blob: dbeb8f8862c7f7e2efcc7f0da6de107851d5469f [file] [log] [blame]
/*
*******************************************************************************
* Copyright (C) 1996-2000, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*
* $Source: /xsrl/Nsvn/icu/icu4j/src/com/ibm/text/Attic/TransliterationRule.java,v $
* $Date: 2001/10/25 23:22:15 $
* $Revision: 1.33 $
*
*****************************************************************************************
*/
package com.ibm.text;
import com.ibm.util.Utility;
/**
* A transliteration rule used by
* <code>RuleBasedTransliterator</code>.
* <code>TransliterationRule</code> is an immutable object.
*
* <p>A rule consists of an input pattern and an output string. When
* the input pattern is matched, the output string is emitted. The
* input pattern consists of zero or more characters which are matched
* exactly (the key) and optional context. Context must match if it
* is specified. Context may be specified before the key, after the
* key, or both. The key, preceding context, and following context
* may contain variables. Variables represent a set of Unicode
* characters, such as the letters <i>a</i> through <i>z</i>.
* Variables are detected by looking up each character in a supplied
* variable list to see if it has been so defined.
*
* <p>A rule may contain segments in its input string and segment references in
* its output string. A segment is a substring of the input pattern, indicated
* by an offset and limit. The segment may span the preceding or following
* context. A segment reference is a special character in the output string
* that causes a segment of the input string (not the input pattern) to be
* copied to the output string. The range of special characters that represent
* segment references is defined by RuleBasedTransliterator.Data.
*
* <p>Example: The rule "([a-z]) . ([0-9]) > $2 . $1" will change the input
* string "abc.123" to "ab1.c23".
*
* <p>Copyright &copy; IBM Corporation 1999. All rights reserved.
*
* @author Alan Liu
* @version $RCSfile: TransliterationRule.java,v $ $Revision: 1.33 $ $Date: 2001/10/25 23:22:15 $
*/
class TransliterationRule {
/**
* The string that must be matched, consisting of the anteContext, key,
* and postContext, concatenated together, in that order. Some components
* may be empty (zero length).
* @see anteContextLength
* @see keyLength
*/
private String pattern;
/**
* The string that is emitted if the key, anteContext, and postContext
* are matched.
*/
private String output;
/**
* An array of integers encoding the position of the segments.
* See RuleBasedTransliterator.Segments for more details.
*/
int[] segments;
/**
* A value we compute from segments. The first index into segments[]
* that is >= anteContextLength. That is, the first one that is within
* the forward scanned part of the pattern -- the key or the postContext.
* If there are no segments, this has the value -1. This index is relative
* to FIRST_SEG_POS_INDEX; that is, it should be used as follows:
* segments[FIRST_SEG_POS_INDEX + firstKeySeg].
*/
int firstKeySeg;
/**
* The length of the string that must match before the key. If
* zero, then there is no matching requirement before the key.
* Substring [0,anteContextLength) of pattern is the anteContext.
*/
private int anteContextLength;
/**
* The length of the key. Substring [anteContextLength,
* anteContextLength + keyLength) is the key.
*/
private int keyLength;
/**
* The position of the cursor after emitting the output string, from 0 to
* output.length(). For most rules with no special cursor specification,
* the cursorPos is output.length().
*/
private int cursorPos;
/**
* Miscellaneous attributes.
*/
byte flags;
/**
* Flag attributes.
*/
static final int ANCHOR_START = 1;
static final int ANCHOR_END = 2;
/**
* An alias pointer to the data for this rule. The data provides
* lookup services for matchers and segments.
*/
private final RuleBasedTransliterator.Data data;
/**
* The character at index i, where i < contextStart || i >= contextLimit,
* is ETHER. This allows explicit matching by rules and UnicodeSets
* of text outside the context. In traditional terms, this allows anchoring
* at the start and/or end.
*/
static final char ETHER = '\uFFFF';
private static final char APOSTROPHE = '\'';
private static final char BACKSLASH = '\\';
// Macros for accessing the array of integers encoding the position of
// the segments. See RuleBasedTransliterator.Segments for more details.
