blob: ae622f06c8caadd04f943fbdbe3d58efd4737916 [file] [log] [blame]
/*
**********************************************************************
* Copyright (C) 2000, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* file name: ucnv2022.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2000feb03
* created by: Markus W. Scherer
*
* Change history:
*
* 06/29/2000 helena Major rewrite of the callback APIs.
* 08/08/2000 Ram Included support for ISO-2022-JP-2
* Changed implementation of toUnicode
* function
* 08/21/2000 Ram Added support for ISO-2022-KR
* 08/29/2000 Ram Seperated implementation of EBCDIC to
* ucnvebdc.c
* 09/20/2000 Ram Added support for ISO-2022-CN
* Added implementations for getNextUChar()
* for specific 2022 country variants.
* 10/31/2000 Ram Implemented offsets logic functions
*/
#include "unicode/utypes.h"
#include "cmemory.h"
#include "unicode/ucnv_err.h"
#include "ucnv_bld.h"
#include "unicode/ucnv.h"
#include "ucnv_cnv.h"
#include "unicode/ustring.h"
#include "unicode/ucnv_cb.h"
#include "cstring.h"
#define CONCAT_ESCAPE_EX(args, target, targetLimit,offsets,strToAppend,len, err){\
while(len-->0){\
if(target < targetLimit){\
*(target++) = (unsigned char) *(strToAppend++);\
if(offsets){\
*(offsets++) = source - args->source -1;\
}\
}\
else{\
args->converter->charErrorBuffer[(int)args->converter->charErrorBufferLength++] = (unsigned char) *(strToAppend++);\
*err =U_BUFFER_OVERFLOW_ERROR;\
}\
}\
}
#define UCNV_SS2 "\x1B\x4E"
#define UCNV_SS3 "\x1B\x4F"
#define UCNV_SS2_LEN 2
#define UCNV_SS3_LEN 2
#define CR 0x0D
#define LF 0x0A
#define H_TAB 0x09
#define V_TAB 0x0B
#define SPACE 0x20
/* for ISO-2022JP implementation*/
typedef enum {
ASCII = 0,
ISO8859_1 = 1 ,
ISO8859_7 = 2 ,
JISX201 = 3,
JISX208 = 4,
JISX212 = 5,
GB2312 =6,
KSC5601 =7,
HWKANA_7BIT=8, /* Halfwidth Katakana 7 bit */
INVALID_STATE=-1
} StateEnum;
typedef enum {
ASCII1=0,
LATIN1,
SBCS,
DBCS,
MBCS
}Cnv2022Type;
#define UCNV_OPTIONS_VERSION_MASK 0xf
typedef struct{
UConverter *currentConverter;
UConverter *fromUnicodeConverter;
UBool isFirstBuffer;
StateEnum toUnicodeCurrentState;
StateEnum fromUnicodeCurrentState;
StateEnum toUnicodeSaveState;
Cnv2022Type currentType;
int plane;
UConverter* myConverterArray[10];
UBool isEscapeAppended;
UBool isShiftAppended;
UBool isLocaleSpecified;
uint32_t key;
uint32_t version;
char locale[3];
char name[30];
}UConverterDataISO2022;
/* ISO-2022 ----------------------------------------------------------------- */
/*Forward declaration */
U_CFUNC void T_UConverter_fromUnicode_UTF8 (UConverterFromUnicodeArgs * args,
UErrorCode * err);
U_CFUNC void T_UConverter_fromUnicode_UTF8_OFFSETS_LOGIC (UConverterFromUnicodeArgs * args,
UErrorCode * err);
U_CFUNC void _MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
UErrorCode *pErrorCode);
U_CFUNC void _MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
UErrorCode *pErrorCode);
/* Protos */
/***************** ISO-2022 ********************************/
U_CFUNC void T_UConverter_toUnicode_ISO_2022(UConverterToUnicodeArgs * args,
UErrorCode * err);
U_CFUNC void T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC (UConverterToUnicodeArgs * args,
UErrorCode * err);
U_CFUNC UChar32 T_UConverter_getNextUChar_ISO_2022 (UConverterToUnicodeArgs * args,
UErrorCode * err);
/***************** ISO-2022-JP ********************************/
U_CFUNC void UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args,
UErrorCode* err);
U_CFUNC void UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC(UConverterToUnicodeArgs* args,
UErrorCode* err);
/***************** ISO-2022-KR ********************************/
U_CFUNC void UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args,
UErrorCode* err);
U_CFUNC void UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC(UConverterToUnicodeArgs* args,
UErrorCode* err);
/* Special function for getting output from IBM-25546 code page*/
U_CFUNC void UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(UConverterToUnicodeArgs *args,
UErrorCode* err);
U_CFUNC void UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(UConverterFromUnicodeArgs* args,
UErrorCode* err);
/***************** ISO-2022-CN ********************************/
U_CFUNC void UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args,
UErrorCode* err);
U_CFUNC void UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC(UConverterToUnicodeArgs* args,
UErrorCode* err);
#define ESC_2022 0x1B /*ESC*/
typedef enum
{
INVALID_2022 = -1, /*Doesn't correspond to a valid iso 2022 escape sequence*/
VALID_NON_TERMINAL_2022 = 0, /*so far corresponds to a valid iso 2022 escape sequence*/
VALID_TERMINAL_2022 = 1, /*corresponds to a valid iso 2022 escape sequence*/
VALID_MAYBE_TERMINAL_2022 = 2, /*so far matches one iso 2022 escape sequence, but by adding more characters might match another escape sequence*/
VALID_SS2_SEQUENCE=3,
VALID_SS3_SEQUENCE=4
} UCNV_TableStates_2022;
/*
* The way these state transition arrays work is:
* ex : ESC$B is the sequence for JISX208
* a) First Iteration: char is ESC
* i) Get the value of ESC from normalize_esq_chars_2022[] with int value of ESC as index
* int x = normalize_esq_chars_2022[27] which is equal to 1
* ii) Search for this value in escSeqStateTable_Key_2022[]
* value of x is stored at escSeqStateTable_Key_2022[0]
* iii) Save this index as offset
* iv) Get state of this sequence from escSeqStateTable_Value_2022[]
* escSeqStateTable_Value_2022[offset], which is VALID_NON_TERMINAL_2022
* b) Switch on this state and continue to next char
* i) Get the value of $ from normalize_esq_chars_2022[] with int value of $ as index
* which is normalize_esq_chars_2022[36] == 4
* ii) x is currently 1(from above)
* x<<=5 -- x is now 32
* x+=normalize_esq_chars_2022[36]
* now x is 36
* iii) Search for this value in escSeqStateTable_Key_2022[]
* value of x is stored at escSeqStateTable_Key_2022[2], so offset is 2
* iv) Get state of this sequence from escSeqStateTable_Value_2022[]
* escSeqStateTable_Value_2022[offset], which is VALID_NON_TERMINAL_2022
* c) Switch on this state and continue to next char
* i) Get the value of B from normalize_esq_chars_2022[] with int value of B as index
* ii) x is currently 36 (from above)
* x<<=5 -- x is now 1152
* x+=normalize_esq_chars_2022[66]
* now x is 1161
* iii) Search for this value in escSeqStateTable_Key_2022[]
* value of x is stored at escSeqStateTable_Key_2022[21], so offset is 21
* iv) Get state of this sequence from escSeqStateTable_Value_2022[21]
* escSeqStateTable_Value_2022[offset], which is VALID_TERMINAL_2022
* v) Get the converter name form escSeqStateTable_Result_2022[21] which is JISX208
*/
/*Below are the 3 arrays depicting a state transition table*/
int8_t normalize_esq_chars_2022[256] = {
/* 0 1 2 3 4 5 6 7 8 9 */
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,4 ,7 ,29 ,0
,2 ,24 ,26 ,27 ,0 ,3 ,23 ,6 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,5 ,8 ,9 ,10 ,11 ,12
,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,25 ,28
,0 ,0 ,21 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,22 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
,0 ,0 ,0 ,0 ,0 ,0
};
#define MAX_STATES_2022 74
int32_t escSeqStateTable_Key_2022[MAX_STATES_2022] = {
/* 0 1 2 3 4 5 6 7 8 9 */
1 ,34 ,36 ,39 ,55 ,57 ,60 ,61 ,1093 ,1096
,1097 ,1098 ,1099 ,1100 ,1101 ,1102 ,1103 ,1104 ,1105 ,1106
,1109 ,1154 ,1157 ,1160 ,1161 ,1176 ,1178 ,1179 ,1254 ,1257
,1768 ,1773 ,1957 ,35105 ,36933 ,36936 ,36937 ,36938 ,36939 ,36940
,36942 ,36943 ,36944 ,36945 ,36946 ,36947 ,36948 ,37640 ,37642 ,37644
,37646 ,37711 ,37744 ,37745 ,37746 ,37747 ,37748 ,40133 ,40136 ,40138
,40139 ,40140 ,40141 ,1123363 ,35947624 ,35947625 ,35947626 ,35947627 ,35947629 ,35947630
,35947631 ,35947635 ,35947636 ,35947638
};
const char* escSeqStateTable_Result_2022[MAX_STATES_2022] = {
/* 0 1 2 3 4 5 6 7 8 9 */
NULL ,NULL ,NULL ,NULL ,NULL ,NULL ,NULL ,NULL ,"latin1" ,"latin1"
,"latin1" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"JISX-201" ,"JISX-201" ,"latin1"
,"latin1" ,NULL ,"JISX-208" ,"gb_2312_80-1" ,"JISX-208" ,NULL ,NULL ,NULL ,NULL ,"UTF8"
,"ISO-8859-1" ,"ISO-8859-7" ,"JIS-X-208" ,NULL ,"ibm-955" ,"ibm-367" ,"ibm-952" ,"ibm-949" ,"JISX-212" ,"ibm-1383"
,"ibm-952" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"gb_2312_80-1" ,"ibm-949" ,"ISO-IR-165"
,"CNS-11643-1992,1" ,"CNS-11643-1992,2" ,"CNS-11643-1992,3" ,"CNS-11643-1992,4" ,"CNS-11643-1992,5" ,"CNS-11643-1992,6" ,"CNS-11643-1992,7" ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian"
,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" ,NULL ,"latin1" ,"ibm-912" ,"ibm-913" ,"ibm-914" ,"ibm-813" ,"ibm-1089"
,"ibm-920" ,"ibm-915" ,"ibm-915" ,"latin1"
};
UCNV_TableStates_2022 escSeqStateTable_Value_2022[MAX_STATES_2022] = {
/* 0 1 2 3 4 5 6 7 8 9 */
VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_SS2_SEQUENCE ,VALID_SS3_SEQUENCE ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022
,VALID_MAYBE_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022
,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022
,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022
,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022
,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022
,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022
,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022
};
/*for 2022 looks ahead in the stream
*to determine the longest possible convertible
*data stream
*/
static const char* getEndOfBuffer_2022(const char** source,
const char* sourceLimit,
UBool flush);
/* Type def for refactoring changeState_2022 code*/
typedef enum{
