|  | // © 2016 and later: Unicode, Inc. and others. | 
|  | // License & terms of use: http://www.unicode.org/copyright.html | 
|  | /************************************************************************ | 
|  | * Copyright (C) 1996-2012, International Business Machines Corporation | 
|  | * and others. All Rights Reserved. | 
|  | ************************************************************************ | 
|  | *  2003-nov-07   srl       Port from Java | 
|  | */ | 
|  |  | 
|  | #include "astro.h" | 
|  |  | 
|  | #if !UCONFIG_NO_FORMATTING | 
|  |  | 
|  | #include "unicode/calendar.h" | 
|  | #include <math.h> | 
|  | #include <float.h> | 
|  | #include "unicode/putil.h" | 
|  | #include "uhash.h" | 
|  | #include "umutex.h" | 
|  | #include "ucln_in.h" | 
|  | #include "putilimp.h" | 
|  | #include <stdio.h>  // for toString() | 
|  |  | 
|  | #if defined (PI) | 
|  | #undef PI | 
|  | #endif | 
|  |  | 
|  | #ifdef U_DEBUG_ASTRO | 
|  | # include "uresimp.h" // for debugging | 
|  |  | 
|  | static void debug_astro_loc(const char *f, int32_t l) | 
|  | { | 
|  | fprintf(stderr, "%s:%d: ", f, l); | 
|  | } | 
|  |  | 
|  | static void debug_astro_msg(const char *pat, ...) | 
|  | { | 
|  | va_list ap; | 
|  | va_start(ap, pat); | 
|  | vfprintf(stderr, pat, ap); | 
|  | fflush(stderr); | 
|  | } | 
|  | #include "unicode/datefmt.h" | 
|  | #include "unicode/ustring.h" | 
|  | static const char * debug_astro_date(UDate d) { | 
|  | static char gStrBuf[1024]; | 
|  | static DateFormat *df = NULL; | 
|  | if(df == NULL) { | 
|  | df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS()); | 
|  | df->adoptTimeZone(TimeZone::getGMT()->clone()); | 
|  | } | 
|  | UnicodeString str; | 
|  | df->format(d,str); | 
|  | u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1); | 
|  | return gStrBuf; | 
|  | } | 
|  |  | 
|  | // must use double parens, i.e.:  U_DEBUG_ASTRO_MSG(("four is: %d",4)); | 
|  | #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;} | 
|  | #else | 
|  | #define U_DEBUG_ASTRO_MSG(x) | 
|  | #endif | 
|  |  | 
|  | static inline UBool isINVALID(double d) { | 
|  | return(uprv_isNaN(d)); | 
|  | } | 
|  |  | 
|  | static icu::UMutex ccLock; | 
|  |  | 
|  | U_CDECL_BEGIN | 
|  | static UBool calendar_astro_cleanup(void) { | 
|  | return true; | 
|  | } | 
|  | U_CDECL_END | 
|  |  | 
|  | U_NAMESPACE_BEGIN | 
|  |  | 
|  | /** | 
|  | * The number of standard hours in one sidereal day. | 
|  | * Approximately 24.93. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | #define SIDEREAL_DAY (23.93446960027) | 
|  |  | 
|  | /** | 
|  | * The number of sidereal hours in one mean solar day. | 
|  | * Approximately 24.07. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | #define SOLAR_DAY  (24.065709816) | 
|  |  | 
|  | /** | 
|  | * The average number of solar days from one new moon to the next.  This is the time | 
|  | * it takes for the moon to return the same ecliptic longitude as the sun. | 
|  | * It is longer than the sidereal month because the sun's longitude increases | 
|  | * during the year due to the revolution of the earth around the sun. | 
|  | * Approximately 29.53. | 
|  | * | 
|  | * @see #SIDEREAL_MONTH | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | const double CalendarAstronomer::SYNODIC_MONTH  = 29.530588853; | 
|  |  | 
|  | /** | 
|  | * The average number of days it takes | 
|  | * for the moon to return to the same ecliptic longitude relative to the | 
|  | * stellar background.  This is referred to as the sidereal month. | 
|  | * It is shorter than the synodic month due to | 
|  | * the revolution of the earth around the sun. | 
|  | * Approximately 27.32. | 
|  | * | 
|  | * @see #SYNODIC_MONTH | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | #define SIDEREAL_MONTH  27.32166 | 
|  |  | 
|  | /** | 
|  | * The average number number of days between successive vernal equinoxes. | 
|  | * Due to the precession of the earth's | 
|  | * axis, this is not precisely the same as the sidereal year. | 
|  | * Approximately 365.24 | 
|  | * | 
|  | * @see #SIDEREAL_YEAR | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | #define TROPICAL_YEAR  365.242191 | 
|  |  | 
|  | /** | 
|  | * The average number of days it takes | 
|  | * for the sun to return to the same position against the fixed stellar | 
|  | * background.  This is the duration of one orbit of the earth about the sun | 
|  | * as it would appear to an outside observer. | 
|  | * Due to the precession of the earth's | 
|  | * axis, this is not precisely the same as the tropical year. | 
|  | * Approximately 365.25. | 
|  | * | 
|  | * @see #TROPICAL_YEAR | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | #define SIDEREAL_YEAR  365.25636 | 
|  |  | 
|  | //------------------------------------------------------------------------- | 
|  | // Time-related constants | 
|  | //------------------------------------------------------------------------- | 
|  |  | 
|  | /** | 
|  | * The number of milliseconds in one second. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | #define SECOND_MS  U_MILLIS_PER_SECOND | 
|  |  | 
|  | /** | 
|  | * The number of milliseconds in one minute. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | #define MINUTE_MS  U_MILLIS_PER_MINUTE | 
|  |  | 
|  | /** | 
|  | * The number of milliseconds in one hour. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | #define HOUR_MS   U_MILLIS_PER_HOUR | 
|  |  | 
|  | /** | 
|  | * The number of milliseconds in one day. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | #define DAY_MS U_MILLIS_PER_DAY | 
|  |  | 
|  | /** | 
|  | * The start of the julian day numbering scheme used by astronomers, which | 
|  | * is 1/1/4713 BC (Julian), 12:00 GMT.  This is given as the number of milliseconds | 
|  | * since 1/1/1970 AD (Gregorian), a negative number. | 
|  | * Note that julian day numbers and | 
|  | * the Julian calendar are <em>not</em> the same thing.  Also note that | 
|  | * julian days start at <em>noon</em>, not midnight. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | #define JULIAN_EPOCH_MS  -210866760000000.0 | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Milliseconds value for 0.0 January 2000 AD. | 
|  | */ | 
|  | #define EPOCH_2000_MS  946598400000.0 | 
|  |  | 
|  | //------------------------------------------------------------------------- | 
|  | // Assorted private data used for conversions | 
|  | //------------------------------------------------------------------------- | 
|  |  | 
|  | // My own copies of these so compilers are more likely to optimize them away | 
|  | const double CalendarAstronomer::PI = 3.14159265358979323846; | 
|  |  | 
|  | #define CalendarAstronomer_PI2  (CalendarAstronomer::PI*2.0) | 
|  | #define RAD_HOUR  ( 12 / CalendarAstronomer::PI )     // radians -> hours | 
|  | #define DEG_RAD ( CalendarAstronomer::PI / 180 )      // degrees -> radians | 
|  | #define RAD_DEG  ( 180 / CalendarAstronomer::PI )     // radians -> degrees | 
|  |  | 
|  | /*** | 
|  | * Given 'value', add or subtract 'range' until 0 <= 'value' < range. | 
|  | * The modulus operator. | 
|  | */ | 
|  | inline static double normalize(double value, double range)  { | 
|  | return value - range * ClockMath::floorDivide(value, range); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Normalize an angle so that it's in the range 0 - 2pi. | 
|  | * For positive angles this is just (angle % 2pi), but the Java | 
|  | * mod operator doesn't work that way for negative numbers.... | 
|  | */ | 
|  | inline static double norm2PI(double angle)  { | 
