNegativeSuffix.length(),fNegativeSuffix,0,
fNegativeSuffix.length()) == 0;
}
// if both match, take longest
if (gotPositive && gotNegative)
{
if (fPositiveSuffix.length() > fNegativeSuffix.length())
{
gotNegative = FALSE;
}
else if (fPositiveSuffix.length() < fNegativeSuffix.length())
{
gotPositive = FALSE;
}
else
{
gotPositive = TRUE; // Make them equal to each other.
gotNegative = TRUE;
}
}
// fail if neither or both
if (gotPositive == gotNegative)
{
parsePosition.setErrorIndex(position);
return FALSE;
}
parsePosition.setIndex(position +
(gotPositive ? fPositiveSuffix.length() :
fNegativeSuffix.length())); // mark success!
digits.fIsPositive = gotPositive;
if(parsePosition.getIndex() == oldStart)
{
parsePosition.setErrorIndex(position);
return FALSE;
}
return TRUE;
}
//------------------------------------------------------------------------------
// Gets the pointer to the localized decimal format symbols
const DecimalFormatSymbols*
DecimalFormat::getDecimalFormatSymbols() const
{
return fSymbols;
}
//------------------------------------------------------------------------------
// De-owning the current localized symbols and adopt the new symbols.
void
DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
{
if (fSymbols != NULL)
delete fSymbols;
fSymbols = symbolsToAdopt;
}
//------------------------------------------------------------------------------
// Setting the symbols is equlivalent to adopting a newly created localized
// symbols.
void
DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
{
adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
expandAffixes();
}
//------------------------------------------------------------------------------
// Gets the positive prefix of the number pattern.
UnicodeString&
DecimalFormat::getPositivePrefix(UnicodeString& result) const
{
result = fPositivePrefix;
return result;
}
//------------------------------------------------------------------------------
// Sets the positive prefix of the number pattern.
void
DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
{
fPositivePrefix = newValue;
delete fPosPrefixPattern;
fPosPrefixPattern = 0;
}
//------------------------------------------------------------------------------
// Gets the negative prefix of the number pattern.
UnicodeString&
DecimalFormat::getNegativePrefix(UnicodeString& result) const
{
result = fNegativePrefix;
return result;
}
//------------------------------------------------------------------------------
// Gets the negative prefix of the number pattern.
void
DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
{
fNegativePrefix = newValue;
delete fNegPrefixPattern;
fNegPrefixPattern = 0;
}
//------------------------------------------------------------------------------
// Gets the positive suffix of the number pattern.
UnicodeString&
DecimalFormat::getPositiveSuffix(UnicodeString& result) const
{
result = fPositiveSuffix;
return result;
}
//------------------------------------------------------------------------------
// Sets the positive suffix of the number pattern.
void
DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
{
fPositiveSuffix = newValue;
delete fPosSuffixPattern;
fPosSuffixPattern = 0;
}
//------------------------------------------------------------------------------
// Gets the negative suffix of the number pattern.
UnicodeString&
DecimalFormat::getNegativeSuffix(UnicodeString& result) const
{
result = fNegativeSuffix;
return result;
}
//------------------------------------------------------------------------------
// Sets the negative suffix of the number pattern.
void
DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
{
fNegativeSuffix = newValue;
delete fNegSuffixPattern;
fNegSuffixPattern = 0;
}
//------------------------------------------------------------------------------
// Gets the multiplier of the number pattern.
int32_t DecimalFormat::getMultiplier() const
{
return fMultiplier;
}
//------------------------------------------------------------------------------
// Sets the multiplier of the number pattern.
void
DecimalFormat::setMultiplier(int32_t newValue)
{
// This shouldn't be set to 0.
// Due to compatibility with ICU4J we cannot set an error code and refuse 0.
// So the rest of the code should ignore fMultiplier when it's 0. [grhoten]
fMultiplier = newValue;
}
/**
* Get the rounding increment.
* @return A positive rounding increment, or 0.0 if rounding
* is not in effect.
* @see #setRoundingIncrement
* @see #getRoundingMode
* @see #setRoundingMode
*/
double DecimalFormat::getRoundingIncrement() {
return fRoundingDouble;
}
/**
* Set the rounding increment. This method also controls whether
* rounding is enabled.
* @param newValue A positive rounding increment, or 0.0 to disable rounding.
* Negative increments are equivalent to 0.0.
* @see #getRoundingIncrement
* @see #getRoundingMode
* @see #setRoundingMode
*/
void DecimalFormat::setRoundingIncrement(double newValue) {
if (newValue > 0.0) {
if (fRoundingIncrement == NULL) {
fRoundingIncrement = new DigitList();
}
fRoundingIncrement->set((int32_t)newValue);
fRoundingDouble = newValue;
} else {
delete fRoundingIncrement;
fRoundingIncrement = NULL;
fRoundingDouble = 0.0;
}
}
/**
* Get the rounding mode.
* @return A rounding mode
* @see #setRoundingIncrement
* @see #getRoundingIncrement
* @see #setRoundingMode
*/
DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() {
return fRoundingMode;
}
/**
* Set the rounding mode. This has no effect unless the rounding
* increment is greater than zero.