ISO_2022=0,
ISO_2022_JP=1,
ISO_2022_KR=2,
ISO_2022_CN=3
} Variant2022;
/*runs through a state machine to determine the escape sequence - codepage correspondance
*changes the pointer pointed to be _this->extraInfo
*/
static void changeState_2022(UConverter* _this,
const char** source,
const char* sourceLimit,
UBool flush,Variant2022 var,int* plane,
UErrorCode* err);
UCNV_TableStates_2022 getKey_2022(char source,
int32_t* key,
int32_t* offset);
/*********** ISO 2022 Converter Protos ***********/
static void _ISO2022Open(UConverter *cnv, const char *name, const char *locale,uint32_t options, UErrorCode *errorCode);
static void _ISO2022Close(UConverter *converter);
U_CFUNC void _ISO2022Reset(UConverter *converter, UConverterResetChoice choice);
static const char* _ISO2022getName(const UConverter* cnv);
U_CFUNC void _ISO_2022_WriteSub(UConverterFromUnicodeArgs *args, int32_t offsetIndex, UErrorCode *err);
U_CFUNC UConverter * _ISO_2022_SafeClone(const UConverter *cnv, void *stackBuffer, int32_t *pBufferSize, UErrorCode *status);
/************ protos of functions for setting the initial state *********************/
static void setInitialStateToUnicodeJPCN(UConverter* converter,UConverterDataISO2022 *myConverterData);
static void setInitialStateFromUnicodeJPCN(UConverter* converter,UConverterDataISO2022 *myConverterData);
static void setInitialStateToUnicodeKR(UConverter* converter,UConverterDataISO2022 *myConverterData);
static void setInitialStateFromUnicodeKR(UConverter* converter,UConverterDataISO2022 *myConverterData);
/*************** Converter implemenations ******************/
static const UConverterImpl _ISO2022Impl={
UCNV_ISO_2022,
NULL,
NULL,
_ISO2022Open,
_ISO2022Close,
_ISO2022Reset,
T_UConverter_toUnicode_ISO_2022,
T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC,
T_UConverter_fromUnicode_UTF8,
T_UConverter_fromUnicode_UTF8_OFFSETS_LOGIC,
T_UConverter_getNextUChar_ISO_2022,
NULL,
_ISO2022getName,
_ISO_2022_WriteSub,
_ISO_2022_SafeClone
};
const UConverterStaticData _ISO2022StaticData={
sizeof(UConverterStaticData),
"ISO_2022",
2022,
UCNV_IBM,
UCNV_ISO_2022,
1,
4,
{ 0x1a, 0, 0, 0 },
1,
FALSE,
FALSE,
0,
0,
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
};
const UConverterSharedData _ISO2022Data={
sizeof(UConverterSharedData),
~((uint32_t) 0),
NULL,
NULL,
&_ISO2022StaticData,
FALSE,
&_ISO2022Impl,
0
};
/*************JP****************/
static const UConverterImpl _ISO2022JPImpl={
UCNV_ISO_2022,
NULL,
NULL,
_ISO2022Open,
_ISO2022Close,
_ISO2022Reset,
UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC,
UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC,
UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC,
UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC,
NULL,
NULL,
_ISO2022getName,
_ISO_2022_WriteSub,
_ISO_2022_SafeClone
};
const UConverterStaticData _ISO2022JPStaticData={
sizeof(UConverterStaticData),
"ISO_2022_JP",
0,
UCNV_IBM,
UCNV_ISO_2022,
1,
6,
{ 0x1a, 0, 0, 0 },
1,
FALSE,
FALSE,
0,
0,
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
};
const UConverterSharedData _ISO2022JPData={
sizeof(UConverterSharedData),
~((uint32_t) 0),
NULL,
NULL,
&_ISO2022JPStaticData,
FALSE,
&_ISO2022JPImpl,
0
};
/************* KR ***************/
static const UConverterImpl _ISO2022KRImpl={
UCNV_ISO_2022,
NULL,
NULL,
_ISO2022Open,
_ISO2022Close,
_ISO2022Reset,
UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC,
UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC,
UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC,
UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC,
NULL,
NULL,
_ISO2022getName,
_ISO_2022_WriteSub,
_ISO_2022_SafeClone
};
const UConverterStaticData _ISO2022KRStaticData={
sizeof(UConverterStaticData),
"ISO_2022_KR",
0,
UCNV_IBM,
UCNV_ISO_2022,
1,
3,
{ 0x1a, 0, 0, 0 },
1,
FALSE,
FALSE,
0,
0,
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
};
const UConverterSharedData _ISO2022KRData={
sizeof(UConverterSharedData),
~((uint32_t) 0),
NULL,
NULL,
&_ISO2022KRStaticData,
FALSE,
&_ISO2022KRImpl,
0
};
/*************** CN ***************/
static const UConverterImpl _ISO2022CNImpl={
UCNV_ISO_2022,
NULL,
NULL,
_ISO2022Open,
_ISO2022Close,
_ISO2022Reset,
UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC,
UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC,
UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC,
UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC,
NULL,
NULL,
_ISO2022getName,
_ISO_2022_WriteSub,
_ISO_2022_SafeClone
};
const UConverterStaticData _ISO2022CNStaticData={
sizeof(UConverterStaticData),
"ISO_2022_CN",
0,
UCNV_IBM,
UCNV_ISO_2022,
2,
8,
{ 0x1a, 0, 0, 0 },
1,
FALSE,
FALSE,
0,
0,
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
};
const UConverterSharedData _ISO2022CNData={
sizeof(UConverterSharedData),
~((uint32_t) 0),
NULL,
NULL,
&_ISO2022CNStaticData,
FALSE,
&_ISO2022CNImpl,
0
};
/**********/
static void _ISO2022Open(UConverter *cnv, const char *name, const char *locale,uint32_t options, UErrorCode *errorCode){
char myLocale[6]={' ',' ',' ',' ',' ',' '};
cnv->extraInfo = uprv_malloc (sizeof (UConverterDataISO2022));
if(cnv->extraInfo != NULL) {
UConverterDataISO2022 *myConverterData=(UConverterDataISO2022 *) cnv->extraInfo;
myConverterData->currentConverter = NULL;
myConverterData->fromUnicodeConverter = NULL;
myConverterData->currentType= ASCII1;
myConverterData->plane = -1;
myConverterData->key =0;
myConverterData->isFirstBuffer = TRUE;
cnv->fromUnicodeStatus =FALSE;
if(locale){
uprv_strcpy(myLocale,locale);
myConverterData->isLocaleSpecified = TRUE;
}
myConverterData->version= 0;
myConverterData->myConverterArray[0] =NULL;
if(myLocale[0]=='j' && (myLocale[1]=='a'|| myLocale[1]=='p') &&
(myLocale[2]=='_' || myLocale[2]=='\0')){
int len=0;
/* open the required converters and cache them */
myConverterData->myConverterArray[0]= ucnv_open("ASCII", errorCode );
myConverterData->myConverterArray[1]= ucnv_open("ISO8859_1", errorCode);
myConverterData->myConverterArray[2]= ucnv_open("ISO8859_7", errorCode);
myConverterData->myConverterArray[3]= ucnv_open("jisx-201", errorCode);
myConverterData->myConverterArray[4]= ucnv_open("jisx-208", errorCode);
myConverterData->myConverterArray[5]= ucnv_open("jisx-212", errorCode);
myConverterData->myConverterArray[6]= ucnv_open("gb_2312_80-1", errorCode);
myConverterData->myConverterArray[7]= ucnv_open("ksc_5601_1", errorCode);
myConverterData->myConverterArray[8]= ucnv_open("jisx-201", errorCode);
myConverterData->myConverterArray[9]= NULL;
/* initialize the state variables */
setInitialStateToUnicodeJPCN(cnv, myConverterData);
setInitialStateFromUnicodeJPCN(cnv,myConverterData);
/* set the function pointers to appropriate funtions */
cnv->sharedData=(UConverterSharedData*)(&_ISO2022JPData);
uprv_strcpy(myConverterData->locale,"ja");
myConverterData->version =options & UCNV_OPTIONS_VERSION_MASK;
uprv_strcpy(myConverterData->name,"ISO_2022,locale=ja,version=");
len=strlen(myConverterData->name);
myConverterData->name[len-1]=(char)(myConverterData->version+(int)'0');
myConverterData->name[len]='\0';
}
else if(myLocale[0]=='k' && (myLocale[1]=='o'|| myLocale[1]=='r') &&
(myLocale[2]=='_' || myLocale[2]=='\0')){
/* initialize the state variables */
setInitialStateToUnicodeKR(cnv, myConverterData);
setInitialStateFromUnicodeKR(cnv,myConverterData);
if ((options & UCNV_OPTIONS_VERSION_MASK)==1){
myConverterData->version = 1;
myConverterData->currentConverter=myConverterData->fromUnicodeConverter=
ucnv_open("icu-internal-25546",errorCode);
uprv_strcpy(myConverterData->name,"ISO_2022,locale=ko,version=1");
}else{
myConverterData->currentConverter=myConverterData->fromUnicodeConverter = ucnv_open("ibm-949",errorCode);
myConverterData->version = 0;
uprv_strcpy(myConverterData->name,"ISO_2022,locale=ko,version=0");
}
/* set the function pointers to appropriate funtions */
cnv->sharedData=(UConverterSharedData*)&_ISO2022KRData;
cnv->mode=UCNV_SI;
uprv_strcpy(myConverterData->locale,"ko");
}
else if(((myLocale[0]=='z' && myLocale[1]=='h') || (myLocale[0]=='c'&& myLocale[1]=='n'))&&
(myLocale[2]=='_' || myLocale[2]=='\0')){
/* open the required converters and cache them */
myConverterData->myConverterArray[0] = ucnv_open("ASCII",errorCode);
myConverterData->myConverterArray[1] = ucnv_open("gb_2312_80-1",errorCode);
myConverterData->myConverterArray[2] = ucnv_open("iso-ir-165",errorCode);
myConverterData->myConverterArray[3] = ucnv_open("cns-11643-1992",errorCode);
myConverterData->myConverterArray[4] = NULL;
/*initialize the state variables*/
setInitialStateToUnicodeJPCN(cnv, myConverterData);
setInitialStateFromUnicodeJPCN(cnv,myConverterData);
/* set the function pointers to appropriate funtions */
cnv->sharedData=(UConverterSharedData*)&_ISO2022CNData;
uprv_strcpy(myConverterData->locale,"cn");
if ((options & UCNV_OPTIONS_VERSION_MASK)==1){
myConverterData->version = 1;
uprv_strcpy(myConverterData->name,"ISO_2022,locale=cn,version=1");
}else{
uprv_strcpy(myConverterData->name,"ISO_2022,locale=cn,version=0");
myConverterData->version = 0;
}
}
else{
/* append the UTF-8 escape sequence */
cnv->charErrorBufferLength = 3;
cnv->charErrorBuffer[0] = 0x1b;
cnv->charErrorBuffer[1] = 0x25;
cnv->charErrorBuffer[2] = 0x42;
cnv->sharedData=(UConverterSharedData*)&_ISO2022Data;
/* initialize the state variables */
myConverterData->isLocaleSpecified=FALSE;
uprv_strcpy(myConverterData->name,"ISO_2022");
}
} else {
*errorCode = U_MEMORY_ALLOCATION_ERROR;
}
}
static void
_ISO2022Close(UConverter *converter) {
UConverterDataISO2022* myData =(UConverterDataISO2022 *) (converter->extraInfo);
UConverter **array = myData->myConverterArray;