// SEGMENTS_COUNT number of segments, n (half the number of parens)
// SEGMENTS_LEN length of the segments array (number of elements)
// SEGMENTS_POS position in 'pattern' of parenthesis i, where i=0..2n-1
// SEGMENTS_NUM index into segments to access POS of $1.open,
// $1.close, $2.open, $2.close,.., $n.open, $n.close
// Relative to FIRST_SEG_POS_INDEX. Ranges from 0..2n-1.
static final int FIRST_SEG_POS_INDEX = 2;
static final int SEGMENTS_COUNT(int[] x) { return x[0]; }
static final int SEGMENTS_LEN(int[] x) { return (SEGMENTS_COUNT(x)*4+4); }
static final int SEGMENTS_POS(int[] x,int i) { return x[FIRST_SEG_POS_INDEX+i]; }
static final int SEGMENTS_NUM(int[] x,int i) { return x[x[1]+i]-FIRST_SEG_POS_INDEX; }
private static final String COPYRIGHT =
"\u00A9 IBM Corporation 1999-2001. All rights reserved.";
/**
* Construct a new rule with the given input, output text, and other
* attributes. A cursor position may be specified for the output text.
* @param input input string, including key and optional ante and
* post context
* @param anteContextPos offset into input to end of ante context, or -1 if
* none. Must be <= input.length() if not -1.
* @param postContextPos offset into input to start of post context, or -1
* if none. Must be <= input.length() if not -1, and must be >=
* anteContextPos.
* @param output output string
* @param cursorPos offset into output at which cursor is located, or -1 if
* none. If less than zero, then the cursor is placed after the
* <code>output</code>; that is, -1 is equivalent to
* <code>output.length()</code>. If greater than
* <code>output.length()</code> then an exception is thrown.
* @param cursorOffset an offset to be added to cursorPos to position the
* cursor either in the ante context, if < 0, or in the post context, if >
* 0. For example, the rule "abc{def} > | @@@ xyz;" changes "def" to
* "xyz" and moves the cursor to before "a". It would have a cursorOffset
* of -3.
* @param segs array of 2n integers. Each of n pairs consists of offset,
* limit for a segment of the input string. Characters in the output string
* refer to these segments if they are in a special range determined by the
* associated RuleBasedTransliterator.Data object. May be null if there are
* no segments. The caller is responsible for validating that segments
* are well-formed.
* @param anchorStart true if the the rule is anchored on the left to
* the context start
* @param anchorEnd true if the rule is anchored on the right to the
* context limit
*/
public TransliterationRule(String input,
int anteContextPos, int postContextPos,
String output,
int cursorPos, int cursorOffset,
int[] segs,
boolean anchorStart, boolean anchorEnd,
RuleBasedTransliterator.Data theData) {
data = theData;
// Do range checks only when warranted to save time
if (anteContextPos < 0) {
anteContextLength = 0;
} else {
if (anteContextPos > input.length()) {
throw new IllegalArgumentException("Invalid ante context");
}
anteContextLength = anteContextPos;
}
if (postContextPos < 0) {
keyLength = input.length() - anteContextLength;
} else {
if (postContextPos < anteContextLength ||
postContextPos > input.length()) {
throw new IllegalArgumentException("Invalid post context");
}
keyLength = postContextPos - anteContextLength;
}
if (cursorPos < 0) {
cursorPos = output.length();
}
if (cursorPos > output.length()) {
throw new IllegalArgumentException("Invalid cursor position");
}
this.cursorPos = cursorPos + cursorOffset;
this.output = output;
// We don't validate the segments array. The caller must
// guarantee that the segments are well-formed.
this.segments = segs;
// Find the position of the first segment index that is after the
// anteContext (in the key). Note that this may be a start or a
// limit index. If all segments are in the ante context,
// firstKeySeg should point past the last segment -- that is, it
// should point at the end marker, which is -1. This allows the
// code to back up by one to obtain the last ante context segment.
firstKeySeg = -1;
if (segments != null) {
firstKeySeg = FIRST_SEG_POS_INDEX;
while (segments[firstKeySeg] >= 0 &&
segments[firstKeySeg] < anteContextLength) {
++firstKeySeg;
}
firstKeySeg -= FIRST_SEG_POS_INDEX; // make relative to FSPI
}
pattern = input;
flags = 0;
if (anchorStart) {
flags |= ANCHOR_START;
}
if (anchorEnd) {
flags |= ANCHOR_END;
}
}
/**
* Return the position of the cursor within the output string.
* @return a value from 0 to <code>getOutput().length()</code>, inclusive.
*/
public int getCursorPos() {
return cursorPos;
}
/**
* Return the preceding context length. This method is needed to
* support the <code>Transliterator</code> method
* <code>getMaximumContextLength()</code>.
*/
public int getAnteContextLength() {
return anteContextLength + (((flags & ANCHOR_START) != 0) ? 1 : 0);
}
/**
* Internal method. Returns 8-bit index value for this rule.
