blob: ea27246f16e40ff42e7153aff8bd17c176e749c4 [file] [log] [blame]
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
* Copyright (C) 1997-2016, International Business Machines Corporation and
* others. All Rights Reserved.
*******************************************************************************
*
* File FMTABLE.CPP
*
* Modification History:
*
* Date Name Description
* 03/25/97 clhuang Initial Implementation.
********************************************************************************
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include <cstdlib>
#include <math.h>
#include "unicode/fmtable.h"
#include "unicode/ustring.h"
#include "unicode/measure.h"
#include "unicode/curramt.h"
#include "unicode/uformattable.h"
#include "charstr.h"
#include "cmemory.h"
#include "cstring.h"
#include "fmtableimp.h"
#include "number_decimalquantity.h"
// *****************************************************************************
// class Formattable
// *****************************************************************************
U_NAMESPACE_BEGIN
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(Formattable)
using number::impl::DecimalQuantity;
//-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
// NOTE: As of 3.0, there are limitations to the UObject API. It does
// not (yet) support cloning, operator=, nor operator==. To
// work around this, I implement some simple inlines here. Later
// these can be modified or removed. [alan]
// NOTE: These inlines assume that all fObjects are in fact instances
// of the Measure class, which is true as of 3.0. [alan]
// Return TRUE if *a == *b.
static inline UBool objectEquals(const UObject* a, const UObject* b) {
// LATER: return *a == *b;
return *((const Measure*) a) == *((const Measure*) b);
}
// Return a clone of *a.
static inline UObject* objectClone(const UObject* a) {
// LATER: return a->clone();
return ((const Measure*) a)->clone();
}
// Return TRUE if *a is an instance of Measure.
static inline UBool instanceOfMeasure(const UObject* a) {
return dynamic_cast<const Measure*>(a) != NULL;
}
/**
* Creates a new Formattable array and copies the values from the specified
* original.
* @param array the original array
* @param count the original array count
* @return the new Formattable array.
*/
static Formattable* createArrayCopy(const Formattable* array, int32_t count) {
Formattable *result = new Formattable[count];
if (result != NULL) {
for (int32_t i=0; i<count; ++i)
result[i] = array[i]; // Don't memcpy!
}
return result;
}
//-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
/**
* Set 'ec' to 'err' only if 'ec' is not already set to a failing UErrorCode.
*/
static void setError(UErrorCode& ec, UErrorCode err) {
if (U_SUCCESS(ec)) {
ec = err;
}
}
//
// Common initialization code, shared by constructors.
// Put everything into a known state.
//
void Formattable::init() {
fValue.fInt64 = 0;
fType = kLong;
fDecimalStr = NULL;
fDecimalQuantity = NULL;
fBogus.setToBogus();
}
// -------------------------------------
// default constructor.
// Creates a formattable object with a long value 0.
Formattable::Formattable() {
init();
}
// -------------------------------------
// Creates a formattable object with a Date instance.
Formattable::Formattable(UDate date, ISDATE /*isDate*/)
{
init();
fType = kDate;
fValue.fDate = date;
}
// -------------------------------------
// Creates a formattable object with a double value.
Formattable::Formattable(double value)
{
init();
fType = kDouble;
fValue.fDouble = value;
}
// -------------------------------------
// Creates a formattable object with an int32_t value.
Formattable::Formattable(int32_t value)
{
init();
fValue.fInt64 = value;
}
// -------------------------------------
// Creates a formattable object with an int64_t value.
Formattable::Formattable(int64_t value)
{
init();
fType = kInt64;
fValue.fInt64 = value;
}
// -------------------------------------
// Creates a formattable object with a decimal number value from a string.
Formattable::Formattable(StringPiece number, UErrorCode &status) {
init();
setDecimalNumber(number, status);
}
// -------------------------------------
// Creates a formattable object with a UnicodeString instance.
Formattable::Formattable(const UnicodeString& stringToCopy)
{
init();
fType = kString;
fValue.fString = new UnicodeString(stringToCopy);
}
// -------------------------------------
// Creates a formattable object with a UnicodeString* value.