if (converter->extraInfo != NULL) {
/*close the array of converter pointers and free the memory*/
while(*array!=NULL){
if(*array==myData->currentConverter){
myData->currentConverter=NULL;
}
ucnv_close(*array++);
}
if(myData->currentConverter){
ucnv_close(myData->currentConverter);
}
uprv_free (converter->extraInfo);
}
}
U_CFUNC void
_ISO2022Reset(UConverter *converter, UConverterResetChoice choice) {
UConverterDataISO2022 *myConverterData=(UConverterDataISO2022 *) (converter->extraInfo);
if(! myConverterData->isLocaleSpecified){
if(choice<=UCNV_RESET_TO_UNICODE) {
myConverterData->isFirstBuffer = TRUE;
if (converter->mode == UCNV_SO){
ucnv_close (myConverterData->currentConverter);
myConverterData->currentConverter=NULL;
}
}
if(choice!=UCNV_RESET_TO_UNICODE) {
/* re-append UTF-8 escape sequence */
converter->charErrorBufferLength = 3;
converter->charErrorBuffer[0] = 0x1b;
converter->charErrorBuffer[1] = 0x28;
converter->charErrorBuffer[2] = 0x42;
}
}
else {
/* reset the state variables */
if(myConverterData->locale[0] == 'j' || myConverterData->locale[0] == 'c'){
if(choice<=UCNV_RESET_TO_UNICODE) {
setInitialStateToUnicodeJPCN(converter, myConverterData);
}
if(choice!=UCNV_RESET_TO_UNICODE) {
setInitialStateFromUnicodeJPCN(converter,myConverterData);
}
}
else if(myConverterData->locale[0] == 'k'){
if(choice<=UCNV_RESET_TO_UNICODE) {
setInitialStateToUnicodeKR(converter, myConverterData);
}
if(choice!=UCNV_RESET_TO_UNICODE) {
setInitialStateFromUnicodeKR(converter, myConverterData);
}
}
}
}
static const char* _ISO2022getName(const UConverter* cnv){
if(cnv->extraInfo){
UConverterDataISO2022* myData= (UConverterDataISO2022*)cnv->extraInfo;
return myData->name;
}
return NULL;
}
static void setInitialStateToUnicodeJPCN(UConverter* converter,UConverterDataISO2022 *myConverterData ){
myConverterData->toUnicodeCurrentState =ASCII;
myConverterData->currentConverter = NULL;
myConverterData->isFirstBuffer = TRUE;
myConverterData->toUnicodeSaveState = INVALID_STATE;
converter->mode = UCNV_SI;
}
static void setInitialStateFromUnicodeJPCN(UConverter* converter,UConverterDataISO2022 *myConverterData){
myConverterData->fromUnicodeCurrentState= ASCII;
myConverterData->isEscapeAppended=FALSE;
myConverterData->isShiftAppended=FALSE;
myConverterData->isLocaleSpecified=TRUE;
myConverterData->currentType = ASCII1;
converter->fromUnicodeStatus = FALSE;
}
static void setInitialStateToUnicodeKR(UConverter* converter, UConverterDataISO2022 *myConverterData){
myConverterData->isLocaleSpecified=TRUE;
converter->mode = UCNV_SI;
myConverterData->currentConverter = myConverterData->fromUnicodeConverter;
}
static void setInitialStateFromUnicodeKR(UConverter* converter,UConverterDataISO2022 *myConverterData){
/* in ISO-2022-KR the desginator sequence appears only once
* in a file so we append it only once
*/
if( converter->charErrorBufferLength==0){
converter->charErrorBufferLength = 4;
converter->charErrorBuffer[0] = 0x1b;
converter->charErrorBuffer[1] = 0x24;
converter->charErrorBuffer[2] = 0x29;
converter->charErrorBuffer[3] = 0x43;
}
myConverterData->isLocaleSpecified=TRUE;
myConverterData->isShiftAppended=FALSE;
}
/**********************************************************************************
* ISO-2022 Converter
*
*
*/
U_CFUNC UChar32 T_UConverter_getNextUChar_ISO_2022(UConverterToUnicodeArgs* args,
UErrorCode* err){
const char* mySourceLimit;
int plane=0; /*dummy variable*/
UConverterDataISO2022* myData =((UConverterDataISO2022*)(args->converter->extraInfo));
/*Arguments Check*/
if (args->sourceLimit < args->source){
*err = U_ILLEGAL_ARGUMENT_ERROR;
return 0xffff;
}
do{
mySourceLimit = getEndOfBuffer_2022(&(args->source), args->sourceLimit, TRUE);
/*Find the end of the buffer e.g : Next Escape Seq | end of Buffer*/
if (args->converter->mode == UCNV_SO) /*Already doing some conversion*/{
return ucnv_getNextUChar(myData->currentConverter,
&(args->source),
mySourceLimit,
err);
}
/*-Done with buffer with entire buffer
*-Error while converting
*/
changeState_2022(args->converter,
&(args->source),
args->sourceLimit,
TRUE,
ISO_2022,
&plane,
err);
}while(args->source < args->sourceLimit);
return 0xffff;
}
U_CFUNC void T_UConverter_toUnicode_ISO_2022(UConverterToUnicodeArgs *args,
UErrorCode* err){
const char *mySourceLimit;
char const* sourceStart;
UConverter *saveThis;
int plane =0; /*dummy variable*/
UConverterDataISO2022* myData= ((UConverterDataISO2022*)(args->converter->extraInfo));
/*Arguments Check*/
if (U_FAILURE(*err))
return;
if ((args->converter == NULL) || (args->targetLimit < args->target) || (args->sourceLimit < args->source)){
*err = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
do{
/*Find the end of the buffer e.g : Next Escape Seq | end of Buffer*/
mySourceLimit = getEndOfBuffer_2022(&(args->source), args->sourceLimit, args->flush);
if (args->converter->mode == UCNV_SO) /*Already doing some conversion*/{
saveThis = args->converter;
args->offsets = NULL;
args->converter = myData->currentConverter;
ucnv_toUnicode(args->converter,
&args->target,
args->targetLimit,
&args->source,
mySourceLimit,
args->offsets,
args->flush,
err);
args->converter = saveThis;
}
if((myData->isFirstBuffer) && (args->source[0]!=(char)ESC_2022)
&& (myData->currentConverter==NULL)){
saveThis = args->converter;
args->offsets = NULL;
myData->currentConverter = ucnv_open("ASCII",err);
if(U_FAILURE(*err)){
break;
}
args->converter = myData->currentConverter;
ucnv_toUnicode(args->converter,
&args->target,
args->targetLimit,
&args->source,
mySourceLimit,
args->offsets,
args->flush,
err);
args->converter = saveThis;
args->converter->mode = UCNV_SO;
myData->isFirstBuffer=FALSE;
}
/*-Done with buffer with entire buffer
-Error while converting
*/
if (U_FAILURE(*err) || (args->source == args->sourceLimit))
return;
sourceStart = args->source;
changeState_2022(args->converter,
&(args->source),
args->sourceLimit,
TRUE,
ISO_2022,
&plane,
err);
/* args->source = sourceStart; */
}while(args->source < args->sourceLimit);
myData->isFirstBuffer=FALSE;
}
U_CFUNC void T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC(UConverterToUnicodeArgs* args,
UErrorCode* err){
int32_t myOffset=0;
int32_t base = 0;
const char* mySourceLimit;
char const* sourceStart;
UConverter* saveThis;
int plane =0;/*dummy variable*/
UConverterDataISO2022* myData=((UConverterDataISO2022*)(args->converter->extraInfo));
/*Arguments Check*/
if (U_FAILURE(*err))
return;
if ((args->converter == NULL) || (args->targetLimit < args->target) || (args->sourceLimit < args->source)){
*err = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
do{
mySourceLimit = getEndOfBuffer_2022(&(args->source), args->sourceLimit, args->flush);
/*Find the end of the buffer e.g : Next Escape Seq | end of Buffer*/
if (args->converter->mode == UCNV_SO) /*Already doing some conversion*/{
const UChar* myTargetStart = args->target;
saveThis = args->converter;
args->converter = myData->currentConverter;
ucnv_toUnicode(args->converter,
&(args->target),
args->targetLimit,
&(args->source),
mySourceLimit,
args->offsets,
args->flush,
err);
args->converter = saveThis;
{
int32_t lim = args->target - myTargetStart;
int32_t i = 0;
for (i=base; i < lim;i++){
args->offsets[i] += myOffset;
}
base += lim;
}
}
if(myData->isFirstBuffer && args->source[0]!=ESC_2022
&& (myData->currentConverter==NULL)){
const UChar* myTargetStart = args->target;
saveThis = args->converter;
args->offsets = NULL;
myData->currentConverter = ucnv_open("ASCII",err);
if(U_FAILURE(*err)){
break;
}
args->converter = myData->currentConverter;
ucnv_toUnicode(args->converter,
&args->target,
args->targetLimit,
&args->source,
mySourceLimit,
args->offsets,
args->flush,
err);
args->converter = saveThis;
args->converter->mode = UCNV_SO;
myData->isFirstBuffer=FALSE;
/* args->converter = saveThis;*/
{
int32_t lim = args->target - myTargetStart;
int32_t i = 0;
for (i=base; i < lim;i++){
args->offsets[i] += myOffset;
}
base += lim;
}
}
/*-Done with buffer with entire buffer
-Error while converting
*/
if (U_FAILURE(*err) || (args->source == args->sourceLimit))
return;
sourceStart = args->source;
changeState_2022(args->converter,
&(args->source),
args->sourceLimit,
TRUE,
ISO_2022,
&plane,
err);
myOffset += args->source - sourceStart;
}while(mySourceLimit != args->sourceLimit);
}
UCNV_TableStates_2022 getKey_2022(char c,
int32_t* key,
int32_t* offset){
int32_t togo = *key;
int32_t low = 0;
int32_t hi = MAX_STATES_2022;
int32_t oldmid=0;
if (*key == 0){
togo = (int8_t)normalize_esq_chars_2022[(int)c];
}
else{
togo <<= 5;
togo += (int8_t)normalize_esq_chars_2022[(int)c];
}
while (hi != low) /*binary search*/{
register int32_t mid = (hi+low) >> 1; /*Finds median*/
if (mid == oldmid)
break;
if (escSeqStateTable_Key_2022[mid] > togo){
hi = mid;
}
else if (escSeqStateTable_Key_2022[mid] < togo){
low = mid;
}
else /*we found it*/{
*key = togo;
*offset = mid;
return escSeqStateTable_Value_2022[mid];
}
oldmid = mid;
}
*key = 0;
*offset = 0;
return INVALID_2022;
}
/*Checks the characters of the buffer against valid 2022 escape sequences
*if the match we return a pointer to the initial start of the sequence otherwise
*we return sourceLimit
*/
static const char* getEndOfBuffer_2022(const char** source,
const char* sourceLimit,
UBool flush){
const char* mySource = *source;
if (*source >= sourceLimit)
return sourceLimit;
do{
if (*mySource == ESC_2022){
int8_t i;
int32_t key = 0;
int32_t offset;
UCNV_TableStates_2022 value = VALID_NON_TERMINAL_2022;
/* Kludge: I could not
* figure out the reason for validating an escape sequence
* twice - once here and once in changeState_2022().