* This is the low byte of the first character of the key,
* unless the first character of the key is a set. If it's a
* set, or otherwise can match multiple keys, the index value is -1.
*/
final int getIndexValue() {
if (anteContextLength == pattern.length()) {
// A pattern with just ante context {such as foo)>bar} can
// match any key.
return -1;
}
int c = UTF16.charAt(pattern, anteContextLength);
return data.lookup(c) == null ? (c & 0xFF) : -1;
}
/**
* Internal method. Returns true if this rule matches the given
* index value. The index value is an 8-bit integer, 0..255,
* representing the low byte of the first character of the key.
* It matches this rule if it matches the first character of the
* key, or if the first character of the key is a set, and the set
* contains any character with a low byte equal to the index
* value. If the rule contains only ante context, as in foo)>bar,
* then it will match any key.
*/
final boolean matchesIndexValue(int v) {
if (anteContextLength == pattern.length()) {
// A pattern with just ante context {such as foo)>bar} can
// match any key.
return true;
}
int c = UTF16.charAt(pattern, anteContextLength);
UnicodeMatcher matcher = data.lookup(c);
return matcher == null ? (c & 0xFF) == v :
matcher.matchesIndexValue(v);
}
/**
* Return true if this rule masks another rule. If r1 masks r2 then
* r1 matches any input string that r2 matches. If r1 masks r2 and r2 masks
* r1 then r1 == r2. Examples: "a>x" masks "ab>y". "a>x" masks "a[b]>y".
* "[c]a>x" masks "[dc]a>y".
*/
public boolean masks(TransliterationRule r2) {
/* Rule r1 masks rule r2 if the string formed of the
* antecontext, key, and postcontext overlaps in the following
* way:
*
* r1: aakkkpppp
* r2: aaakkkkkpppp
* ^
*
* The strings must be aligned at the first character of the
* key. The length of r1 to the left of the alignment point
* must be <= the length of r2 to the left; ditto for the
* right. The characters of r1 must equal (or be a superset
* of) the corresponding characters of r2. The superset
* operation should be performed to check for UnicodeSet
* masking.
*
* Anchors: Two patterns that differ only in anchors only
* mask one another if they are exactly equal, and r2 has
* all the anchors r1 has (optionally, plus some). Here Y
* means the row masks the column, N means it doesn't.
*
* ab ^ab ab$ ^ab$
* ab Y Y Y Y
* ^ab N Y N Y
* ab$ N N Y Y
* ^ab$ N N N Y
*
* Post context: {a}b masks ab, but not vice versa, since {a}b
* matches everything ab matches, and {a}b matches {|a|}b but ab
* does not. Pre context is different (a{b} does not align with
* ab).
*/
/* LIMITATION of the current mask algorithm: Some rule
* maskings are currently not detected. For example,
* "{Lu}]a>x" masks "A]a>y". This can be added later. TODO
*/
int len = pattern.length();
int left = anteContextLength;
int left2 = r2.anteContextLength;
int right = pattern.length() - left;
int right2 = r2.pattern.length() - left2;
// TODO Clean this up -- some logic might be combinable with the
// next statement.
// Test for anchor masking
if (left == left2 && right == right2 &&
keyLength <= r2.keyLength &&
r2.pattern.regionMatches(0, pattern, 0, len)) {
// The following boolean logic implements the table above
return (flags == r2.flags) ||
(!((flags & ANCHOR_START) != 0) && !((flags & ANCHOR_END) != 0)) ||
(((r2.flags & ANCHOR_START) != 0) && ((r2.flags & ANCHOR_END) != 0));
}
return left <= left2 &&
(right < right2 ||
(right == right2 && keyLength <= r2.keyLength)) &&
r2.pattern.regionMatches(left2 - left, pattern, 0, len);
}
static final int posBefore(Replaceable str, int pos) {
return (pos > 0) ?
pos - UTF16.getCharCount(UTF16.charAt(str, pos-1)) :
pos - 1;
}
static final int posAfter(Replaceable str, int pos) {
return (pos >= 0 && pos < str.length()) ?
pos + UTF16.getCharCount(UTF16.charAt(str, pos)) :
pos + 1;
}
/**
* Attempt a match and replacement at the given position. Return
* the degree of match between this rule and the given text. The
* degree of match may be mismatch, a partial match, or a full
* match. A mismatch means at least one character of the text
* does not match the context or key. A partial match means some
* context and key characters match, but the text is not long
* enough to match all of them. A full match means all context
* and key characters match.