// (adopting symantics)
Formattable::Formattable(UnicodeString* stringToAdopt)
{
init();
fType = kString;
fValue.fString = stringToAdopt;
}
Formattable::Formattable(UObject* objectToAdopt)
{
init();
fType = kObject;
fValue.fObject = objectToAdopt;
}
// -------------------------------------
Formattable::Formattable(const Formattable* arrayToCopy, int32_t count)
: UObject(), fType(kArray)
{
init();
fType = kArray;
fValue.fArrayAndCount.fArray = createArrayCopy(arrayToCopy, count);
fValue.fArrayAndCount.fCount = count;
}
// -------------------------------------
// copy constructor
Formattable::Formattable(const Formattable &source)
: UObject(*this)
{
init();
*this = source;
}
// -------------------------------------
// assignment operator
Formattable&
Formattable::operator=(const Formattable& source)
{
if (this != &source)
{
// Disposes the current formattable value/setting.
dispose();
// Sets the correct data type for this value.
fType = source.fType;
switch (fType)
{
case kArray:
// Sets each element in the array one by one and records the array count.
fValue.fArrayAndCount.fCount = source.fValue.fArrayAndCount.fCount;
fValue.fArrayAndCount.fArray = createArrayCopy(source.fValue.fArrayAndCount.fArray,
source.fValue.fArrayAndCount.fCount);
break;
case kString:
// Sets the string value.
fValue.fString = new UnicodeString(*source.fValue.fString);
break;
case kDouble:
// Sets the double value.
fValue.fDouble = source.fValue.fDouble;
break;
case kLong:
case kInt64:
// Sets the long value.
fValue.fInt64 = source.fValue.fInt64;
break;
case kDate:
// Sets the Date value.
fValue.fDate = source.fValue.fDate;
break;
case kObject:
fValue.fObject = objectClone(source.fValue.fObject);
break;
}
UErrorCode status = U_ZERO_ERROR;
if (source.fDecimalQuantity != NULL) {
fDecimalQuantity = new DecimalQuantity(*source.fDecimalQuantity);
}
if (source.fDecimalStr != NULL) {
fDecimalStr = new CharString(*source.fDecimalStr, status);
if (U_FAILURE(status)) {
delete fDecimalStr;
fDecimalStr = NULL;
}
}
}
return *this;
}
// -------------------------------------
UBool
Formattable::operator==(const Formattable& that) const
{
int32_t i;
if (this == &that) return TRUE;
// Returns FALSE if the data types are different.
if (fType != that.fType) return FALSE;
// Compares the actual data values.
UBool equal = TRUE;
switch (fType) {
case kDate:
equal = (fValue.fDate == that.fValue.fDate);
break;
case kDouble:
equal = (fValue.fDouble == that.fValue.fDouble);
break;
case kLong:
case kInt64:
equal = (fValue.fInt64 == that.fValue.fInt64);
break;
case kString:
equal = (*(fValue.fString) == *(that.fValue.fString));
break;
case kArray:
if (fValue.fArrayAndCount.fCount != that.fValue.fArrayAndCount.fCount) {
equal = FALSE;
break;
}
// Checks each element for equality.
for (i=0; i<fValue.fArrayAndCount.fCount; ++i) {
if (fValue.fArrayAndCount.fArray[i] != that.fValue.fArrayAndCount.fArray[i]) {
equal = FALSE;
break;
}
}
break;
case kObject:
if (fValue.fObject == NULL || that.fValue.fObject == NULL) {
equal = FALSE;
} else {
equal = objectEquals(fValue.fObject, that.fValue.fObject);
}
break;
}
// TODO: compare digit lists if numeric.
return equal;
}
// -------------------------------------
Formattable::~Formattable()
{
dispose();
}
// -------------------------------------
void Formattable::dispose()
{
// Deletes the data value if necessary.
switch (fType) {
case kString:
delete fValue.fString;
break;
case kArray:
delete[] fValue.fArrayAndCount.fArray;
break;
case kObject:
delete fValue.fObject;
break;
default:
break;
}
fType = kLong;
fValue.fInt64 = 0;
delete fDecimalStr;
fDecimalStr = NULL;
delete fDecimalQuantity;
fDecimalQuantity = NULL;
}
Formattable *
Formattable::clone() const {
return new Formattable(*this);
}
// -------------------------------------
// Gets the data type of this Formattable object.
