| // © 2016 and later: Unicode, Inc. and others. |
| // License & terms of use: http://www.unicode.org/copyright.html |
| /* |
| ******************************************************************************* |
| * Copyright (C) 1997-2016, International Business Machines Corporation and |
| * others. All Rights Reserved. |
| ******************************************************************************* |
| * |
| * File FMTABLE.CPP |
| * |
| * Modification History: |
| * |
| * Date Name Description |
| * 03/25/97 clhuang Initial Implementation. |
| ******************************************************************************** |
| */ |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_FORMATTING |
| |
| #include <cstdlib> |
| #include <math.h> |
| #include "unicode/fmtable.h" |
| #include "unicode/ustring.h" |
| #include "unicode/measure.h" |
| #include "unicode/curramt.h" |
| #include "unicode/uformattable.h" |
| #include "charstr.h" |
| #include "cmemory.h" |
| #include "cstring.h" |
| #include "fmtableimp.h" |
| #include "number_decimalquantity.h" |
| |
| // ***************************************************************************** |
| // class Formattable |
| // ***************************************************************************** |
| |
| U_NAMESPACE_BEGIN |
| |
| UOBJECT_DEFINE_RTTI_IMPLEMENTATION(Formattable) |
| |
| using number::impl::DecimalQuantity; |
| |
| |
| //-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. |
| |
| // NOTE: As of 3.0, there are limitations to the UObject API. It does |
| // not (yet) support cloning, operator=, nor operator==. To |
| // work around this, I implement some simple inlines here. Later |
| // these can be modified or removed. [alan] |
| |
| // NOTE: These inlines assume that all fObjects are in fact instances |
| // of the Measure class, which is true as of 3.0. [alan] |
| |
| // Return TRUE if *a == *b. |
| static inline UBool objectEquals(const UObject* a, const UObject* b) { |
| // LATER: return *a == *b; |
| return *((const Measure*) a) == *((const Measure*) b); |
| } |
| |
| // Return a clone of *a. |
| static inline UObject* objectClone(const UObject* a) { |
| // LATER: return a->clone(); |
| return ((const Measure*) a)->clone(); |
| } |
| |
| // Return TRUE if *a is an instance of Measure. |
| static inline UBool instanceOfMeasure(const UObject* a) { |
| return dynamic_cast<const Measure*>(a) != NULL; |
| } |
| |
| /** |
| * Creates a new Formattable array and copies the values from the specified |
| * original. |
| * @param array the original array |
| * @param count the original array count |
| * @return the new Formattable array. |
| */ |
| static Formattable* createArrayCopy(const Formattable* array, int32_t count) { |
| Formattable *result = new Formattable[count]; |
| if (result != NULL) { |
| for (int32_t i=0; i<count; ++i) |
| result[i] = array[i]; // Don't memcpy! |
| } |
| return result; |
| } |
| |
| //-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. |
| |
| /** |
| * Set 'ec' to 'err' only if 'ec' is not already set to a failing UErrorCode. |
| */ |
| static void setError(UErrorCode& ec, UErrorCode err) { |
| if (U_SUCCESS(ec)) { |
| ec = err; |
| } |
| } |
| |
| // |
| // Common initialization code, shared by constructors. |
| // Put everything into a known state. |
| // |
| void Formattable::init() { |
| fValue.fInt64 = 0; |
| fType = kLong; |
| fDecimalStr = NULL; |
| fDecimalQuantity = NULL; |
| fBogus.setToBogus(); |
| } |
| |
| // ------------------------------------- |