* @param roundingMode A rounding mode
* @see #setRoundingIncrement
* @see #getRoundingIncrement
* @see #getRoundingMode
*/
void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
fRoundingMode = roundingMode;
}
/**
* Get the width to which the output of <code>format()</code> is padded.
* @return the format width, or zero if no padding is in effect
* @see #setFormatWidth
* @see #getPadCharacter
* @see #setPadCharacter
* @see #getPadPosition
* @see #setPadPosition
*/
int32_t DecimalFormat::getFormatWidth() {
return fFormatWidth;
}
/**
* Set the width to which the output of <code>format()</code> is padded.
* This method also controls whether padding is enabled.
* @param width the width to which to pad the result of
* <code>format()</code>, or zero to disable padding. A negative
* width is equivalent to 0.
* @see #getFormatWidth
* @see #getPadCharacter
* @see #setPadCharacter
* @see #getPadPosition
* @see #setPadPosition
*/
void DecimalFormat::setFormatWidth(int32_t width) {
fFormatWidth = (width > 0) ? width : 0;
}
/**
* Get the character used to pad to the format width. The default is ' '.
* @return the pad character
* @see #setFormatWidth
* @see #getFormatWidth
* @see #setPadCharacter
* @see #getPadPosition
* @see #setPadPosition
*/
UnicodeString DecimalFormat::getPadCharacterString() {
return fPad;
}
/**
* Set the character used to pad to the format width. This has no effect
* unless padding is enabled.
* @param padChar the pad character
* @see #setFormatWidth
* @see #getFormatWidth
* @see #getPadCharacter
* @see #getPadPosition
* @see #setPadPosition
*/
void DecimalFormat::setPadCharacter(UnicodeString padChar) {
if (padChar.length() > 0) {
fPad = padChar;
}
else {
fPad = kPatternPadEscape;
}
}
/**
* Get the position at which padding will take place. This is the location
* at which padding will be inserted if the result of <code>format()</code>
* is shorter than the format width.
* @return the pad position, one of <code>kPadBeforePrefix</code>,
* <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
* <code>kPadAfterSuffix</code>.
* @see #setFormatWidth
* @see #getFormatWidth
* @see #setPadCharacter
* @see #getPadCharacter
* @see #setPadPosition
* @see #kPadBeforePrefix
* @see #kPadAfterPrefix
* @see #kPadBeforeSuffix
* @see #kPadAfterSuffix
*/
DecimalFormat::EPadPosition DecimalFormat::getPadPosition() {
return fPadPosition;
}
/**
* <strong><font face=helvetica color=red>NEW</font></strong>
* Set the position at which padding will take place. This is the location
* at which padding will be inserted if the result of <code>format()</code>
* is shorter than the format width. This has no effect unless padding is
* enabled.
* @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
* <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
* <code>kPadAfterSuffix</code>.
* @see #setFormatWidth
* @see #getFormatWidth
* @see #setPadCharacter
* @see #getPadCharacter
* @see #getPadPosition
* @see #kPadBeforePrefix
* @see #kPadAfterPrefix
* @see #kPadBeforeSuffix
* @see #kPadAfterSuffix
*/
void DecimalFormat::setPadPosition(EPadPosition padPos) {
fPadPosition = padPos;
}
/**
* Return whether or not scientific notation is used.
* @return TRUE if this object formats and parses scientific notation
* @see #setScientificNotation
* @see #getMinimumExponentDigits
* @see #setMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
*/
UBool DecimalFormat::isScientificNotation() {
return fUseExponentialNotation;
}
/**
* Set whether or not scientific notation is used.
* @param useScientific TRUE if this object formats and parses scientific
* notation
* @see #isScientificNotation
* @see #getMinimumExponentDigits
* @see #setMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
*/
void DecimalFormat::setScientificNotation(UBool useScientific) {
fUseExponentialNotation = useScientific;
if (fUseExponentialNotation && fMinExponentDigits < 1) {
fMinExponentDigits = 1;
}
}
/**
* Return the minimum exponent digits that will be shown.
* @return the minimum exponent digits that will be shown
* @see #setScientificNotation
* @see #isScientificNotation
* @see #setMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
*/
int8_t DecimalFormat::getMinimumExponentDigits() {
return fMinExponentDigits;
}
/**
* Set the minimum exponent digits that will be shown. This has no
* effect unless scientific notation is in use.
* @param minExpDig a value >= 1 indicating the fewest exponent digits
* that will be shown. Values less than 1 will be treated as 1.
* @see #setScientificNotation
* @see #isScientificNotation
* @see #getMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
*/
void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
}
/**
* Return whether the exponent sign is always shown.
* @return TRUE if the exponent is always prefixed with either the
* localized minus sign or the localized plus sign, false if only negative
* exponents are prefixed with the localized minus sign.
* @see #setScientificNotation
* @see #isScientificNotation
* @see #setMinimumExponentDigits
* @see #getMinimumExponentDigits
* @see #setExponentSignAlwaysShown
*/
UBool DecimalFormat::isExponentSignAlwaysShown() {
return fExponentSignAlwaysShown;
}
/**
* Set whether the exponent sign is always shown. This has no effect
* unless scientific notation is in use.
* @param expSignAlways TRUE if the exponent is always prefixed with either
* the localized minus sign or the localized plus sign, false if only
* negative exponents are prefixed with the localized minus sign.
