blob: 01ffd8023dd70f17a910f858e983dda8bb1670a3 [file] [log] [blame]
/*
*******************************************************************************
* Copyright (C) 1996-1999, International Business Machines
* Corporation and others. All Rights Reserved.
*******************************************************************************
*/
#include "unicode/ucol.h"
#include "unicode/uloc.h"
#include "unicode/coll.h"
#include "unicode/tblcoll.h"
#include "unicode/coleitr.h"
#include "unicode/ustring.h"
#include "unicode/normlzr.h"
#include "cpputils.h"
static uint8_t utf16fixup[32] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0x20, 0xf8, 0xf8, 0xf8, 0xf8
};
#include <stdio.h>
#include "ucmp32.h"
#include "tcoldata.h"
#include "tables.h"
#define UCOL_MAX_BUFFER 1000
#define UCOL_WRITABLE_BUFFER_SIZE 256
struct collIterate {
UChar *string; // Original string
UChar *len; // Original string length
UChar *pos; // This is position in the string
uint32_t *toReturn; // This is the CE from CEs buffer that should be returned
uint32_t *CEpos; // This is the position to which we have stored processed CEs
uint32_t CEs[UCOL_MAX_BUFFER]; // This is where we store CEs
UBool isThai; // Have we already encountered a Thai prevowel
UBool isWritable; // is the source buffer writable?
UChar stackWritableBuffer[UCOL_WRITABLE_BUFFER_SIZE]; // A writable buffer.
UChar *writableBuffer;
};
#define UCOL_UNMAPPEDCHARVALUE 0x7fff0000 // from coleiterator
#define UCOL_LEVELTERMINATOR 1
#define UCOL_IGNORABLE 0x0000
#define UCOL_CHARINDEX 0x70000000 // need look up in .commit()
#define UCOL_EXPANDCHARINDEX 0x7E000000 // Expand index follows
#define UCOL_CONTRACTCHARINDEX 0x7F000000 // contract indexes follows
#define UCOL_UNMAPPED 0xFFFFFFFF // unmapped character values
#define UCOL_PRIMARYORDERINCREMENT 0x00010000 // primary strength increment
#define UCOL_SECONDARYORDERINCREMENT 0x00000100 // secondary strength increment
#define UCOL_TERTIARYORDERINCREMENT 0x00000001 // tertiary strength increment
#define UCOL_MAXIGNORABLE 0x00010000 // maximum ignorable char order value
#define UCOL_PRIMARYORDERMASK 0xffff0000 // mask off anything but primary order
#define UCOL_SECONDARYORDERMASK 0x0000ff00 // mask off anything but secondary order
#define UCOL_TERTIARYORDERMASK 0x000000ff // mask off anything but tertiary order
#define UCOL_SECONDARYRESETMASK 0x0000ffff // mask off secondary and tertiary order
#define UCOL_IGNORABLEMASK 0x0000ffff // mask off ignorable char order
#define UCOL_PRIMARYDIFFERENCEONLY 0xffff0000 // use only the primary difference
#define UCOL_SECONDARYDIFFERENCEONLY 0xffffff00 // use only the primary and secondary difference
#define UCOL_PRIMARYORDERSHIFT 16 // primary order shift
#define UCOL_SECONDARYORDERSHIFT 8 // secondary order shift
#define UCOL_SORTKEYOFFSET 2 // minimum sort key offset
#define UCOL_CONTRACTCHAROVERFLOW 0x7FFFFFFF // Indicates the char is a contract char
#define UCOL_PRIMARYORDER(order) (((order) & UCOL_PRIMARYORDERMASK)>> UCOL_PRIMARYORDERSHIFT)
#define UCOL_SECONDARYORDER(order) (((order) & UCOL_SECONDARYORDERMASK)>> UCOL_SECONDARYORDERSHIFT)
#define UCOL_TERTIARYORDER(order) ((order) & UCOL_TERTIARYORDERMASK)
/**
* Determine if a character is a Thai vowel (which sorts after
* its base consonant).
*/
#define UCOL_ISTHAIPREVOWEL(ch) ((uint32_t)(ch) - 0xe40) <= (0xe44 - 0xe40)
/**
* Determine if a character is a Thai base consonant
*/
#define UCOL_ISTHAIBASECONSONANT(ch) ((uint32_t)(ch) - 0xe01) <= (0xe2e - 0xe01)
U_CAPI UCollator*
ucol_open( const char *loc,
UErrorCode *status)
{
if(U_FAILURE(*status)) return 0;
Collator *col = 0;
if(loc == 0)
col = Collator::createInstance(*status);
else
col = Collator::createInstance(Locale(loc), *status);
if(col == 0) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
return (UCollator*)col;
}
U_CAPI UCollator*
ucol_openRules( const UChar *rules,
int32_t rulesLength,
UNormalizationMode mode,
UCollationStrength strength,
UErrorCode *status)
{
if(U_FAILURE(*status)) return 0;
int32_t len = (rulesLength == -1 ? u_strlen(rules) : rulesLength);
const UnicodeString ruleString((UChar*)rules, len, len);
Normalizer::EMode normMode;
switch(mode) {
case UCOL_NO_NORMALIZATION:
normMode = Normalizer::NO_OP;
break;
case UCOL_DECOMP_CAN:
normMode = Normalizer::DECOMP;
break;
case UCOL_DECOMP_COMPAT:
normMode = Normalizer::DECOMP_COMPAT;
break;
case UCOL_DECOMP_CAN_COMP_COMPAT:
normMode = Normalizer::COMPOSE;
break;
case UCOL_DECOMP_COMPAT_COMP_CAN:
normMode = Normalizer::COMPOSE_COMPAT;
break;
default:
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
RuleBasedCollator *col = 0;
col = new RuleBasedCollator(ruleString,
(Collator::ECollationStrength) strength,
normMode,
*status);
if(col == 0) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
return (UCollator*) col;
}
U_CAPI void
ucol_close(UCollator *coll)
{
delete (Collator*)coll;
}
U_CAPI UBool
ucol_greater( const UCollator *coll,
const UChar *source,
int32_t sourceLength,
const UChar *target,
int32_t targetLength)
{
return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
== UCOL_GREATER);
}
U_CAPI UBool
ucol_greaterOrEqual( const UCollator *coll,
const UChar *source,
int32_t sourceLength,
const UChar *target,
int32_t targetLength)
{
return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
!= UCOL_LESS);
}
U_CAPI UBool
ucol_equal( const UCollator *coll,
const UChar *source,
int32_t sourceLength,
const UChar *target,
int32_t targetLength)
{
return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
== UCOL_EQUAL);
}
U_CAPI UCollationStrength
ucol_getStrength(const UCollator *coll)
{
return (UCollationStrength) ((Collator*)coll)->getStrength();
}
U_CAPI void
ucol_setStrength( UCollator *coll,
UCollationStrength strength)
{
((Collator*)coll)->setStrength((Collator::ECollationStrength)strength);