|  | return normalize(angle, CalendarAstronomer::PI * 2.0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Normalize an angle into the range -PI - PI | 
|  | */ | 
|  | inline static  double normPI(double angle)  { | 
|  | return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI; | 
|  | } | 
|  |  | 
|  | //------------------------------------------------------------------------- | 
|  | // Constructors | 
|  | //------------------------------------------------------------------------- | 
|  |  | 
|  | /** | 
|  | * Construct a new <code>CalendarAstronomer</code> object that is initialized to | 
|  | * the current date and time. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | CalendarAstronomer::CalendarAstronomer(): | 
|  | fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(false) { | 
|  | clearCache(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Construct a new <code>CalendarAstronomer</code> object that is initialized to | 
|  | * the specified date and time. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(false) { | 
|  | clearCache(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Construct a new <code>CalendarAstronomer</code> object with the given | 
|  | * latitude and longitude.  The object's time is set to the current | 
|  | * date and time. | 
|  | * <p> | 
|  | * @param longitude The desired longitude, in <em>degrees</em> east of | 
|  | *                  the Greenwich meridian. | 
|  | * | 
|  | * @param latitude  The desired latitude, in <em>degrees</em>.  Positive | 
|  | *                  values signify North, negative South. | 
|  | * | 
|  | * @see java.util.Date#getTime() | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) : | 
|  | fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) { | 
|  | fLongitude = normPI(longitude * (double)DEG_RAD); | 
|  | fLatitude  = normPI(latitude  * (double)DEG_RAD); | 
|  | fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2); | 
|  | clearCache(); | 
|  | } | 
|  |  | 
|  | CalendarAstronomer::~CalendarAstronomer() | 
|  | { | 
|  | } | 
|  |  | 
|  | //------------------------------------------------------------------------- | 
|  | // Time and date getters and setters | 
|  | //------------------------------------------------------------------------- | 
|  |  | 
|  | /** | 
|  | * Set the current date and time of this <code>CalendarAstronomer</code> object.  All | 
|  | * astronomical calculations are performed based on this time setting. | 
|  | * | 
|  | * @param aTime the date and time, expressed as the number of milliseconds since | 
|  | *              1/1/1970 0:00 GMT (Gregorian). | 
|  | * | 
|  | * @see #setDate | 
|  | * @see #getTime | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | void CalendarAstronomer::setTime(UDate aTime) { | 
|  | fTime = aTime; | 
|  | U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset))); | 
|  | clearCache(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Set the current date and time of this <code>CalendarAstronomer</code> object.  All | 
|  | * astronomical calculations are performed based on this time setting. | 
|  | * | 
|  | * @param jdn   the desired time, expressed as a "julian day number", | 
|  | *              which is the number of elapsed days since | 
|  | *              1/1/4713 BC (Julian), 12:00 GMT.  Note that julian day | 
|  | *              numbers start at <em>noon</em>.  To get the jdn for | 
|  | *              the corresponding midnight, subtract 0.5. | 
|  | * | 
|  | * @see #getJulianDay | 
|  | * @see #JULIAN_EPOCH_MS | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | void CalendarAstronomer::setJulianDay(double jdn) { | 
|  | fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS; | 
|  | clearCache(); | 
|  | julianDay = jdn; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get the current time of this <code>CalendarAstronomer</code> object, | 
|  | * represented as the number of milliseconds since | 
|  | * 1/1/1970 AD 0:00 GMT (Gregorian). | 
|  | * | 
|  | * @see #setTime | 
|  | * @see #getDate | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | UDate CalendarAstronomer::getTime() { | 
|  | return fTime; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get the current time of this <code>CalendarAstronomer</code> object, | 
|  | * expressed as a "julian day number", which is the number of elapsed | 
|  | * days since 1/1/4713 BC (Julian), 12:00 GMT. | 
|  | * | 
|  | * @see #setJulianDay | 
|  | * @see #JULIAN_EPOCH_MS | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | double CalendarAstronomer::getJulianDay() { | 
|  | if (isINVALID(julianDay)) { | 
|  | julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS; | 
|  | } | 
|  | return julianDay; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return this object's time expressed in julian centuries: | 
|  | * the number of centuries after 1/1/1900 AD, 12:00 GMT | 
|  | * | 
|  | * @see #getJulianDay | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | double CalendarAstronomer::getJulianCentury() { | 
|  | if (isINVALID(julianCentury)) { | 
|  | julianCentury = (getJulianDay() - 2415020.0) / 36525.0; | 
|  | } | 
|  | return julianCentury; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns the current Greenwich sidereal time, measured in hours | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | double CalendarAstronomer::getGreenwichSidereal() { | 
|  | if (isINVALID(siderealTime)) { | 
|  | // See page 86 of "Practical Astronomy with your Calculator", | 
|  | // by Peter Duffet-Smith, for details on the algorithm. | 
|  |  | 
|  | double UT = normalize(fTime/(double)HOUR_MS, 24.); | 
|  |  | 
|  | siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.); | 
|  | } | 
|  | return siderealTime; | 
|  | } | 
|  |  | 
|  | double CalendarAstronomer::getSiderealOffset() { | 
|  | if (isINVALID(siderealT0)) { | 
|  | double JD  = uprv_floor(getJulianDay() - 0.5) + 0.5; | 
|  | double S   = JD - 2451545.0; | 
|  | double T   = S / 36525.0; | 
|  | siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24); | 
|  | } | 
|  | return siderealT0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns the current local sidereal time, measured in hours | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | double CalendarAstronomer::getLocalSidereal() { | 
|  | return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Converts local sidereal time to Universal Time. | 
|  | * | 
|  | * @param lst   The Local Sidereal Time, in hours since sidereal midnight | 
|  | *              on this object's current date. | 
|  | * | 
|  | * @return      The corresponding Universal Time, in milliseconds since | 
|  | *              1 Jan 1970, GMT. | 
|  | */ | 
|  | double CalendarAstronomer::lstToUT(double lst) { | 
|  | // Convert to local mean time | 
|  | double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24); | 
|  |  | 
|  | // Then find local midnight on this day | 
|  | double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset; | 
|  |  | 
|  | //out("    lt  =" + lt + " hours"); | 
|  | //out("    base=" + new Date(base)); | 
|  |  | 
|  | return base + (long)(lt * HOUR_MS); | 
|  | } | 
|  |  | 
|  |  | 
|  | //------------------------------------------------------------------------- | 
|  | // Coordinate transformations, all based on the current time of this object | 
|  | //------------------------------------------------------------------------- | 
|  |  | 
|  | /** | 
|  | * Convert from ecliptic to equatorial coordinates. | 
|  | * | 
|  | * @param ecliptic  A point in the sky in ecliptic coordinates. | 