* is it possible to have an ESC character in a ISO2022
* byte stream which is valid in a code page? Is it legal?
*/
for (i=0;
(mySource+i < sourceLimit)&&(value == VALID_NON_TERMINAL_2022);
i++) {
value = getKey_2022(*(mySource+i), &key, &offset);
}
if (value > 0 || *mySource==ESC_2022)
return mySource;
if ((value == VALID_NON_TERMINAL_2022)&&(!flush) )
return sourceLimit;
}
}while (++mySource < sourceLimit);
return sourceLimit;
}
/*
* From Unicode Callback helper function
*/
static void fromUnicodeCallback(UConverterFromUnicodeArgs* args,const UChar32 sourceChar,const UChar** pSource,
unsigned char** pTarget,int32_t** pOffsets,UConverterCallbackReason reason, UErrorCode* err){
/*variables for callback */
const UChar* saveSource =NULL;
char* saveTarget =NULL;
int32_t* saveOffsets =NULL;
int currentOffset =0;
int saveIndex =0;
int32_t* offsets = *pOffsets;
const UChar* source = *pSource;
unsigned char* target = *pTarget;
if(sourceChar>0xffff){
args->converter->invalidUCharBuffer[args->converter->invalidUCharLength++] =(uint16_t)(((sourceChar)>>10)+0xd7c0);
args->converter->invalidUCharBuffer[args->converter->invalidUCharLength++] =(uint16_t)(((sourceChar)&0x3ff)|0xdc00);
}
else{
args->converter->invalidUCharBuffer[args->converter->invalidUCharLength++] =(UChar)sourceChar;
}
if(offsets)
currentOffset = *(offsets-1)+1;
saveSource = args->source;
saveTarget = args->target;
saveOffsets = args->offsets;
args->target = (char*)target;
args->source = source;
args->offsets = offsets;
/*copies current values for the ErrorFunctor to update */
/*Calls the ErrorFunctor */
args->converter->fromUCharErrorBehaviour ( args->converter->fromUContext,
args,
args->converter->invalidUCharBuffer,
args->converter->invalidUCharLength,
(UChar32) (sourceChar),
reason,
err);
saveIndex = args->target - (char*)target;
if(args->offsets){
args->offsets = saveOffsets;
while(saveIndex-->0){
*offsets = currentOffset;
offsets++;
}
}
target = (unsigned char*)args->target;
*pTarget=target;
*pOffsets=offsets;
args->source=saveSource;
args->target=saveTarget;
args->offsets=saveOffsets;
args->converter->invalidUCharLength = 0;
args->converter->fromUSurrogateLead=0x00;
}
/*
* To Unicode Callback helper function
*/
static void toUnicodeCallback(UConverterToUnicodeArgs* args, const uint32_t sourceChar,const char** pSource,
const uint32_t targetUniChar,UChar** pTarget,UErrorCode* err){
const char *saveSource = args->source;
UChar *saveTarget = args->target;
const char* source = *pSource;
UChar* target = *pTarget;
int32_t *saveOffsets = NULL;
UConverterCallbackReason reason;
int32_t currentOffset;
int32_t saveIndex = target - args->target;
if(sourceChar>0xff){
currentOffset= source - args->source - 2;
args->converter->invalidCharBuffer[args->converter->invalidCharLength++] = (char)(sourceChar>>8);
args->converter->invalidCharBuffer[args->converter->invalidCharLength++] = (char)sourceChar;
}
else{
currentOffset= source - args->source -1;
args->converter->invalidCharBuffer[args->converter->invalidCharLength++] =(char) sourceChar;
}
if(targetUniChar == 0xfffe){
reason = UCNV_UNASSIGNED;
*err = U_INVALID_CHAR_FOUND;
}
else{
reason = UCNV_ILLEGAL;
*err = U_ILLEGAL_CHAR_FOUND;
}
if(args->offsets){
saveOffsets=args->offsets;
args->offsets = args->offsets+(target - args->target);
}
args->target =target;
target =saveTarget;
args->source = source;
args->converter->fromCharErrorBehaviour (
args->converter->toUContext,
args,
args->converter->invalidCharBuffer,
args->converter->invalidCharLength,
reason,
err);
if(args->offsets){
args->offsets = saveOffsets;
for (;saveIndex < (args->target - target);saveIndex++) {
args->offsets[saveIndex] += currentOffset;
}
}
args->converter->invalidCharLength=0;
target=args->target;
*pTarget=target;
args->source = saveSource;
args->target = saveTarget;
}
/**************************************ISO-2022-JP*************************************************/
/************************************** IMPORTANT **************************************************
* The UConverter_fromUnicode_ISO2022_JP converter does not use ucnv_fromUnicode() functions for SBCS,DBCS and
* MBCS; instead, the values are obtained directly by calling _MBCSFromUChar32().
* The converter iterates over each Unicode codepoint
* to obtain the equivalent codepoints from the codepages supported. Since the source buffer is
* processed one char at a time it would make sense to reduce the extra processing a canned converter
* would do as far as possible.
*
* If the implementation of these macros or structure of sharedData struct change in the future, make
* sure that ISO-2022 is also changed.
***************************************************************************************************
*/
/***************************************************************************************************
* Rules for ISO-2022-jp encoding
* (i) Escape sequences must be fully contained within a line they should not
* span new lines or CRs
* (ii) If the last character on a line is represented by two bytes then an ASCII or
* JIS-Roman character escape sequence should follow before the line terminates
* (iii) If the first character on the line is represented by two bytes then a two
* byte character escape sequence should precede it
* (iv) If no escape sequence is encountered then the characters are ASCII
* (v) Latin(ISO-8859-1) and Greek(ISO-8859-7) characters must be designated to G2,
* and invoked with SS2 (ESC N).
* (vi) If there is any G0 designation in text, there must be a switch to
* ASCII or to JIS X 0201-Roman before a space character (but not
* necessarily before "ESC 4/14 2/0" or "ESC N ' '") or control
* characters such as tab or CRLF.