* @see #setScientificNotation
* @see #isScientificNotation
* @see #setMinimumExponentDigits
* @see #getMinimumExponentDigits
* @see #isExponentSignAlwaysShown
*/
void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
fExponentSignAlwaysShown = expSignAlways;
}
//------------------------------------------------------------------------------
// Gets the grouping size of the number pattern. For example, thousand or 10
// thousand groupings.
int32_t
DecimalFormat::getGroupingSize() const
{
return fGroupingSize;
}
//------------------------------------------------------------------------------
// Gets the grouping size of the number pattern.
void
DecimalFormat::setGroupingSize(int32_t newValue)
{
fGroupingSize = newValue;
}
//------------------------------------------------------------------------------
int32_t
DecimalFormat::getSecondaryGroupingSize() const
{
return fGroupingSize2;
}
//------------------------------------------------------------------------------
void
DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
{
fGroupingSize2 = newValue;
}
//------------------------------------------------------------------------------
// Checks if to show the decimal separator.
UBool
DecimalFormat::isDecimalSeparatorAlwaysShown() const
{
return fDecimalSeparatorAlwaysShown;
}
//------------------------------------------------------------------------------
// Sets to always show the decimal separator.
void
DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
{
fDecimalSeparatorAlwaysShown = newValue;
}
//------------------------------------------------------------------------------
// Emits the pattern of this DecimalFormat instance.
UnicodeString&
DecimalFormat::toPattern(UnicodeString& result) const
{
return toPattern(result, FALSE);
}
//------------------------------------------------------------------------------
// Emits the localized pattern this DecimalFormat instance.
UnicodeString&
DecimalFormat::toLocalizedPattern(UnicodeString& result) const
{
return toPattern(result, TRUE);
}
//------------------------------------------------------------------------------
/**
* Expand the affix pattern strings into the expanded affix strings. If any
* affix pattern string is null, do not expand it. This method should be
* called any time the symbols or the affix patterns change in order to keep
* the expanded affix strings up to date.
*/
void DecimalFormat::expandAffixes(void) {
if (fPosPrefixPattern != 0) {
expandAffix(*fPosPrefixPattern, fPositivePrefix);
}
if (fPosSuffixPattern != 0) {
expandAffix(*fPosSuffixPattern, fPositiveSuffix);
}
if (fNegPrefixPattern != 0) {
expandAffix(*fNegPrefixPattern, fNegativePrefix);
}
if (fNegSuffixPattern != 0) {
expandAffix(*fNegSuffixPattern, fNegativeSuffix);
}
#ifdef FMT_DEBUG
UnicodeString s;
s.append("[")
.append(*fPosPrefixPattern).append("|").append(*fPosSuffixPattern)
.append(";") .append(*fNegPrefixPattern).append("|").append(*fNegSuffixPattern)
.append("]->[")
.append(fPositivePrefix).append("|").append(fPositiveSuffix)
.append(";") .append(fNegativePrefix).append("|").append(fNegativeSuffix)
.append("]\n");
debugout(s);
#endif
}
/**
* Expand an affix pattern into an affix string. All characters in the
* pattern are literal unless prefixed by kQuote. The following characters
* after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
* PATTERN_MINUS, and kCurrencySign. If kCurrencySign is doubled (kQuote +
* kCurrencySign + kCurrencySign), it is interpreted as an international
* currency sign. Any other character after a kQuote represents itself.
* kQuote must be followed by another character; kQuote may not occur by
* itself at the end of the pattern.
*
* @param pattern the non-null, fPossibly empty pattern
* @param affix string to receive the expanded equivalent of pattern
*/
void DecimalFormat::expandAffix(const UnicodeString& pattern,
UnicodeString& affix) const {
affix.remove();
for (int i=0; i<pattern.length(); ) {
UChar32 c = pattern.char32At(i++);
if (c == kQuote) {
c = pattern.char32At(i++);
switch (c) {
case kCurrencySign:
{
if (i<pattern.length() &&
pattern.char32At(i) == kCurrencySign) {
++i;
affix += fSymbols->getSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
} else {
affix += fSymbols->getSymbol(DecimalFormatSymbols::kCurrencySymbol);
}
}
continue;
case kPatternPercent:
affix.append(fSymbols->getSymbol(DecimalFormatSymbols::kPercentSymbol));
break;
case kPatternPerMill:
affix.append(fSymbols->getSymbol(DecimalFormatSymbols::kPerMillSymbol));
break;
case kPatternPlus:
affix.append(fSymbols->getSymbol(DecimalFormatSymbols::kPlusSignSymbol));
break;
case kPatternMinus:
affix.append(fSymbols->getSymbol(DecimalFormatSymbols::kMinusSignSymbol));
break;
default:
affix.append(c);
break;
}
}
else {
affix.append(c);
}
}
}
/**
* Appends an affix pattern to the given StringBuffer, quoting special
* characters as needed. Uses the internal affix pattern, if that exists,
* or the literal affix, if the internal affix pattern is null. The
* appended string will generate the same affix pattern (or literal affix)
* when passed to toPattern().
*
* @param buffer the affix string is appended to this
* @param affixPattern a pattern such as fPosPrefixPattern; may be null
* @param expAffix a corresponding expanded affix, such as fPositivePrefix.