|  | * @return          The corresponding point in equatorial coordinates. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic) | 
|  | { | 
|  | return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert from ecliptic to equatorial coordinates. | 
|  | * | 
|  | * @param eclipLong     The ecliptic longitude | 
|  | * @param eclipLat      The ecliptic latitude | 
|  | * | 
|  | * @return              The corresponding point in equatorial coordinates. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat) | 
|  | { | 
|  | // See page 42 of "Practical Astronomy with your Calculator", | 
|  | // by Peter Duffet-Smith, for details on the algorithm. | 
|  |  | 
|  | double obliq = eclipticObliquity(); | 
|  | double sinE = ::sin(obliq); | 
|  | double cosE = cos(obliq); | 
|  |  | 
|  | double sinL = ::sin(eclipLong); | 
|  | double cosL = cos(eclipLong); | 
|  |  | 
|  | double sinB = ::sin(eclipLat); | 
|  | double cosB = cos(eclipLat); | 
|  | double tanB = tan(eclipLat); | 
|  |  | 
|  | result.set(atan2(sinL*cosE - tanB*sinE, cosL), | 
|  | asin(sinB*cosE + cosB*sinE*sinL) ); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert from ecliptic longitude to equatorial coordinates. | 
|  | * | 
|  | * @param eclipLong     The ecliptic longitude | 
|  | * | 
|  | * @return              The corresponding point in equatorial coordinates. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong) | 
|  | { | 
|  | return eclipticToEquatorial(result, eclipLong, 0);  // TODO: optimize | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong) | 
|  | { | 
|  | Equatorial equatorial; | 
|  | eclipticToEquatorial(equatorial, eclipLong); | 
|  |  | 
|  | double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension;     // Hour-angle | 
|  |  | 
|  | double sinH = ::sin(H); | 
|  | double cosH = cos(H); | 
|  | double sinD = ::sin(equatorial.declination); | 
|  | double cosD = cos(equatorial.declination); | 
|  | double sinL = ::sin(fLatitude); | 
|  | double cosL = cos(fLatitude); | 
|  |  | 
|  | double altitude = asin(sinD*sinL + cosD*cosL*cosH); | 
|  | double azimuth  = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude)); | 
|  |  | 
|  | result.set(azimuth, altitude); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | //------------------------------------------------------------------------- | 
|  | // The Sun | 
|  | //------------------------------------------------------------------------- | 
|  |  | 
|  | // | 
|  | // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990 | 
|  | // Angles are in radians (after multiplying by CalendarAstronomer::PI/180) | 
|  | // | 
|  | #define JD_EPOCH  2447891.5 // Julian day of epoch | 
|  |  | 
|  | #define SUN_ETA_G    (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch | 
|  | #define SUN_OMEGA_G  (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee | 
|  | #define SUN_E         0.016713          // Eccentricity of orbit | 
|  | //double sunR0        1.495585e8        // Semi-major axis in KM | 
|  | //double sunTheta0    (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0 | 
|  |  | 
|  | // The following three methods, which compute the sun parameters | 
|  | // given above for an arbitrary epoch (whatever time the object is | 
|  | // set to), make only a small difference as compared to using the | 
|  | // above constants.  E.g., Sunset times might differ by ~12 | 
|  | // seconds.  Furthermore, the eta-g computation is befuddled by | 
|  | // Duffet-Smith's incorrect coefficients (p.86).  I've corrected | 
|  | // the first-order coefficient but the others may be off too - no | 
|  | // way of knowing without consulting another source. | 
|  |  | 
|  | //  /** | 
|  | //   * Return the sun's ecliptic longitude at perigee for the current time. | 
|  | //   * See Duffett-Smith, p. 86. | 
|  | //   * @return radians | 
|  | //   */ | 
|  | //  private double getSunOmegaG() { | 
|  | //      double T = getJulianCentury(); | 
|  | //      return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD; | 
|  | //  } | 
|  |  | 
|  | //  /** | 
|  | //   * Return the sun's ecliptic longitude for the current time. | 
|  | //   * See Duffett-Smith, p. 86. | 
|  | //   * @return radians | 
|  | //   */ | 
|  | //  private double getSunEtaG() { | 
|  | //      double T = getJulianCentury(); | 
|  | //      //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD; | 
|  | //      // | 
|  | //      // The above line is from Duffett-Smith, and yields manifestly wrong | 
|  | //      // results.  The below constant is derived empirically to match the | 
|  | //      // constant he gives for the 1990 EPOCH. | 
|  | //      // | 
|  | //      return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD; | 
|  | //  } | 
|  |  | 
|  | //  /** | 
|  | //   * Return the sun's eccentricity of orbit for the current time. | 
|  | //   * See Duffett-Smith, p. 86. | 
|  | //   * @return double | 
|  | //   */ | 
|  | //  private double getSunE() { | 
|  | //      double T = getJulianCentury(); | 
|  | //      return 0.01675104 - (0.0000418 + 0.000000126*T)*T; | 
|  | //  } | 
|  |  | 
|  | /** | 
|  | * Find the "true anomaly" (longitude) of an object from | 
|  | * its mean anomaly and the eccentricity of its orbit.  This uses | 
|  | * an iterative solution to Kepler's equation. | 
|  | * | 
|  | * @param meanAnomaly   The object's longitude calculated as if it were in | 
|  | *                      a regular, circular orbit, measured in radians | 
|  | *                      from the point of perigee. | 
|  | * | 
|  | * @param eccentricity  The eccentricity of the orbit | 
|  | * | 
|  | * @return The true anomaly (longitude) measured in radians | 
|  | */ | 
|  | static double trueAnomaly(double meanAnomaly, double eccentricity) | 
|  | { | 
|  | // First, solve Kepler's equation iteratively | 
|  | // Duffett-Smith, p.90 | 
|  | double delta; | 
|  | double E = meanAnomaly; | 
|  | do { | 
|  | delta = E - eccentricity * ::sin(E) - meanAnomaly; | 
|  | E = E - delta / (1 - eccentricity * ::cos(E)); | 
|  | } | 
|  | while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad | 
|  |  | 
|  | return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity) | 
|  | /(1-eccentricity) ) ); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * The longitude of the sun at the time specified by this object. | 
|  | * The longitude is measured in radians along the ecliptic | 
|  | * from the "first point of Aries," the point at which the ecliptic | 
|  | * crosses the earth's equatorial plane at the vernal equinox. | 
|  | * <p> | 
|  | * Currently, this method uses an approximation of the two-body Kepler's | 
|  | * equation for the earth and the sun.  It does not take into account the | 
|  | * perturbations caused by the other planets, the moon, etc. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | double CalendarAstronomer::getSunLongitude() | 
|  | { | 
|  | // See page 86 of "Practical Astronomy with your Calculator", | 
|  | // by Peter Duffet-Smith, for details on the algorithm. | 
|  |  | 
|  | if (isINVALID(sunLongitude)) { | 
|  | getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun); | 
|  | } | 
|  | return sunLongitude; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * TODO Make this public when the entire class is package-private. | 
|  | */ | 
|  | /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly) | 
|  | { | 
|  | // See page 86 of "Practical Astronomy with your Calculator", | 
|  | // by Peter Duffet-Smith, for details on the algorithm. | 
|  |  | 
|  | double day = jDay - JD_EPOCH;       // Days since epoch | 
|  |  | 