*
* If a full match is obtained, perform a replacement, update pos,
* and return U_MATCH. Otherwise both text and pos are unchanged.
*
* @param text the text
* @param pos the position indices
* @param incremental if TRUE, test for partial matches that may
* be completed by additional text inserted at pos.limit.
* @return one of <code>U_MISMATCH</code>,
* <code>U_PARTIAL_MATCH</code>, or <code>U_MATCH</code>. If
* incremental is FALSE then U_PARTIAL_MATCH will not be returned.
*/
public int matchAndReplace(Replaceable text,
Transliterator.Position pos,
boolean incremental) {
// Matching and replacing are done in one method because the
// replacement operation needs information obtained during the
// match. Another way to do this is to have the match method
// create a match result struct with relevant offsets, and to pass
// this into the replace method.
// ============================ MATCH ===========================
// Record the actual positions, in the text, of the segments.
// These are recorded in the order that they occur in the pattern.
// segPos[] is an array of 2*SEGMENTS_COUNT elements. It
// records the position in 'text' of each segment boundary, in
// the order that they occur in 'pattern'.
int[] segPos = null;
if (segments != null) {
segPos = new int[2*SEGMENTS_COUNT(segments)];
}
// iSeg is an index into segments[] that accesses the first
// array. As such it ranges from 0 to SEGMENTS_COUNT*2 - 1.
// When indexing into segments[] FIRST_SEG_POS_INDEX must be
// added to it: segments[FIRST_SEG_POS_INDEX + iSeg].
int iSeg = firstKeySeg - 1;
// nextSegPos is an offset in 'pattern'. When the cursor is
// equal to nextSegPos, we are at a segment boundary, and we
// record the position in the real text in segPos[].
int nextSegPos = (iSeg >= 0) ? segments[FIRST_SEG_POS_INDEX+iSeg] : -1;
int lenDelta, keyLimit;
int[] intRef = new int[1];
// ------------------------ Ante Context ------------------------
// A mismatch in the ante context, or with the start anchor,
// is an outright U_MISMATCH regardless of whether we are
// incremental or not.
int oText; // offset into 'text'
int newStart = 0;
int minOText;
int oPattern; // offset into 'pattern'
// Backup oText by one
oText = posBefore(text, pos.start);
for (oPattern=anteContextLength-1; oPattern>=0; --oPattern) {
char keyChar = pattern.charAt(oPattern);
UnicodeMatcher matcher = data.lookup(keyChar);
if (matcher == null) {
if (oText >= pos.contextStart &&
keyChar == text.charAt(oText)) {
--oText;
} else {
return UnicodeMatcher.U_MISMATCH;
}
} else {
// Subtract 1 from contextStart to make it a reverse limit
intRef[0] = oText;
if (matcher.matches(text, intRef, pos.contextStart-1, false)
!= UnicodeMatcher.U_MATCH) {
return UnicodeMatcher.U_MISMATCH;
}
oText = intRef[0];
}
while (nextSegPos == oPattern) {
segPos[iSeg] = oText;
if (oText >= 0) {
segPos[iSeg] += UTF16.getCharCount(UTF16.charAt(text, oText));
} else {
++segPos[iSeg];
}
nextSegPos = (--iSeg >= FIRST_SEG_POS_INDEX) ? segments[FIRST_SEG_POS_INDEX+iSeg] : -1;
}
}
minOText = posAfter(text, oText);
// ------------------------ Start Anchor ------------------------
if (((flags & ANCHOR_START) != 0) && oText != posBefore(text, pos.contextStart)) {
return UnicodeMatcher.U_MISMATCH;
}
// -------------------- Key and Post Context --------------------
iSeg = firstKeySeg;
nextSegPos = (iSeg >= 0) ? (segments[FIRST_SEG_POS_INDEX+iSeg] - anteContextLength) : -1;
oPattern = 0;
oText = pos.start;
keyLimit = 0;
while (oPattern < (pattern.length() - anteContextLength)) {
if (incremental && oText == pos.limit) {
// We've reached the limit without a mismatch and
// without completing our match.
return UnicodeMatcher.U_PARTIAL_MATCH;
}
// It might seem that we could do a check like this here:
//!if (oText == pos.limit && oPattern < keyLength) {
//! // We're still in the pattern key but we're entering the
//! // post context.