}
U_CAPI UNormalizationMode
ucol_getNormalization(const UCollator* coll)
{
switch(((Collator*)coll)->getDecomposition()) {
case Normalizer::NO_OP:
return UCOL_NO_NORMALIZATION;
case Normalizer::COMPOSE:
return UCOL_DECOMP_COMPAT_COMP_CAN;
case Normalizer::COMPOSE_COMPAT:
return UCOL_DECOMP_CAN_COMP_COMPAT;
case Normalizer::DECOMP:
return UCOL_DECOMP_CAN;
case Normalizer::DECOMP_COMPAT:
return UCOL_DECOMP_COMPAT;
}
return UCOL_NO_NORMALIZATION;
}
U_CAPI void
ucol_setNormalization( UCollator *coll,
UNormalizationMode mode)
{
Normalizer::EMode normMode;
switch(mode) {
case UCOL_NO_NORMALIZATION:
normMode = Normalizer::NO_OP;
break;
case UCOL_DECOMP_CAN:
normMode = Normalizer::DECOMP;
break;
case UCOL_DECOMP_COMPAT:
normMode = Normalizer::DECOMP_COMPAT;
break;
case UCOL_DECOMP_COMPAT_COMP_CAN:
normMode = Normalizer::COMPOSE;
break;
case UCOL_DECOMP_CAN_COMP_COMPAT:
normMode = Normalizer::COMPOSE_COMPAT;
break;
default:
/* Shouldn't get here. */
/* *status = U_ILLEGAL_ARGUMENT_ERROR; */
return;
}
((Collator*)coll)->setDecomposition(normMode);
}
U_CAPI int32_t
ucol_getDisplayName( const char *objLoc,
const char *dispLoc,
UChar *result,
int32_t resultLength,
UErrorCode *status)
{
if(U_FAILURE(*status)) return -1;
UnicodeString dst(result, resultLength, resultLength);
Collator::getDisplayName(Locale(objLoc), Locale(dispLoc), dst);
int32_t actLen;
T_fillOutputParams(&dst, result, resultLength, &actLen, status);
return actLen;
}
U_CAPI const char*
ucol_getAvailable(int32_t index)
{
return uloc_getAvailable(index);
}
U_CAPI int32_t
ucol_countAvailable()
{
return uloc_countAvailable();
}
U_CAPI const UChar*
ucol_getRules( const UCollator *coll,
int32_t *length)
{
const UnicodeString& rules = ((RuleBasedCollator*)coll)->getRules();
*length = rules.length();
return rules.getUChars();
}
/*
void init_collIterate(const UChar *string, int32_t len, collIterate *s, UBool isWritable) {
s->string = s->pos = (UChar *)string;
s->len = (UChar *)string+len;
s->CEpos = s->toReturn = s->CEs;
s->isThai = TRUE;
s->isWritable = isWritable;
s->writableBuffer = s->stackWritableBuffer;
}
*/
#define init_collIterate(sourceString, sourceLen, s, isSourceWritable) { \
(s)->string = (s)->pos = (UChar *)(sourceString); \
(s)->len = (UChar *)(sourceString)+(sourceLen); \
(s)->CEpos = (s)->toReturn = (s)->CEs; \
(s)->isThai = TRUE; \
(s)->isWritable = (isSourceWritable); \
(s)->writableBuffer = (s)->stackWritableBuffer; \
}
/*
int32_t ucol_getNextCE(const UCollator *coll, collIterate *source, UErrorCode *status) {
if (U_FAILURE(*status) || (source->pos>=source->len && source->CEpos <= source->toReturn)) {
return CollationElementIterator::NULLORDER;
}
if (source->CEpos > source->toReturn) {
return(*(source->toReturn++));
}
source->CEpos = source->toReturn = source->CEs;
*(source->CEpos) = ucmp32_get(((RuleBasedCollator *)coll)->data->mapping, *(source->pos));
// this should benefit from reordering of the clauses, so that the cleanest case is returned the first.
if(*(source->CEpos) < UCOL_EXPANDCHARINDEX && !(isThaiPreVowel(*(source->pos)))) {
source->pos++;
return (*(source->CEpos));
}
return getComplicatedCE(coll, source, status);
}
*/
#define UCOL_GETNEXTCE(order, coll, collationSource, status) { \
if (U_FAILURE((status)) || ((collationSource).pos>=(collationSource).len \
&& (collationSource).CEpos <= (collationSource).toReturn)) { \
(order) = UCOL_NULLORDER; \
} else if ((collationSource).CEpos > (collationSource).toReturn) { \
(order) = *((collationSource).toReturn++); \
} else {\
(collationSource).CEpos = (collationSource).toReturn = (collationSource).CEs; \
*((collationSource).CEpos) = ucmp32_get(((RuleBasedCollator *)(coll))->data->mapping, *((collationSource).pos)); \
if(*((collationSource).CEpos) < UCOL_EXPANDCHARINDEX && !(UCOL_ISTHAIPREVOWEL(*((collationSource).pos)))) { \
(collationSource).pos++; \
(order)=(*((collationSource).CEpos)); \
} else { \
(order) = getComplicatedCE((coll), &(collationSource), &(status)); \
} \
} \
}
int32_t getComplicatedCE(const UCollator *coll, collIterate *source, UErrorCode *status) {
if (*(source->CEpos) == UCOL_UNMAPPED) {
// Returned an "unmapped" flag and save the character so it can be
// returned next time this method is called.
if (*(source->pos) == 0x0000) return *(source->pos++); // \u0000 is not valid in C++'s UnicodeString
*(source->CEpos++) = UCOL_UNMAPPEDCHARVALUE;
*(source->CEpos++) = *(source->pos)<<16;
} else {
// Contraction sequence start...
if (*(source->CEpos) >= UCOL_CONTRACTCHARINDEX) {
UChar key[1024];
uint32_t posKey = 0;
VectorOfPToContractElement* list = ((RuleBasedCollator *)coll)->data->contractTable->at(*(source->CEpos)-UCOL_CONTRACTCHARINDEX);
// The upper line obtained a list of contracting sequences.
if (list != NULL) {
EntryPair *pair = (EntryPair *)list->at(0); // Taking out the first one.
int32_t order = pair->value; // This got us mapping for just the first element - the one that signalled a contraction.
key[posKey++] = *(source->pos++);
// This tries to find the longes common match for the data in contraction table...
// and needs to be rewritten, especially the test down there!
int32_t i;
int32_t listSize = list->size();
UBool foundSmaller = TRUE;
while(source->pos<source->len && foundSmaller) {
key[posKey++] = *source->pos;
foundSmaller = FALSE;
i = 0;
while(i<listSize && !foundSmaller) {
pair = list->at(i);
if ((pair != NULL) && (pair->fwd == TRUE /*fwd*/) && (pair->equalTo(key, posKey))) {
/* Found a matching contraction sequence */
order = pair->value; /* change the CE value */
source->pos++; /* consume another char from the source */
foundSmaller = TRUE;
}
i++;
}
}
source->pos--; /* spit back the last char - it wasn't part of the sequence */
*(source->CEpos) = order;
}
}
// Expansion sequence start...