|  | // Find the angular distance the sun in a fictitious | 
|  | // circular orbit has travelled since the epoch. | 
|  | double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day); | 
|  |  | 
|  | // The epoch wasn't at the sun's perigee; find the angular distance | 
|  | // since perigee, which is called the "mean anomaly" | 
|  | meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G); | 
|  |  | 
|  | // Now find the "true anomaly", e.g. the real solar longitude | 
|  | // by solving Kepler's equation for an elliptical orbit | 
|  | // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different | 
|  | // equations; omega_g is to be correct. | 
|  | longitude =  norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * The position of the sun at this object's current date and time, | 
|  | * in equatorial coordinates. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) { | 
|  | return eclipticToEquatorial(result, getSunLongitude(), 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Constant representing the vernal equinox. | 
|  | * For use with {@link #getSunTime getSunTime}. | 
|  | * Note: In this case, "vernal" refers to the northern hemisphere's seasons. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | /*double CalendarAstronomer::VERNAL_EQUINOX() { | 
|  | return 0; | 
|  | }*/ | 
|  |  | 
|  | /** | 
|  | * Constant representing the summer solstice. | 
|  | * For use with {@link #getSunTime getSunTime}. | 
|  | * Note: In this case, "summer" refers to the northern hemisphere's seasons. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | double CalendarAstronomer::SUMMER_SOLSTICE() { | 
|  | return  (CalendarAstronomer::PI/2); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Constant representing the autumnal equinox. | 
|  | * For use with {@link #getSunTime getSunTime}. | 
|  | * Note: In this case, "autumn" refers to the northern hemisphere's seasons. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | /*double CalendarAstronomer::AUTUMN_EQUINOX() { | 
|  | return  (CalendarAstronomer::PI); | 
|  | }*/ | 
|  |  | 
|  | /** | 
|  | * Constant representing the winter solstice. | 
|  | * For use with {@link #getSunTime getSunTime}. | 
|  | * Note: In this case, "winter" refers to the northern hemisphere's seasons. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | double CalendarAstronomer::WINTER_SOLSTICE() { | 
|  | return  ((CalendarAstronomer::PI*3)/2); | 
|  | } | 
|  |  | 
|  | CalendarAstronomer::AngleFunc::~AngleFunc() {} | 
|  |  | 
|  | /** | 
|  | * Find the next time at which the sun's ecliptic longitude will have | 
|  | * the desired value. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc { | 
|  | public: | 
|  | virtual ~SunTimeAngleFunc(); | 
|  | virtual double eval(CalendarAstronomer& a) override { return a.getSunLongitude(); } | 
|  | }; | 
|  |  | 
|  | SunTimeAngleFunc::~SunTimeAngleFunc() {} | 
|  |  | 
|  | UDate CalendarAstronomer::getSunTime(double desired, UBool next) | 
|  | { | 
|  | SunTimeAngleFunc func; | 
|  | return timeOfAngle( func, | 
|  | desired, | 
|  | TROPICAL_YEAR, | 
|  | MINUTE_MS, | 
|  | next); | 
|  | } | 
|  |  | 
|  | CalendarAstronomer::CoordFunc::~CoordFunc() {} | 
|  |  | 
|  | class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc { | 
|  | public: | 
|  | virtual ~RiseSetCoordFunc(); | 
|  | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer& a) override { a.getSunPosition(result); } | 
|  | }; | 
|  |  | 
|  | RiseSetCoordFunc::~RiseSetCoordFunc() {} | 
|  |  | 
|  | UDate CalendarAstronomer::getSunRiseSet(UBool rise) | 
|  | { | 
|  | UDate t0 = fTime; | 
|  |  | 
|  | // Make a rough guess: 6am or 6pm local time on the current day | 
|  | double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS); | 
|  |  | 
|  | U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset)); | 
|  | setTime(noon +  ((rise ? -6 : 6) * HOUR_MS)); | 
|  | U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS))); | 
|  |  | 
|  | RiseSetCoordFunc func; | 
|  | double t = riseOrSet(func, | 
|  | rise, | 
|  | .533 * DEG_RAD,        // Angular Diameter | 
|  | 34. /60.0 * DEG_RAD,    // Refraction correction | 
|  | MINUTE_MS / 12.);       // Desired accuracy | 
|  |  | 
|  | setTime(t0); | 
|  | return t; | 
|  | } | 
|  |  | 
|  | // Commented out - currently unused. ICU 2.6, Alan | 
|  | //    //------------------------------------------------------------------------- | 
|  | //    // Alternate Sun Rise/Set | 
|  | //    // See Duffett-Smith p.93 | 
|  | //    //------------------------------------------------------------------------- | 
|  | // | 
|  | //    // This yields worse results (as compared to USNO data) than getSunRiseSet(). | 
|  | //    /** | 
|  | //     * TODO Make this when the entire class is package-private. | 
|  | //     */ | 
|  | //    /*public*/ long getSunRiseSet2(boolean rise) { | 
|  | //        // 1. Calculate coordinates of the sun's center for midnight | 
|  | //        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; | 
|  | //        double[] sl = getSunLongitude(jd);//        double lambda1 = sl[0]; | 
|  | //        Equatorial pos1 = eclipticToEquatorial(lambda1, 0); | 
|  | // | 
|  | //        // 2. Add ... to lambda to get position 24 hours later | 
|  | //        double lambda2 = lambda1 + 0.985647*DEG_RAD; | 
|  | //        Equatorial pos2 = eclipticToEquatorial(lambda2, 0); | 
|  | // | 
|  | //        // 3. Calculate LSTs of rising and setting for these two positions | 
|  | //        double tanL = ::tan(fLatitude); | 
|  | //        double H = ::acos(-tanL * ::tan(pos1.declination)); | 
|  | //        double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2; | 
|  | //        double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2; | 
|  | //               H = ::acos(-tanL * ::tan(pos2.declination)); | 
|  | //        double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; | 
|  | //        double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; | 
|  | //        if (lst1r > 24) lst1r -= 24; | 
|  | //        if (lst1s > 24) lst1s -= 24; | 
|  | //        if (lst2r > 24) lst2r -= 24; | 
|  | //        if (lst2s > 24) lst2s -= 24; | 
|  | // | 
|  | //        // 4. Convert LSTs to GSTs.  If GST1 > GST2, add 24 to GST2. | 
|  | //        double gst1r = lstToGst(lst1r); | 
|  | //        double gst1s = lstToGst(lst1s); | 
|  | //        double gst2r = lstToGst(lst2r); | 
|  | //        double gst2s = lstToGst(lst2s); | 
|  | //        if (gst1r > gst2r) gst2r += 24; | 
|  | //        if (gst1s > gst2s) gst2s += 24; | 
|  | // | 
|  | //        // 5. Calculate GST at 0h UT of this date | 
|  | //        double t00 = utToGst(0); | 
|  | // | 
|  | //        // 6. Calculate GST at 0h on the observer's longitude | 
|  | //        double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg. | 
|  | //        double t00p = t00 - offset*1.002737909; | 
|  | //        if (t00p < 0) t00p += 24; // do NOT normalize | 
|  | // | 
|  | //        // 7. Adjust | 
|  | //        if (gst1r < t00p) { | 
|  | //            gst1r += 24; | 
|  | //            gst2r += 24; | 
|  | //        } | 
|  | //        if (gst1s < t00p) { | 
|  | //            gst1s += 24; | 
|  | //            gst2s += 24; | 
|  | //        } | 
|  | // | 
|  | //        // 8. | 
|  | //        double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r); | 
|  | //        double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s); | 
|  | // | 
|  | //        // 9. Correct for parallax, refraction, and sun's diameter | 
|  | //        double dec = (pos1.declination + pos2.declination) / 2; | 