// but this won't work if the end of the key is a
// zero-length matcher, followed by post context: {a b?} c
// Instead, what we do is proceed with matching as usual
// so zero-length matchers can work, but restrict the
// limit to either pos.limit or pos.contextLimit,
// depending on whether we're in the key or in the post
// context.
while (oPattern == nextSegPos) {
segPos[iSeg] = oText;
nextSegPos = segments[FIRST_SEG_POS_INDEX+(++iSeg)] - anteContextLength;
}
if (oPattern == keyLength) {
keyLimit = oText;
}
// Restrict the key to match up to pos.limit; the post-context
// can match up to pos.contextLimit.
int matchLimit = (oPattern < keyLength) ? pos.limit : pos.contextLimit;
char keyChar = pattern.charAt(anteContextLength + oPattern++);
UnicodeMatcher matcher = data.lookup(keyChar);
if (matcher == null) {
// Don't need the oText < pos.contextLimit check if
// incremental is TRUE (because it's done above); do need
// it otherwise.
if (oText < matchLimit &&
keyChar == text.charAt(oText)) {
++oText;
} else {
return UnicodeMatcher.U_MISMATCH;
}
} else {
intRef[0] = oText;
int m = matcher.matches(text, intRef, matchLimit, incremental);
if (m != UnicodeMatcher.U_MATCH) {
return m;
}
oText = intRef[0];
}
// This check rendered superfluous by above use of
// matchLimit, but kept around for documentation.
//!if (oText > pos.limit && oPattern < keyLength) {
//! // We're still in the pattern key but we've entering the
//! // post context. We must do this check _after_ doing the
//! // match in case we have zero-length matchers like /a?/
//! // at the end of the key.
//! return UnicodeMatcher.U_MISMATCH;
//!}
}
while (oPattern == nextSegPos) {
segPos[iSeg] = oText;
nextSegPos = segments[FIRST_SEG_POS_INDEX+(++iSeg)] - anteContextLength;
}
if (oPattern == keyLength) {
keyLimit = oText;
}
// ------------------------- Stop Anchor ------------------------
if (((flags & ANCHOR_END)) != 0) {
if (oText != pos.contextLimit) {
return UnicodeMatcher.U_MISMATCH;
}
if (incremental) {
return UnicodeMatcher.U_PARTIAL_MATCH;
}
}
// =========================== REPLACE ==========================
// We have a full match. The key is between pos.start and
// keyLimit. Segment indices have been recorded in segPos[].
// Perform a replacement.
if (segments == null) {
text.replace(pos.start, keyLimit, output);
lenDelta = output.length() - (keyLimit - pos.start);
if (cursorPos >= 0 && cursorPos <= output.length()) {
// Within the output string, the cursor refers to 16-bit code units
newStart = pos.start + cursorPos;
} else {
newStart = pos.start;
int n = cursorPos;
// Outside the output string, cursorPos counts code points
while (n > 0) {
newStart += UTF16.getCharCount(UTF16.charAt(text, newStart));
--n;
}
while (n < 0) {
newStart -= UTF16.getCharCount(UTF16.charAt(text, newStart-1));
++n;
}
}
} else {
/* When there are segments to be copied, use the Replaceable.copy()
* API in order to retain out-of-band data. Copy everything to the
* point after the key, then delete the key. That is, copy things
* into offset + keyLength, then replace offset .. offset +
* keyLength with the empty string.
*
* Minimize the number of calls to Replaceable.replace() and
* Replaceable.copy().
*/
int dest = keyLimit; // copy new text to here
StringBuffer buf = new StringBuffer();
int oOutput; // offset into 'output'
for (oOutput=0; oOutput<output.length(); ) {
if (oOutput == cursorPos) {
// Record the position of the cursor
newStart = dest - (keyLimit - pos.start);
}
int c = UTF16.charAt(output, oOutput);
int b = data.lookupSegmentReference(c);
if (b < 0) {
// Accumulate straight (non-segment) text.
UTF16.append(buf, c);
} else {
// Insert any accumulated straight text.
if (buf.length() > 0) {
text.replace(dest, dest, buf.toString());
dest += buf.length();
buf.setLength(0);
}
// Copy segment with out-of-band data
b *= 2;
int start = segPos[SEGMENTS_NUM(segments,b)];
int limit = segPos[SEGMENTS_NUM(segments,b+1)];
text.copy(start, limit, dest);
dest += limit - start;
}
oOutput += UTF16.getCharCount(c);
}
// Insert any accumulated straight text.
