| // © 2016 and later: Unicode, Inc. and others. |
| // License & terms of use: http://www.unicode.org/copyright.html |
| /* |
| ********************************************************************** |
| * Copyright (c) 2003-2008, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| ********************************************************************** |
| * Author: Alan Liu |
| * Created: September 2 2003 |
| * Since: ICU 2.8 |
| ********************************************************************** |
| */ |
| |
| #include "gregoimp.h" |
| |
| #if !UCONFIG_NO_FORMATTING |
| |
| #include "unicode/ucal.h" |
| #include "uresimp.h" |
| #include "cstring.h" |
| #include "uassert.h" |
| |
| U_NAMESPACE_BEGIN |
| |
| int32_t ClockMath::floorDivide(int32_t numerator, int32_t denominator) { |
| return (numerator >= 0) ? |
| numerator / denominator : ((numerator + 1) / denominator) - 1; |
| } |
| |
| int64_t ClockMath::floorDivide(int64_t numerator, int64_t denominator) { |
| return (numerator >= 0) ? |
| numerator / denominator : ((numerator + 1) / denominator) - 1; |
| } |
| |
| int32_t ClockMath::floorDivide(double numerator, int32_t denominator, |
| int32_t& remainder) { |
| double quotient; |
| quotient = uprv_floor(numerator / denominator); |
| remainder = (int32_t) (numerator - (quotient * denominator)); |
| return (int32_t) quotient; |
| } |
| |
| double ClockMath::floorDivide(double dividend, double divisor, |
| double& remainder) { |
| // Only designed to work for positive divisors |
| U_ASSERT(divisor > 0); |
| double quotient = floorDivide(dividend, divisor); |
| remainder = dividend - (quotient * divisor); |
| // N.B. For certain large dividends, on certain platforms, there |
| // is a bug such that the quotient is off by one. If you doubt |
| // this to be true, set a breakpoint below and run cintltst. |
| if (remainder < 0 || remainder >= divisor) { |
| // E.g. 6.7317038241449352e+022 / 86400000.0 is wrong on my |
| // machine (too high by one). 4.1792057231752762e+024 / |
| // 86400000.0 is wrong the other way (too low). |
| double q = quotient; |
| quotient += (remainder < 0) ? -1 : +1; |
| if (q == quotient) { |
| // For quotients > ~2^53, we won't be able to add or |
| // subtract one, since the LSB of the mantissa will be > |
| // 2^0; that is, the exponent (base 2) will be larger than |
| // the length, in bits, of the mantissa. In that case, we |
| // can't give a correct answer, so we set the remainder to |
| // zero. This has the desired effect of making extreme |
| // values give back an approximate answer rather than |
| // crashing. For example, UDate values above a ~10^25 |
| // might all have a time of midnight. |
| remainder = 0; |
| } else { |
| remainder = dividend - (quotient * divisor); |
| } |
| } |
| U_ASSERT(0 <= remainder && remainder < divisor); |
| return quotient; |
| } |
| |
| const int32_t JULIAN_1_CE = 1721426; // January 1, 1 CE Gregorian |
| const int32_t JULIAN_1970_CE = 2440588; // January 1, 1970 CE Gregorian |
| |
| const int16_t Grego::DAYS_BEFORE[24] = |
| {0,31,59,90,120,151,181,212,243,273,304,334, |
| 0,31,60,91,121,152,182,213,244,274,305,335}; |
| |
| const int8_t Grego::MONTH_LENGTH[24] = |
| {31,28,31,30,31,30,31,31,30,31,30,31, |
| 31,29,31,30,31,30,31,31,30,31,30,31}; |
| |
| double Grego::fieldsToDay(int32_t year, int32_t month, int32_t dom) { |
| |
| int32_t y = year - 1; |
| |
| double julian = 365 * y + ClockMath::floorDivide(y, 4) + (JULIAN_1_CE - 3) + // Julian cal |
| ClockMath::floorDivide(y, 400) - ClockMath::floorDivide(y, 100) + 2 + // => Gregorian cal |
| DAYS_BEFORE[month + (isLeapYear(year) ? 12 : 0)] + dom; // => month/dom |
| |
| return julian - JULIAN_1970_CE; // JD => epoch day |
| } |
| |
| void Grego::dayToFields(double day, int32_t& year, int32_t& month, |
| int32_t& dom, int32_t& dow, int32_t& doy) { |
| |
| // Convert from 1970 CE epoch to 1 CE epoch (Gregorian calendar) |
| day += JULIAN_1970_CE - JULIAN_1_CE; |
| |
| // Convert from the day number to the multiple radix |
| // representation. We use 400-year, 100-year, and 4-year cycles. |
| // For example, the 4-year cycle has 4 years + 1 leap day; giving |
| // 1461 == 365*4 + 1 days. |
| int32_t n400 = ClockMath::floorDivide(day, 146097, doy); // 400-year cycle length |
| int32_t n100 = ClockMath::floorDivide(doy, 36524, doy); // 100-year cycle length |
| int32_t n4 = ClockMath::floorDivide(doy, 1461, doy); // 4-year cycle length |
| int32_t n1 = ClockMath::floorDivide(doy, 365, doy); |
| year = 400*n400 + 100*n100 + 4*n4 + n1; |
| if (n100 == 4 || n1 == 4) { |
| doy = 365; // Dec 31 at end of 4- or 400-year cycle |
| } else { |
| ++year; |
| } |
| |
| UBool isLeap = isLeapYear(year); |
| |
| // Gregorian day zero is a Monday. |
| dow = (int32_t) uprv_fmod(day + 1, 7); |
| dow += (dow < 0) ? (UCAL_SUNDAY + 7) : UCAL_SUNDAY; |
| |
| // Common Julian/Gregorian calculation |
| int32_t correction = 0; |
| int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1 |
| if (doy >= march1) { |
| correction = isLeap ? 1 : 2; |
| } |
| month = (12 * (doy + correction) + 6) / 367; // zero-based month |
| dom = doy - DAYS_BEFORE[month + (isLeap ? 12 : 0)] + 1; // one-based DOM |
| doy++; // one-based doy |
| } |
| |
| void Grego::timeToFields(UDate time, int32_t& year, int32_t& month, |
| int32_t& dom, int32_t& dow, int32_t& doy, int32_t& mid) { |
| double millisInDay; |
| double day = ClockMath::floorDivide((double)time, (double)U_MILLIS_PER_DAY, millisInDay); |
| mid = (int32_t)millisInDay; |
| dayToFields(day, year, month, dom, dow, doy); |
| } |
| |
| int32_t Grego::dayOfWeek(double day) { |
| int32_t dow; |
| ClockMath::floorDivide(day + UCAL_THURSDAY, 7, dow); |
| return (dow == 0) ? UCAL_SATURDAY : dow; |
| } |
| |
| int32_t Grego::dayOfWeekInMonth(int32_t year, int32_t month, int32_t dom) { |
| int32_t weekInMonth = (dom + 6)/7; |
| if (weekInMonth == 4) { |
| if (dom + 7 > monthLength(year, month)) { |
| weekInMonth = -1; |
| } |
| } else if (weekInMonth == 5) { |
| weekInMonth = -1; |
| } |
| return weekInMonth; |
| } |
| |
| U_NAMESPACE_END |
| |
| #endif |
| //eof |