if (*(source->CEpos) >= UCOL_EXPANDCHARINDEX) {
VectorOfInt *v = ((RuleBasedCollator *)coll)->data->expandTable->at(*(source->CEpos)-UCOL_EXPANDCHARINDEX);
if(v != NULL) {
int32_t expandindex=0;
int32_t vSize = v->size();
while(expandindex < vSize) {
*(source->CEpos++) = v->at(expandindex++);
}
}
}
// Thai/Lao reordering
if (UCOL_ISTHAIPREVOWEL(*(source->pos)) &&
UCOL_ISTHAIBASECONSONANT(*(source->pos+1))) {
if(source->isThai == TRUE) {
source->isThai = FALSE;
if((source->len - source->pos) > UCOL_WRITABLE_BUFFER_SIZE) {
// allocate a new buffer
}
UChar *sourceCopy = source->pos;
UChar *targetCopy = source->writableBuffer;
while(sourceCopy < source->len) {
if(UCOL_ISTHAIPREVOWEL(*(sourceCopy)) &&
UCOL_ISTHAIBASECONSONANT(*(sourceCopy+1))) {
*(targetCopy) = *(sourceCopy+1);
*(targetCopy+1) = *(sourceCopy);
targetCopy+=2;
sourceCopy+=2;
} else {
*(targetCopy++) = *(sourceCopy++);
}
}
source->pos = source->writableBuffer;
source->len = targetCopy;
source->CEpos = source->toReturn = source->CEs;
return UCOL_IGNORABLE;
}
}
}
source->pos++;
return (*(source->toReturn++));
}
/* This is the original function */
U_CAPI UCollationResult
ucol_strcollEx( const UCollator *coll,
const UChar *source,
int32_t sourceLength,
const UChar *target,
int32_t targetLength)
{
if (coll == NULL) return UCOL_EQUAL;
if (sourceLength == -1) sourceLength = u_strlen(source);
if (targetLength == -1) targetLength = u_strlen(target);
return (UCollationResult) ((RuleBasedCollator*)coll)->compareEx(source,sourceLength,target,targetLength);
}
struct incrementalContext {
UCharForwardIterator *source;
void *sourceContext;
UChar currentChar;
UChar lastChar;
UChar string[UCOL_MAX_BUFFER]; // Original string
UChar *len; // Original string length
UChar *pos; // This is position in the string
uint32_t *toReturn; // This is the CE from CEs buffer that should be returned
uint32_t *CEpos; // This is the position to which we have stored processed CEs
uint32_t CEs[UCOL_MAX_BUFFER]; // This is where we store CEs
UBool panic; // can't handle it any more - we have to call the cavalry
};
void init_incrementalContext(UCharForwardIterator *source, void *sourceContext, incrementalContext *s) {
s->len = s->pos = s->string ;
s->CEpos = s->toReturn = s->CEs;
s->source = source;
s->sourceContext = sourceContext;
s->currentChar = 0xFFFF;
s->lastChar = 0xFFFF;
s->panic = FALSE;
}
int32_t ucol_getIncrementalCE(const UCollator *coll, incrementalContext *ctx, UErrorCode *status) {
uint32_t order;
if (U_FAILURE(*status) /*|| (ctx->CEpos <= ctx->toReturn)*/) {
return UCOL_NULLORDER;
}
if (ctx->CEpos > ctx->toReturn) {
return(*(ctx->toReturn++));
}
ctx->CEpos = ctx->toReturn = ctx->CEs;
if(ctx->lastChar == 0xFFFF) {
ctx->currentChar = ctx->source(ctx->sourceContext);
*(ctx->len++) = ctx->currentChar;
if(ctx->currentChar == 0xFFFF) {
return UCOL_NULLORDER;
}
} else {
ctx->currentChar = ctx->lastChar;
ctx->lastChar = 0xFFFF;
}
order = ucmp32_get(((RuleBasedCollator *)coll)->data->mapping, ctx->currentChar);
// this should benefit from reordering of the clauses, so that the cleanest case is returned the first.
if(order < UCOL_EXPANDCHARINDEX && !(UCOL_ISTHAIPREVOWEL(ctx->currentChar))) {
return (order);
}
if (order == UCOL_UNMAPPED) {
// Returned an "unmapped" flag and save the character so it can be
// returned next time this method is called.
if (ctx->currentChar == 0x0000) return ctx->currentChar; // \u0000 is not valid in C++'s UnicodeString
//*(ctx->CEpos++) = UCOL_UNMAPPEDCHARVALUE;
order = UCOL_UNMAPPEDCHARVALUE;
*(ctx->CEpos++) = ctx->currentChar<<16;
} else {
// Contraction sequence start...
if (order >= UCOL_CONTRACTCHARINDEX) {
UChar key[1024];
uint32_t posKey = 0;
VectorOfPToContractElement* list = ((RuleBasedCollator *)coll)->data->contractTable->at(order-UCOL_CONTRACTCHARINDEX);
// The upper line obtained a list of contracting sequences.
if (list != NULL) {
EntryPair *pair = (EntryPair *)list->at(0); // Taking out the first one.
order = pair->value; // This got us mapping for just the first element - the one that signalled a contraction.
key[posKey++] = ctx->currentChar;
// This tries to find the longes common match for the data in contraction table...
// and needs to be rewritten, especially the test down there!
int32_t i;
int32_t listSize = list->size();
UBool foundSmaller = TRUE;
UBool endOfString = FALSE;
*(ctx->len++) = ctx->lastChar;
while(!endOfString && foundSmaller) {
endOfString = ((ctx->lastChar = ctx->source(ctx->sourceContext)) == 0xFFFF);
key[posKey++] = ctx->lastChar;
foundSmaller = FALSE;
i = 0;
while(i<listSize && !foundSmaller) {
pair = list->at(i);
if ((pair != NULL) && (pair->fwd == TRUE /*fwd*/) && (pair->equalTo(key, posKey))) {
order = pair->value;
*(ctx->len++) = ctx->lastChar;
foundSmaller = TRUE;
}
i++;
}
}
}
}
// Expansion sequence start...
if (order >= UCOL_EXPANDCHARINDEX) {
VectorOfInt *v = ((RuleBasedCollator *)coll)->data->expandTable->at(order-UCOL_EXPANDCHARINDEX);
if(v != NULL) {
int32_t expandindex=0;
int32_t vSize = v->size();
order = v->at(expandindex++); // first character....
while(expandindex < vSize) {
*(ctx->CEpos++) = v->at(expandindex++);
}
}
}
// Thai/Lao reordering
// This is gonna be way too goofy - so we're gonna bail out and let others do the work...
if (UCOL_ISTHAIPREVOWEL(ctx->currentChar)) {
ctx->panic = TRUE;
return UCOL_NULLORDER;
}
}
return order;
}
UCollationResult alternateIncrementalProcessing(const UCollator *coll, incrementalContext *srcCtx, incrementalContext *trgCtx) {
if(srcCtx->pos == srcCtx->len || *(srcCtx->len-1) != 0xFFFF) {
while((*(srcCtx->len++) = srcCtx->source(srcCtx->sourceContext)) != 0xFFFF);
}
if(trgCtx->pos == trgCtx->len || *(trgCtx->len-1) != 0xFFFF) {
while((*(trgCtx->len++) = trgCtx->source(trgCtx->sourceContext)) != 0xFFFF);
}
return ucol_strcoll(coll, srcCtx->pos, srcCtx->len-srcCtx->pos-1, trgCtx->pos, trgCtx->len-trgCtx->pos-1);
}
/* This is the incremental function */
U_CAPI UCollationResult ucol_strcollinc(const UCollator *coll,
UCharForwardIterator *source, void *sourceContext,
UCharForwardIterator *target, void *targetContext)
{
Collator *cppColl = (Collator*)coll;
UCollationResult result = UCOL_EQUAL;
UErrorCode status = U_ZERO_ERROR;
incrementalContext sColl, tColl;
init_incrementalContext(source, sourceContext, &sColl);
init_incrementalContext(target, targetContext, &tColl);
if(cppColl->getDecomposition() != Normalizer::NO_OP) { // run away screaming!!!!