| // default constructor. |
| // Creates a formattable object with a long value 0. |
| |
| Formattable::Formattable() { |
| init(); |
| } |
| |
| // ------------------------------------- |
| // Creates a formattable object with a Date instance. |
| |
| Formattable::Formattable(UDate date, ISDATE /*isDate*/) |
| { |
| init(); |
| fType = kDate; |
| fValue.fDate = date; |
| } |
| |
| // ------------------------------------- |
| // Creates a formattable object with a double value. |
| |
| Formattable::Formattable(double value) |
| { |
| init(); |
| fType = kDouble; |
| fValue.fDouble = value; |
| } |
| |
| // ------------------------------------- |
| // Creates a formattable object with an int32_t value. |
| |
| Formattable::Formattable(int32_t value) |
| { |
| init(); |
| fValue.fInt64 = value; |
| } |
| |
| // ------------------------------------- |
| // Creates a formattable object with an int64_t value. |
| |
| Formattable::Formattable(int64_t value) |
| { |
| init(); |
| fType = kInt64; |
| fValue.fInt64 = value; |
| } |
| |
| // ------------------------------------- |
| // Creates a formattable object with a decimal number value from a string. |
| |
| Formattable::Formattable(StringPiece number, UErrorCode &status) { |
| init(); |
| setDecimalNumber(number, status); |
| } |
| |
| |
| // ------------------------------------- |
| // Creates a formattable object with a UnicodeString instance. |
| |
| Formattable::Formattable(const UnicodeString& stringToCopy) |
| { |
| init(); |
| fType = kString; |
| fValue.fString = new UnicodeString(stringToCopy); |
| } |
| |
| // ------------------------------------- |
| // Creates a formattable object with a UnicodeString* value. |
| // (adopting symantics) |
| |
| Formattable::Formattable(UnicodeString* stringToAdopt) |
| { |
| init(); |
| fType = kString; |
| fValue.fString = stringToAdopt; |
| } |
| |
| Formattable::Formattable(UObject* objectToAdopt) |
| { |
| init(); |
| fType = kObject; |
| fValue.fObject = objectToAdopt; |
| } |
| |
| // ------------------------------------- |
| |
| Formattable::Formattable(const Formattable* arrayToCopy, int32_t count) |
| : UObject(), fType(kArray) |
| { |
| init(); |
| fType = kArray; |
| fValue.fArrayAndCount.fArray = createArrayCopy(arrayToCopy, count); |
| fValue.fArrayAndCount.fCount = count; |
| } |
| |
| // ------------------------------------- |
| // copy constructor |
| |
| |
| Formattable::Formattable(const Formattable &source) |
| : UObject(*this) |
| { |
| init(); |
| *this = source; |
| } |
| |
| // ------------------------------------- |
| // assignment operator |
| |
| Formattable& |
| Formattable::operator=(const Formattable& source) |
| { |
| if (this != &source) |
| { |
| // Disposes the current formattable value/setting. |
| dispose(); |
| |
| // Sets the correct data type for this value. |
| fType = source.fType; |
| switch (fType) |
| { |
| case kArray: |
| // Sets each element in the array one by one and records the array count. |
| fValue.fArrayAndCount.fCount = source.fValue.fArrayAndCount.fCount; |
| fValue.fArrayAndCount.fArray = createArrayCopy(source.fValue.fArrayAndCount.fArray, |
| source.fValue.fArrayAndCount.fCount); |
| break; |
| case kString: |
| // Sets the string value. |
| fValue.fString = new UnicodeString(*source.fValue.fString); |
| break; |
| case kDouble: |
| // Sets the double value. |
| fValue.fDouble = source.fValue.fDouble; |
| break; |
| case kLong: |
| case kInt64: |
| // Sets the long value. |