* Ignored unless affixPattern is null. If affixPattern is null, then
* expAffix is appended as a literal affix.
* @param localized true if the appended pattern should contain localized
* pattern characters; otherwise, non-localized pattern chars are appended
*/
void DecimalFormat::appendAffix(UnicodeString& buffer,
const UnicodeString* affixPattern,
const UnicodeString& expAffix,
UBool localized) const {
if (affixPattern == 0) {
appendAffix(buffer, expAffix, localized);
} else {
int i;
for (int pos=0; pos<affixPattern->length(); pos=i) {
i = affixPattern->indexOf(kQuote, pos);
if (i < 0) {
UnicodeString s;
affixPattern->extractBetween(pos, affixPattern->length(), s);
appendAffix(buffer, s, localized);
break;
}
if (i > pos) {
UnicodeString s;
affixPattern->extractBetween(pos, i, s);
appendAffix(buffer, s, localized);
}
UChar32 c = affixPattern->char32At(++i);
++i;
if (c == kQuote) {
buffer.append(c).append(c);
// Fall through and append another kQuote below
} else if (c == kCurrencySign &&
i<affixPattern->length() &&
affixPattern->char32At(i) == kCurrencySign) {
++i;
buffer.append(c).append(c);
} else if (localized) {
switch (c) {
case kPatternPercent:
buffer.append(fSymbols->getSymbol(DecimalFormatSymbols::kPercentSymbol));
break;
case kPatternPerMill:
buffer.append(fSymbols->getSymbol(DecimalFormatSymbols::kPerMillSymbol));
break;
case kPatternPlus:
buffer.append(fSymbols->getSymbol(DecimalFormatSymbols::kPlusSignSymbol));
break;
case kPatternMinus:
buffer.append(fSymbols->getSymbol(DecimalFormatSymbols::kMinusSignSymbol));
break;
default:
buffer.append(c);
}
} else {
buffer.append(c);
}
}
}
}
/**
* Append an affix to the given StringBuffer, using quotes if
* there are special characters. Single quotes themselves must be
* escaped in either case.
*/
void
DecimalFormat::appendAffix( UnicodeString& buffer,
const UnicodeString& affix,
UBool localized) const {
UBool needQuote;
if(localized) {
needQuote = affix.indexOf(fSymbols->getSymbol(DecimalFormatSymbols::kZeroDigitSymbol)) >= 0
|| affix.indexOf(fSymbols->getSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)) >= 0
|| affix.indexOf(fSymbols->getSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)) >= 0
|| affix.indexOf(fSymbols->getSymbol(DecimalFormatSymbols::kPercentSymbol)) >= 0
|| affix.indexOf(fSymbols->getSymbol(DecimalFormatSymbols::kPerMillSymbol)) >= 0
|| affix.indexOf(fSymbols->getSymbol(DecimalFormatSymbols::kDigitSymbol)) >= 0
|| affix.indexOf(fSymbols->getSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)) >= 0
|| affix.indexOf(fSymbols->getSymbol(DecimalFormatSymbols::kPlusSignSymbol)) >= 0
|| affix.indexOf(fSymbols->getSymbol(DecimalFormatSymbols::kMinusSignSymbol)) >= 0
|| affix.indexOf(kCurrencySign) >= 0;
}
else {
needQuote = affix.indexOf(kPatternZeroDigit) >= 0
|| affix.indexOf(kPatternGroupingSeparator) >= 0
|| affix.indexOf(kPatternDecimalSeparator) >= 0
|| affix.indexOf(kPatternPercent) >= 0
|| affix.indexOf(kPatternPerMill) >= 0
|| affix.indexOf(kPatternDigit) >= 0
|| affix.indexOf(kPatternSeparator) >= 0
|| affix.indexOf(kPatternExponent) >= 0
|| affix.indexOf(kPatternPlus) >= 0
|| affix.indexOf(kPatternMinus) >= 0
|| affix.indexOf(kCurrencySign) >= 0;
}
if (needQuote)
buffer += (UChar)0x0027 /*'\''*/;
if (affix.indexOf((UChar)0x0027 /*'\''*/) < 0)
buffer += affix;
else {
for (int32_t j = 0; j < affix.length(); ++j) {
UChar32 c = affix.char32At(j);
buffer += c;
if (c == 0x0027 /*'\''*/)
buffer += c;
j = j + UTF_NEED_MULTIPLE_UCHAR(c);
}
}
if (needQuote)
buffer += (UChar)0x0027 /*'\''*/;
}
//------------------------------------------------------------------------------
/* Tell the VC++ compiler not to spew out the warnings about integral size conversion */
/*
#ifdef _WIN32