return alternateIncrementalProcessing(coll, &sColl, &tColl);
}
if (U_FAILURE(status))
{
return UCOL_EQUAL;
}
UColAttributeValue strength = ucol_getAttribute(coll, UCOL_STRENGTH, &status);
uint32_t sOrder=UCOL_NULLORDER, tOrder=UCOL_NULLORDER;
uint32_t pSOrder, pTOrder;
UBool gets = TRUE, gett = TRUE;
UBool initialCheckSecTer = strength >= UCOL_SECONDARY;
UBool checkSecTer = initialCheckSecTer;
UBool checkTertiary = strength >= UCOL_TERTIARY;
UBool checkQuad = strength >= UCOL_QUATERNARY;
UBool isFrenchSec = (cppColl->getAttribute(UCOL_FRENCH_COLLATION, status) == UCOL_ON) && checkSecTer;
if(!isFrenchSec) {
for(;;)
{
// Get the next collation element in each of the strings, unless
// we've been requested to skip it.
if (gets)
{
sOrder = ucol_getIncrementalCE(coll, &sColl, &status);
}
gets = TRUE;
if (gett)
{
tOrder = ucol_getIncrementalCE(coll, &tColl, &status);
}
gett = TRUE;
// If we've hit the end of one of the strings, jump out of the loop
if ((sOrder == UCOL_NULLORDER)||
(tOrder == UCOL_NULLORDER)) {
if(sColl.panic == TRUE || tColl.panic == TRUE) {
return alternateIncrementalProcessing(coll, &sColl, &tColl);
}
break;
}
// If there's no difference at this position, we can skip to the
// next one.
if (sOrder == tOrder)
{
continue;
}
// Compare primary differences first.
pSOrder = UCOL_PRIMARYORDER(sOrder);
pTOrder = UCOL_PRIMARYORDER(tOrder);
if (pSOrder != pTOrder)
{
if (sOrder == 0)
{
// The entire source element is ignorable.
// Skip to the next source element, but don't fetch another target element.
gett = FALSE;
continue;
}
if (tOrder == 0)
{
gets = FALSE;
continue;
}
// The source and target elements aren't ignorable, but it's still possible
// for the primary component of one of the elements to be ignorable....
if (pSOrder == 0) // primary order in source is ignorable
{
// The source's primary is ignorable, but the target's isn't. We treat ignorables
// as a secondary difference, so remember that we found one.
if (checkSecTer)
{
result = UCOL_GREATER; // (strength is SECONDARY) - still need to check for tertiary or quad
checkSecTer = FALSE;
}
// Skip to the next source element, but don't fetch another target element.
gett = FALSE;
}
else if (pTOrder == 0)
{
// record differences - see the comment above.
if (checkSecTer)
{
result = UCOL_LESS; // (strength is SECONDARY) - still need to check for tertiary or quad
checkSecTer = FALSE;
}
// Skip to the next target element, but don't fetch another source element.
gets = FALSE;
}
else
{
// Neither of the orders is ignorable, and we already know that the primary
// orders are different because of the (pSOrder != pTOrder) test above.
// Record the difference and stop the comparison.
if (pSOrder < pTOrder)
{
return UCOL_LESS; // (strength is PRIMARY)
}
return UCOL_GREATER; // (strength is PRIMARY)
}
}
else
{ // else of if ( pSOrder != pTOrder )
// primary order is the same, but complete order is different. So there
// are no base elements at this point, only ignorables (Since the strings are
// normalized)
if (checkSecTer)
{
// a secondary or tertiary difference may still matter
uint32_t secSOrder = UCOL_SECONDARYORDER(sOrder);
uint32_t secTOrder = UCOL_SECONDARYORDER(tOrder);
if (secSOrder != secTOrder)
{
// there is a secondary difference
result = (secSOrder < secTOrder) ? UCOL_LESS : UCOL_GREATER;
// (strength is SECONDARY)
checkSecTer = FALSE;
}
else
{
if (checkTertiary)
{
// a tertiary difference may still matter
uint32_t terSOrder = UCOL_TERTIARYORDER(sOrder);
uint32_t terTOrder = UCOL_TERTIARYORDER(tOrder);
if (terSOrder != terTOrder)
{
// there is a tertiary difference
result = (terSOrder < terTOrder) ? UCOL_LESS : UCOL_GREATER;
// (strength is TERTIARY)
checkTertiary = FALSE;
}
}
}
} // if (checkSecTer)
} // if ( pSOrder != pTOrder )
} // while()
if (sOrder != UCOL_NULLORDER)
{
// (tOrder must be CollationElementIterator::NULLORDER,
// since this point is only reached when sOrder or tOrder is NULLORDER.)
// The source string has more elements, but the target string hasn't.
do
{
if (UCOL_PRIMARYORDER(sOrder) != 0)
{
// We found an additional non-ignorable base character in the source string.
// This is a primary difference, so the source is greater
return UCOL_GREATER; // (strength is PRIMARY)
}
if (UCOL_SECONDARYORDER(sOrder) != 0)
{
// Additional secondary elements mean the source string is greater
if (checkSecTer)
{
result = UCOL_GREATER; // (strength is SECONDARY)
checkSecTer = FALSE;
}
}
sOrder = ucol_getIncrementalCE(coll, &sColl, &status);
}
//while ((sOrder = ucol_getIncrementalCE(coll, &sColl, &status)) != CollationElementIterator::NULLORDER);
while (sOrder != UCOL_NULLORDER);
}
else if (tOrder != UCOL_NULLORDER)
{
// The target string has more elements, but the source string hasn't.
do
{
if (UCOL_PRIMARYORDER(tOrder) != 0)
{
// We found an additional non-ignorable base character in the target string.
// This is a primary difference, so the source is less
return UCOL_LESS; // (strength is PRIMARY)
}
if (UCOL_SECONDARYORDER(tOrder) != 0)
{
// Additional secondary elements in the target mean the source string is less
if (checkSecTer)
{
result = UCOL_LESS; // (strength is SECONDARY)
checkSecTer = FALSE;
}
}
tOrder = ucol_getIncrementalCE(coll, &tColl, &status);
}
while ( tOrder != UCOL_NULLORDER);
//while ((tOrder = ucol_getIncrementalCE(coll, &tColl, &status)) != CollationElementIterator::NULLORDER);
}
} else { //French
// there is a bad situation with French when there is a different number of secondaries...
// If that situation arises (when one primary is ignorable with nonignorable secondary and the other primary is not
// ignorable
// TODO: if the buffer is not big enough, we should use sortkeys
UBool bufferFrenchSec = FALSE;
uint32_t sourceFrenchSec[UCOL_MAX_BUFFER], targetFrenchSec[UCOL_MAX_BUFFER];
uint32_t *sFSBEnd = sourceFrenchSec+UCOL_MAX_BUFFER;
uint32_t *tFSBEnd = targetFrenchSec+UCOL_MAX_BUFFER;
for(;;)
{
// Get the next collation element in each of the strings, unless
// we've been requested to skip it.
if (gets)
{
sOrder = ucol_getIncrementalCE(coll, &sColl, &status);
*(--sFSBEnd) = UCOL_SECONDARYORDER(sOrder);
}
gets = TRUE;
if (gett)
{
tOrder = ucol_getIncrementalCE(coll, &tColl, &status);
*(--tFSBEnd) = UCOL_SECONDARYORDER(tOrder);
}
gett = TRUE;
// If we've hit the end of one of the strings, jump out of the loop
if ((sOrder == UCOL_NULLORDER)||
(tOrder == UCOL_NULLORDER)) {
break;
}
// If there's no difference at this position, we can skip to the
// next one.
if (sOrder == tOrder)
{
continue;
}
// Compare primary differences first.
pSOrder = UCOL_PRIMARYORDER(sOrder);
pTOrder = UCOL_PRIMARYORDER(tOrder);
if (pSOrder != pTOrder)
{
if (sOrder == 0)
{
// The entire source element is ignorable.
