blob: 21f2362d171cb483f694e2a6f1849ad9daad8298 [file] [log] [blame]
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
* Copyright (C) 2007-2016, International Business Machines Corporation and
* others. All Rights Reserved.
*******************************************************************************
*
* File DTPTNGEN.CPP
*
*******************************************************************************
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include "unicode/datefmt.h"
#include "unicode/decimfmt.h"
#include "unicode/dtfmtsym.h"
#include "unicode/dtptngen.h"
#include "unicode/localpointer.h"
#include "unicode/simpleformatter.h"
#include "unicode/smpdtfmt.h"
#include "unicode/udat.h"
#include "unicode/udatpg.h"
#include "unicode/uniset.h"
#include "unicode/uloc.h"
#include "unicode/ures.h"
#include "unicode/ustring.h"
#include "unicode/rep.h"
#include "unicode/region.h"
#include "cpputils.h"
#include "mutex.h"
#include "umutex.h"
#include "cmemory.h"
#include "cstring.h"
#include "locbased.h"
#include "hash.h"
#include "uhash.h"
#include "uresimp.h"
#include "dtptngen_impl.h"
#include "ucln_in.h"
#include "charstr.h"
#include "uassert.h"
#if U_CHARSET_FAMILY==U_EBCDIC_FAMILY
/**
* If we are on EBCDIC, use an iterator which will
* traverse the bundles in ASCII order.
*/
#define U_USE_ASCII_BUNDLE_ITERATOR
#define U_SORT_ASCII_BUNDLE_ITERATOR
#endif
#if defined(U_USE_ASCII_BUNDLE_ITERATOR)
#include "unicode/ustring.h"
#include "uarrsort.h"
struct UResAEntry {
UChar *key;
UResourceBundle *item;
};
struct UResourceBundleAIterator {
UResourceBundle *bund;
UResAEntry *entries;
int32_t num;
int32_t cursor;
};
/* Must be C linkage to pass function pointer to the sort function */
U_CDECL_BEGIN
static int32_t U_CALLCONV
ures_a_codepointSort(const void *context, const void *left, const void *right) {
//CompareContext *cmp=(CompareContext *)context;
return u_strcmp(((const UResAEntry *)left)->key,
((const UResAEntry *)right)->key);
}
U_CDECL_END
static void ures_a_open(UResourceBundleAIterator *aiter, UResourceBundle *bund, UErrorCode *status) {
if(U_FAILURE(*status)) {
return;
}
aiter->bund = bund;
aiter->num = ures_getSize(aiter->bund);
aiter->cursor = 0;
#if !defined(U_SORT_ASCII_BUNDLE_ITERATOR)
aiter->entries = nullptr;
#else
aiter->entries = (UResAEntry*)uprv_malloc(sizeof(UResAEntry)*aiter->num);
for(int i=0;i<aiter->num;i++) {
aiter->entries[i].item = ures_getByIndex(aiter->bund, i, nullptr, status);
const char *akey = ures_getKey(aiter->entries[i].item);
int32_t len = uprv_strlen(akey)+1;
aiter->entries[i].key = (UChar*)uprv_malloc(len*sizeof(UChar));
u_charsToUChars(akey, aiter->entries[i].key, len);
}
uprv_sortArray(aiter->entries, aiter->num, sizeof(UResAEntry), ures_a_codepointSort, nullptr, TRUE, status);
#endif
}
static void ures_a_close(UResourceBundleAIterator *aiter) {
#if defined(U_SORT_ASCII_BUNDLE_ITERATOR)