| fValue.fInt64 = source.fValue.fInt64; |
| break; |
| case kDate: |
| // Sets the Date value. |
| fValue.fDate = source.fValue.fDate; |
| break; |
| case kObject: |
| fValue.fObject = objectClone(source.fValue.fObject); |
| break; |
| } |
| |
| UErrorCode status = U_ZERO_ERROR; |
| if (source.fDecimalQuantity != NULL) { |
| fDecimalQuantity = new DecimalQuantity(*source.fDecimalQuantity); |
| } |
| if (source.fDecimalStr != NULL) { |
| fDecimalStr = new CharString(*source.fDecimalStr, status); |
| if (U_FAILURE(status)) { |
| delete fDecimalStr; |
| fDecimalStr = NULL; |
| } |
| } |
| } |
| return *this; |
| } |
| |
| // ------------------------------------- |
| |
| UBool |
| Formattable::operator==(const Formattable& that) const |
| { |
| int32_t i; |
| |
| if (this == &that) return TRUE; |
| |
| // Returns FALSE if the data types are different. |
| if (fType != that.fType) return FALSE; |
| |
| // Compares the actual data values. |
| UBool equal = TRUE; |
| switch (fType) { |
| case kDate: |
| equal = (fValue.fDate == that.fValue.fDate); |
| break; |
| case kDouble: |
| equal = (fValue.fDouble == that.fValue.fDouble); |
| break; |
| case kLong: |
| case kInt64: |
| equal = (fValue.fInt64 == that.fValue.fInt64); |
| break; |
| case kString: |
| equal = (*(fValue.fString) == *(that.fValue.fString)); |
| break; |
| case kArray: |
| if (fValue.fArrayAndCount.fCount != that.fValue.fArrayAndCount.fCount) { |
| equal = FALSE; |
| break; |
| } |
| // Checks each element for equality. |
| for (i=0; i<fValue.fArrayAndCount.fCount; ++i) { |
| if (fValue.fArrayAndCount.fArray[i] != that.fValue.fArrayAndCount.fArray[i]) { |
| equal = FALSE; |
| break; |
| } |
| } |
| break; |
| case kObject: |
| if (fValue.fObject == NULL || that.fValue.fObject == NULL) { |
| equal = FALSE; |
| } else { |
| equal = objectEquals(fValue.fObject, that.fValue.fObject); |
| } |
| break; |
| } |
| |
| // TODO: compare digit lists if numeric. |
| return equal; |
| } |
| |
| // ------------------------------------- |
| |
| Formattable::~Formattable() |
| { |
| dispose(); |
| } |
| |
| // ------------------------------------- |
| |
| void Formattable::dispose() |
| { |
| // Deletes the data value if necessary. |
| switch (fType) { |
| case kString: |
| delete fValue.fString; |
| break; |
| case kArray: |
| delete[] fValue.fArrayAndCount.fArray; |
| break; |
| case kObject: |
| delete fValue.fObject; |
| break; |
| default: |
| break; |
| } |
| |
| fType = kLong; |
| fValue.fInt64 = 0; |
| |
| delete fDecimalStr; |
| fDecimalStr = NULL; |
| |
| delete fDecimalQuantity; |
| fDecimalQuantity = NULL; |
| } |
| |
| Formattable * |
| Formattable::clone() const { |
| return new Formattable(*this); |
| } |
| |
| // ------------------------------------- |
| // Gets the data type of this Formattable object. |
| Formattable::Type |
| Formattable::getType() const |
| { |
| return fType; |
| } |
| |
| UBool |
| Formattable::isNumeric() const { |
| switch (fType) { |
| case kDouble: |
| case kLong: |
| case kInt64: |
| return TRUE; |
| default: |
| return FALSE; |
| } |
| } |
| |
| // ------------------------------------- |
| int32_t |
| //Formattable::getLong(UErrorCode* status) const |
| Formattable::getLong(UErrorCode& status) const |
| { |
| if (U_FAILURE(status)) { |
| return 0; |
| } |
| |
| switch (fType) { |
| case Formattable::kLong: |
| return (int32_t)fValue.fInt64; |
| case Formattable::kInt64: |
| if (fValue.fInt64 > INT32_MAX) { |
| status = U_INVALID_FORMAT_ERROR; |
| return INT32_MAX; |