#pragma warning( disable : 4761 )
#endif
*/
UnicodeString&
DecimalFormat::toPattern(UnicodeString& result, UBool localized) const
{
result.remove();
UChar32 zero;
UnicodeString digit;
UnicodeString group;
int32_t i;
int32_t roundingDecimalPos = 0; // Pos of decimal in roundingDigits
UnicodeString roundingDigits;
int32_t padPos = (fFormatWidth > 0) ? fPadPosition : -1;
UnicodeString padSpec;
if (localized) {
digit = fSymbols->getSymbol(DecimalFormatSymbols::kDigitSymbol);
group = fSymbols->getSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
zero = fSymbols->getSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
}
else {
digit.append((UChar)kPatternDigit);
group.append((UChar)kPatternGroupingSeparator);
zero = (UChar32)kPatternZeroDigit;
}
if (fFormatWidth > 0) {
if (localized) {
padSpec.append(fSymbols->getSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
}
else {
padSpec.append((UChar)kPatternPadEscape);
}
padSpec.append(fPad);
}
if (fRoundingIncrement != NULL) {
for(i=0; i<fRoundingIncrement->fCount; ++i) {
roundingDigits.append((UChar)fRoundingIncrement->fDigits[i]);
}
roundingDecimalPos = fRoundingIncrement->fDecimalAt;
}
for (int32_t part=0; part<2; ++part) {
if (padPos == kPadBeforePrefix) {
result.append(padSpec);
}
appendAffix(result,
(part==0 ? fPosPrefixPattern : fNegPrefixPattern),
(part==0 ? fPositivePrefix : fNegativePrefix),
localized);
if (padPos == kPadAfterPrefix && ! padSpec.isEmpty()) {
result.append(padSpec);
}
int32_t sub0Start = result.length();
int32_t g = isGroupingUsed() ? uprv_max(0, fGroupingSize) : 0;
if (g > 0 && fGroupingSize2 > 0 && fGroupingSize2 != fGroupingSize) {
g += fGroupingSize2;
}
int32_t maxIntDig = fUseExponentialNotation ? getMaximumIntegerDigits() :
(uprv_max(uprv_max(g, getMinimumIntegerDigits()),
roundingDecimalPos) + 1);
for (i = maxIntDig; i > 0; --i) {
if (!fUseExponentialNotation && i<maxIntDig &&
isGroupingPosition(i)) {
result.append(group);
}
if (! roundingDigits.isEmpty()) {
int32_t pos = roundingDecimalPos - i;
if (pos >= 0 && pos < roundingDigits.length()) {
result.append((UChar) (roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
continue;
}
}
if (i<=getMinimumIntegerDigits()) {
result.append(zero);
}
else {
result.append(digit);
}
}
if (getMaximumFractionDigits() > 0 || fDecimalSeparatorAlwaysShown) {
if (localized) {
result.append(fSymbols->getSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol));
}
else {
result.append((UChar)kPatternDecimalSeparator);
}
}
int32_t pos = roundingDecimalPos;
for (i = 0; i < getMaximumFractionDigits(); ++i) {
if (! roundingDigits.isEmpty() && pos < roundingDigits.length()) {
if (pos < 0) {
result.append(zero);
}
else {
result.append((UChar)(roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
}
++pos;
continue;
}
if (i<getMinimumFractionDigits()) {
result.append(zero);
}
else {
result.append(digit);
}
}
if (fUseExponentialNotation) {
if (localized) {
result.append(fSymbols->getSymbol(DecimalFormatSymbols::kExponentialSymbol));
}
else {
result.append((UChar)kPatternExponent);
}
if (fExponentSignAlwaysShown) {
if (localized) {
result.append(fSymbols->getSymbol(DecimalFormatSymbols::kPlusSignSymbol));
}
else {
result.append((UChar)kPatternPlus);
}
}
for (i=0; i<fMinExponentDigits; ++i) {
result.append(zero);
}
}
if (! padSpec.isEmpty() && !fUseExponentialNotation) {
int32_t add = fFormatWidth - result.length() + sub0Start
- ((part == 0)
? fPositivePrefix.length() + fPositiveSuffix.length()
: fNegativePrefix.length() + fNegativeSuffix.length());
while (add > 0) {
result.insert(sub0Start, digit);
++maxIntDig;
--add;
// Only add a grouping separator if we have at least
// 2 additional characters to be added, so we don't
// end up with ",###".