for(int i=0;i<aiter->num;i++) {
uprv_free(aiter->entries[i].key);
ures_close(aiter->entries[i].item);
}
#endif
}
static const UChar *ures_a_getNextString(UResourceBundleAIterator *aiter, int32_t *len, const char **key, UErrorCode *err) {
#if !defined(U_SORT_ASCII_BUNDLE_ITERATOR)
return ures_getNextString(aiter->bund, len, key, err);
#else
if(U_FAILURE(*err)) return nullptr;
UResourceBundle *item = aiter->entries[aiter->cursor].item;
const UChar* ret = ures_getString(item, len, err);
*key = ures_getKey(item);
aiter->cursor++;
return ret;
#endif
}
#endif
U_NAMESPACE_BEGIN
// *****************************************************************************
// class DateTimePatternGenerator
// *****************************************************************************
static const UChar Canonical_Items[] = {
// GyQMwWEDFdaHmsSv
CAP_G, LOW_Y, CAP_Q, CAP_M, LOW_W, CAP_W, CAP_E,
CAP_D, CAP_F, LOW_D, LOW_A, // The UDATPG_x_FIELD constants and these fields have a different order than in ICU4J
CAP_H, LOW_M, LOW_S, CAP_S, LOW_V, 0
};
static const dtTypeElem dtTypes[] = {
// patternChar, field, type, minLen, weight
{CAP_G, UDATPG_ERA_FIELD, DT_SHORT, 1, 3,},
{CAP_G, UDATPG_ERA_FIELD, DT_LONG, 4, 0},
{CAP_G, UDATPG_ERA_FIELD, DT_NARROW, 5, 0},
{LOW_Y, UDATPG_YEAR_FIELD, DT_NUMERIC, 1, 20},
{CAP_Y, UDATPG_YEAR_FIELD, DT_NUMERIC + DT_DELTA, 1, 20},
{LOW_U, UDATPG_YEAR_FIELD, DT_NUMERIC + 2*DT_DELTA, 1, 20},
{LOW_R, UDATPG_YEAR_FIELD, DT_NUMERIC + 3*DT_DELTA, 1, 20},
{CAP_U, UDATPG_YEAR_FIELD, DT_SHORT, 1, 3},
{CAP_U, UDATPG_YEAR_FIELD, DT_LONG, 4, 0},
{CAP_U, UDATPG_YEAR_FIELD, DT_NARROW, 5, 0},
{CAP_Q, UDATPG_QUARTER_FIELD, DT_NUMERIC, 1, 2},
{CAP_Q, UDATPG_QUARTER_FIELD, DT_SHORT, 3, 0},
{CAP_Q, UDATPG_QUARTER_FIELD, DT_LONG, 4, 0},
{CAP_Q, UDATPG_QUARTER_FIELD, DT_NARROW, 5, 0},
{LOW_Q, UDATPG_QUARTER_FIELD, DT_NUMERIC + DT_DELTA, 1, 2},
{LOW_Q, UDATPG_QUARTER_FIELD, DT_SHORT - DT_DELTA, 3, 0},
{LOW_Q, UDATPG_QUARTER_FIELD, DT_LONG - DT_DELTA, 4, 0},
{LOW_Q, UDATPG_QUARTER_FIELD, DT_NARROW - DT_DELTA, 5, 0},
{CAP_M, UDATPG_MONTH_FIELD, DT_NUMERIC, 1, 2},
{CAP_M, UDATPG_MONTH_FIELD, DT_SHORT, 3, 0},
{CAP_M, UDATPG_MONTH_FIELD, DT_LONG, 4, 0},
{CAP_M, UDATPG_MONTH_FIELD, DT_NARROW, 5, 0},
{CAP_L, UDATPG_MONTH_FIELD, DT_NUMERIC + DT_DELTA, 1, 2},
{CAP_L, UDATPG_MONTH_FIELD, DT_SHORT - DT_DELTA, 3, 0},
{CAP_L, UDATPG_MONTH_FIELD, DT_LONG - DT_DELTA, 4, 0},
{CAP_L, UDATPG_MONTH_FIELD, DT_NARROW - DT_DELTA, 5, 0},
{LOW_L, UDATPG_MONTH_FIELD, DT_NUMERIC + DT_DELTA, 1, 1},
{LOW_W, UDATPG_WEEK_OF_YEAR_FIELD, DT_NUMERIC, 1, 2},
{CAP_W, UDATPG_WEEK_OF_MONTH_FIELD, DT_NUMERIC, 1, 0},
{CAP_E, UDATPG_WEEKDAY_FIELD, DT_SHORT, 1, 3},
{CAP_E, UDATPG_WEEKDAY_FIELD, DT_LONG, 4, 0},
{CAP_E, UDATPG_WEEKDAY_FIELD, DT_NARROW, 5, 0},
{CAP_E, UDATPG_WEEKDAY_FIELD, DT_SHORTER, 6, 0},
{LOW_C, UDATPG_WEEKDAY_FIELD, DT_NUMERIC + 2*DT_DELTA, 1, 2},