* (vi) Supported encodings:
* ASCII, JISX201, JISX208, JISX212, GB2312, KSC5601, ISO-8859-1,ISO-8859-7
*
* source : RFC-1554
*
* JISX201, JISX208,JISX212 : new .cnv data files created
* KSC5601 : alias to ibm-949 mapping table
* GB2312 : alias to ibm-1386 mapping table
* ISO-8859-1 : Algorithmic implemented as LATIN1 case
* ISO-8859-7 : alisas to ibm-9409 mapping table
*/
#define MAX_VALID_CP_JP 9
static Cnv2022Type myConverterType[MAX_VALID_CP_JP]={
ASCII1,
LATIN1,
SBCS,
SBCS,
DBCS,
DBCS,
DBCS,
DBCS,
SBCS,
};
static StateEnum nextStateArray[5][MAX_VALID_CP_JP]= {
{JISX201 ,INVALID_STATE,INVALID_STATE,JISX208,ASCII,INVALID_STATE,INVALID_STATE,INVALID_STATE,INVALID_STATE},
{JISX201,INVALID_STATE,INVALID_STATE,JISX208,JISX212,ASCII,INVALID_STATE,INVALID_STATE,INVALID_STATE},
{ISO8859_1,ISO8859_7,JISX201,JISX208,JISX212,GB2312,KSC5601,ASCII,INVALID_STATE},
{JISX201,INVALID_STATE,INVALID_STATE,JISX208,JISX212,HWKANA_7BIT,INVALID_STATE,INVALID_STATE,ASCII},
{JISX201,INVALID_STATE,INVALID_STATE,JISX208,JISX212,ASCII,INVALID_STATE,INVALID_STATE,INVALID_STATE},
};
static const char* escSeqChars[MAX_VALID_CP_JP] ={
"\x1B\x28\x42", /* <ESC>(B ASCII */
"\x1B\x2E\x41", /* <ESC>.A ISO-8859-1 */
"\x1B\x2E\x46", /* <ESC>.F ISO-8859-7 */
"\x1B\x28\x4A", /* <ESC>(J JISX-201 */
"\x1B\x24\x42", /* <ESC>$B JISX-208 */
"\x1B\x24\x28\x44", /* <ESC>$(D JISX-212 */
"\x1B\x24\x41", /* <ESC>$A GB2312 */
"\x1B\x24\x28\x43", /* <ESC>$(C KSC5601 */
"\x1B\x28\x49" /* <ESC>(I HWKANA_7BIT */
};
static const int32_t escSeqCharsLen[MAX_VALID_CP_JP] ={
3, /* length of <ESC>(B ASCII */
3, /* length of <ESC>.A ISO-8859-1 */
3, /* length of <ESC>.F ISO-8859-7 */
3, /* length of <ESC>(J JISX-201 */
3, /* length of <ESC>$B JISX-208 */
4, /* length of <ESC>$(D JISX-212 */
3, /* length of <ESC>$A GB2312 */
4, /* length of <ESC>$(C KSC5601 */
3 /* length of <ESC>(I HWKANA_7BIT */
};
/*
* The iteration over various code pages works this way:
* i) Get the currentState from myConverterData->currentState
* ii) Check if the character is mapped to a valid character in the currentState
* Yes -> a) set the initIterState to currentState
* b) remain in this state until an invalid character is found
* No -> a) go to the next code page and find the character
* iii) Before changing the state increment the current state check if the current state
* is equal to the intitIteration state
* Yes -> A character that cannot be represented in any of the supported encodings
* break and return a U_INVALID_CHARACTER error
* No -> Continue and find the character in next code page
*
*
* TODO: Implement a priority technique where the users are allowed to set the priority of code pages
*/
U_CFUNC void UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args, UErrorCode* err){
UConverterDataISO2022 *converterData = (UConverterDataISO2022*)args->converter->extraInfo;
unsigned char* target = (unsigned char*) args->target;
const unsigned char* targetLimit = (const unsigned char*) args->targetLimit;
const UChar* source = args->source;
const UChar* sourceLimit = args->sourceLimit;
int32_t* offsets = args->offsets;
uint32_t targetUniChar = missingCharMarker;
UChar32 sourceChar =0x0000;
const char* escSeq = NULL;
int len =0; /*length of escSeq chars*/
UConverterCallbackReason reason;
/* state variables*/
StateEnum* currentState = &converterData->fromUnicodeCurrentState;
StateEnum initIterState = ASCII;
UConverter** currentConverter = &converterData->fromUnicodeConverter;
Cnv2022Type* currentType = &converterData->currentType;
UConverter** convArray = converterData->myConverterArray;
/* arguments check*/
if ((args->converter == NULL) || (targetLimit < target) || (sourceLimit < source)){
*err = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if(U_FAILURE(*err)){
return;
}
initIterState = *currentState;
/* check if the last codepoint of previous buffer was a lead surrogate*/
if(args->converter->fromUSurrogateLead!=0 && target< targetLimit) {
goto getTrail;
}
while( source < sourceLimit){
*currentConverter = convArray[(*currentConverter==NULL) ? 0 : (int)*currentState];
targetUniChar = missingCharMarker;
if(target < targetLimit){
sourceChar = *(source++);
if(sourceChar > SPACE) {
do{
switch (*currentType){
/* most common case*/
case DBCS:
{
uint32_t value;
if(2 == _MBCSFromUChar32((*currentConverter)->sharedData,
sourceChar, &value, args->converter->useFallback)) {
targetUniChar = (uint16_t)value;
}
}
break;
case ASCII1:
if(sourceChar < 0x7f){
targetUniChar = sourceChar;
}
break;
case SBCS:
targetUniChar = (uint16_t)_MBCSSingleFromUChar32((*currentConverter)->sharedData,
sourceChar, args->converter->useFallback);
/*
* If mySourceChar is unassigned, then _MBCSSingleFromUChar32() returns -1
* which becomes the same as missingCharMarker with the cast to uint16_t.
*/
/* Check if the sourceChar is in the HW Kana range*/
if(0xFF9F-sourceChar<=(0xFF9F-0xFF61)){
if( converterData->version==3){
/*we get a1-df from _MBCSSingleFromUChar32 so subtract 0x80*/
targetUniChar-=0x80;
*currentState = HWKANA_7BIT;
}
else if( converterData->version==4){
*currentState = JISX201;
}
else{
targetUniChar=missingCharMarker;
}
*currentConverter = convArray[(*currentConverter==NULL) ? 0 : (int)*currentState];
*currentType = (Cnv2022Type) myConverterType[*currentState];
}
break;
case LATIN1:
if(sourceChar <= 0x00FF){
targetUniChar = sourceChar;
}
break;
default:
/*not expected */
break;
}
if(targetUniChar==missingCharMarker){
*currentState = nextStateArray[converterData->version][*currentState];
*currentConverter = convArray[(*currentConverter==NULL) ? 0 : (int)*currentState];
*currentType = (Cnv2022Type) myConverterType[*currentState];
}
else
/*got the mapping so break from while loop*/
break;
}while(initIterState != *currentState);
}
else{
targetUniChar = sourceChar;
*currentState = ASCII;
*currentType = (Cnv2022Type) myConverterType[*currentState];
}
if(targetUniChar != missingCharMarker){
if( *currentState != initIterState){
escSeq = escSeqChars[(int)*currentState];
len = escSeqCharsLen[(int)*currentState];
CONCAT_ESCAPE_EX(args, target, targetLimit, offsets, escSeq,len,err);
/* Append SSN for shifting to G2 */
if(*currentState==ISO8859_1 || *currentState==ISO8859_7){
escSeq = UCNV_SS2;
len = UCNV_SS2_LEN;
CONCAT_ESCAPE_EX(args, target, targetLimit,offsets, escSeq,len,err);
}
}
initIterState = *currentState;
/* write the targetUniChar to target */
if(targetUniChar <= 0x00FF){
if( target <targetLimit){
*(target++) = (unsigned char) targetUniChar;
}else{
args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) targetUniChar;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}else{
if(target < targetLimit){
*(target++) =(unsigned char) (targetUniChar>>8);
if(target < targetLimit){
*(target++) =(unsigned char) (targetUniChar);
}else{
args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetUniChar);
*err = U_BUFFER_OVERFLOW_ERROR;
}
}else{
args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetUniChar>>8);
args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetUniChar);
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
/* write the offsets */
if(offsets){
int i = source - args->source-1;
len = 2 - (targetUniChar < 0x00FF);
while(len-->0){
*(offsets++) = i;
}
}
}
else{
/* if we cannot find the character after checking all codepages
* then this is an error
*/
reason = UCNV_UNASSIGNED;
*err = U_INVALID_CHAR_FOUND;
/*check if the char is a First surrogate*/
if(UTF_IS_SURROGATE(sourceChar)) {
if(UTF_IS_SURROGATE_FIRST(sourceChar)) {
args->converter->fromUSurrogateLead=(UChar)sourceChar;
getTrail:
/*look ahead to find the trail surrogate*/
if(source < sourceLimit) {
/* test the following code unit */
UChar trail=(UChar) *source;
if(UTF_IS_SECOND_SURROGATE(trail)) {
source++;
sourceChar=UTF16_GET_PAIR_VALUE(args->converter->fromUSurrogateLead, trail);
args->converter->fromUSurrogateLead=0x00;
reason =UCNV_UNASSIGNED;
/* convert this surrogate code point */
/* exit this condition tree */
} else {
/* this is an unmatched lead code unit (1st surrogate) */
/* callback(illegal) */
reason=UCNV_ILLEGAL;
*err=U_ILLEGAL_CHAR_FOUND;
}
} else {
/* no more input */
*err = U_ZERO_ERROR;
break;
}
} else {
/* this is an unmatched trail code unit (2nd surrogate) */
/* callback(illegal) */
reason=UCNV_ILLEGAL;
*err=U_ILLEGAL_CHAR_FOUND;
}
}
/* Call the callback function*/
fromUnicodeCallback(args,sourceChar,&source,&target,&offsets,reason,err);
initIterState = *currentState;
if (U_FAILURE (*err)){
break;
}
}
} /* end if(myTargetIndex<myTargetLength) */
else{
*err =U_BUFFER_OVERFLOW_ERROR;
break;
}
}/* end while(mySourceIndex<mySourceLength) */
/*If at the end of conversion we are still carrying state information
*flush is TRUE, we can deduce that the input stream is truncated
*/
if (args->converter->fromUSurrogateLead !=0 && (source == sourceLimit) && args->flush){
*err = U_TRUNCATED_CHAR_FOUND;
}
/* Reset the state of converter if we consumed
* the source and flush is true
*/
if( (source == sourceLimit) && args->flush){
setInitialStateFromUnicodeJPCN(args->converter,converterData);
}
/*save the state and return */
args->source = source;
args->target = (char*)target;
}
/*************** to unicode *******************/
/****************************************************************************
* Recognized escape sequences are
* <ESC>(B ASCII
* <ESC>.A ISO-8859-1
* <ESC>.F ISO-8859-7
* <ESC>(J JISX-201
* <ESC>(I JISX-201
* <ESC>$B JISX-208
* <ESC>$@ JISX-208
* <ESC>$(D JISX-212
* <ESC>$A GB2312
* <ESC>$(C KSC5601
*/
static StateEnum nextStateToUnicodeJP[5][MAX_STATES_2022]= {
{
/* 0 1 2 3 4 5 6 7 8 9 */
INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,ASCII ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,JISX201 ,HWKANA_7BIT ,JISX201 ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,JISX208 ,INVALID_STATE ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
},
{
/* 0 1 2 3 4 5 6 7 8 9 */
INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,ASCII ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,JISX201 ,HWKANA_7BIT ,JISX201 ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,JISX208 ,INVALID_STATE ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,JISX212 ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
},
{
/* 0 1 2 3 4 5 6 7 8 9 */
INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,ASCII ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,JISX201 ,HWKANA_7BIT ,JISX201 ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,JISX208 ,GB2312 ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,ISO8859_1 ,ISO8859_7 ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,KSC5601 ,JISX212 ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
},
{
/* 0 1 2 3 4 5 6 7 8 9 */
INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,ASCII ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,JISX201 ,HWKANA_7BIT ,JISX201 ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,JISX208 ,GB2312 ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,ISO8859_1 ,ISO8859_7 ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,KSC5601 ,JISX212 ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
},
{
/* 0 1 2 3 4 5 6 7 8 9 */
INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,ASCII ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,JISX201 ,HWKANA_7BIT ,JISX201 ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,JISX208 ,GB2312 ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,ISO8859_1 ,ISO8859_7 ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,KSC5601 ,JISX212 ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
}
};
U_CFUNC void UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC(UConverterToUnicodeArgs *args,
UErrorCode* err){
char tempBuf[2];
const char *mySource = ( char *) args->source;
UChar *myTarget = args->target;
const char *mySourceLimit = args->sourceLimit;
uint32_t targetUniChar = 0x0000;
uint32_t mySourceChar = 0x0000;
UConverterDataISO2022* myData=(UConverterDataISO2022*)(args->converter->extraInfo);
StateEnum* currentState = &myData->toUnicodeCurrentState;
uint32_t* toUnicodeStatus = &args->converter->toUnicodeStatus;
int plane = 0; /*dummy variable*/
/*Arguments Check*/
if (U_FAILURE(*err))
return;
if ((args->converter == NULL) || (myTarget < args->target) || (mySource < args->source)){
*err = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
while(mySource< args->sourceLimit){
targetUniChar = missingCharMarker;
if(myTarget < args->targetLimit){
mySourceChar= (unsigned char) *mySource++;
/* Consume the escape sequences and ascertain the state */
switch(mySourceChar){
case UCNV_SI:
if(myData->version==3 && *toUnicodeStatus==0x00){
if(myData->toUnicodeSaveState!=INVALID_STATE){
*currentState = (StateEnum) myData->toUnicodeSaveState;
continue;
}
else{
*err =U_ILLEGAL_CHAR_FOUND;
goto CALLBACK;
}
}
else
goto CALLBACK;
case UCNV_SO:
if(myData->version==3 && *toUnicodeStatus==0x00){
myData->toUnicodeSaveState= (int) *currentState;
*currentState = HWKANA_7BIT;
continue;
}
else
goto CALLBACK;
default:
if(myData->key==0){
if(mySourceChar<=SPACE){
if(*toUnicodeStatus== 0x00){
*currentState = ASCII;
}
else
goto CALLBACK;
}
break;
}
case ESC_2022:
if(*toUnicodeStatus== 0x00){
mySource--;
changeState_2022(args->converter,&(mySource),
args->sourceLimit, args->flush,ISO_2022_JP,&plane, err);
/*Invalid or illegal escape sequence */
if(U_SUCCESS(*err)){
continue;
}
else{
args->target = myTarget;
args->source = mySource;
return;
}
}
else
goto CALLBACK;
}
switch(myConverterType[*currentState]){
case ASCII1:
if( mySourceChar < 0x7F){
targetUniChar = (UChar) mySourceChar;
}
else if((uint8_t)(mySourceChar - 0xa1) <= (0xdf - 0xa1) && myData->version==4) {
/* 8-bit halfwidth katakana in any single-byte mode for JIS8 */
targetUniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(myData->myConverterArray[JISX201]->sharedData, mySourceChar);
}
break;
case SBCS:
if((uint8_t)(mySourceChar - 0xa1) <= (0xdf - 0xa1) && myData->version==4) {
/* 8-bit halfwidth katakana in any single-byte mode for JIS8 */
targetUniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(myData->myConverterArray[JISX201]->sharedData, mySourceChar);
}
else if(*currentState==HWKANA_7BIT){
targetUniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(myData->myConverterArray[JISX201]->sharedData, mySourceChar+0x80);
}
else {
targetUniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(myData->currentConverter->sharedData, mySourceChar);
}
break;
case DBCS:
if(*toUnicodeStatus== 0x00){
*toUnicodeStatus= (UChar) mySourceChar;
continue;
}
else{
const char *pBuf;
tempBuf[0] = (char) args->converter->toUnicodeStatus;
tempBuf[1] = (char) mySourceChar;
mySourceChar+= (args->converter->toUnicodeStatus)<<8;
*toUnicodeStatus= 0;
pBuf = tempBuf;
targetUniChar = _MBCSSimpleGetNextUChar(myData->currentConverter->sharedData, &pBuf, tempBuf+2, args->converter->useFallback);
}
break;
case LATIN1:
targetUniChar = (UChar) mySourceChar;
break;
case INVALID_STATE:
*err = U_ILLEGAL_ESCAPE_SEQUENCE;
args->target = myTarget;
args->source = mySource;
return;
default:
/* For non-valid state MBCS and others */
break;
}
if(targetUniChar < 0xfffe){
if(args->offsets){
args->offsets[myTarget - args->target]= mySource - args->source - 2
+(myConverterType[*currentState] <= SBCS);
}
*(myTarget++)=(UChar)targetUniChar;
targetUniChar=missingCharMarker;
}
else{
CALLBACK:
/* Call the callback function*/
toUnicodeCallback(args,mySourceChar,&mySource,targetUniChar,&myTarget,err);
/*args->offsets = saveOffsets;*/
if(U_FAILURE(*err))
break;
}
}
else{
*err =U_BUFFER_OVERFLOW_ERROR;
break;
}
}
if((args->flush==TRUE)
&& (mySource == mySourceLimit)
&& ( *toUnicodeStatus!=0x00)){
*err = U_TRUNCATED_CHAR_FOUND;
*toUnicodeStatus= 0x00;
}
/* Reset the state of converter if we consumed
* the source and flush is true
*/
if( (mySource == mySourceLimit) && args->flush){
setInitialStateToUnicodeJPCN(args->converter,myData);
}
args->target = myTarget;
args->source = mySource;
}
/***************************************************************
* Rules for ISO-2022-KR encoding
* i) The KSC5601 designator sequence should appear only once in a file,
* at the begining of a line before any KSC5601 characters. This usually
* means that it appears by itself on the first line of the file
* ii) There are only 2 shifting sequences SO to shift into double byte mode
* and SI to shift into single byte mode
*/
U_CFUNC void UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(UConverterFromUnicodeArgs* args, UErrorCode* err){
UConverter* saveConv = args->converter;
UConverterDataISO2022 *myConverterData=(UConverterDataISO2022*)args->converter->extraInfo;
args->converter=myConverterData->currentConverter;
_MBCSFromUnicodeWithOffsets(args,err);
if(U_FAILURE(*err)){
if(args->converter->charErrorBufferLength!=0){
uprv_memcpy(saveConv->charErrorBuffer, args->converter->charErrorBuffer,
args->converter->charErrorBufferLength);
saveConv->charErrorBufferLength=args->converter->charErrorBufferLength;
args->converter->charErrorBufferLength=0;
}
if(args->converter->invalidUCharLength!=0){
uprv_memcpy(saveConv->invalidUCharBuffer, args->converter->invalidUCharBuffer,
args->converter->invalidUCharLength);
saveConv->invalidUCharLength=args->converter->invalidUCharLength;
args->converter->invalidCharLength=0;
}
}
args->converter=saveConv;
}
U_CFUNC void UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args, UErrorCode* err){
const UChar *source = args->source;
const UChar *sourceLimit = args->sourceLimit;
unsigned char *target = (unsigned char *) args->target;
unsigned char *targetLimit = (unsigned char *) args->targetLimit;
int32_t* offsets = args->offsets;
uint32_t targetByteUnit = 0x0000;
UChar32 sourceChar = 0x0000;
UBool isTargetByteDBCS = (UBool)args->converter->fromUnicodeStatus;
UBool oldIsTargetByteDBCS = isTargetByteDBCS;
UConverterDataISO2022 *converterData=(UConverterDataISO2022*)args->converter->extraInfo;
UConverterCallbackReason reason;
int32_t length =0;
/*Arguments Check*/
if (U_FAILURE(*err))
return;
if ((args->converter == NULL) || (args->targetLimit < args->target) || (args->sourceLimit < args->source)){
*err = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
/* if the version is 1 then the user is requesting
* conversion with ibm-25546 pass the arguments to
* MBCS converter and return
*/
if(converterData->version==1){
UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(args,err);
return;
}
isTargetByteDBCS = (UBool) args->converter->fromUnicodeStatus;
if(args->converter->fromUSurrogateLead!=0 && target <targetLimit) {
goto getTrail;
}
while(source < sourceLimit){
targetByteUnit = missingCharMarker;
if(target < (unsigned char*) args->targetLimit){
sourceChar = *source++;
length= _MBCSFromUChar32(converterData->fromUnicodeConverter->sharedData,
sourceChar,&targetByteUnit,args->converter->useFallback);
/* only DBCS or SBCS characters are expected*/
/* DB haracters with high bit set to 1 are expected */
if(length > 2 || length==0 ||(((targetByteUnit & 0x8080) != 0x8080)&& length==2)){
targetByteUnit=missingCharMarker;
}
if (targetByteUnit != missingCharMarker){
oldIsTargetByteDBCS = isTargetByteDBCS;
isTargetByteDBCS = (UBool)(targetByteUnit>0x00FF);
/* append the shift sequence */
if (oldIsTargetByteDBCS != isTargetByteDBCS ){
if (isTargetByteDBCS)
*target++ = UCNV_SO;
else
*target++ = UCNV_SI;
if(offsets)
*(offsets++)= source - args->source-1;