// Skip to the next source element, but don't fetch another target element.
gett = FALSE;
continue;
}
if (tOrder == 0)
{
gets = FALSE;
continue;
}
// The source and target elements aren't ignorable, but it's still possible
// for the primary component of one of the elements to be ignorable....
if (pSOrder == 0) // primary order in source is ignorable
{
// The source's primary is ignorable, but the target's isn't. We treat ignorables
// as a secondary difference, so remember that we found one.
if (checkSecTer)
{
bufferFrenchSec = TRUE;
}
// Skip to the next source element, but don't fetch another target element.
gett = FALSE;
}
else if (pTOrder == 0)
{
// record differences - see the comment above.
if (checkSecTer)
{
bufferFrenchSec = TRUE;
}
// Skip to the next target element, but don't fetch another source element.
gets = FALSE;
}
else
{
// Neither of the orders is ignorable, and we already know that the primary
// orders are different because of the (pSOrder != pTOrder) test above.
// Record the difference and stop the comparison.
if (pSOrder < pTOrder)
{
return UCOL_LESS; // (strength is PRIMARY)
}
return UCOL_GREATER; // (strength is PRIMARY)
}
}
else
{ // else of if ( pSOrder != pTOrder )
// primary order is the same, but complete order is different. So there
// are no base elements at this point, only ignorables (Since the strings are
// normalized)
if (checkSecTer)
{
// a secondary or tertiary difference may still matter
uint32_t secSOrder = UCOL_SECONDARYORDER(sOrder);
uint32_t secTOrder = UCOL_SECONDARYORDER(tOrder);
if (secSOrder != secTOrder)
{
// there is a secondary difference
result = (secSOrder < secTOrder) ? UCOL_LESS : UCOL_GREATER;
// (strength is SECONDARY)
checkSecTer = isFrenchSec; // We still want to track the French secondaries
//checkSecTer = FALSE;
}
else
{
if (checkTertiary)
{
// a tertiary difference may still matter
uint32_t terSOrder = UCOL_TERTIARYORDER(sOrder);
uint32_t terTOrder = UCOL_TERTIARYORDER(tOrder);
if (terSOrder != terTOrder)
{
// there is a tertiary difference
result = (terSOrder < terTOrder) ? UCOL_LESS : UCOL_GREATER;
// (strength is TERTIARY)
checkTertiary = FALSE;
}
}
}
} // if (checkSecTer)
} // if ( pSOrder != pTOrder )
} // while()
if (sOrder != UCOL_NULLORDER)
{
// (tOrder must be CollationElementIterator::NULLORDER,
// since this point is only reached when sOrder or tOrder is NULLORDER.)
// The source string has more elements, but the target string hasn't.
do
{
if (UCOL_PRIMARYORDER(sOrder) != 0)
{
// We found an additional non-ignorable base character in the source string.
// This is a primary difference, so the source is greater
return UCOL_GREATER; // (strength is PRIMARY)
}
if (UCOL_SECONDARYORDER(sOrder) != 0)
{
// Additional secondary elements mean the source string is greater
if (checkSecTer)
{
bufferFrenchSec = TRUE;
}
}
sOrder = ucol_getIncrementalCE(coll, &sColl, &status);
*(--sFSBEnd) = UCOL_SECONDARYORDER(sOrder);
}
//while ((sOrder = ucol_getIncrementalCE(coll, &sColl, &status)) != CollationElementIterator::NULLORDER);
while (sOrder != UCOL_NULLORDER);
}
else if (tOrder != UCOL_NULLORDER)
{
// The target string has more elements, but the source string hasn't.
do
{
if (UCOL_PRIMARYORDER(tOrder) != 0)
{
// We found an additional non-ignorable base character in the target string.
// This is a primary difference, so the source is less
return UCOL_LESS; // (strength is PRIMARY)
}
if (UCOL_SECONDARYORDER(tOrder) != 0)
{
// Additional secondary elements in the target mean the source string is less
if (checkSecTer)
{
bufferFrenchSec = TRUE;
}
}
tOrder = ucol_getIncrementalCE(coll, &tColl, &status);
*(--tFSBEnd) = UCOL_SECONDARYORDER(tOrder);
}
while ( tOrder != UCOL_NULLORDER);
}
if(bufferFrenchSec) {
while(sFSBEnd < sourceFrenchSec+UCOL_MAX_BUFFER && tFSBEnd < targetFrenchSec+UCOL_MAX_BUFFER) {
if(*sFSBEnd == *tFSBEnd) {
sFSBEnd++;
tFSBEnd++;
} else if(*sFSBEnd < *tFSBEnd) {
result = UCOL_LESS;
break;
} else {
result = UCOL_GREATER;
break;
}
}
}
}
// For IDENTICAL comparisons, we use a bitwise character comparison
// as a tiebreaker if all else is equal
// NOTE: The java code compares result with 0, and
// puts the result of the string comparison directly into result
if (result == UCOL_EQUAL && strength == UCOL_IDENTICAL)
{
UnicodeString sourceDecomp, targetDecomp;
int8_t comparison;
Normalizer::normalize(UnicodeString(sColl.string, sColl.len-sColl.string-1), ((RuleBasedCollator *)coll)->getDecomposition(),
0, sourceDecomp, status);
Normalizer::normalize(UnicodeString(tColl.string, tColl.len-tColl.string-1), ((RuleBasedCollator *)coll)->getDecomposition(),
0, targetDecomp, status);
comparison = sourceDecomp.compare(targetDecomp);
if (comparison < 0)
{
result = UCOL_LESS;
}
else if (comparison == 0)
{
result = UCOL_EQUAL;
}
else
{
result = UCOL_GREATER;
}
}
return result;
}
/* This is the new function */
U_CAPI UCollationResult
ucol_strcoll( const UCollator *coll,
const UChar *source,
int32_t sourceLength,
const UChar *target,
int32_t targetLength)
{
Collator *cppColl = (Collator*)coll;
// check if source and target are valid strings
if (((source == 0) && (target == 0)) ||
((sourceLength == 0) && (targetLength == 0)))
{
return UCOL_EQUAL;
}
UCollationResult result = UCOL_EQUAL;
UErrorCode status = U_ZERO_ERROR;
UChar normSource[UCOL_MAX_BUFFER], normTarget[UCOL_MAX_BUFFER];
uint32_t normSourceLength = UCOL_MAX_BUFFER, normTargetLength = UCOL_MAX_BUFFER;
collIterate sColl, tColl;
if(cppColl->getDecomposition() == Normalizer::NO_OP) {
init_collIterate(source, sourceLength, &sColl, FALSE);
init_collIterate(target, targetLength, &tColl, FALSE);
} else {
UNormalizationMode normMode = ucol_getNormalization(coll);
normSourceLength = u_normalize(source, sourceLength, normMode, 0, normSource, normSourceLength, &status);
normTargetLength = u_normalize(target, targetLength, normMode, 0, normTarget, normTargetLength, &status);
init_collIterate(normSource, normSourceLength, &sColl, TRUE);
init_collIterate(normTarget, normTargetLength, &tColl, TRUE);
}
if (U_FAILURE(status))
{
return UCOL_EQUAL;
}
UColAttributeValue strength = ucol_getAttribute(coll, UCOL_STRENGTH, &status);
uint32_t sOrder=UCOL_NULLORDER, tOrder=UCOL_NULLORDER;
uint32_t pSOrder, pTOrder;
UBool gets = TRUE, gett = TRUE;
UBool initialCheckSecTer = strength >= UCOL_SECONDARY;
UBool checkSecTer = initialCheckSecTer;
UBool checkTertiary = strength >= UCOL_TERTIARY;
UBool checkQuad = strength >= UCOL_QUATERNARY;
UBool isFrenchSec = (cppColl->getAttribute(UCOL_FRENCH_COLLATION, status) == UCOL_ON) && checkSecTer;
if(!isFrenchSec) {
for(;;)
{
// Get the next collation element in each of the strings, unless
// we've been requested to skip it.