Formattable::Type
Formattable::getType() const
{
return fType;
}
UBool
Formattable::isNumeric() const {
switch (fType) {
case kDouble:
case kLong:
case kInt64:
return TRUE;
default:
return FALSE;
}
}
// -------------------------------------
int32_t
//Formattable::getLong(UErrorCode* status) const
Formattable::getLong(UErrorCode& status) const
{
if (U_FAILURE(status)) {
return 0;
}
switch (fType) {
case Formattable::kLong:
return (int32_t)fValue.fInt64;
case Formattable::kInt64:
if (fValue.fInt64 > INT32_MAX) {
status = U_INVALID_FORMAT_ERROR;
return INT32_MAX;
} else if (fValue.fInt64 < INT32_MIN) {
status = U_INVALID_FORMAT_ERROR;
return INT32_MIN;
} else {
return (int32_t)fValue.fInt64;
}
case Formattable::kDouble:
if (fValue.fDouble > INT32_MAX) {
status = U_INVALID_FORMAT_ERROR;
return INT32_MAX;
} else if (fValue.fDouble < INT32_MIN) {
status = U_INVALID_FORMAT_ERROR;
return INT32_MIN;
} else {
return (int32_t)fValue.fDouble; // loses fraction
}
case Formattable::kObject:
if (fValue.fObject == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
// TODO Later replace this with instanceof call
if (instanceOfMeasure(fValue.fObject)) {
return ((const Measure*) fValue.fObject)->
getNumber().getLong(status);
}
U_FALLTHROUGH;
default:
status = U_INVALID_FORMAT_ERROR;
return 0;
}
}
// -------------------------------------
// Maximum int that can be represented exactly in a double. (53 bits)
// Larger ints may be rounded to a near-by value as not all are representable.
// TODO: move this constant elsewhere, possibly configure it for different
// floating point formats, if any non-standard ones are still in use.
static const int64_t U_DOUBLE_MAX_EXACT_INT = 9007199254740992LL;
int64_t
Formattable::getInt64(UErrorCode& status) const
{
if (U_FAILURE(status)) {
return 0;
}
switch (fType) {
case Formattable::kLong:
case Formattable::kInt64:
return fValue.fInt64;
case Formattable::kDouble:
if (fValue.fDouble > (double)U_INT64_MAX) {
status = U_INVALID_FORMAT_ERROR;
return U_INT64_MAX;
} else if (fValue.fDouble < (double)U_INT64_MIN) {
status = U_INVALID_FORMAT_ERROR;
return U_INT64_MIN;
} else if (fabs(fValue.fDouble) > U_DOUBLE_MAX_EXACT_INT && fDecimalQuantity != NULL) {
if (fDecimalQuantity->fitsInLong(true)) {
return fDecimalQuantity->toLong();
} else {
// Unexpected
status = U_INVALID_FORMAT_ERROR;
return fDecimalQuantity->isNegative() ? U_INT64_MIN : U_INT64_MAX;
}
} else {
return (int64_t)fValue.fDouble;
}
case Formattable::kObject:
if (fValue.fObject == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
if (instanceOfMeasure(fValue.fObject)) {
return ((const Measure*) fValue.fObject)->
getNumber().getInt64(status);
}
U_FALLTHROUGH;
default:
status = U_INVALID_FORMAT_ERROR;
return 0;
}
}
// -------------------------------------
double
Formattable::getDouble(UErrorCode& status) const
{
if (U_FAILURE(status)) {
return 0;
}
switch (fType) {
case Formattable::kLong:
case Formattable::kInt64: // loses precision
return (double)fValue.fInt64;
case Formattable::kDouble:
return fValue.fDouble;
case Formattable::kObject:
if (fValue.fObject == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
// TODO Later replace this with instanceof call
if (instanceOfMeasure(fValue.fObject)) {
return ((const Measure*) fValue.fObject)->
getNumber().getDouble(status);
}
U_FALLTHROUGH;
default:
status = U_INVALID_FORMAT_ERROR;
return 0;
}
}
const UObject*
Formattable::getObject() const {
return (fType == kObject) ? fValue.fObject : NULL;
}
// -------------------------------------
// Sets the value to a double value d.
void
Formattable::setDouble(double d)
{
dispose();
fType = kDouble;
fValue.fDouble = d;
}
// -------------------------------------
// Sets the value to a long value l.
void
Formattable::setLong(int32_t l)
{
dispose();
fType = kLong;
fValue.fInt64 = l;
}
// -------------------------------------
// Sets the value to an int64 value ll.
void
Formattable::setInt64(int64_t ll)
{
dispose();
fType = kInt64;
fValue.fInt64 = ll;
}
// -------------------------------------
// Sets the value to a Date instance d.