|  | //        double psi = ::acos(sin(fLatitude) / cos(dec)); | 
|  | //        double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter | 
|  | //        double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG; | 
|  | //        double delta_t = 240 * y / cos(dec) / 3600; // hours | 
|  | // | 
|  | //        // 10. Add correction to GSTs, subtract from GSTr | 
|  | //        gstr -= delta_t; | 
|  | //        gsts += delta_t; | 
|  | // | 
|  | //        // 11. Convert GST to UT and then to local civil time | 
|  | //        double ut = gstToUt(rise ? gstr : gsts); | 
|  | //        //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t); | 
|  | //        long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day | 
|  | //        return midnight + (long) (ut * 3600000); | 
|  | //    } | 
|  |  | 
|  | // Commented out - currently unused. ICU 2.6, Alan | 
|  | //    /** | 
|  | //     * Convert local sidereal time to Greenwich sidereal time. | 
|  | //     * Section 15.  Duffett-Smith p.21 | 
|  | //     * @param lst in hours (0..24) | 
|  | //     * @return GST in hours (0..24) | 
|  | //     */ | 
|  | //    double lstToGst(double lst) { | 
|  | //        double delta = fLongitude * 24 / CalendarAstronomer_PI2; | 
|  | //        return normalize(lst - delta, 24); | 
|  | //    } | 
|  |  | 
|  | // Commented out - currently unused. ICU 2.6, Alan | 
|  | //    /** | 
|  | //     * Convert UT to GST on this date. | 
|  | //     * Section 12.  Duffett-Smith p.17 | 
|  | //     * @param ut in hours | 
|  | //     * @return GST in hours | 
|  | //     */ | 
|  | //    double utToGst(double ut) { | 
|  | //        return normalize(getT0() + ut*1.002737909, 24); | 
|  | //    } | 
|  |  | 
|  | // Commented out - currently unused. ICU 2.6, Alan | 
|  | //    /** | 
|  | //     * Convert GST to UT on this date. | 
|  | //     * Section 13.  Duffett-Smith p.18 | 
|  | //     * @param gst in hours | 
|  | //     * @return UT in hours | 
|  | //     */ | 
|  | //    double gstToUt(double gst) { | 
|  | //        return normalize(gst - getT0(), 24) * 0.9972695663; | 
|  | //    } | 
|  |  | 
|  | // Commented out - currently unused. ICU 2.6, Alan | 
|  | //    double getT0() { | 
|  | //        // Common computation for UT <=> GST | 
|  | // | 
|  | //        // Find JD for 0h UT | 
|  | //        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; | 
|  | // | 
|  | //        double s = jd - 2451545.0; | 
|  | //        double t = s / 36525.0; | 
|  | //        double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t; | 
|  | //        return t0; | 
|  | //    } | 
|  |  | 
|  | // Commented out - currently unused. ICU 2.6, Alan | 
|  | //    //------------------------------------------------------------------------- | 
|  | //    // Alternate Sun Rise/Set | 
|  | //    // See sci.astro FAQ | 
|  | //    // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html | 
|  | //    //------------------------------------------------------------------------- | 
|  | // | 
|  | //    // Note: This method appears to produce inferior accuracy as | 
|  | //    // compared to getSunRiseSet(). | 
|  | // | 
|  | //    /** | 
|  | //     * TODO Make this when the entire class is package-private. | 
|  | //     */ | 
|  | //    /*public*/ long getSunRiseSet3(boolean rise) { | 
|  | // | 
|  | //        // Compute day number for 0.0 Jan 2000 epoch | 
|  | //        double d = (double)(time - EPOCH_2000_MS) / DAY_MS; | 
|  | // | 
|  | //        // Now compute the Local Sidereal Time, LST: | 
|  | //        // | 
|  | //        double LST  =  98.9818  +  0.985647352 * d  +  /*UT*15  +  long*/ | 
|  | //            fLongitude*RAD_DEG; | 
|  | //        // | 
|  | //        // (east long. positive).  Note that LST is here expressed in degrees, | 
|  | //        // where 15 degrees corresponds to one hour.  Since LST really is an angle, | 
|  | //        // it's convenient to use one unit---degrees---throughout. | 
|  | // | 
|  | //        //    COMPUTING THE SUN'S POSITION | 
|  | //        //    ---------------------------- | 
|  | //        // | 
|  | //        // To be able to compute the Sun's rise/set times, you need to be able to | 
|  | //        // compute the Sun's position at any time.  First compute the "day | 
|  | //        // number" d as outlined above, for the desired moment.  Next compute: | 
|  | //        // | 
|  | //        double oblecl = 23.4393 - 3.563E-7 * d; | 
|  | //        // | 
|  | //        double w  =  282.9404  +  4.70935E-5   * d; | 
|  | //        double M  =  356.0470  +  0.9856002585 * d; | 
|  | //        double e  =  0.016709  -  1.151E-9     * d; | 
|  | //        // | 
|  | //        // This is the obliquity of the ecliptic, plus some of the elements of | 
|  | //        // the Sun's apparent orbit (i.e., really the Earth's orbit): w = | 
|  | //        // argument of perihelion, M = mean anomaly, e = eccentricity. | 
|  | //        // Semi-major axis is here assumed to be exactly 1.0 (while not strictly | 
|  | //        // true, this is still an accurate approximation).  Next compute E, the | 
|  | //        // eccentric anomaly: | 
|  | //        // | 
|  | //        double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) ); | 
|  | //        // | 
|  | //        // where E and M are in degrees.  This is it---no further iterations are | 
|  | //        // needed because we know e has a sufficiently small value.  Next compute | 
|  | //        // the true anomaly, v, and the distance, r: | 
|  | //        // | 
|  | //        /*      r * cos(v)  =  */ double A  =  cos(E*DEG_RAD) - e; | 
|  | //        /*      r * ::sin(v)  =  */ double B  =  ::sqrt(1 - e*e) * ::sin(E*DEG_RAD); | 
|  | //        // | 
|  | //        // and | 
|  | //        // | 
|  | //        //      r  =  sqrt( A*A + B*B ) | 
|  | //        double v  =  ::atan2( B, A )*RAD_DEG; | 
|  | //        // | 
|  | //        // The Sun's true longitude, slon, can now be computed: | 
|  | //        // | 
|  | //        double slon  =  v + w; | 
|  | //        // | 
|  | //        // Since the Sun is always at the ecliptic (or at least very very close to | 
|  | //        // it), we can use simplified formulae to convert slon (the Sun's ecliptic | 
|  | //        // longitude) to sRA and sDec (the Sun's RA and Dec): | 
|  | //        // | 
|  | //        //                   ::sin(slon) * cos(oblecl) | 
|  | //        //     tan(sRA)  =  ------------------------- | 
|  | //        //            cos(slon) | 
|  | //        // | 
|  | //        //     ::sin(sDec) =  ::sin(oblecl) * ::sin(slon) | 
|  | //        // | 
|  | //        // As was the case when computing az, the Azimuth, if possible use an | 
|  | //        // atan2() function to compute sRA. | 
|  | // | 
|  | //        double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG; | 
|  | // | 
|  | //        double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD); | 
|  | //        double sDec = ::asin(sin_sDec)*RAD_DEG; | 
|  | // | 
|  | //        //    COMPUTING RISE AND SET TIMES | 
|  | //        //    ---------------------------- | 
|  | //        // | 
|  | //        // To compute when an object rises or sets, you must compute when it | 
|  | //        // passes the meridian and the HA of rise/set.  Then the rise time is | 
|  | //        // the meridian time minus HA for rise/set, and the set time is the | 
|  | //        // meridian time plus the HA for rise/set. | 
|  | //        // | 
|  | //        // To find the meridian time, compute the Local Sidereal Time at 0h local | 
|  | //        // time (or 0h UT if you prefer to work in UT) as outlined above---name | 