| } else if (fValue.fInt64 < INT32_MIN) { |
| status = U_INVALID_FORMAT_ERROR; |
| return INT32_MIN; |
| } else { |
| return (int32_t)fValue.fInt64; |
| } |
| case Formattable::kDouble: |
| if (fValue.fDouble > INT32_MAX) { |
| status = U_INVALID_FORMAT_ERROR; |
| return INT32_MAX; |
| } else if (fValue.fDouble < INT32_MIN) { |
| status = U_INVALID_FORMAT_ERROR; |
| return INT32_MIN; |
| } else { |
| return (int32_t)fValue.fDouble; // loses fraction |
| } |
| case Formattable::kObject: |
| if (fValue.fObject == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return 0; |
| } |
| // TODO Later replace this with instanceof call |
| if (instanceOfMeasure(fValue.fObject)) { |
| return ((const Measure*) fValue.fObject)-> |
| getNumber().getLong(status); |
| } |
| U_FALLTHROUGH; |
| default: |
| status = U_INVALID_FORMAT_ERROR; |
| return 0; |
| } |
| } |
| |
| // ------------------------------------- |
| // Maximum int that can be represented exactly in a double. (53 bits) |
| // Larger ints may be rounded to a near-by value as not all are representable. |
| // TODO: move this constant elsewhere, possibly configure it for different |
| // floating point formats, if any non-standard ones are still in use. |
| static const int64_t U_DOUBLE_MAX_EXACT_INT = 9007199254740992LL; |
| |
| int64_t |
| Formattable::getInt64(UErrorCode& status) const |
| { |
| if (U_FAILURE(status)) { |
| return 0; |
| } |
| |
| switch (fType) { |
| case Formattable::kLong: |
| case Formattable::kInt64: |
| return fValue.fInt64; |
| case Formattable::kDouble: |
| if (fValue.fDouble > (double)U_INT64_MAX) { |
| status = U_INVALID_FORMAT_ERROR; |
| return U_INT64_MAX; |
| } else if (fValue.fDouble < (double)U_INT64_MIN) { |
| status = U_INVALID_FORMAT_ERROR; |
| return U_INT64_MIN; |
| } else if (fabs(fValue.fDouble) > U_DOUBLE_MAX_EXACT_INT && fDecimalQuantity != NULL) { |
| if (fDecimalQuantity->fitsInLong(true)) { |
| return fDecimalQuantity->toLong(); |
| } else { |
| // Unexpected |
| status = U_INVALID_FORMAT_ERROR; |
| return fDecimalQuantity->isNegative() ? U_INT64_MIN : U_INT64_MAX; |
| } |
| } else { |
| return (int64_t)fValue.fDouble; |
| } |
| case Formattable::kObject: |
| if (fValue.fObject == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return 0; |
| } |
| if (instanceOfMeasure(fValue.fObject)) { |
| return ((const Measure*) fValue.fObject)-> |
| getNumber().getInt64(status); |
| } |
| U_FALLTHROUGH; |
| default: |
| status = U_INVALID_FORMAT_ERROR; |
| return 0; |
| } |
| } |
| |
| // ------------------------------------- |
| double |
| Formattable::getDouble(UErrorCode& status) const |
| { |
| if (U_FAILURE(status)) { |
| return 0; |
| } |
| |
| switch (fType) { |
| case Formattable::kLong: |
| case Formattable::kInt64: // loses precision |
| return (double)fValue.fInt64; |
| case Formattable::kDouble: |
| return fValue.fDouble; |
| case Formattable::kObject: |
| if (fValue.fObject == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return 0; |
| } |
| // TODO Later replace this with instanceof call |
| if (instanceOfMeasure(fValue.fObject)) { |
| return ((const Measure*) fValue.fObject)-> |
| getNumber().getDouble(status); |
| } |
| U_FALLTHROUGH; |
| default: |
| status = U_INVALID_FORMAT_ERROR; |
| return 0; |
| } |
| } |
| |
| const UObject* |
| Formattable::getObject() const { |
| return (fType == kObject) ? fValue.fObject : NULL; |
| } |
| |
| // ------------------------------------- |
| // Sets the value to a double value d. |
| |
| void |
| Formattable::setDouble(double d) |