if (gets)
{
UCOL_GETNEXTCE(sOrder, coll, sColl, status);
}
gets = TRUE;
if (gett)
{
UCOL_GETNEXTCE(tOrder, coll, tColl, status);
}
gett = TRUE;
// If we've hit the end of one of the strings, jump out of the loop
if ((sOrder == UCOL_NULLORDER)||
(tOrder == UCOL_NULLORDER)) {
break;
}
// If there's no difference at this position, we can skip to the
// next one.
if (sOrder == tOrder)
{
continue;
}
// Compare primary differences first.
pSOrder = UCOL_PRIMARYORDER(sOrder);
pTOrder = UCOL_PRIMARYORDER(tOrder);
if (pSOrder != pTOrder)
{
if (sOrder == 0)
{
// The entire source element is ignorable.
// Skip to the next source element, but don't fetch another target element.
gett = FALSE;
continue;
}
if (tOrder == 0)
{
gets = FALSE;
continue;
}
// The source and target elements aren't ignorable, but it's still possible
// for the primary component of one of the elements to be ignorable....
if (pSOrder == 0) // primary order in source is ignorable
{
// The source's primary is ignorable, but the target's isn't. We treat ignorables
// as a secondary difference, so remember that we found one.
if (checkSecTer)
{
result = UCOL_GREATER; // (strength is SECONDARY) - still need to check for tertiary or quad
checkSecTer = FALSE;
}
// Skip to the next source element, but don't fetch another target element.
gett = FALSE;
}
else if (pTOrder == 0)
{
// record differences - see the comment above.
if (checkSecTer)
{
result = UCOL_LESS; // (strength is SECONDARY) - still need to check for tertiary or quad
checkSecTer = FALSE;
}
// Skip to the next target element, but don't fetch another source element.
gets = FALSE;
}
else
{
// Neither of the orders is ignorable, and we already know that the primary
// orders are different because of the (pSOrder != pTOrder) test above.
// Record the difference and stop the comparison.
if (pSOrder < pTOrder)
{
return UCOL_LESS; // (strength is PRIMARY)
}
return UCOL_GREATER; // (strength is PRIMARY)
}
}
else
{ // else of if ( pSOrder != pTOrder )
// primary order is the same, but complete order is different. So there
// are no base elements at this point, only ignorables (Since the strings are
// normalized)
if (checkSecTer)
{
// a secondary or tertiary difference may still matter
uint32_t secSOrder = UCOL_SECONDARYORDER(sOrder);
uint32_t secTOrder = UCOL_SECONDARYORDER(tOrder);
if (secSOrder != secTOrder)
{
// there is a secondary difference
result = (secSOrder < secTOrder) ? UCOL_LESS : UCOL_GREATER;
// (strength is SECONDARY)
checkSecTer = FALSE;
}
else
{
if (checkTertiary)
{
// a tertiary difference may still matter
uint32_t terSOrder = UCOL_TERTIARYORDER(sOrder);
uint32_t terTOrder = UCOL_TERTIARYORDER(tOrder);
if (terSOrder != terTOrder)
{
// there is a tertiary difference
result = (terSOrder < terTOrder) ? UCOL_LESS : UCOL_GREATER;
// (strength is TERTIARY)
checkTertiary = FALSE;
}
}
}
} // if (checkSecTer)
} // if ( pSOrder != pTOrder )
} // while()
if (sOrder != UCOL_NULLORDER)
{
// (tOrder must be CollationElementIterator::NULLORDER,
// since this point is only reached when sOrder or tOrder is NULLORDER.)
// The source string has more elements, but the target string hasn't.
do
{
if (UCOL_PRIMARYORDER(sOrder) != 0)
{
// We found an additional non-ignorable base character in the source string.
// This is a primary difference, so the source is greater
return UCOL_GREATER; // (strength is PRIMARY)
}
if (UCOL_SECONDARYORDER(sOrder) != 0)
{
// Additional secondary elements mean the source string is greater
if (checkSecTer)
{
result = UCOL_GREATER; // (strength is SECONDARY)
checkSecTer = FALSE;
}
}
UCOL_GETNEXTCE(sOrder, coll, sColl, status);
}
//while ((sOrder = ucol_getNextCE(coll, &sColl, &status)) != CollationElementIterator::NULLORDER);
while (sOrder != UCOL_NULLORDER);
}
else if (tOrder != UCOL_NULLORDER)
{
// The target string has more elements, but the source string hasn't.
do
{
if (UCOL_PRIMARYORDER(tOrder) != 0)
{
// We found an additional non-ignorable base character in the target string.
// This is a primary difference, so the source is less
return UCOL_LESS; // (strength is PRIMARY)
}
if (UCOL_SECONDARYORDER(tOrder) != 0)
{
// Additional secondary elements in the target mean the source string is less
if (checkSecTer)
{
result = UCOL_LESS; // (strength is SECONDARY)
checkSecTer = FALSE;
}
}
UCOL_GETNEXTCE(tOrder, coll, tColl, status);
}
while ( tOrder != UCOL_NULLORDER);
//while ((tOrder = ucol_getNextCE(coll, &tColl, &status)) != CollationElementIterator::NULLORDER);
}
} else { //French
// there is a bad situation with French when there is a different number of secondaries...
// If that situation arises (when one primary is ignorable with nonignorable secondary and the other primary is not
// ignorable
// TODO: if the buffer is not big enough, we should use sortkeys
UBool bufferFrenchSec = FALSE;
uint32_t sourceFrenchSec[UCOL_MAX_BUFFER], targetFrenchSec[UCOL_MAX_BUFFER];
uint32_t *sFSBEnd = sourceFrenchSec+UCOL_MAX_BUFFER;
uint32_t *tFSBEnd = targetFrenchSec+UCOL_MAX_BUFFER;
for(;;)
{
// Get the next collation element in each of the strings, unless
// we've been requested to skip it.
if (gets)
{
UCOL_GETNEXTCE(sOrder, coll, sColl, status);
*(--sFSBEnd) = UCOL_SECONDARYORDER(sOrder);
}
gets = TRUE;
if (gett)
{
UCOL_GETNEXTCE(tOrder, coll, tColl, status);
*(--tFSBEnd) = UCOL_SECONDARYORDER(tOrder);
}
gett = TRUE;
// If we've hit the end of one of the strings, jump out of the loop
if ((sOrder == UCOL_NULLORDER)||
(tOrder == UCOL_NULLORDER)) {
break;
}
// If there's no difference at this position, we can skip to the
// next one.
if (sOrder == tOrder)
{
continue;
}
// Compare primary differences first.
pSOrder = UCOL_PRIMARYORDER(sOrder);
pTOrder = UCOL_PRIMARYORDER(tOrder);
if (pSOrder != pTOrder)
{
if (sOrder == 0)
{
// The entire source element is ignorable.