}
/* write the targetUniChar to target */
if(targetByteUnit <= 0x00FF){
if( target < targetLimit){
*(target++) = (unsigned char) targetByteUnit;
}else{
args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetByteUnit);
*err = U_BUFFER_OVERFLOW_ERROR;
}
}else{
if(target < targetLimit){
*(target++) =(unsigned char) ((targetByteUnit>>8) -0x80);
if(target < targetLimit){
*(target++) =(unsigned char) (targetByteUnit -0x80);
}else{
args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetByteUnit -0x80);
*err = U_BUFFER_OVERFLOW_ERROR;
}
}else{
args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) ((targetByteUnit>>8) -0x80);
args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetByteUnit-0x80);
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
/* write the offsets */
if(offsets){
int i = source - args->source-1;
int len = 1 + isTargetByteDBCS;
while(len-->0){
*(offsets++) = i;
}
}
}
else{
/* oops.. the code point is unassingned
* set the error and reason
*/
reason =UCNV_UNASSIGNED;
*err =U_INVALID_CHAR_FOUND;
/*check if the char is a First surrogate*/
if(UTF_IS_SURROGATE(sourceChar)) {
if(UTF_IS_SURROGATE_FIRST(sourceChar)) {
args->converter->fromUSurrogateLead=(UChar)sourceChar;
getTrail:
/*look ahead to find the trail surrogate*/
if(source < sourceLimit) {
/* test the following code unit */
UChar trail=(UChar) *source;
if(UTF_IS_SECOND_SURROGATE(trail)) {
source++;
sourceChar=UTF16_GET_PAIR_VALUE(args->converter->fromUSurrogateLead, trail);
args->converter->fromUSurrogateLead=0x00;
reason =UCNV_UNASSIGNED;
/* convert this surrogate code point */
/* exit this condition tree */
} else {
/* this is an unmatched lead code unit (1st surrogate) */
/* callback(illegal) */
reason=UCNV_ILLEGAL;
*err=U_ILLEGAL_CHAR_FOUND;
}
} else {
/* no more input */
*err = U_ZERO_ERROR;
break;
}
} else {
/* this is an unmatched trail code unit (2nd surrogate) */
/* callback(illegal) */
reason=UCNV_ILLEGAL;
*err=U_ILLEGAL_CHAR_FOUND;
}
}
args->converter->fromUnicodeStatus = (int32_t)isTargetByteDBCS;
/* Call the callback function*/
fromUnicodeCallback(args,sourceChar,&source,&target,&offsets,reason,err);
isTargetByteDBCS=(UBool)args->converter->fromUnicodeStatus;
if (U_FAILURE (*err)){
break;
}
}
} /* end if(myTargetIndex<myTargetLength) */
else{
*err =U_BUFFER_OVERFLOW_ERROR;
break;
}
}/* end while(mySourceIndex<mySourceLength) */
/*If at the end of conversion we are still carrying state information
*flush is TRUE, we can deduce that the input stream is truncated
*/
if (args->converter->fromUSurrogateLead !=0 && (source == sourceLimit) && args->flush){
*err = U_TRUNCATED_CHAR_FOUND;
}
/* Reset the state of converter if we consumed
* the source and flush is true
*/
if( (source == sourceLimit) && args->flush){
setInitialStateFromUnicodeKR(args->converter,converterData);
}
/*save the state and return */
args->source = source;
args->target = (char*)target;
args->converter->fromUnicodeStatus = (uint32_t)isTargetByteDBCS;
}
/************************ To Unicode ***************************************/
U_CFUNC void UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(UConverterToUnicodeArgs *args,
UErrorCode* err){
const char* mySourceLimit;
char const* sourceStart;
UConverter* saveThis;
int plane =0; /*dummy variable */
UConverterDataISO2022* myData=(UConverterDataISO2022*)(args->converter->extraInfo);
do{
/*Find the end of the buffer e.g : Next Escape Seq | end of Buffer*/
mySourceLimit = getEndOfBuffer_2022(&(args->source), args->sourceLimit, args->flush);
if (args->converter->mode == UCNV_SO) /*Already doing some conversion*/{
saveThis = args->converter;
args->offsets = NULL;
args->converter = myData->currentConverter;
_MBCSToUnicodeWithOffsets(args,err);
if(U_FAILURE(*err)){
uprv_memcpy(saveThis->invalidUCharBuffer, args->converter->invalidUCharBuffer,
args->converter->invalidUCharLength);
saveThis->invalidUCharLength=args->converter->invalidUCharLength;
}
args->converter = saveThis;
}
/*-Done with buffer with entire buffer
-Error while converting
*/
if (U_FAILURE(*err) || (args->source == args->sourceLimit))
return;
sourceStart = args->source;
changeState_2022(args->converter,
&(args->source),
args->sourceLimit,
TRUE,
ISO_2022_KR,
&plane,
err);
/* args->source = sourceStart; */
}while(args->source < args->sourceLimit);
/* return*/
}
U_CFUNC void UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC(UConverterToUnicodeArgs *args,
UErrorCode* err){
char tempBuf[3];
const char* pBuf;
const char *mySource = ( char *) args->source;
UChar *myTarget = args->target;
char *tempLimit = &tempBuf[2]+1;
const char *mySourceLimit = args->sourceLimit;
UChar32 targetUniChar = 0x0000;
UChar mySourceChar = 0x0000;
UConverterDataISO2022* myData=(UConverterDataISO2022*)(args->converter->extraInfo);
int plane =0; /*dummy variable */
/*Arguments Check*/
if (U_FAILURE(*err))
return;
if ((args->converter == NULL) || (args->targetLimit < args->target) || (args->sourceLimit < args->source)){
*err = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if(myData->version==1){
UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(args,err);
return;
}
while(mySource< args->sourceLimit){
targetUniChar = missingCharMarker;
if(myTarget < args->targetLimit){
mySourceChar= (unsigned char) *mySource++;
switch(mySourceChar){
case UCNV_SI:
myData->currentType = SBCS;
/*consume the source */
continue;
case UCNV_SO:
myData->currentType =DBCS;
/*consume the source */
continue;
default:
/* If we are in the process of consuming an escape sequence
* we fall through execute the the statements of next switch
* tag else we break;
*/
if(myData->key==0){
break;
}
case ESC_2022:
{
/* Already doing some conversion and found escape Sequence*/
if(args->converter->mode == UCNV_SO){
*err = U_ILLEGAL_ESCAPE_SEQUENCE;
}
else{
mySource--;
changeState_2022(args->converter,&(mySource),
args->sourceLimit, args->flush,ISO_2022_KR,&plane, err);
}
if(U_FAILURE(*err)){
args->target = myTarget;
args->source = mySource;
return;
}
continue;
}
}
if(myData->currentType==DBCS){
if(args->converter->toUnicodeStatus == 0x00){
args->converter->toUnicodeStatus = (UChar) mySourceChar;
continue;
}
else{
tempBuf[0] = (char) (args->converter->toUnicodeStatus+0x80);
tempBuf[1] = (char) (mySourceChar+0x80);
mySourceChar = (UChar)(mySourceChar + (args->converter->toUnicodeStatus<<8));
args->converter->toUnicodeStatus =0x00;
pBuf = &tempBuf[0];
tempLimit = &tempBuf[2]+1;
targetUniChar = _MBCSSimpleGetNextUChar(myData->fromUnicodeConverter->sharedData,
&pBuf,tempLimit,args->converter->useFallback);
}
}
else{
if(args->converter->fromUnicodeStatus == 0x00){
tempBuf[0] = (char) mySourceChar;
pBuf = &tempBuf[0];
tempLimit = &tempBuf[1];
targetUniChar = _MBCSSimpleGetNextUChar(myData->currentConverter->sharedData,
&pBuf,tempLimit,args->converter->useFallback);
}
}
if(targetUniChar < 0xfffe){
if(args->offsets)
args->offsets[myTarget - args->target]= mySource - args->source - 1-(myData->currentType==DBCS);
*(myTarget++)=(UChar)targetUniChar;
}
else if(targetUniChar>=0xfffe){
/* Call the callback function*/
toUnicodeCallback(args,mySourceChar,&mySource,targetUniChar,&myTarget,err);
if(U_FAILURE(*err))
break;
}
}
else{
*err =U_BUFFER_OVERFLOW_ERROR;
break;
}
}
if((args->flush==TRUE)
&& (mySource == mySourceLimit)
&& ( args->converter->toUnicodeStatus !=0x00)){
*err = U_TRUNCATED_CHAR_FOUND;
args->converter->toUnicodeStatus = 0x00;
}
/* Reset the state of converter if we consumed
* the source and flush is true
*/
if( (mySource == mySourceLimit) && args->flush){
setInitialStateToUnicodeKR(args->converter,myData);
}
args->target = myTarget;
args->source = mySource;
}
/*************************** END ISO2022-KR *********************************/
/*************************** ISO-2022-CN *********************************
*
* Rules for ISO-2022-CN Encoding:
* i) The desinator sequence must appear once on a line before any instance
* of character set it designates.
* ii) If two lines contain characters from the same character set, both lines
* must include the designator sequence.
* iii) Once the designator sequence is know, a shifting sequnce has to be found
* to invoke the shifting
* iv) All lines start in ASCII and end in ASCII.
* v) Four shifting sequences are employed for this purpose:
*
* Sequcence ASCII Eq Charsets
* ---------- ------- ---------
* SS2 <ESC>N CNS-11643-1992 Planes 3-7
* SS3 <ESC>O CNS-11643-1992 Plane 2
* SI <SI>
* SO <SO> CNS-11643-1992 Plane 1, GB2312,ISO-IR-165
*
* vi)
* SOdesignator : ESC "$" ")" finalchar_for_SO
* SS2designator : ESC "$" "*" finalchar_for_SS2
* SS3designator : ESC "$" "+" finalchar_for_SS3
*
* ESC $ ) A Indicates the bytes following SO are Chinese
* characters as defined in GB 2312-80, until
* another SOdesignation appears
*
*
* ESC $ ) E Indicates the bytes following SO are as defined
* in ISO-IR-165 (for details, see section 2.1),
* until another SOdesignation appears
*
* ESC $ ) G Indicates the bytes following SO are as defined
* in CNS 11643-plane-1, until another
* SOdesignation appears
*
* ESC $ * H Indicates the two bytes immediately following
* SS2 is a Chinese character as defined in CNS
* 11643-plane-2, until another SS2designation
* appears
* (Meaning <ESC>N must preceed every 2 byte
* sequence.)
*
* ESC $ + I Indicates the immediate two bytes following SS3
* is a Chinese character as defined in CNS
* 11643-plane-3, until another SS3designation
* appears
* (Meaning <ESC>O must preceed every 2 byte
* sequence.)
*
* ESC $ + J Indicates the immediate two bytes following SS3
* is a Chinese character as defined in CNS
* 11643-plane-4, until another SS3designation
* appears
* (In English: <ESC>N must preceed every 2 byte
* sequence.)