if (buf.length() > 0) {
text.replace(dest, dest, buf.toString());
dest += buf.length();
}
if (oOutput == cursorPos) {
// Record the position of the cursor
newStart = dest - (keyLimit - pos.start);
}
// Delete the key
buf.setLength(0);
text.replace(pos.start, keyLimit, buf.toString());
lenDelta = dest - keyLimit - (keyLimit - pos.start);
// Handle cursor in postContext
if (cursorPos > output.length()) {
newStart = pos.start + (dest - keyLimit);
int n = cursorPos - output.length();
// cursorPos counts code points
while (n > 0) {
newStart += UTF16.getCharCount(UTF16.charAt(text, newStart));
n--;
}
}
}
oText += lenDelta;
pos.limit += lenDelta;
pos.contextLimit += lenDelta;
// Restrict new value of start to [minOText, min(oText, pos.limit)].
pos.start = Math.max(minOText, Math.min(Math.min(oText, pos.limit), newStart));
return UnicodeMatcher.U_MATCH;
}
/**
* Append a character to a rule that is being built up. To flush
* the quoteBuf to rule, make one final call with isLiteral == true.
* If there is no final character, pass in (int)-1 as c.
* @param rule the string to append the character to
* @param c the character to append, or (int)-1 if none.
* @param isLiteral if true, then the given character should not be
* quoted or escaped. Usually this means it is a syntactic element
* such as > or $
* @param escapeUnprintable if true, then unprintable characters
* should be escaped using <backslash>uxxxx or <backslash>Uxxxxxxxx. These escapes will
* appear outside of quotes.
* @param quoteBuf a buffer which is used to build up quoted
* substrings. The caller should initially supply an empty buffer,
* and thereafter should not modify the buffer. The buffer should be
* cleared out by, at the end, calling this method with a literal
* character.
*/
static void appendToRule(StringBuffer rule,
int c,
boolean isLiteral,
boolean escapeUnprintable,
StringBuffer quoteBuf) {
// If we are escaping unprintables, then escape them outside
// quotes. <backslash>u and <backslash>U are not recognized within quotes. The same
// logic applies to literals, but literals are never escaped.
if (isLiteral ||
(escapeUnprintable && UnicodeSet._isUnprintable(c))) {
if (quoteBuf.length() > 0) {
// We prefer backslash APOSTROPHE to double APOSTROPHE
// (more readable, less similar to ") so if there are
// double APOSTROPHEs at the ends, we pull them outside
// of the quote.
// If the first thing in the quoteBuf is APOSTROPHE
// (doubled) then pull it out.
while (quoteBuf.length() >= 2 &&
quoteBuf.charAt(0) == APOSTROPHE &&
quoteBuf.charAt(1) == APOSTROPHE) {
rule.append(BACKSLASH).append(APOSTROPHE);
quoteBuf.delete(0, 2);
}
// If the last thing in the quoteBuf is APOSTROPHE
// (doubled) then remove and count it and add it after.
int trailingCount = 0;
while (quoteBuf.length() >= 2 &&
quoteBuf.charAt(quoteBuf.length()-2) == APOSTROPHE &&
quoteBuf.charAt(quoteBuf.length()-1) == APOSTROPHE) {
quoteBuf.setLength(quoteBuf.length()-2);
++trailingCount;
}
if (quoteBuf.length() > 0) {
rule.append(APOSTROPHE);
rule.append(quoteBuf);
rule.append(APOSTROPHE);
quoteBuf.setLength(0);
}
while (trailingCount-- > 0) {
rule.append(BACKSLASH).append(APOSTROPHE);
}
}
if (c != -1) {
if (!escapeUnprintable || !UnicodeSet._escapeUnprintable(rule, c)) {
UTF16.append(rule, c);
}
}
}
// Escape ' and '\' and don't begin a quote just for them
else if (quoteBuf.length() == 0 &&
(c == APOSTROPHE || c == BACKSLASH)) {
rule.append(BACKSLASH).append((char)c);
}
// Specials (printable ascii that isn't [0-9a-zA-Z]) and
// whitespace need quoting. Also append stuff to quotes if we are
// building up a quoted substring already.
else if (quoteBuf.length() > 0 ||
(c >= 0x0021 && c <= 0x007E &&
!((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) ||
(c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) ||
(c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) ||
UCharacter.isWhitespace(c)) {
UTF16.append(quoteBuf, c);
// Double ' within a quote
if (c == APOSTROPHE) {
quoteBuf.append((char)c);
}
}
// Otherwise just append
else {
UTF16.append(rule, c);
}
//System.out.println("rule=" + rule.toString() + " qb=" + quoteBuf.toString());
}
static final void appendToRule(StringBuffer rule,
String text,
boolean isLiteral,
boolean escapeUnprintable,
StringBuffer quoteBuf) {
for (int i=0; i<text.length(); ++i) {
appendToRule(rule, text.charAt(i), isLiteral, escapeUnprintable, quoteBuf);
}
}
static private int[] POW10 = {1, 10, 100, 1000, 10000, 100000, 1000000,
10000000, 100000000, 1000000000};
/**
* Create a source string that represents this rule. Append it to the
* given string.