| { |
| dispose(); |
| fType = kDouble; |
| fValue.fDouble = d; |
| } |
| |
| // ------------------------------------- |
| // Sets the value to a long value l. |
| |
| void |
| Formattable::setLong(int32_t l) |
| { |
| dispose(); |
| fType = kLong; |
| fValue.fInt64 = l; |
| } |
| |
| // ------------------------------------- |
| // Sets the value to an int64 value ll. |
| |
| void |
| Formattable::setInt64(int64_t ll) |
| { |
| dispose(); |
| fType = kInt64; |
| fValue.fInt64 = ll; |
| } |
| |
| // ------------------------------------- |
| // Sets the value to a Date instance d. |
| |
| void |
| Formattable::setDate(UDate d) |
| { |
| dispose(); |
| fType = kDate; |
| fValue.fDate = d; |
| } |
| |
| // ------------------------------------- |
| // Sets the value to a string value stringToCopy. |
| |
| void |
| Formattable::setString(const UnicodeString& stringToCopy) |
| { |
| dispose(); |
| fType = kString; |
| fValue.fString = new UnicodeString(stringToCopy); |
| } |
| |
| // ------------------------------------- |
| // Sets the value to an array of Formattable objects. |
| |
| void |
| Formattable::setArray(const Formattable* array, int32_t count) |
| { |
| dispose(); |
| fType = kArray; |
| fValue.fArrayAndCount.fArray = createArrayCopy(array, count); |
| fValue.fArrayAndCount.fCount = count; |
| } |
| |
| // ------------------------------------- |
| // Adopts the stringToAdopt value. |
| |
| void |
| Formattable::adoptString(UnicodeString* stringToAdopt) |
| { |
| dispose(); |
| fType = kString; |
| fValue.fString = stringToAdopt; |
| } |
| |
| // ------------------------------------- |
| // Adopts the array value and its count. |
| |
| void |
| Formattable::adoptArray(Formattable* array, int32_t count) |
| { |
| dispose(); |
| fType = kArray; |
| fValue.fArrayAndCount.fArray = array; |
| fValue.fArrayAndCount.fCount = count; |
| } |
| |
| void |
| Formattable::adoptObject(UObject* objectToAdopt) { |
| dispose(); |
| fType = kObject; |
| fValue.fObject = objectToAdopt; |
| } |
| |
| // ------------------------------------- |
| UnicodeString& |
| Formattable::getString(UnicodeString& result, UErrorCode& status) const |
| { |
| if (fType != kString) { |
| setError(status, U_INVALID_FORMAT_ERROR); |
| result.setToBogus(); |
| } else { |
| if (fValue.fString == NULL) { |
| setError(status, U_MEMORY_ALLOCATION_ERROR); |
| } else { |
| result = *fValue.fString; |
| } |
| } |
| return result; |
| } |
| |
| // ------------------------------------- |
| const UnicodeString& |
| Formattable::getString(UErrorCode& status) const |
| { |
| if (fType != kString) { |
| setError(status, U_INVALID_FORMAT_ERROR); |
| return *getBogus(); |
| } |
| if (fValue.fString == NULL) { |
| setError(status, U_MEMORY_ALLOCATION_ERROR); |
| return *getBogus(); |
| } |
| return *fValue.fString; |
| } |
| |
| // ------------------------------------- |
| UnicodeString& |
| Formattable::getString(UErrorCode& status) |
| { |
| if (fType != kString) { |
| setError(status, U_INVALID_FORMAT_ERROR); |
| return *getBogus(); |
| } |
| if (fValue.fString == NULL) { |
| setError(status, U_MEMORY_ALLOCATION_ERROR); |
| return *getBogus(); |
| } |
| return *fValue.fString; |
| } |
| |
| // ------------------------------------- |
| const Formattable* |
| Formattable::getArray(int32_t& count, UErrorCode& status) const |
| { |
| if (fType != kArray) { |
| setError(status, U_INVALID_FORMAT_ERROR); |
| count = 0; |
| return NULL; |
| } |
| count = fValue.fArrayAndCount.fCount; |
| return fValue.fArrayAndCount.fArray; |
