blob: 537aa19d8a40ed44a3eb9b5aaf8075ae0eb11be0 [file] [log] [blame]
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
**********************************************************************
* Copyright (c) 2003-2008, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Author: Alan Liu
* Created: September 2 2003
* Since: ICU 2.8
**********************************************************************
*/
#include "gregoimp.h"
#if !UCONFIG_NO_FORMATTING
#include "unicode/ucal.h"
#include "uresimp.h"
#include "cstring.h"
#include "uassert.h"
U_NAMESPACE_BEGIN
int32_t ClockMath::floorDivide(int32_t numerator, int32_t denominator) {
return (numerator >= 0) ?
numerator / denominator : ((numerator + 1) / denominator) - 1;
}
int64_t ClockMath::floorDivide(int64_t numerator, int64_t denominator) {
return (numerator >= 0) ?
numerator / denominator : ((numerator + 1) / denominator) - 1;
}
int32_t ClockMath::floorDivide(double numerator, int32_t denominator,
int32_t& remainder) {
double quotient;
quotient = uprv_floor(numerator / denominator);
remainder = (int32_t) (numerator - (quotient * denominator));
return (int32_t) quotient;
}
double ClockMath::floorDivide(double dividend, double divisor,
double& remainder) {
// Only designed to work for positive divisors
U_ASSERT(divisor > 0);
double quotient = floorDivide(dividend, divisor);
remainder = dividend - (quotient * divisor);
// N.B. For certain large dividends, on certain platforms, there
// is a bug such that the quotient is off by one. If you doubt
// this to be true, set a breakpoint below and run cintltst.
if (remainder < 0 || remainder >= divisor) {
// E.g. 6.7317038241449352e+022 / 86400000.0 is wrong on my
// machine (too high by one). 4.1792057231752762e+024 /
// 86400000.0 is wrong the other way (too low).
double q = quotient;
quotient += (remainder < 0) ? -1 : +1;
if (q == quotient) {
// For quotients > ~2^53, we won't be able to add or
// subtract one, since the LSB of the mantissa will be >
// 2^0; that is, the exponent (base 2) will be larger than
// the length, in bits, of the mantissa. In that case, we
// can't give a correct answer, so we set the remainder to
// zero. This has the desired effect of making extreme
// values give back an approximate answer rather than
// crashing. For example, UDate values above a ~10^25
// might all have a time of midnight.
remainder = 0;
} else {
remainder = dividend - (quotient * divisor);
}
}
U_ASSERT(0 <= remainder && remainder < divisor);
return quotient;
}
const int32_t JULIAN_1_CE = 1721426; // January 1, 1 CE Gregorian
const int32_t JULIAN_1970_CE = 2440588; // January 1, 1970 CE Gregorian
const int16_t Grego::DAYS_BEFORE[24] =
{0,31,59,90,120,151,181,212,243,273,304,334,
0,31,60,91,121,152,182,213,244,274,305,335};
const int8_t Grego::MONTH_LENGTH[24] =
{31,28,31,30,31,30,31,31,30,31,30,31,
31,29,31,30,31,30,31,31,30,31,30,31};
double Grego::fieldsToDay(int32_t year, int32_t month, int32_t dom) {
int32_t y = year - 1;
double julian = 365 * y + ClockMath::floorDivide(y, 4) + (JULIAN_1_CE - 3) + // Julian cal
ClockMath::floorDivide(y, 400) - ClockMath::floorDivide(y, 100) + 2 + // => Gregorian cal
DAYS_BEFORE[month + (isLeapYear(year) ? 12 : 0)] + dom; // => month/dom
return julian - JULIAN_1970_CE; // JD => epoch day
}
void Grego::dayToFields(double day, int32_t& year, int32_t& month,
int32_t& dom, int32_t& dow, int32_t& doy) {
// Convert from 1970 CE epoch to 1 CE epoch (Gregorian calendar)
day += JULIAN_1970_CE - JULIAN_1_CE;
// Convert from the day number to the multiple radix
// representation. We use 400-year, 100-year, and 4-year cycles.
// For example, the 4-year cycle has 4 years + 1 leap day; giving
// 1461 == 365*4 + 1 days.
int32_t n400 = ClockMath::floorDivide(day, 146097, doy); // 400-year cycle length
int32_t n100 = ClockMath::floorDivide(doy, 36524, doy); // 100-year cycle length
int32_t n4 = ClockMath::floorDivide(doy, 1461, doy); // 4-year cycle length
int32_t n1 = ClockMath::floorDivide(doy, 365, doy);
year = 400*n400 + 100*n100 + 4*n4 + n1;
if (n100 == 4 || n1 == 4) {
doy = 365; // Dec 31 at end of 4- or 400-year cycle
} else {
++year;
}
UBool isLeap = isLeapYear(year);
// Gregorian day zero is a Monday.
dow = (int32_t) uprv_fmod(day + 1, 7);
dow += (dow < 0) ? (UCAL_SUNDAY + 7) : UCAL_SUNDAY;
// Common Julian/Gregorian calculation
int32_t correction = 0;
int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
if (doy >= march1) {
correction = isLeap ? 1 : 2;
}
month = (12 * (doy + correction) + 6) / 367; // zero-based month
dom = doy - DAYS_BEFORE[month + (isLeap ? 12 : 0)] + 1; // one-based DOM
doy++; // one-based doy
}
void Grego::timeToFields(UDate time, int32_t& year, int32_t& month,
int32_t& dom, int32_t& dow, int32_t& doy, int32_t& mid) {
double millisInDay;
double day = ClockMath::floorDivide((double)time, (double)U_MILLIS_PER_DAY, millisInDay);
mid = (int32_t)millisInDay;
dayToFields(day, year, month, dom, dow, doy);
}
int32_t Grego::dayOfWeek(double day) {
int32_t dow;
ClockMath::floorDivide(day + UCAL_THURSDAY, 7, dow);
return (dow == 0) ? UCAL_SATURDAY : dow;
}
int32_t Grego::dayOfWeekInMonth(int32_t year, int32_t month, int32_t dom) {
int32_t weekInMonth = (dom + 6)/7;
if (weekInMonth == 4) {
if (dom + 7 > monthLength(year, month)) {
weekInMonth = -1;
}
} else if (weekInMonth == 5) {
weekInMonth = -1;
}
return weekInMonth;
}
U_NAMESPACE_END
#endif
//eof