|  | //        // that quantity LST0.  The Meridian Time, MT, will now be: | 
|  | //        // | 
|  | //        //     MT  =  RA - LST0 | 
|  | //        double MT = normalize(sRA - LST, 360); | 
|  | //        // | 
|  | //        // where "RA" is the object's Right Ascension (in degrees!).  If negative, | 
|  | //        // add 360 deg to MT.  If the object is the Sun, leave the time as it is, | 
|  | //        // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from | 
|  | //        // sidereal to solar time.  Now, compute HA for rise/set, name that | 
|  | //        // quantity HA0: | 
|  | //        // | 
|  | //        //                 ::sin(h0)  -  ::sin(lat) * ::sin(Dec) | 
|  | //        // cos(HA0)  =  --------------------------------- | 
|  | //        //                      cos(lat) * cos(Dec) | 
|  | //        // | 
|  | //        // where h0 is the altitude selected to represent rise/set.  For a purely | 
|  | //        // mathematical horizon, set h0 = 0 and simplify to: | 
|  | //        // | 
|  | //        //    cos(HA0)  =  - tan(lat) * tan(Dec) | 
|  | //        // | 
|  | //        // If you want to account for refraction on the atmosphere, set h0 = -35/60 | 
|  | //        // degrees (-35 arc minutes), and if you want to compute the rise/set times | 
|  | //        // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes). | 
|  | //        // | 
|  | //        double h0 = -50/60 * DEG_RAD; | 
|  | // | 
|  | //        double HA0 = ::acos( | 
|  | //          (sin(h0) - ::sin(fLatitude) * sin_sDec) / | 
|  | //          (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG; | 
|  | // | 
|  | //        // When HA0 has been computed, leave it as it is for the Sun but multiply | 
|  | //        // by 365.2422/366.2422 for stellar objects, to convert from sidereal to | 
|  | //        // solar time.  Finally compute: | 
|  | //        // | 
|  | //        //    Rise time  =  MT - HA0 | 
|  | //        //    Set  time  =  MT + HA0 | 
|  | //        // | 
|  | //        // convert the times from degrees to hours by dividing by 15. | 
|  | //        // | 
|  | //        // If you'd like to check that your calculations are accurate or just | 
|  | //        // need a quick result, check the USNO's Sun or Moon Rise/Set Table, | 
|  | //        // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>. | 
|  | // | 
|  | //        double result = MT + (rise ? -HA0 : HA0); // in degrees | 
|  | // | 
|  | //        // Find UT midnight on this day | 
|  | //        long midnight = DAY_MS * (time / DAY_MS); | 
|  | // | 
|  | //        return midnight + (long) (result * 3600000 / 15); | 
|  | //    } | 
|  |  | 
|  | //------------------------------------------------------------------------- | 
|  | // The Moon | 
|  | //------------------------------------------------------------------------- | 
|  |  | 
|  | #define moonL0  (318.351648 * CalendarAstronomer::PI/180 )   // Mean long. at epoch | 
|  | #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 )   // Mean long. of perigee | 
|  | #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 )   // Mean long. of node | 
|  | #define moonI  (   5.145366 * CalendarAstronomer::PI/180 )   // Inclination of orbit | 
|  | #define moonE  (   0.054900 )            // Eccentricity of orbit | 
|  |  | 
|  | // These aren't used right now | 
|  | #define moonA  (   3.84401e5 )           // semi-major axis (km) | 
|  | #define moonT0 (   0.5181 * CalendarAstronomer::PI/180 )     // Angular size at distance A | 
|  | #define moonPi (   0.9507 * CalendarAstronomer::PI/180 )     // Parallax at distance A | 
|  |  | 
|  | /** | 
|  | * The position of the moon at the time set on this | 
|  | * object, in equatorial coordinates. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition() | 
|  | { | 
|  | // | 
|  | // See page 142 of "Practical Astronomy with your Calculator", | 
|  | // by Peter Duffet-Smith, for details on the algorithm. | 
|  | // | 
|  | if (moonPositionSet == false) { | 
|  | // Calculate the solar longitude.  Has the side effect of | 
|  | // filling in "meanAnomalySun" as well. | 
|  | getSunLongitude(); | 
|  |  | 
|  | // | 
|  | // Find the # of days since the epoch of our orbital parameters. | 
|  | // TODO: Convert the time of day portion into ephemeris time | 
|  | // | 
|  | double day = getJulianDay() - JD_EPOCH;       // Days since epoch | 
|  |  | 
|  | // Calculate the mean longitude and anomaly of the moon, based on | 
|  | // a circular orbit.  Similar to the corresponding solar calculation. | 
|  | double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0); | 
|  | meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0); | 
|  |  | 
|  | // | 
|  | // Calculate the following corrections: | 
|  | //  Evection:   the sun's gravity affects the moon's eccentricity | 
|  | //  Annual Eqn: variation in the effect due to earth-sun distance | 
|  | //  A3:         correction factor (for ???) | 
|  | // | 
|  | double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude) | 
|  | - meanAnomalyMoon); | 
|  | double annual   = 0.1858*PI/180 * ::sin(meanAnomalySun); | 
|  | double a3       = 0.3700*PI/180 * ::sin(meanAnomalySun); | 
|  |  | 
|  | meanAnomalyMoon += evection - annual - a3; | 
|  |  | 
|  | // | 
|  | // More correction factors: | 
|  | //  center  equation of the center correction | 
|  | //  a4      yet another error correction (???) | 
|  | // | 
|  | // TODO: Skip the equation of the center correction and solve Kepler's eqn? | 
|  | // | 
|  | double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon); | 
|  | double a4 =     0.2140*PI/180 * ::sin(2 * meanAnomalyMoon); | 
|  |  | 
|  | // Now find the moon's corrected longitude | 
|  | moonLongitude = meanLongitude + evection + center - annual + a4; | 
|  |  | 
|  | // | 
|  | // And finally, find the variation, caused by the fact that the sun's | 
|  | // gravitational pull on the moon varies depending on which side of | 
|  | // the earth the moon is on | 
|  | // | 
|  | double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude)); | 
|  |  | 
|  | moonLongitude += variation; | 
|  |  | 
|  | // | 
|  | // What we've calculated so far is the moon's longitude in the plane | 
|  | // of its own orbit.  Now map to the ecliptic to get the latitude | 
|  | // and longitude.  First we need to find the longitude of the ascending | 
|  | // node, the position on the ecliptic where it is crossed by the moon's | 
|  | // orbit as it crosses from the southern to the northern hemisphere. | 
|  | // | 
|  | double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day); | 
|  |  | 
|  | nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun); | 
|  |  | 
|  | double y = ::sin(moonLongitude - nodeLongitude); | 
|  | double x = cos(moonLongitude - nodeLongitude); | 
|  |  | 
|  | moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude; | 
|  | double moonEclipLat = ::asin(y * ::sin(moonI)); | 
|  |  | 
|  | eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat); | 
|  | moonPositionSet = true; | 
|  | } | 
|  | return moonPosition; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * The "age" of the moon at the time specified in this object. | 
|  | * This is really the angle between the | 
|  | * current ecliptic longitudes of the sun and the moon, | 
|  | * measured in radians. | 
|  | * | 
|  | * @see #getMoonPhase | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | double CalendarAstronomer::getMoonAge() { | 
|  | // See page 147 of "Practical Astronomy with your Calculator", | 