void
Formattable::setDate(UDate d)
{
dispose();
fType = kDate;
fValue.fDate = d;
}
// -------------------------------------
// Sets the value to a string value stringToCopy.
void
Formattable::setString(const UnicodeString& stringToCopy)
{
dispose();
fType = kString;
fValue.fString = new UnicodeString(stringToCopy);
}
// -------------------------------------
// Sets the value to an array of Formattable objects.
void
Formattable::setArray(const Formattable* array, int32_t count)
{
dispose();
fType = kArray;
fValue.fArrayAndCount.fArray = createArrayCopy(array, count);
fValue.fArrayAndCount.fCount = count;
}
// -------------------------------------
// Adopts the stringToAdopt value.
void
Formattable::adoptString(UnicodeString* stringToAdopt)
{
dispose();
fType = kString;
fValue.fString = stringToAdopt;
}
// -------------------------------------
// Adopts the array value and its count.
void
Formattable::adoptArray(Formattable* array, int32_t count)
{
dispose();
fType = kArray;
fValue.fArrayAndCount.fArray = array;
fValue.fArrayAndCount.fCount = count;
}
void
Formattable::adoptObject(UObject* objectToAdopt) {
dispose();
fType = kObject;
fValue.fObject = objectToAdopt;
}
// -------------------------------------
UnicodeString&
Formattable::getString(UnicodeString& result, UErrorCode& status) const
{
if (fType != kString) {
setError(status, U_INVALID_FORMAT_ERROR);
result.setToBogus();
} else {
if (fValue.fString == NULL) {
setError(status, U_MEMORY_ALLOCATION_ERROR);
} else {
result = *fValue.fString;
}
}
return result;
}
// -------------------------------------
const UnicodeString&
Formattable::getString(UErrorCode& status) const
{
if (fType != kString) {
setError(status, U_INVALID_FORMAT_ERROR);
return *getBogus();
}
if (fValue.fString == NULL) {
setError(status, U_MEMORY_ALLOCATION_ERROR);
return *getBogus();
}
return *fValue.fString;
}
// -------------------------------------
UnicodeString&
Formattable::getString(UErrorCode& status)
{
if (fType != kString) {
setError(status, U_INVALID_FORMAT_ERROR);
return *getBogus();
}
if (fValue.fString == NULL) {
setError(status, U_MEMORY_ALLOCATION_ERROR);
return *getBogus();
}
return *fValue.fString;
}
// -------------------------------------
const Formattable*
Formattable::getArray(int32_t& count, UErrorCode& status) const
{
if (fType != kArray) {
setError(status, U_INVALID_FORMAT_ERROR);
count = 0;
return NULL;
}
count = fValue.fArrayAndCount.fCount;
return fValue.fArrayAndCount.fArray;
}
// -------------------------------------
// Gets the bogus string, ensures mondo bogosity.
UnicodeString*
Formattable::getBogus() const
{
return (UnicodeString*)&fBogus; /* cast away const :-( */
}
// --------------------------------------
StringPiece Formattable::getDecimalNumber(UErrorCode &status) {
if (U_FAILURE(status)) {
return "";
}
if (fDecimalStr != NULL) {
return fDecimalStr->toStringPiece();
}
CharString *decimalStr = internalGetCharString(status);
if(decimalStr == NULL) {
return ""; // getDecimalNumber returns "" for error cases
} else {
return decimalStr->toStringPiece();
}
}
CharString *Formattable::internalGetCharString(UErrorCode &status) {
if(fDecimalStr == NULL) {
if (fDecimalQuantity == NULL) {
// No decimal number for the formattable yet. Which means the value was
// set directly by the user as an int, int64 or double. If the value came
// from parsing, or from the user setting a decimal number, fDecimalNum
// would already be set.
//
LocalPointer<DecimalQuantity> dq(new DecimalQuantity(), status);
if (U_FAILURE(status)) { return nullptr; }
populateDecimalQuantity(*dq, status);
if (U_FAILURE(status)) { return nullptr; }
fDecimalQuantity = dq.orphan();
}
fDecimalStr = new CharString();
if (fDecimalStr == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
// Older ICUs called uprv_decNumberToString here, which is not exactly the same as
// DecimalQuantity::toScientificString(). The biggest difference is that uprv_decNumberToString does
// not print scientific notation for magnitudes greater than -5 and smaller than some amount (+5?).