| } |
| |
| // ------------------------------------- |
| // Gets the bogus string, ensures mondo bogosity. |
| |
| UnicodeString* |
| Formattable::getBogus() const |
| { |
| return (UnicodeString*)&fBogus; /* cast away const :-( */ |
| } |
| |
| |
| // -------------------------------------- |
| StringPiece Formattable::getDecimalNumber(UErrorCode &status) { |
| if (U_FAILURE(status)) { |
| return ""; |
| } |
| if (fDecimalStr != NULL) { |
| return fDecimalStr->toStringPiece(); |
| } |
| |
| CharString *decimalStr = internalGetCharString(status); |
| if(decimalStr == NULL) { |
| return ""; // getDecimalNumber returns "" for error cases |
| } else { |
| return decimalStr->toStringPiece(); |
| } |
| } |
| |
| CharString *Formattable::internalGetCharString(UErrorCode &status) { |
| if(fDecimalStr == NULL) { |
| if (fDecimalQuantity == NULL) { |
| // No decimal number for the formattable yet. Which means the value was |
| // set directly by the user as an int, int64 or double. If the value came |
| // from parsing, or from the user setting a decimal number, fDecimalNum |
| // would already be set. |
| // |
| LocalPointer<DecimalQuantity> dq(new DecimalQuantity(), status); |
| if (U_FAILURE(status)) { return nullptr; } |
| populateDecimalQuantity(*dq, status); |
| if (U_FAILURE(status)) { return nullptr; } |
| fDecimalQuantity = dq.orphan(); |
| } |
| |
| fDecimalStr = new CharString(); |
| if (fDecimalStr == NULL) { |
| status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } |
| // Older ICUs called uprv_decNumberToString here, which is not exactly the same as |
| // DecimalQuantity::toScientificString(). The biggest difference is that uprv_decNumberToString does |
| // not print scientific notation for magnitudes greater than -5 and smaller than some amount (+5?). |
| if (fDecimalQuantity->isInfinite()) { |
| fDecimalStr->append("Infinity", status); |
| } else if (fDecimalQuantity->isNaN()) { |
| fDecimalStr->append("NaN", status); |
| } else if (fDecimalQuantity->isZeroish()) { |
| fDecimalStr->append("0", -1, status); |
| } else if (fType==kLong || fType==kInt64 || // use toPlainString for integer types |
| (fDecimalQuantity->getMagnitude() != INT32_MIN && std::abs(fDecimalQuantity->getMagnitude()) < 5)) { |
| fDecimalStr->appendInvariantChars(fDecimalQuantity->toPlainString(), status); |
| } else { |
| fDecimalStr->appendInvariantChars(fDecimalQuantity->toScientificString(), status); |
| } |
| } |
| return fDecimalStr; |
| } |
| |
| void |
| Formattable::populateDecimalQuantity(number::impl::DecimalQuantity& output, UErrorCode& status) const { |
| if (fDecimalQuantity != nullptr) { |
| output = *fDecimalQuantity; |
| return; |
| } |
| |
| switch (fType) { |
| case kDouble: |
| output.setToDouble(this->getDouble()); |
| output.roundToInfinity(); |
| break; |
| case kLong: |
| output.setToInt(this->getLong()); |
| break; |
| case kInt64: |
| output.setToLong(this->getInt64()); |
| break; |
| default: |
| // The formattable's value is not a numeric type. |
| status = U_INVALID_STATE_ERROR; |
| } |
| } |
| |
| // --------------------------------------- |
| void |
| Formattable::adoptDecimalQuantity(DecimalQuantity *dq) { |
| if (fDecimalQuantity != NULL) { |
| delete fDecimalQuantity; |
| } |
| fDecimalQuantity = dq; |
| if (dq == NULL) { // allow adoptDigitList(NULL) to clear |
| return; |
| } |
| |
| // Set the value into the Union of simple type values. |
| // Cannot use the set() functions because they would delete the fDecimalNum value. |