|  | // by Peter Duffet-Smith, for details on the algorithm. | 
|  | // | 
|  | // Force the moon's position to be calculated.  We're going to use | 
|  | // some the intermediate results cached during that calculation. | 
|  | // | 
|  | getMoonPosition(); | 
|  |  | 
|  | return norm2PI(moonEclipLong - sunLongitude); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Calculate the phase of the moon at the time set in this object. | 
|  | * The returned phase is a <code>double</code> in the range | 
|  | * <code>0 <= phase < 1</code>, interpreted as follows: | 
|  | * <ul> | 
|  | * <li>0.00: New moon | 
|  | * <li>0.25: First quarter | 
|  | * <li>0.50: Full moon | 
|  | * <li>0.75: Last quarter | 
|  | * </ul> | 
|  | * | 
|  | * @see #getMoonAge | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | double CalendarAstronomer::getMoonPhase() { | 
|  | // See page 147 of "Practical Astronomy with your Calculator", | 
|  | // by Peter Duffet-Smith, for details on the algorithm. | 
|  | return 0.5 * (1 - cos(getMoonAge())); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Constant representing a new moon. | 
|  | * For use with {@link #getMoonTime getMoonTime} | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() { | 
|  | return  CalendarAstronomer::MoonAge(0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Constant representing the moon's first quarter. | 
|  | * For use with {@link #getMoonTime getMoonTime} | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() { | 
|  | return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2); | 
|  | }*/ | 
|  |  | 
|  | /** | 
|  | * Constant representing a full moon. | 
|  | * For use with {@link #getMoonTime getMoonTime} | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() { | 
|  | return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI); | 
|  | } | 
|  | /** | 
|  | * Constant representing the moon's last quarter. | 
|  | * For use with {@link #getMoonTime getMoonTime} | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  |  | 
|  | class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc { | 
|  | public: | 
|  | virtual ~MoonTimeAngleFunc(); | 
|  | virtual double eval(CalendarAstronomer& a) override { return a.getMoonAge(); } | 
|  | }; | 
|  |  | 
|  | MoonTimeAngleFunc::~MoonTimeAngleFunc() {} | 
|  |  | 
|  | /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() { | 
|  | return  CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2); | 
|  | }*/ | 
|  |  | 
|  | /** | 
|  | * Find the next or previous time at which the Moon's ecliptic | 
|  | * longitude will have the desired value. | 
|  | * <p> | 
|  | * @param desired   The desired longitude. | 
|  | * @param next      <tt>true</tt> if the next occurrence of the phase | 
|  | *                  is desired, <tt>false</tt> for the previous occurrence. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | UDate CalendarAstronomer::getMoonTime(double desired, UBool next) | 
|  | { | 
|  | MoonTimeAngleFunc func; | 
|  | return timeOfAngle( func, | 
|  | desired, | 
|  | SYNODIC_MONTH, | 
|  | MINUTE_MS, | 
|  | next); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Find the next or previous time at which the moon will be in the | 
|  | * desired phase. | 
|  | * <p> | 
|  | * @param desired   The desired phase of the moon. | 
|  | * @param next      <tt>true</tt> if the next occurrence of the phase | 
|  | *                  is desired, <tt>false</tt> for the previous occurrence. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) { | 
|  | return getMoonTime(desired.value, next); | 
|  | } | 
|  |  | 
|  | class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc { | 
|  | public: | 
|  | virtual ~MoonRiseSetCoordFunc(); | 
|  | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer& a) override { result = a.getMoonPosition(); } | 
|  | }; | 
|  |  | 
|  | MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {} | 
|  |  | 
|  | /** | 
|  | * Returns the time (GMT) of sunrise or sunset on the local date to which | 
|  | * this calendar is currently set. | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | UDate CalendarAstronomer::getMoonRiseSet(UBool rise) | 
|  | { | 
|  | MoonRiseSetCoordFunc func; | 
|  | return riseOrSet(func, | 
|  | rise, | 
|  | .533 * DEG_RAD,        // Angular Diameter | 
|  | 34 /60.0 * DEG_RAD,    // Refraction correction | 
|  | MINUTE_MS);            // Desired accuracy | 
|  | } | 
|  |  | 
|  | //------------------------------------------------------------------------- | 
|  | // Interpolation methods for finding the time at which a given event occurs | 
|  | //------------------------------------------------------------------------- | 
|  |  | 
|  | UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired, | 
|  | double periodDays, double epsilon, UBool next) | 
|  | { | 
|  | // Find the value of the function at the current time | 
|  | double lastAngle = func.eval(*this); | 
|  |  | 
|  | // Find out how far we are from the desired angle | 
|  | double deltaAngle = norm2PI(desired - lastAngle) ; | 
|  |  | 
|  | // Using the average period, estimate the next (or previous) time at | 
|  | // which the desired angle occurs. | 
|  | double deltaT =  (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2; | 
|  |  | 
|  | double lastDeltaT = deltaT; // Liu | 
|  | UDate startTime = fTime; // Liu | 
|  |  | 
|  | setTime(fTime + uprv_ceil(deltaT)); | 
|  |  | 
|  | // Now iterate until we get the error below epsilon.  Throughout | 
|  | // this loop we use normPI to get values in the range -Pi to Pi, | 
|  | // since we're using them as correction factors rather than absolute angles. | 
|  | do { | 
|  | // Evaluate the function at the time we've estimated | 
|  | double angle = func.eval(*this); | 
|  |  | 
|  | // Find the # of milliseconds per radian at this point on the curve | 
|  | double factor = uprv_fabs(deltaT / normPI(angle-lastAngle)); | 
|  |  | 
|  | // Correct the time estimate based on how far off the angle is | 
|  | deltaT = normPI(desired - angle) * factor; | 
|  |  | 
|  | // HACK: | 
|  | // | 
|  | // If abs(deltaT) begins to diverge we need to quit this loop. | 
|  | // This only appears to happen when attempting to locate, for | 
|  | // example, a new moon on the day of the new moon.  E.g.: | 
|  | // | 
|  | // This result is correct: | 
|  | // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))= | 
|  | //   Sun Jul 22 10:57:41 CST 1990 | 
|  | // | 
|  | // But attempting to make the same call a day earlier causes deltaT | 
|  | // to diverge: | 
|  | // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 -> | 
|  | //   1.3649828540224032E9 | 
|  | // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))= | 
|  | //   Sun Jul 08 13:56:15 CST 1990 | 
|  | // | 
|  | // As a temporary solution, we catch this specific condition and | 
|  | // adjust our start time by one eighth period days (either forward | 
|  | // or backward) and try again. | 
|  | // Liu 11/9/00 | 
|  | if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) { | 
|  | double delta = uprv_ceil (periodDays * DAY_MS / 8.0); | 
|  | setTime(startTime + (next ? delta : -delta)); | 
|  | return timeOfAngle(func, desired, periodDays, epsilon, next); | 
|  | } | 
|  |  | 
|  | lastDeltaT = deltaT; | 
|  | lastAngle = angle; | 
|  |  | 
|  | setTime(fTime + uprv_ceil(deltaT)); | 
|  | } | 
|  | while (uprv_fabs(deltaT) > epsilon); | 
|  |  | 
|  | return fTime; | 
|  | } | 
|  |  | 
|  | UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise, | 
|  | double diameter, double refraction, | 
|  | double epsilon) | 
|  | { | 
|  | Equatorial pos; | 