if (add>1 && isGroupingPosition(maxIntDig)) {
result.insert(sub0Start, group);
--add;
}
}
}
if (fPadPosition == kPadBeforeSuffix && ! padSpec.isEmpty()) {
result.append(padSpec);
}
if (part == 0) {
appendAffix(result, fPosSuffixPattern, fPositiveSuffix, localized);
if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
result.append(padSpec);
}
UBool isDefault = FALSE;
if ((fNegSuffixPattern == fPosSuffixPattern && // both null
fNegativeSuffix == fPositiveSuffix)
|| (fNegSuffixPattern != 0 && fPosSuffixPattern != 0 &&
*fNegSuffixPattern == *fPosSuffixPattern))
{
if (fNegPrefixPattern != NULL && fPosPrefixPattern != NULL)
{
int32_t length = fPosPrefixPattern->length();
isDefault = fNegPrefixPattern->length() == (length+2) &&
(*fNegPrefixPattern)[(UTextOffset)0] == kQuote &&
(*fNegPrefixPattern)[(UTextOffset)1] == kPatternMinus &&
fNegPrefixPattern->compare(2, length, *fPosPrefixPattern, 0, length) == 0;
}
if (!isDefault &&
fNegPrefixPattern == NULL && fPosPrefixPattern == NULL)
{
int32_t length = fPositivePrefix.length();
isDefault = fNegativePrefix.length() == (length+1) &&
fNegativePrefix.compare(fSymbols->getSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 &&
fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
}
}
if (isDefault) {
break; // Don't output default negative subpattern
} else {
if (localized) {
result.append(fSymbols->getSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol));
}
else {
result.append((UChar)kPatternSeparator);
}
}
} else {
appendAffix(result, fNegSuffixPattern, fNegativeSuffix, localized);
if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
result.append(padSpec);
}
}
}
return result;
}
//------------------------------------------------------------------------------
void
DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
{
UParseError parseError;
applyPattern(pattern, FALSE, parseError, status);
}
//------------------------------------------------------------------------------
void
DecimalFormat::applyPattern(const UnicodeString& pattern,
UParseError& parseError,
UErrorCode& status)
{
applyPattern(pattern, FALSE, parseError, status);
}
//------------------------------------------------------------------------------
void
DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
{
UParseError parseError;
applyPattern(pattern, TRUE,parseError,status);
}
//------------------------------------------------------------------------------
void
DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
UParseError& parseError,
UErrorCode& status)
{
applyPattern(pattern, TRUE,parseError,status);
}
//------------------------------------------------------------------------------
void
DecimalFormat::applyPattern(const UnicodeString& pattern,
UBool localized,
UParseError& parseError,
UErrorCode& status)
{
if (U_FAILURE(status))
{
return;
}
// Clear error struct
parseError.offset = 0;
parseError.preContext[0] = parseError.postContext[0] = (UChar)0;
// Set the significant pattern symbols
UChar32 zeroDigit = kPatternZeroDigit;
UnicodeString groupingSeparator ((UChar)kPatternGroupingSeparator);
UnicodeString decimalSeparator ((UChar)kPatternDecimalSeparator);
UnicodeString percent ((UChar)kPatternPercent);
UnicodeString perMill ((UChar)kPatternPerMill);
UnicodeString digit ((UChar)kPatternDigit);
UnicodeString separator ((UChar)kPatternSeparator);
UnicodeString exponent ((UChar)kPatternExponent);
UnicodeString plus ((UChar)kPatternPlus);
UnicodeString minus ((UChar)kPatternMinus);
UnicodeString padEscape ((UChar)kPatternPadEscape);
// Substitute with the localized symbols if necessary
if (localized) {
zeroDigit = fSymbols->getSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
groupingSeparator = fSymbols->getSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
decimalSeparator = fSymbols->getSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
percent = fSymbols->getSymbol(DecimalFormatSymbols::kPercentSymbol);
perMill = fSymbols->getSymbol(DecimalFormatSymbols::kPerMillSymbol);
digit = fSymbols->getSymbol(DecimalFormatSymbols::kDigitSymbol);
separator = fSymbols->getSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
exponent = fSymbols->getSymbol(DecimalFormatSymbols::kExponentialSymbol);
plus = fSymbols->getSymbol(DecimalFormatSymbols::kPlusSignSymbol);
minus = fSymbols->getSymbol(DecimalFormatSymbols::kMinusSignSymbol);
padEscape = fSymbols->getSymbol(DecimalFormatSymbols::kPadEscapeSymbol);
}
UChar nineDigit = (UChar)(zeroDigit + 9);
int32_t digitLen = digit.length();
int32_t groupSepLen = groupingSeparator.length();
int32_t decimalSepLen = decimalSeparator.length();
UTextOffset pos = 0;
int32_t patLen = pattern.length();
// Part 0 is the positive pattern. Part 1, if present, is the negative
// pattern.
for (int32_t part=0; part<2 && pos<patLen; ++part) {
// The subpart ranges from 0 to 4: 0=pattern proper, 1=prefix,
// 2=suffix, 3=prefix in quote, 4=suffix in quote. Subpart 0 is
// between the prefix and suffix, and consists of pattern
// characters. In the prefix and suffix, percent, perMill, and
// currency symbols are recognized and translated.
int32_t subpart = 1, sub0Start = 0, sub0Limit = 0, sub2Limit = 0;
// It's important that we don't change any fields of this object
// prematurely. We set the following variables for the multiplier,
// grouping, etc., and then only change the actual object fields if
// everything parses correctly. This also lets us register
// the data from part 0 and ignore the part 1, except for the
// prefix and suffix.
UnicodeString prefix;
UnicodeString suffix;
int32_t decimalPos = -1;
int32_t multiplier = 1;
int32_t digitLeftCount = 0, zeroDigitCount = 0, digitRightCount = 0;
int8_t groupingCount = -1;
int8_t groupingCount2 = -1;
int32_t padPos = -1;
UnicodeString padChar;
int32_t roundingPos = -1;
DigitList roundingInc;
int8_t expDigits = -1;
UBool expSignAlways = FALSE;
UBool isCurrency = FALSE;
// The affix is either the prefix or the suffix.