*
* ESC $ + K Indicates the immediate two bytes following SS3
* is a Chinese character as defined in CNS
* 11643-plane-5, until another SS3designation
* appears
*
* ESC $ + L Indicates the immediate two bytes following SS3
* is a Chinese character as defined in CNS
* 11643-plane-6, until another SS3designation
* appears
*
* ESC $ + M Indicates the immediate two bytes following SS3
* is a Chinese character as defined in CNS
* 11643-plane-7, until another SS3designation
* appears
*
* As in ISO-2022-CN, each line starts in ASCII, and ends in ASCII, and
* has its own designation information before any Chinese characters
* appear
*
*/
/********************** ISO2022-CN Data **************************/
static const char* escSeqCharsCN[10] ={
"\x0F", /* ASCII */
"\x1B\x24\x29\x41", /* GB 2312-80 */
"\x1B\x24\x29\x45", /* ISO-IR-165 */
"\x1B\x24\x29\x47", /* CNS 11643-1992 Plane 1 */
"\x1B\x24\x2A\x48", /* CNS 11643-1992 Plane 2 */
"\x1B\x24\x2B\x49", /* CNS 11643-1992 Plane 3 */
"\x1B\x24\x2B\x4A", /* CNS 11643-1992 Plane 4 */
"\x1B\x24\x2B\x4B", /* CNS 11643-1992 Plane 5 */
"\x1B\x24\x2B\x4C", /* CNS 11643-1992 Plane 6 */
"\x1B\x24\x2B\x4D" /* CNS 11643-1992 Plane 7 */
};
static int escSeqCharsLenCN[10] = {
1, /* length of escSeq for ASCII */
4, /* length of escSeq for GB 2312-80 */
4, /* length of escSeq for ISO-IR-165 */
4, /* length of escSeq for CNS 11643-1992 Plane 1 */
4, /* length of escSeq for CNS 11643-1992 Plane 2 */
4, /* length of escSeq for CNS 11643-1992 Plane 3 */
4, /* length of escSeq for CNS 11643-1992 Plane 4 */
4, /* length of escSeq for CNS 11643-1992 Plane 5 */
4, /* length of escSeq for CNS 11643-1992 Plane 6 */
4 /* length of escSeq for CNS 11643-1992 Plane 7 */
};
static const char* shiftSeqCharsCN[10] ={
"", /* ASCII */
(const char*) "\x0E", /* GB 2312-80 */
(const char*) "\x0E", /* ISO-IR-165 */
(const char*) "\x0E", /* CNS 11643-1992 Plane 1 */
UCNV_SS2, /* CNS 11643-1992 Plane 2 */
UCNV_SS3, /* CNS 11643-1992 Plane 3 */
UCNV_SS3, /* CNS 11643-1992 Plane 4 */
UCNV_SS3, /* CNS 11643-1992 Plane 5 */
UCNV_SS3, /* CNS 11643-1992 Plane 6 */
UCNV_SS3 /* CNS 11643-1992 Plane 7 */
};
static int shiftSeqCharsLenCN[10] ={
0, /* length of shiftSeq for ASCII */
1, /* length of shiftSeq for GB 2312-80 */
1, /* length of shiftSeq for ISO-IR-165 */
1, /* length of shiftSeq for CNS 11643-1992 Plane 1 */
2, /* length of shiftSeq for CNS 11643-1992 Plane 2 */
2, /* length of shiftSeq for CNS 11643-1992 Plane 3 */
2, /* length of shiftSeq for CNS 11643-1992 Plane 4 */
2, /* length of shiftSeq for CNS 11643-1992 Plane 5 */
2, /* length of shiftSeq for CNS 11643-1992 Plane 6 */
2 /* length of shiftSeq for CNS 11643-1992 Plane 7 */
};
typedef enum {
ASCII_1=0,
GB2312_1=1,
ISO_IR_165=2,
CNS_11643=3
} StateEnumCN;
static Cnv2022Type myConverterTypeCN[4]={
ASCII1,
MBCS,
MBCS,
MBCS
};
/*
* TODO: CNS_11643 Mapping table need to be changed for compliance with Unicode 3.1
*
*/
U_CFUNC void UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args, UErrorCode* err){
UConverterDataISO2022 *converterData = (UConverterDataISO2022*)args->converter->extraInfo;
unsigned char* target = (unsigned char*) args->target;
const unsigned char* targetLimit = (const unsigned char*) args->targetLimit;
const UChar* source = args->source;
const UChar* sourceLimit = args->sourceLimit;
int32_t* offsets = args->offsets;
uint32_t targetUniChar = missingCharMarker;
uint32_t sourceChar =0x0000;
const char* escSeq = NULL;
int len =0; /*length of escSeq chars*/
uint32_t targetValue=0;
uint8_t planeVal=0;
UConverterCallbackReason reason;
/* state variables*/
StateEnumCN* currentState = (StateEnumCN*)&converterData->fromUnicodeCurrentState;
StateEnumCN initIterState = ASCII_1;
UConverter** currentConverter = &converterData->fromUnicodeConverter;
UBool* isShiftAppended = &converterData->isShiftAppended;
UBool* isEscapeAppended = &converterData->isEscapeAppended;
int* plane = &converterData->plane;
int lPlane = 0;
/* arguments check*/
if ((args->converter == NULL) || (targetLimit < target) || (sourceLimit < source)){
*err = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if(U_FAILURE(*err)){
return;
}
initIterState = *currentState;
/* check if the last codepoint of previous buffer was a lead surrogate*/
if(args->converter->fromUSurrogateLead!=0 && target< targetLimit) {
goto getTrail;
}
while( source < sourceLimit){
*currentConverter =converterData->myConverterArray[(*currentConverter==NULL) ? 0 : (int)*currentState];
targetUniChar =missingCharMarker;
lPlane =0;
if(target < targetLimit){
sourceChar = *(source++);
/*check if the char is a First surrogate*/
if(UTF_IS_SURROGATE(sourceChar)) {
if(UTF_IS_SURROGATE_FIRST(sourceChar)) {
args->converter->fromUSurrogateLead=(UChar)sourceChar;
getTrail:
/*look ahead to find the trail surrogate*/
if(source < sourceLimit) {
/* test the following code unit */
UChar trail=(UChar) *source;
if(UTF_IS_SECOND_SURROGATE(trail)) {
source++;
sourceChar=UTF16_GET_PAIR_VALUE(args->converter->fromUSurrogateLead, trail);
args->converter->fromUSurrogateLead=0x00;
/* convert this surrogate code point */
/* exit this condition tree */
} else {
/* this is an unmatched lead code unit (1st surrogate) */
/* callback(illegal) */
reason=UCNV_ILLEGAL;
*err=U_ILLEGAL_CHAR_FOUND;
goto callback;
}
} else {
/* no more input */
break;
}
} else {
/* this is an unmatched trail code unit (2nd surrogate) */
/* callback(illegal) */
reason=UCNV_ILLEGAL;
*err=U_ILLEGAL_CHAR_FOUND;
goto callback;
}
}
/* do the conversion */
if(sourceChar == CR || sourceChar == LF){
targetUniChar = sourceChar;
if(*currentState!= ASCII_1){
*currentState = ASCII_1;
*isEscapeAppended = FALSE;
}
}
else{
do{
if(myConverterTypeCN[*currentState] == MBCS){
len= _MBCSFromUChar32((*currentConverter)->sharedData,sourceChar,
&targetValue,args->converter->useFallback);
switch(len){
case 0:
targetUniChar = missingCharMarker;
break;
case 2:
if(( converterData->version) == 0 && *currentState ==ISO_IR_165){
targetUniChar = missingCharMarker;
}else{
targetUniChar = (UChar32) targetValue;
}
break;
case 3:
targetUniChar = (UChar32) targetValue;
planeVal = (uint8_t) ((targetValue)>>16);
if(planeVal >0x80 && planeVal<0x89){
lPlane = (int)(planeVal - 0x80);
targetUniChar -= (planeVal<<16);
}else {
lPlane =-1;
}
if(converterData->version == 0 && lPlane >2){
targetUniChar = missingCharMarker;
}
break;
default:
reason =UCNV_ILLEGAL;
*err =U_INVALID_CHAR_FOUND;
break;
}
}else{
if(sourceChar < 0x7f){
targetUniChar = sourceChar;
}
}
if(targetUniChar==missingCharMarker){
*currentState=(StateEnumCN)((*currentState<3)? *currentState+1:0);
*currentConverter =converterData->myConverterArray[(*currentConverter==NULL) ? 0 : (int)*currentState];
targetUniChar =missingCharMarker;
*isEscapeAppended = FALSE;
*isShiftAppended = FALSE;
}
else
break;
}while(initIterState != *currentState);
}
if(targetUniChar != missingCharMarker){
args->converter->fromUnicodeStatus=(UBool) (*currentState > ASCII_1);
/* Append the escpace sequence */
if(!*isEscapeAppended ||(*plane != lPlane)){
int temp =0;
temp =(*currentState==CNS_11643) ? ((int)*currentState+lPlane-1):(int)*currentState ;
escSeq = escSeqCharsCN[temp];
len =escSeqCharsLenCN[temp];
CONCAT_ESCAPE_EX(args, target, targetLimit, offsets, escSeq,len,err);
*plane=lPlane;
*isEscapeAppended=TRUE;
}
/* Append Shift Sequences */
switch(*currentState){
case ASCII1:
break;
case GB2312_1:
/*falls through */
case ISO_IR_165:
if(!*isShiftAppended){
len =shiftSeqCharsLenCN[*currentState];
escSeq = shiftSeqCharsCN[*currentState];
CONCAT_ESCAPE_EX(args, target, targetLimit, offsets, escSeq,len,err);
*isShiftAppended=TRUE;
}
break;
default:
len =strlen(shiftSeqCharsCN[*currentState+*plane]);
escSeq = shiftSeqCharsCN[*currentState+*plane];
CONCAT_ESCAPE_EX(args, target, targetLimit, offsets, escSeq,len,err);
break;
}
initIterState = *currentState;
/* write the targetUniChar to target */
if(targetUniChar <= 0x00FF){
if( target <targetLimit){
*(target++) = (unsigned char) targetUniChar;
}else{
args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) targetUniChar;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}else{
if(target < targetLimit){
*(target++) =(unsigned char) (targetUniChar>>8);
if(target < targetLimit){
*(target++) =(unsigned char) (targetUniChar);
}else{
args->converter->charErrorBuffer[args->