| if (fDecimalQuantity->fitsInLong()) { |
| fValue.fInt64 = fDecimalQuantity->toLong(); |
| if (fValue.fInt64 <= INT32_MAX && fValue.fInt64 >= INT32_MIN) { |
| fType = kLong; |
| } else { |
| fType = kInt64; |
| } |
| } else { |
| fType = kDouble; |
| fValue.fDouble = fDecimalQuantity->toDouble(); |
| } |
| } |
| |
| |
| // --------------------------------------- |
| void |
| Formattable::setDecimalNumber(StringPiece numberString, UErrorCode &status) { |
| if (U_FAILURE(status)) { |
| return; |
| } |
| dispose(); |
| |
| auto* dq = new DecimalQuantity(); |
| dq->setToDecNumber(numberString, status); |
| adoptDecimalQuantity(dq); |
| |
| // Note that we do not hang on to the caller's input string. |
| // If we are asked for the string, we will regenerate one from fDecimalQuantity. |
| } |
| |
| #if 0 |
| //---------------------------------------------------- |
| // console I/O |
| //---------------------------------------------------- |
| #ifdef _DEBUG |
| |
| #include <iostream> |
| using namespace std; |
| |
| #include "unicode/datefmt.h" |
| #include "unistrm.h" |
| |
| class FormattableStreamer /* not : public UObject because all methods are static */ { |
| public: |
| static void streamOut(ostream& stream, const Formattable& obj); |
| |
| private: |
| FormattableStreamer() {} // private - forbid instantiation |
| }; |
| |
| // This is for debugging purposes only. This will send a displayable |
| // form of the Formattable object to the output stream. |
| |
| void |
| FormattableStreamer::streamOut(ostream& stream, const Formattable& obj) |
| { |
| static DateFormat *defDateFormat = 0; |
| |
| UnicodeString buffer; |
| switch(obj.getType()) { |
| case Formattable::kDate : |
| // Creates a DateFormat instance for formatting the |
| // Date instance. |
| if (defDateFormat == 0) { |
| defDateFormat = DateFormat::createInstance(); |
| } |
| defDateFormat->format(obj.getDate(), buffer); |
| stream << buffer; |
| break; |
| case Formattable::kDouble : |
| // Output the double as is. |
| stream << obj.getDouble() << 'D'; |
| break; |
| case Formattable::kLong : |
| // Output the double as is. |
| stream << obj.getLong() << 'L'; |
| break; |
| case Formattable::kString: |
| // Output the double as is. Please see UnicodeString console |
| // I/O routine for more details. |
| stream << '"' << obj.getString(buffer) << '"'; |
| break; |
| case Formattable::kArray: |
| int32_t i, count; |
| const Formattable* array; |
| array = obj.getArray(count); |
| stream << '['; |
| // Recursively calling the console I/O routine for each element in the array. |
| for (i=0; i<count; ++i) { |
| FormattableStreamer::streamOut(stream, array[i]); |
| stream << ( (i==(count-1)) ? "" : ", " ); |
| } |
| stream << ']'; |
| break; |
| default: |
| // Not a recognizable Formattable object. |
| stream << "INVALID_Formattable"; |
| } |
| stream.flush(); |
| } |
| #endif |
| |
| #endif |
| |
| U_NAMESPACE_END |
| |
| /* ---- UFormattable implementation ---- */ |
| |
| U_NAMESPACE_USE |
| |
| U_CAPI UFormattable* U_EXPORT2 |
| ufmt_open(UErrorCode *status) { |
| if( U_FAILURE(*status) ) { |
| return NULL; |
| } |
| UFormattable *fmt = (new Formattable())->toUFormattable(); |
| |
| if( fmt == NULL ) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| } |
| return fmt; |
| } |
| |
| U_CAPI void U_EXPORT2 |
| ufmt_close(UFormattable *fmt) { |
| Formattable *obj = Formattable::fromUFormattable(fmt); |
| |
| delete obj; |
| } |
| |
| U_CAPI UFormattableType U_EXPORT2 |