UnicodeString* affix = &prefix;
int32_t start = pos;
UBool isPartDone = FALSE;
UChar32 ch;
for (; !isPartDone && pos < patLen; pos += UTF_NEED_MULTIPLE_UCHAR(ch)) {
// Todo: account for surrogate pairs
ch = pattern.char32At(pos);
switch (subpart) {
case 0: // Pattern proper subpart (between prefix & suffix)
// Process the digits, decimal, and grouping characters. We
// record five pieces of information. We expect the digits
// to occur in the pattern ####00.00####, and we record the
// number of left digits, zero (central) digits, and right
// digits. The position of the last grouping character is
// recorded (should be somewhere within the first two blocks
// of characters), as is the position of the decimal point,
// if any (should be in the zero digits). If there is no
// decimal point, then there should be no right digits.
if (pattern.compare(pos, digitLen, digit) == 0) {
if (zeroDigitCount > 0) {
++digitRightCount;
} else {
++digitLeftCount;
}
if (groupingCount >= 0 && decimalPos < 0) {
++groupingCount;
}
pos += digitLen;
} else if (ch >= zeroDigit && ch <= nineDigit) {
if (digitRightCount > 0) {
// Unexpected '0'
debug("Unexpected '0'")
status = U_UNEXPECTED_TOKEN;
syntaxError(pattern,pos,parseError);
return;
}
++zeroDigitCount;
if (groupingCount >= 0 && decimalPos < 0) {
++groupingCount;
}
if (ch != zeroDigit && roundingPos < 0) {
roundingPos = digitLeftCount + zeroDigitCount;
}
if (roundingPos >= 0) {
roundingInc.append((char)(ch - zeroDigit + '0'));
}
pos++;
} else if (pattern.compare(pos, groupSepLen, groupingSeparator) == 0) {
if (decimalPos >= 0) {
// Grouping separator after decimal
debug("Grouping separator after decimal")
status = U_UNEXPECTED_TOKEN;
syntaxError(pattern,pos,parseError);
return;
}
groupingCount2 = groupingCount;
groupingCount = 0;
pos += groupSepLen;
} else if (pattern.compare(pos, decimalSepLen, decimalSeparator) == 0) {
if (decimalPos >= 0) {
// Multiple decimal separators
debug("Multiple decimal separators")
status = U_MULTIPLE_DECIMAL_SEPERATORS;
syntaxError(pattern,pos,parseError);
return;
}
// Intentionally incorporate the digitRightCount,
// even though it is illegal for this to be > 0
// at this point. We check pattern syntax below.
decimalPos = digitLeftCount + zeroDigitCount + digitRightCount;
pos += decimalSepLen;
} else {
if (pattern.compare(pos, exponent.length(), exponent) == 0) {
if (expDigits >= 0) {
// Multiple exponential symbols
debug("Multiple exponential symbols")
status = U_MULTIPLE_EXPONENTIAL_SYMBOLS;
syntaxError(pattern,pos,parseError);
return;
}
if (groupingCount >= 0) {
// Grouping separator in exponential pattern
debug("Grouping separator in exponential pattern")
status = U_MALFORMED_EXPONENTIAL_PATTERN;
syntaxError(pattern,pos,parseError);
return;
}
// Check for positive prefix
if ((pos+1) < patLen
&& pattern.compare((UTextOffset) (pos+1), plus.length(), plus) == 0)
{
expSignAlways = TRUE;
pos += plus.length();
}
// Use lookahead to parse out the exponential part of the
// pattern, then jump into suffix subpart.
expDigits = 0;
pos += exponent.length() - 1;
while (++pos < patLen &&
pattern[(UTextOffset) pos] == zeroDigit)
{
++expDigits;
}
if ((digitLeftCount + zeroDigitCount) < 1 ||
expDigits < 1) {
// Malformed exponential pattern
debug("Malformed exponential pattern")
status = U_MALFORMED_EXPONENTIAL_PATTERN;
syntaxError(pattern,pos,parseError);
return;
}
}
// Transition to suffix subpart
subpart = 2; // suffix subpart
affix = &suffix;
sub0Limit = pos;
continue;
}
break;
case 1: // Prefix subpart
case 2: // Suffix subpart
// Process the prefix / suffix characters
// Process unquoted characters seen in prefix or suffix
// subpart.
if (pattern.compare(pos, digitLen, digit) == 0) {
// Any of these characters implicitly begins the
// next subpart if we are in the prefix
if (subpart == 1) { // prefix subpart
subpart = 0; // pattern proper subpart
sub0Start = pos; // Reprocess this character
continue;
}
pos += digitLen;
// Fall through to append(ch)
} else if (pattern.compare(pos, groupSepLen, groupingSeparator) == 0) {
// Any of these characters implicitly begins the
// next subpart if we are in the prefix
if (subpart == 1) { // prefix subpart
subpart = 0; // pattern proper subpart
sub0Start = pos; // Reprocess this character
continue;
}
pos += groupSepLen;
// Fall through to append(ch)
} else if (pattern.compare(pos, decimalSepLen, decimalSeparator) == 0) {
// Any of these characters implicitly begins the
// next subpart if we are in the prefix
if (subpart == 1) { // prefix subpart
subpart = 0; // pattern proper subpart
sub0Start = pos; // Reprocess this character
continue;
}
pos += decimalSepLen;
// Fall through to append(ch)
} else if (ch >= zeroDigit && ch <= nineDigit) {
// Any of these characters implicitly begins the
// next subpart if we are in the prefix
if (subpart == 1) { // prefix subpart
subpart = 0; // pattern proper subpart
sub0Start = pos; // Reprocess this character
continue;
}
pos++;
// Fall through to append(ch)
} else if (ch == kCurrencySign) {
// Use lookahead to determine if the currency sign is
// doubled or not.
pos++;
affix->append(kQuote); // Encode currency
if (pos < pattern.length() && pattern[pos] == kCurrencySign)
{
affix->append(kCurrencySign);
++pos; // Skip over the doubled character
}
isCurrency = TRUE;
// Fall through to append(ch)
} else if (ch == kQuote) {
// A quote outside quotes indicates either the opening
// quote or two quotes, which is a quote literal. That is,
// we have the first quote in 'do' or o''clock.