if (fDecimalQuantity->isInfinite()) {
fDecimalStr->append("Infinity", status);
} else if (fDecimalQuantity->isNaN()) {
fDecimalStr->append("NaN", status);
} else if (fDecimalQuantity->isZeroish()) {
fDecimalStr->append("0", -1, status);
} else if (fType==kLong || fType==kInt64 || // use toPlainString for integer types
(fDecimalQuantity->getMagnitude() != INT32_MIN && std::abs(fDecimalQuantity->getMagnitude()) < 5)) {
fDecimalStr->appendInvariantChars(fDecimalQuantity->toPlainString(), status);
} else {
fDecimalStr->appendInvariantChars(fDecimalQuantity->toScientificString(), status);
}
}
return fDecimalStr;
}
void
Formattable::populateDecimalQuantity(number::impl::DecimalQuantity& output, UErrorCode& status) const {
if (fDecimalQuantity != nullptr) {
output = *fDecimalQuantity;
return;
}
switch (fType) {
case kDouble:
output.setToDouble(this->getDouble());
output.roundToInfinity();
break;
case kLong:
output.setToInt(this->getLong());
break;
case kInt64:
output.setToLong(this->getInt64());
break;
default:
// The formattable's value is not a numeric type.
status = U_INVALID_STATE_ERROR;
}
}
// ---------------------------------------
void
Formattable::adoptDecimalQuantity(DecimalQuantity *dq) {
if (fDecimalQuantity != NULL) {
delete fDecimalQuantity;
}
fDecimalQuantity = dq;
if (dq == NULL) { // allow adoptDigitList(NULL) to clear
return;
}
// Set the value into the Union of simple type values.
// Cannot use the set() functions because they would delete the fDecimalNum value.
if (fDecimalQuantity->fitsInLong()) {
fValue.fInt64 = fDecimalQuantity->toLong();
if (fValue.fInt64 <= INT32_MAX && fValue.fInt64 >= INT32_MIN) {
fType = kLong;
} else {
fType = kInt64;
}
} else {
fType = kDouble;
fValue.fDouble = fDecimalQuantity->toDouble();
}
}
// ---------------------------------------
void
Formattable::setDecimalNumber(StringPiece numberString, UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
dispose();
auto* dq = new DecimalQuantity();
dq->setToDecNumber(numberString, status);
adoptDecimalQuantity(dq);
// Note that we do not hang on to the caller's input string.
// If we are asked for the string, we will regenerate one from fDecimalQuantity.
}
#if 0
//----------------------------------------------------
// console I/O
//----------------------------------------------------
#ifdef _DEBUG
#include <iostream>
using namespace std;
#include "unicode/datefmt.h"
#include "unistrm.h"
class FormattableStreamer /* not : public UObject because all methods are static */ {
public:
static void streamOut(ostream& stream, const Formattable& obj);
private:
FormattableStreamer() {} // private - forbid instantiation
};
// This is for debugging purposes only. This will send a displayable
// form of the Formattable object to the output stream.
void
FormattableStreamer::streamOut(ostream& stream, const Formattable& obj)
{
static DateFormat *defDateFormat = 0;
UnicodeString buffer;
switch(obj.getType()) {
case Formattable::kDate :
// Creates a DateFormat instance for formatting the
// Date instance.
if (defDateFormat == 0) {
defDateFormat = DateFormat::createInstance();
}
defDateFormat->format(obj.getDate(), buffer);
stream << buffer;
break;
case Formattable::kDouble :
// Output the double as is.
stream << obj.getDouble() << 'D';
break;
case Formattable::kLong :
// Output the double as is.
stream << obj.getLong() << 'L';
break;
case Formattable::kString:
// Output the double as is. Please see UnicodeString console
// I/O routine for more details.
stream << '"' << obj.getString(buffer) << '"';
break;
case Formattable::kArray:
int32_t i, count;
const Formattable* array;
array = obj.getArray(count);
stream << '[';
// Recursively calling the console I/O routine for each element in the array.
for (i=0; i<count; ++i) {
FormattableStreamer::streamOut(stream, array[i]);
stream << ( (i==(count-1)) ? "" : ", " );
}
stream << ']';
break;
default:
// Not a recognizable Formattable object.