*/
public String toRule(boolean escapeUnprintable) {
int i;
StringBuffer rule = new StringBuffer();
// iseg indexes into segments[] directly (not offset from FSPI)
int iseg = FIRST_SEG_POS_INDEX-1;
int nextSeg = -1;
// Build an array of booleans specifying open vs. close paren
boolean[] isOpen = null;
if (segments != null) {
isOpen = new boolean[2*SEGMENTS_COUNT(segments)];
for (i=0; i<2*SEGMENTS_COUNT(segments); i+=2) {
isOpen[SEGMENTS_NUM(segments,i) ] = true;
isOpen[SEGMENTS_NUM(segments,i+1)] = false;
}
nextSeg = segments[++iseg];
}
// Accumulate special characters (and non-specials following them)
// into quoteBuf. Append quoteBuf, within single quotes, when
// a non-quoted element must be inserted.
StringBuffer quoteBuf = new StringBuffer();
// Do not emit the braces '{' '}' around the pattern if there
// is neither anteContext nor postContext.
boolean emitBraces =
(anteContextLength != 0) || (keyLength != pattern.length());
// Emit start anchor
if ((flags & ANCHOR_START) != 0) {
rule.append('^');
}
// Emit the input pattern
for (i=0; i<pattern.length(); ++i) {
if (emitBraces && i == anteContextLength) {
appendToRule(rule, '{', true, escapeUnprintable, quoteBuf);
}
// Append either '(' or ')' if we are at a segment index
if (i == nextSeg) {
appendToRule(rule, isOpen[iseg-FIRST_SEG_POS_INDEX] ?
'(' : ')',
true, escapeUnprintable, quoteBuf);
nextSeg = segments[++iseg];
}
if (emitBraces && i == (anteContextLength + keyLength)) {
appendToRule(rule, '}', true, escapeUnprintable, quoteBuf);
}
char c = pattern.charAt(i);
UnicodeMatcher matcher = data.lookup(c);
if (matcher == null) {
appendToRule(rule, c, false, escapeUnprintable, quoteBuf);
} else {
appendToRule(rule, matcher.toPattern(escapeUnprintable),
true, escapeUnprintable, quoteBuf);
}
}
if (i == nextSeg) {
// assert(!isOpen[iSeg-FIRST_SEG_POS_INDEX]);
appendToRule(rule, ')', true, escapeUnprintable, quoteBuf);
}
if (emitBraces && i == (anteContextLength + keyLength)) {
appendToRule(rule, '}', true, escapeUnprintable, quoteBuf);
}
// Emit end anchor
if ((flags & ANCHOR_END) != 0) {
rule.append('$');
}
appendToRule(rule, " > ", true, escapeUnprintable, quoteBuf);
// Emit the output pattern
// Handle a cursor preceding the output
int cursor = cursorPos;
if (cursor < 0) {
while (cursor++ < 0) {
appendToRule(rule, '@', true, escapeUnprintable, quoteBuf);
}
// Fall through and append '|' below
}
for (i=0; i<output.length(); ++i) {
if (i == cursor) {
appendToRule(rule, '|', true, escapeUnprintable, quoteBuf);
}
char c = output.charAt(i);
int seg = data.lookupSegmentReference(c);
if (seg < 0) {
appendToRule(rule, c, false, escapeUnprintable, quoteBuf);
} else {
++seg; // make 1-based
appendToRule(rule, 0x20, true, escapeUnprintable, quoteBuf);
rule.append(0x24 /*$*/);
boolean show = false; // true if we should display digits
for (int p=9; p>=0; --p) {
int d = seg / POW10[p];
seg -= d * POW10[p];
if (d != 0 || p == 0) {
show = true;
}
if (show) {
rule.append((char)(48+d));
}
}
rule.append(' ');
}
}
// Handle a cursor after the output. Use > rather than >= because
// if cursor == output.length() it is at the end of the output,
// which is the default position, so we need not emit it.
if (cursor > output.length()) {
cursor -= output.length();
while (cursor-- > 0) {
appendToRule(rule, '@', true, escapeUnprintable, quoteBuf);
}
appendToRule(rule, '|', true, escapeUnprintable, quoteBuf);
}
appendToRule(rule, ';', true, escapeUnprintable, quoteBuf);
return rule.toString();
}
/**
* Return a string representation of this object.