// Skip to the next source element, but don't fetch another target element.
gett = FALSE;
continue;
}
if (tOrder == 0)
{
gets = FALSE;
continue;
}
// The source and target elements aren't ignorable, but it's still possible
// for the primary component of one of the elements to be ignorable....
if (pSOrder == 0) // primary order in source is ignorable
{
// The source's primary is ignorable, but the target's isn't. We treat ignorables
// as a secondary difference, so remember that we found one.
if (checkSecTer)
{
bufferFrenchSec = TRUE;
}
// Skip to the next source element, but don't fetch another target element.
gett = FALSE;
}
else if (pTOrder == 0)
{
// record differences - see the comment above.
if (checkSecTer)
{
bufferFrenchSec = TRUE;
}
// Skip to the next target element, but don't fetch another source element.
gets = FALSE;
}
else
{
// Neither of the orders is ignorable, and we already know that the primary
// orders are different because of the (pSOrder != pTOrder) test above.
// Record the difference and stop the comparison.
if (pSOrder < pTOrder)
{
return UCOL_LESS; // (strength is PRIMARY)
}
return UCOL_GREATER; // (strength is PRIMARY)
}
}
else
{ // else of if ( pSOrder != pTOrder )
// primary order is the same, but complete order is different. So there
// are no base elements at this point, only ignorables (Since the strings are
// normalized)
if (checkSecTer)
{
// a secondary or tertiary difference may still matter
uint32_t secSOrder = UCOL_SECONDARYORDER(sOrder);
uint32_t secTOrder = UCOL_SECONDARYORDER(tOrder);
if (secSOrder != secTOrder)
{
// there is a secondary difference
result = (secSOrder < secTOrder) ? UCOL_LESS : UCOL_GREATER;
// (strength is SECONDARY)
checkSecTer = isFrenchSec; // We still want to track the French secondaries
//checkSecTer = FALSE;
}
else
{
if (checkTertiary)
{
// a tertiary difference may still matter
uint32_t terSOrder = UCOL_TERTIARYORDER(sOrder);
uint32_t terTOrder = UCOL_TERTIARYORDER(tOrder);
if (terSOrder != terTOrder)
{
// there is a tertiary difference
result = (terSOrder < terTOrder) ? UCOL_LESS : UCOL_GREATER;
// (strength is TERTIARY)
checkTertiary = FALSE;
}
}
}
} // if (checkSecTer)
} // if ( pSOrder != pTOrder )
} // while()
if (sOrder != UCOL_NULLORDER)
{
// (tOrder must be CollationElementIterator::NULLORDER,
// since this point is only reached when sOrder or tOrder is NULLORDER.)
// The source string has more elements, but the target string hasn't.
do
{
if (UCOL_PRIMARYORDER(sOrder) != 0)
{
// We found an additional non-ignorable base character in the source string.
// This is a primary difference, so the source is greater
return UCOL_GREATER; // (strength is PRIMARY)
}
if (UCOL_SECONDARYORDER(sOrder) != 0)
{
// Additional secondary elements mean the source string is greater
if (checkSecTer)
{
bufferFrenchSec = TRUE;
}
}
UCOL_GETNEXTCE(sOrder, coll, sColl, status);
*(--sFSBEnd) = UCOL_SECONDARYORDER(sOrder);
}
//while ((sOrder = ucol_getNextCE(coll, &sColl, &status)) != CollationElementIterator::NULLORDER);
while (sOrder != UCOL_NULLORDER);
}
else if (tOrder != UCOL_NULLORDER)
{
// The target string has more elements, but the source string hasn't.
do
{
if (UCOL_PRIMARYORDER(tOrder) != 0)
{
// We found an additional non-ignorable base character in the target string.
// This is a primary difference, so the source is less
return UCOL_LESS; // (strength is PRIMARY)
}
if (UCOL_SECONDARYORDER(tOrder) != 0)
{
// Additional secondary elements in the target mean the source string is less
if (checkSecTer)
{
bufferFrenchSec = TRUE;
}
}
UCOL_GETNEXTCE(tOrder, coll, tColl, status);
*(--tFSBEnd) = UCOL_SECONDARYORDER(tOrder);
}
while ( tOrder != UCOL_NULLORDER);
}
if(bufferFrenchSec) {
while(sFSBEnd < sourceFrenchSec+UCOL_MAX_BUFFER && tFSBEnd < targetFrenchSec+UCOL_MAX_BUFFER) {
if(*sFSBEnd == *tFSBEnd) {
sFSBEnd++;
tFSBEnd++;
} else if(*sFSBEnd < *tFSBEnd) {
result = UCOL_LESS;
break;
} else {
result = UCOL_GREATER;
break;
}
}
}
}
// For IDENTICAL comparisons, we use a bitwise character comparison
// as a tiebreaker if all else is equal
// NOTE: The java code compares result with 0, and
// puts the result of the string comparison directly into result
if (result == UCOL_EQUAL && strength == UCOL_IDENTICAL)
{
UnicodeString sourceDecomp, targetDecomp;
int8_t comparison;
Normalizer::normalize(UnicodeString(source, sourceLength), ((RuleBasedCollator *)coll)->getDecomposition(),
0, sourceDecomp, status);
Normalizer::normalize(UnicodeString(target, targetLength), ((RuleBasedCollator *)coll)->getDecomposition(),
0, targetDecomp, status);
comparison = sourceDecomp.compare(targetDecomp);
if (comparison < 0)
{
result = UCOL_LESS;
}
else if (comparison == 0)
{
result = UCOL_EQUAL;
}
else
{
result = UCOL_GREATER;
}
}
return result;
}
/* This is the original sort key function */
U_CAPI int32_t
ucol_getSortKeyEx(const UCollator *coll,
const UChar *source,
int32_t sourceLength,
uint8_t *result,
int32_t resultLength)
{
int32_t count;
const uint8_t* bytes = NULL;
CollationKey key;
int32_t copyLen;
int32_t len = (sourceLength == -1 ? u_strlen(source)
: sourceLength);
// UnicodeString string((UChar*)source, len, len);
UErrorCode status = U_ZERO_ERROR;
((RuleBasedCollator*)coll)->getCollationKeyEx(source, len, key, status);
if(U_FAILURE(status))
return 0;
bytes = key.getByteArray(count);
copyLen = uprv_min(count, resultLength);
uprv_arrayCopy((const int8_t*)bytes, (int8_t*)result, copyLen);
return count;
}
U_CAPI int32_t
ucol_getSortKey(const UCollator *coll,
const UChar *source,
int32_t sourceLength,
uint8_t *result,
int32_t resultLength)
{
uint32_t i = 0; // general purpose counter
UErrorCode status = U_ZERO_ERROR;
uint8_t prim[2*UCOL_MAX_BUFFER], second[UCOL_MAX_BUFFER], tert[UCOL_MAX_BUFFER];
uint8_t *primaries = prim, *secondaries = second, *tertiaries = tert;
UChar normBuffer[2*UCOL_MAX_BUFFER];
UChar *normSource = normBuffer;
int32_t normSourceLen = 2048;
for(i = 0; i<UCOL_MAX_BUFFER; i++) {
prim[i]=second[i]=tert[i]='\0';
}
for(i = UCOL_MAX_BUFFER; i<2*UCOL_MAX_BUFFER; i++) {
prim[i]=normBuffer[i]='\0';
}
int32_t len = (sourceLength == -1 ? u_strlen(source) : sourceLength);
UBool compareSec = (((RuleBasedCollator *)coll)->getStrength() >= Collator::SECONDARY);
UBool compareTer = (((RuleBasedCollator *)coll)->getStrength() >= Collator::TERTIARY);
UBool compareIdent = (((RuleBasedCollator *)coll)->getStrength() == Collator::IDENTICAL);
if(len > UCOL_MAX_BUFFER) {
primaries = (uint8_t *)uprv_malloc(6*len*sizeof(uint8_t));
if(compareSec) {
secondaries = (uint8_t *)uprv_malloc(2*len*sizeof(uint8_t));
}
if(compareTer) {
tertiaries = (uint8_t *)uprv_malloc(2*len*sizeof(uint8_t));
}
}
uint8_t *primstart = primaries;
uint8_t *secstart = secondaries;
uint8_t *terstart = tertiaries;
collIterate s;
init_collIterate((UChar *)source, len, &s, FALSE);
// If we need to normalize, we'll do it all at once at the beggining!