| ufmt_getType(const UFormattable *fmt, UErrorCode *status) { |
| if(U_FAILURE(*status)) { |
| return (UFormattableType)UFMT_COUNT; |
| } |
| const Formattable *obj = Formattable::fromUFormattable(fmt); |
| return (UFormattableType)obj->getType(); |
| } |
| |
| |
| U_CAPI UBool U_EXPORT2 |
| ufmt_isNumeric(const UFormattable *fmt) { |
| const Formattable *obj = Formattable::fromUFormattable(fmt); |
| return obj->isNumeric(); |
| } |
| |
| U_CAPI UDate U_EXPORT2 |
| ufmt_getDate(const UFormattable *fmt, UErrorCode *status) { |
| const Formattable *obj = Formattable::fromUFormattable(fmt); |
| |
| return obj->getDate(*status); |
| } |
| |
| U_CAPI double U_EXPORT2 |
| ufmt_getDouble(UFormattable *fmt, UErrorCode *status) { |
| Formattable *obj = Formattable::fromUFormattable(fmt); |
| |
| return obj->getDouble(*status); |
| } |
| |
| U_CAPI int32_t U_EXPORT2 |
| ufmt_getLong(UFormattable *fmt, UErrorCode *status) { |
| Formattable *obj = Formattable::fromUFormattable(fmt); |
| |
| return obj->getLong(*status); |
| } |
| |
| |
| U_CAPI const void *U_EXPORT2 |
| ufmt_getObject(const UFormattable *fmt, UErrorCode *status) { |
| const Formattable *obj = Formattable::fromUFormattable(fmt); |
| |
| const void *ret = obj->getObject(); |
| if( ret==NULL && |
| (obj->getType() != Formattable::kObject) && |
| U_SUCCESS( *status )) { |
| *status = U_INVALID_FORMAT_ERROR; |
| } |
| return ret; |
| } |
| |
| U_CAPI const UChar* U_EXPORT2 |
| ufmt_getUChars(UFormattable *fmt, int32_t *len, UErrorCode *status) { |
| Formattable *obj = Formattable::fromUFormattable(fmt); |
| |
| // avoid bogosity by checking the type first. |
| if( obj->getType() != Formattable::kString ) { |
| if( U_SUCCESS(*status) ){ |
| *status = U_INVALID_FORMAT_ERROR; |
| } |
| return NULL; |
| } |
| |
| // This should return a valid string |
| UnicodeString &str = obj->getString(*status); |
| if( U_SUCCESS(*status) && len != NULL ) { |
| *len = str.length(); |
| } |
| return str.getTerminatedBuffer(); |
| } |
| |
| U_CAPI int32_t U_EXPORT2 |
| ufmt_getArrayLength(const UFormattable* fmt, UErrorCode *status) { |
| const Formattable *obj = Formattable::fromUFormattable(fmt); |
| |
| int32_t count; |
| (void)obj->getArray(count, *status); |
| return count; |
| } |
| |
| U_CAPI UFormattable * U_EXPORT2 |
| ufmt_getArrayItemByIndex(UFormattable* fmt, int32_t n, UErrorCode *status) { |
| Formattable *obj = Formattable::fromUFormattable(fmt); |
| int32_t count; |
| (void)obj->getArray(count, *status); |
| if(U_FAILURE(*status)) { |
| return NULL; |
| } else if(n<0 || n>=count) { |
| setError(*status, U_INDEX_OUTOFBOUNDS_ERROR); |
| return NULL; |
| } else { |
| return (*obj)[n].toUFormattable(); // returns non-const Formattable |
| } |
| } |
| |
| U_CAPI const char * U_EXPORT2 |
| ufmt_getDecNumChars(UFormattable *fmt, int32_t *len, UErrorCode *status) { |
| if(U_FAILURE(*status)) { |
| return ""; |
| } |
| Formattable *obj = Formattable::fromUFormattable(fmt); |
| CharString *charString = obj->internalGetCharString(*status); |
| if(U_FAILURE(*status)) { |
| return ""; |
| } |
| if(charString == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return ""; |
| } else { |
| if(len!=NULL) { |
| *len = charString->length(); |
| } |
| return charString->data(); |
| } |
| } |
| |
| U_CAPI int64_t U_EXPORT2 |
| ufmt_getInt64(UFormattable *fmt, UErrorCode *status) { |
| Formattable *obj = Formattable::fromUFormattable(fmt); |
| return obj->getInt64(*status); |
| } |
| |
| #endif /* #if !UCONFIG_NO_FORMATTING */ |
| |
| //eof |