++pos;
if (pos < pattern.length() && pattern[pos] == kQuote) {
affix->append(kQuote); // Encode quote
++pos;
// Fall through to append(ch)
} else {
subpart += 2; // open quote
continue;
}
} else if (pattern.compare(pos, separator.length(), separator) == 0) {
// Don't allow separators in the prefix, and don't allow
// separators in the second pattern (part == 1).
if (subpart == 1 || part == 1) {
// Unexpected separator
debug("Unexpected separator")
status = U_UNEXPECTED_TOKEN;
syntaxError(pattern,pos,parseError);
return;
}
sub2Limit = pos;
isPartDone = TRUE; // Go to next part
pos += separator.length();
break;
} else if (pattern.compare(pos, percent.length(), percent) == 0) {
// Next handle characters which are appended directly.
if (multiplier != 1) {
// Too many percent/perMill characters
debug("Too many percent characters")
status = U_MULTIPLE_PERCENT_SYMBOLS;
syntaxError(pattern,pos,parseError);
return;
}
affix->append(kQuote); // Encode percent/perMill
multiplier = 100;
ch = kPatternPercent; // Use unlocalized pattern char
pos += percent.length();
// Fall through to append(ch)
} else if (pattern.compare(pos, perMill.length(), perMill) == 0) {
// Next handle characters which are appended directly.
if (multiplier != 1) {
// Too many percent/perMill characters
debug("Too many perMill characters")
status = U_MULTIPLE_PERMILL_SYMBOLS;
syntaxError(pattern,pos,parseError);
return;
}
affix->append(kQuote); // Encode percent/perMill
multiplier = 1000;
ch = kPatternPerMill; // Use unlocalized pattern char
pos += perMill.length();
// Fall through to append(ch)
} else if (pattern.compare(pos, padEscape.length(), padEscape) == 0) {
if (padPos >= 0 || // Multiple pad specifiers
(pos+1) == pattern.length()) { // Nothing after padEscape
debug("Multiple pad specifiers")
status = U_MULTIPLE_PAD_SPECIFIERS;
syntaxError(pattern,pos,parseError);
return;
}
padPos = pos;
padChar = pattern.char32At(++pos);
pos += 1 + UTF_NEED_MULTIPLE_UCHAR(pattern.char32At(pos));
// pos += padEscape.length();
continue;
} else if (pattern.compare(pos, minus.length(), minus) == 0) {
affix->append(kQuote); // Encode minus
ch = kPatternMinus;
pos += minus.length();
// Fall through to append(ch)
} else if (pattern.compare(pos, plus.length(), plus) == 0) {
affix->append(kQuote); // Encode plus
ch = kPatternPlus;
pos += plus.length();
// Fall through to append(ch)
} else {
pos++;
}
// Unquoted, non-special characters fall through to here, as
// well as other code which needs to append something to the
// affix.
affix->append(ch);
break;
case 3: // Prefix subpart, in quote
case 4: // Suffix subpart, in quote
// A quote within quotes indicates either the closing
// quote or two quotes, which is a quote literal. That is,
// we have the second quote in 'do' or 'don''t'.
pos++;
if (ch == kQuote) {
if (pos < pattern.length() && pattern[pos] == kQuote) {
++pos;
affix->append(kQuote); // Encode quote
// Fall through to append(ch)
} else {
subpart -= 2; // close quote
continue;
}
}
affix->append(ch);
break;
}
}
if (sub0Limit == 0) {
sub0Limit = pattern.length();
}
if (sub2Limit == 0) {
sub2Limit = pattern.length();
}
/* Handle patterns with no '0' pattern character. These patterns
* are legal, but must be recodified to make sense. "##.###" ->
* "#0.###". ".###" -> ".0##".
*
* We allow patterns of the form "####" to produce a zeroDigitCount
* of zero (got that?); although this seems like it might make it
* possible for format() to produce empty strings, format() checks
* for this condition and outputs a zero digit in this situation.
* Having a zeroDigitCount of zero yields a minimum integer digits
* of zero, which allows proper round-trip patterns. We don't want
* "#" to become "#0" when toPattern() is called (even though that's
* what it really is, semantically).
*/
if (zeroDigitCount == 0 && digitLeftCount > 0 && decimalPos >= 0) {
// Handle "###.###" and "###." and ".###"
int n = decimalPos;
if (n == 0)
++n; // Handle ".###"
digitRightCount = digitLeftCount - n;
digitLeftCount = n - 1;
zeroDigitCount = 1;
}
// Do syntax checking on the digits, decimal points, and quotes.
if ((decimalPos < 0 && digitRightCount > 0) ||
(decimalPos >= 0 &&
(decimalPos < digitLeftCount ||
decimalPos > (digitLeftCount + zeroDigitCount))) ||