* @return string representation of this object
*/
public String toString() {
return getClass().getName() + '{'
+ Utility.escape((anteContextLength > 0 ? (pattern.substring(0, anteContextLength) +
" {") : "")
+ pattern.substring(anteContextLength, anteContextLength + keyLength)
+ (anteContextLength + keyLength < pattern.length() ?
("} " + pattern.substring(anteContextLength + keyLength)) : "")
+ " > "
+ (cursorPos < output.length()
? (output.substring(0, cursorPos) + '|' + output.substring(cursorPos))
: output))
+ '}';
}
}
/**
* $Log: TransliterationRule.java,v $
* Revision 1.33 2001/10/25 23:22:15 alan
* jitterbug 73: changes to support zero-length matchers at end of key
*
* Revision 1.32 2001/10/25 22:42:24 alan
* jitterbug 73: use int for index values to avoid signedness problems
*
* Revision 1.31 2001/10/18 23:02:32 alan
* jitterbug 60: fix handling of anchors in toRule
*
* Revision 1.30 2001/10/04 22:33:53 alan
* jitterbug 69: minor fix to incremental RBT code
*
* Revision 1.29 2001/10/03 00:14:23 alan
* jitterbug 73: finish quantifier and supplemental char support
*
* Revision 1.28 2001/09/26 18:00:06 alan
* jitterbug 67: sync parser with icu4c, allow unlimited, nested segments
*
* Revision 1.27 2001/09/19 17:43:38 alan
* jitterbug 60: initial implementation of toRules()
*
* Revision 1.26 2001/06/29 22:35:41 alan4j
* Implement Any-Upper Any-Lower and Any-Title transliterators
*
* Revision 1.25 2000/11/29 19:12:32 alan4j
* Update docs
*
* Revision 1.24 2000/08/30 20:40:30 alan4j
* Implement anchors.
*
* Revision 1.23 2000/06/29 21:59:23 alan4j
* Fix handling of Transliterator.Position fields
*
* Revision 1.22 2000/05/18 21:37:19 alan
* Update docs
*
* Revision 1.21 2000/04/28 01:22:01 alan
* Update syntax displayed by toString
*
* Revision 1.20 2000/04/25 17:17:37 alan
* Add Replaceable.copy to retain out-of-band info during reordering.
*
* Revision 1.19 2000/04/25 01:42:58 alan
* Allow arbitrary length variable values. Clean up Data API. Update javadocs.
*
* Revision 1.18 2000/04/22 01:25:10 alan
* Add support for cursor positioner '@'; update javadoc
*
* Revision 1.17 2000/04/21 21:16:40 alan
* Modify rule syntax
*
* Revision 1.16 2000/04/19 16:34:18 alan
* Add segment support.
*
* Revision 1.15 2000/04/12 20:17:45 alan
* Delegate replace operation to rule object
*
* Revision 1.14 2000/03/10 04:07:24 johnf
* Copyright update
*
* Revision 1.13 2000/02/10 07:36:25 johnf
* fixed imports for com.ibm.util.Utility
*
* Revision 1.12 2000/02/03 18:11:19 Alan
* Use array rather than hashtable for char-to-set map
*
* Revision 1.11 2000/01/27 18:59:19 Alan
* Use Position rather than int[] and move all subclass overrides to one method (handleTransliterate)
*
* Revision 1.10 2000/01/18 20:36:17 Alan
* Make UnicodeSet inherit from UnicodeFilter
*
* Revision 1.9 2000/01/18 02:38:55 Alan
* Fix filtering bug.
*
* Revision 1.8 2000/01/13 23:53:23 Alan
* Fix bugs found during ICU port
*
* Revision 1.7 2000/01/11 04:12:06 Alan
* Cleanup, embellish comments
*
* Revision 1.6 2000/01/11 02:25:03 Alan
* Rewrite UnicodeSet and RBT parsers for better performance and new syntax
*
* Revision 1.5 2000/01/04 21:43:57 Alan
* Add rule indexing, and move masking check to TransliterationRuleSet.
*
* Revision 1.4 1999/12/22 01:40:54 Alan
* Consolidate rule pattern anteContext, key, and postContext into one string.
*
* Revision 1.3 1999/12/22 01:05:54 Alan
* Improve masking checking; turn it off by default, for better performance
*
* Revision 1.2 1999/12/21 23:58:44 Alan
* Detect a>x masking a>y
*/