stream << "INVALID_Formattable";
}
stream.flush();
}
#endif
#endif
U_NAMESPACE_END
/* ---- UFormattable implementation ---- */
U_NAMESPACE_USE
U_CAPI UFormattable* U_EXPORT2
ufmt_open(UErrorCode *status) {
if( U_FAILURE(*status) ) {
return NULL;
}
UFormattable *fmt = (new Formattable())->toUFormattable();
if( fmt == NULL ) {
*status = U_MEMORY_ALLOCATION_ERROR;
}
return fmt;
}
U_CAPI void U_EXPORT2
ufmt_close(UFormattable *fmt) {
Formattable *obj = Formattable::fromUFormattable(fmt);
delete obj;
}
U_CAPI UFormattableType U_EXPORT2
ufmt_getType(const UFormattable *fmt, UErrorCode *status) {
if(U_FAILURE(*status)) {
return (UFormattableType)UFMT_COUNT;
}
const Formattable *obj = Formattable::fromUFormattable(fmt);
return (UFormattableType)obj->getType();
}
U_CAPI UBool U_EXPORT2
ufmt_isNumeric(const UFormattable *fmt) {
const Formattable *obj = Formattable::fromUFormattable(fmt);
return obj->isNumeric();
}
U_CAPI UDate U_EXPORT2
ufmt_getDate(const UFormattable *fmt, UErrorCode *status) {
const Formattable *obj = Formattable::fromUFormattable(fmt);
return obj->getDate(*status);
}
U_CAPI double U_EXPORT2
ufmt_getDouble(UFormattable *fmt, UErrorCode *status) {
Formattable *obj = Formattable::fromUFormattable(fmt);
return obj->getDouble(*status);
}
U_CAPI int32_t U_EXPORT2
ufmt_getLong(UFormattable *fmt, UErrorCode *status) {
Formattable *obj = Formattable::fromUFormattable(fmt);
return obj->getLong(*status);
}
U_CAPI const void *U_EXPORT2
ufmt_getObject(const UFormattable *fmt, UErrorCode *status) {
const Formattable *obj = Formattable::fromUFormattable(fmt);
const void *ret = obj->getObject();
if( ret==NULL &&
(obj->getType() != Formattable::kObject) &&
U_SUCCESS( *status )) {
*status = U_INVALID_FORMAT_ERROR;
}
return ret;
}
U_CAPI const UChar* U_EXPORT2
ufmt_getUChars(UFormattable *fmt, int32_t *len, UErrorCode *status) {
Formattable *obj = Formattable::fromUFormattable(fmt);
// avoid bogosity by checking the type first.
if( obj->getType() != Formattable::kString ) {
if( U_SUCCESS(*status) ){
*status = U_INVALID_FORMAT_ERROR;
}
return NULL;
}
// This should return a valid string
UnicodeString &str = obj->getString(*status);
if( U_SUCCESS(*status) && len != NULL ) {
*len = str.length();
}
return str.getTerminatedBuffer();
}
U_CAPI int32_t U_EXPORT2
ufmt_getArrayLength(const UFormattable* fmt, UErrorCode *status) {
const Formattable *obj = Formattable::fromUFormattable(fmt);
int32_t count;
(void)obj->getArray(count, *status);
return count;
}
U_CAPI UFormattable * U_EXPORT2
ufmt_getArrayItemByIndex(UFormattable* fmt, int32_t n, UErrorCode *status) {
Formattable *obj = Formattable::fromUFormattable(fmt);
int32_t count;
(void)obj->getArray(count, *status);
if(U_FAILURE(*status)) {
return NULL;
} else if(n<0 || n>=count) {
setError(*status, U_INDEX_OUTOFBOUNDS_ERROR);
return NULL;
} else {
return (*obj)[n].toUFormattable(); // returns non-const Formattable
}
}
U_CAPI const char * U_EXPORT2
ufmt_getDecNumChars(UFormattable *fmt, int32_t *len, UErrorCode *status) {
if(U_FAILURE(*status)) {
return "";
}
Formattable *obj = Formattable::fromUFormattable(fmt);
CharString *charString = obj->internalGetCharString(*status);
if(U_FAILURE(*status)) {
return "";
}
if(charString == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return "";
} else {
if(len!=NULL) {
*len = charString->length();
}
return charString->data();
}
}
U_CAPI int64_t U_EXPORT2
ufmt_getInt64(UFormattable *fmt, UErrorCode *status) {
Formattable *obj = Formattable::fromUFormattable(fmt);
return obj->getInt64(*status);
}
#endif /* #if !UCONFIG_NO_FORMATTING */
//eof