|  | double      tanL   = ::tan(fLatitude); | 
|  | double     deltaT = 0; | 
|  | int32_t         count = 0; | 
|  |  | 
|  | // | 
|  | // Calculate the object's position at the current time, then use that | 
|  | // position to calculate the time of rising or setting.  The position | 
|  | // will be different at that time, so iterate until the error is allowable. | 
|  | // | 
|  | U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n", | 
|  | rise?"T":"F", diameter, refraction, epsilon)); | 
|  | do { | 
|  | // See "Practical Astronomy With Your Calculator, section 33. | 
|  | func.eval(pos, *this); | 
|  | double angle = ::acos(-tanL * ::tan(pos.declination)); | 
|  | double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2; | 
|  |  | 
|  | // Convert from LST to Universal Time. | 
|  | UDate newTime = lstToUT( lst ); | 
|  |  | 
|  | deltaT = newTime - fTime; | 
|  | setTime(newTime); | 
|  | U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf,   A=%.3lf/D=%.3lf\n", | 
|  | count, deltaT, angle, lst, pos.ascension, pos.declination)); | 
|  | } | 
|  | while (++ count < 5 && uprv_fabs(deltaT) > epsilon); | 
|  |  | 
|  | // Calculate the correction due to refraction and the object's angular diameter | 
|  | double cosD  = ::cos(pos.declination); | 
|  | double psi   = ::acos(sin(fLatitude) / cosD); | 
|  | double x     = diameter / 2 + refraction; | 
|  | double y     = ::asin(sin(x) / ::sin(psi)); | 
|  | long  delta  = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS); | 
|  |  | 
|  | return fTime + (rise ? -delta : delta); | 
|  | } | 
|  | /** | 
|  | * Return the obliquity of the ecliptic (the angle between the ecliptic | 
|  | * and the earth's equator) at the current time.  This varies due to | 
|  | * the precession of the earth's axis. | 
|  | * | 
|  | * @return  the obliquity of the ecliptic relative to the equator, | 
|  | *          measured in radians. | 
|  | */ | 
|  | double CalendarAstronomer::eclipticObliquity() { | 
|  | if (isINVALID(eclipObliquity)) { | 
|  | const double epoch = 2451545.0;     // 2000 AD, January 1.5 | 
|  |  | 
|  | double T = (getJulianDay() - epoch) / 36525; | 
|  |  | 
|  | eclipObliquity = 23.439292 | 
|  | - 46.815/3600 * T | 
|  | - 0.0006/3600 * T*T | 
|  | + 0.00181/3600 * T*T*T; | 
|  |  | 
|  | eclipObliquity *= DEG_RAD; | 
|  | } | 
|  | return eclipObliquity; | 
|  | } | 
|  |  | 
|  |  | 
|  | //------------------------------------------------------------------------- | 
|  | // Private data | 
|  | //------------------------------------------------------------------------- | 
|  | void CalendarAstronomer::clearCache() { | 
|  | const double INVALID = uprv_getNaN(); | 
|  |  | 
|  | julianDay       = INVALID; | 
|  | julianCentury   = INVALID; | 
|  | sunLongitude    = INVALID; | 
|  | meanAnomalySun  = INVALID; | 
|  | moonLongitude   = INVALID; | 
|  | moonEclipLong   = INVALID; | 
|  | meanAnomalyMoon = INVALID; | 
|  | eclipObliquity  = INVALID; | 
|  | siderealTime    = INVALID; | 
|  | siderealT0      = INVALID; | 
|  | moonPositionSet = false; | 
|  | } | 
|  |  | 
|  | //private static void out(String s) { | 
|  | //    System.out.println(s); | 
|  | //} | 
|  |  | 
|  | //private static String deg(double rad) { | 
|  | //    return Double.toString(rad * RAD_DEG); | 
|  | //} | 
|  |  | 
|  | //private static String hours(long ms) { | 
|  | //    return Double.toString((double)ms / HOUR_MS) + " hours"; | 
|  | //} | 
|  |  | 
|  | /** | 
|  | * @internal | 
|  | * @deprecated ICU 2.4. This class may be removed or modified. | 
|  | */ | 
|  | /*UDate CalendarAstronomer::local(UDate localMillis) { | 
|  | // TODO - srl ? | 
|  | TimeZone *tz = TimeZone::createDefault(); | 
|  | int32_t rawOffset; | 
|  | int32_t dstOffset; | 
|  | UErrorCode status = U_ZERO_ERROR; | 
|  | tz->getOffset(localMillis, true, rawOffset, dstOffset, status); | 
|  | delete tz; | 
|  | return localMillis - rawOffset; | 
|  | }*/ | 
|  |  | 
|  | // Debugging functions | 
|  | UnicodeString CalendarAstronomer::Ecliptic::toString() const | 
|  | { | 
|  | #ifdef U_DEBUG_ASTRO | 
|  | char tmp[800]; | 
|  | sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG); | 
|  | return UnicodeString(tmp, ""); | 
|  | #else | 
|  | return UnicodeString(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | UnicodeString CalendarAstronomer::Equatorial::toString() const | 
|  | { | 
|  | #ifdef U_DEBUG_ASTRO | 
|  | char tmp[400]; | 
|  | sprintf(tmp, "%f,%f", | 
|  | (ascension*RAD_DEG), (declination*RAD_DEG)); | 
|  | return UnicodeString(tmp, ""); | 
|  | #else | 
|  | return UnicodeString(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | UnicodeString CalendarAstronomer::Horizon::toString() const | 
|  | { | 
|  | #ifdef U_DEBUG_ASTRO | 
|  | char tmp[800]; | 
|  | sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG); | 
|  | return UnicodeString(tmp, ""); | 
|  | #else | 
|  | return UnicodeString(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | //  static private String radToHms(double angle) { | 
|  | //    int hrs = (int) (angle*RAD_HOUR); | 
|  | //    int min = (int)((angle*RAD_HOUR - hrs) * 60); | 
|  | //    int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600); | 
|  |  | 
|  | //    return Integer.toString(hrs) + "h" + min + "m" + sec + "s"; | 
|  | //  } | 
|  |  | 
|  | //  static private String radToDms(double angle) { | 
|  | //    int deg = (int) (angle*RAD_DEG); | 
|  | //    int min = (int)((angle*RAD_DEG - deg) * 60); | 
|  | //    int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600); | 
|  |  | 
|  | //    return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\""; | 
|  | //  } | 
|  |  | 
|  | // =============== Calendar Cache ================ | 
|  |  | 
|  | void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) { | 
|  | ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup); | 
|  | if(cache == NULL) { | 
|  | status = U_MEMORY_ALLOCATION_ERROR; | 
|  | } else { | 
|  | *cache = new CalendarCache(32, status); | 
|  | if(U_FAILURE(status)) { | 
|  | delete *cache; | 
|  | *cache = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) { | 
|  | int32_t res; | 
|  |  | 
|  | if(U_FAILURE(status)) { | 
|  | return 0; | 
|  | } | 
|  | umtx_lock(&ccLock); | 
|  |  | 
|  | if(*cache == NULL) { | 
|  | createCache(cache, status); | 
|  | if(U_FAILURE(status)) { | 
|  | umtx_unlock(&ccLock); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | res = uhash_igeti((*cache)->fTable, key); | 
|  | U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res)); | 
|  |  | 
|  | umtx_unlock(&ccLock); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) { | 
|  | if(U_FAILURE(status)) { | 
|  | return; | 
|  | } | 
|  | umtx_lock(&ccLock); | 
|  |  | 
|  | if(*cache == NULL) { | 
|  | createCache(cache, status); | 
|  | if(U_FAILURE(status)) { | 
|  | umtx_unlock(&ccLock); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | uhash_iputi((*cache)->fTable, key, value, &status); | 
|  | U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value)); | 
|  |  | 
|  | umtx_unlock(&ccLock); | 
|  | } | 
|  |  | 
|  | CalendarCache::CalendarCache(int32_t size, UErrorCode &status) { | 
|  | fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status); | 
|  | U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable)); | 
|  | } | 
|  |  | 
|  | CalendarCache::~CalendarCache() { | 
|  | if(fTable != NULL) { | 
|  | U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable)); | 
|  | uhash_close(fTable); | 
|  | } | 
|  | } | 
|  |  | 
|  | U_NAMESPACE_END | 
|  |  | 
|  | #endif //  !UCONFIG_NO_FORMATTING |