if(((RuleBasedCollator *)coll)->getDecomposition() != Normalizer::NO_OP) {
UnicodeString normalized;
Normalizer::normalize(UnicodeString(source, sourceLength), ((RuleBasedCollator *)coll)->getDecomposition(),
0, normalized, status);
normSourceLen = normalized.length();
if(normSourceLen > UCOL_MAX_BUFFER) {
normSource = (UChar *) uprv_malloc(normSourceLen*sizeof(UChar));
}
normalized.extract(0, normSourceLen, normSource);
normSource[normSourceLen] = 0;
s.string = normSource;
s.pos = normSource;
s.len = normSource+normSourceLen;
}
uint32_t order = 0;
uint16_t primary = 0;
uint8_t secondary = 0;
uint8_t tertiary = 0;
UCOL_GETNEXTCE(order, coll, s, status);
while(order != UCOL_NULLORDER) {
primary = ((order & UCOL_PRIMARYORDERMASK)>> UCOL_PRIMARYORDERSHIFT);
secondary = ((order & UCOL_SECONDARYORDERMASK)>> UCOL_SECONDARYORDERSHIFT);
tertiary = (order & UCOL_TERTIARYORDERMASK);
if(primary != UCOL_IGNORABLE) {
*(primaries++) = (primary>>8)+UCOL_SORTKEYOFFSET;
*(primaries++) = (primary&0xFF)+UCOL_SORTKEYOFFSET;
if(compareSec) {
*(secondaries++) = secondary+UCOL_SORTKEYOFFSET;
}
if(compareTer) {
*(tertiaries++) = tertiary+UCOL_SORTKEYOFFSET;
}
} else { // original implementation offsets this with some extra...
if(compareSec && secondary != 0) {
*(secondaries++) = secondary+UCOL_SORTKEYOFFSET;
}
if(compareTer && tertiary != 0) {
*(tertiaries++) = tertiary+UCOL_SORTKEYOFFSET;
}
}
UCOL_GETNEXTCE(order, coll, s, status);
}
if(compareSec) {
*(primaries++) = UCOL_LEVELTERMINATOR;
uint32_t secsize = secondaries-secstart;
if(ucol_getAttribute(coll, UCOL_FRENCH_COLLATION, &status) == UCOL_ON) { // do the reverse copy
for(i = 0; i<secsize; i++) {
*(primaries++) = *(secondaries-i-1);
}
} else {
uprv_memcpy(primaries, secstart, secsize);
primaries += secsize;
}
}
if(compareTer) {
*(primaries++) = UCOL_LEVELTERMINATOR;
uint32_t tersize = tertiaries - terstart;
uprv_memcpy(primaries, terstart, tersize);
primaries += tersize;
}
if(compareIdent) {
*(primaries++) = UCOL_LEVELTERMINATOR;
UChar *ident = s.string;
while(ident < s.len) {
*(primaries++) = (*(ident) >> 8) + utf16fixup[*(ident) >> 11];
*(primaries++) = (*(ident) & 0xFF);
ident++;
}
}
*(primaries++) = '\0';
uprv_memcpy(result, primstart, uprv_min(resultLength, (primaries-primstart)));
if(terstart != tert) {
uprv_free(terstart);
}
if(secstart != second) {
uprv_free(secstart);
}
if(primstart != prim) {
uprv_free(primstart);
}
if(normSource != normBuffer) {
uprv_free(normSource);
}
return primaries-primstart;
}
U_CAPI int32_t
ucol_keyHashCode( const uint8_t* key,
int32_t length)
{
CollationKey newKey(key, length);
return newKey.hashCode();
}
UCollationElements*
ucol_openElements( const UCollator *coll,
const UChar *text,
int32_t textLength,
UErrorCode *status)
{
int32_t len = (textLength == -1 ? u_strlen(text) : textLength);
const UnicodeString src((UChar*)text, len, len);
CollationElementIterator *iter = 0;
iter = ((RuleBasedCollator*)coll)->createCollationElementIterator(src);
if(iter == 0) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
return (UCollationElements*) iter;
}
U_CAPI void
ucol_closeElements(UCollationElements *elems)
{
delete (CollationElementIterator*)elems;
}
U_CAPI void
ucol_reset(UCollationElements *elems)
{
((CollationElementIterator*)elems)->reset();
}
U_CAPI int32_t
ucol_next( UCollationElements *elems,
UErrorCode *status)
{
if(U_FAILURE(*status)) return UCOL_NULLORDER;
return ((CollationElementIterator*)elems)->next(*status);
}
U_CAPI int32_t
ucol_previous( UCollationElements *elems,
UErrorCode *status)
{
if(U_FAILURE(*status)) return UCOL_NULLORDER;
return ((CollationElementIterator*)elems)->previous(*status);
}
U_CAPI int32_t
ucol_getMaxExpansion( const UCollationElements *elems,
int32_t order)
{
return ((CollationElementIterator*)elems)->getMaxExpansion(order);
}
U_CAPI void
ucol_setText(UCollationElements *elems,
const UChar *text,
int32_t textLength,
UErrorCode *status)
{
if(U_FAILURE(*status)) return;
int32_t len = (textLength == -1 ? u_strlen(text) : textLength);
const UnicodeString src((UChar*)text, len, len);
((CollationElementIterator*)elems)->setText(src, *status);
}
U_CAPI UTextOffset
ucol_getOffset(const UCollationElements *elems)
{
return ((CollationElementIterator*)elems)->getOffset();
}
U_CAPI void
ucol_setOffset( UCollationElements *elems,
UTextOffset offset,
UErrorCode *status)
{
if(U_FAILURE(*status)) return;
((CollationElementIterator*)elems)->setOffset(offset, *status);
}
U_CAPI void
ucol_getVersion(const UCollator* coll,
UVersionInfo versionInfo)
{
((Collator*)coll)->getVersion(versionInfo);
}
U_CAPI uint8_t *
ucol_cloneRuleData(UCollator *coll, int32_t *length, UErrorCode *status)
{
return ((RuleBasedCollator*)coll)->cloneRuleData(*length,*status);
}
U_CAPI void ucol_setAttribute(UCollator *coll, UColAttribute attr, UColAttributeValue value, UErrorCode *status) {
((RuleBasedCollator *)coll)->setAttribute(attr, value, *status);
}
U_CAPI UColAttributeValue ucol_getAttribute(const UCollator *coll, UColAttribute attr, UErrorCode *status) {
return (((RuleBasedCollator *)coll)->getAttribute(attr, *status));
}
U_CAPI UCollator *ucol_safeClone(const UCollator *coll, void *stackBuffer, uint32_t bufferSize, UErrorCode *status) {
*status = U_UNSUPPORTED_ERROR;
return NULL;
}
U_CAPI int32_t ucol_getRulesEx(const UCollator *coll, UColRuleOption delta, UChar *buffer, int32_t bufferLen) {
return 0;
}