{LOW_C, UDATPG_WEEKDAY_FIELD, DT_SHORT - 2*DT_DELTA, 3, 0},
{LOW_C, UDATPG_WEEKDAY_FIELD, DT_LONG - 2*DT_DELTA, 4, 0},
{LOW_C, UDATPG_WEEKDAY_FIELD, DT_NARROW - 2*DT_DELTA, 5, 0},
{LOW_C, UDATPG_WEEKDAY_FIELD, DT_SHORTER - 2*DT_DELTA, 6, 0},
{LOW_E, UDATPG_WEEKDAY_FIELD, DT_NUMERIC + DT_DELTA, 1, 2}, // LOW_E is currently not used in CLDR data, should not be canonical
{LOW_E, UDATPG_WEEKDAY_FIELD, DT_SHORT - DT_DELTA, 3, 0},
{LOW_E, UDATPG_WEEKDAY_FIELD, DT_LONG - DT_DELTA, 4, 0},
{LOW_E, UDATPG_WEEKDAY_FIELD, DT_NARROW - DT_DELTA, 5, 0},
{LOW_E, UDATPG_WEEKDAY_FIELD, DT_SHORTER - DT_DELTA, 6, 0},
{LOW_D, UDATPG_DAY_FIELD, DT_NUMERIC, 1, 2},
{LOW_G, UDATPG_DAY_FIELD, DT_NUMERIC + DT_DELTA, 1, 20}, // really internal use, so we don't care
{CAP_D, UDATPG_DAY_OF_YEAR_FIELD, DT_NUMERIC, 1, 3},
{CAP_F, UDATPG_DAY_OF_WEEK_IN_MONTH_FIELD, DT_NUMERIC, 1, 0},
{LOW_A, UDATPG_DAYPERIOD_FIELD, DT_SHORT, 1, 3},
{LOW_A, UDATPG_DAYPERIOD_FIELD, DT_LONG, 4, 0},
{LOW_A, UDATPG_DAYPERIOD_FIELD, DT_NARROW, 5, 0},
{LOW_B, UDATPG_DAYPERIOD_FIELD, DT_SHORT - DT_DELTA, 1, 3},
{LOW_B, UDATPG_DAYPERIOD_FIELD, DT_LONG - DT_DELTA, 4, 0},
{LOW_B, UDATPG_DAYPERIOD_FIELD, DT_NARROW - DT_DELTA, 5, 0},
// b needs to be closer to a than to B, so we make this 3*DT_DELTA
{CAP_B, UDATPG_DAYPERIOD_FIELD, DT_SHORT - 3*DT_DELTA, 1, 3},
{CAP_B, UDATPG_DAYPERIOD_FIELD, DT_LONG - 3*DT_DELTA, 4, 0},
{CAP_B, UDATPG_DAYPERIOD_FIELD, DT_NARROW - 3*DT_DELTA, 5, 0},
{CAP_H, UDATPG_HOUR_FIELD, DT_NUMERIC + 10*DT_DELTA, 1, 2}, // 24 hour
{LOW_K, UDATPG_HOUR_FIELD, DT_NUMERIC + 11*DT_DELTA, 1, 2}, // 24 hour
{LOW_H, UDATPG_HOUR_FIELD, DT_NUMERIC, 1, 2}, // 12 hour
{CAP_K, UDATPG_HOUR_FIELD, DT_NUMERIC + DT_DELTA, 1, 2}, // 12 hour
// The C code has had versions of the following 3, keep & update. Should not need these, but...
// Without these, certain tests using e.g. staticGetSkeleton fail because j/J in patterns
// get skipped instead of mapped to the right hour chars, for example in
// DateFormatTest::TestPatternFromSkeleton
// IntlTestDateTimePatternGeneratorAPI:: testStaticGetSkeleton
// DateIntervalFormatTest::testTicket11985
// Need to investigate better handling of jJC replacement e.g. in staticGetSkeleton.
{CAP_J, UDATPG_HOUR_FIELD, DT_NUMERIC + 5*DT_DELTA, 1, 2}, // 12/24 hour no AM/PM
{LOW_J, UDATPG_HOUR_FIELD, DT_NUMERIC + 6*DT_DELTA, 1, 6}, // 12/24 hour
{CAP_C, UDATPG_HOUR_FIELD, DT_NUMERIC + 7*DT_DELTA, 1, 6}, // 12/24 hour with preferred dayPeriods for 12
{LOW_M, UDATPG_MINUTE_FIELD, DT_NUMERIC, 1, 2},
{LOW_S, UDATPG_SECOND_FIELD, DT_NUMERIC, 1, 2},
{CAP_A, UDATPG_SECOND_FIELD, DT_NUMERIC + DT_DELTA, 1, 1000},
{CAP_S, UDATPG_FRACTIONAL_SECOND_FIELD, DT_NUMERIC, 1, 1000},
{LOW_V, UDATPG_ZONE_FIELD, DT_SHORT - 2*DT_DELTA, 1, 0},
{LOW_V, UDATPG_ZONE_FIELD, DT_LONG - 2*DT_DELTA, 4, 0},
{LOW_Z, UDATPG_ZONE_FIELD, DT_SHORT, 1, 3},
{LOW_Z, UDATPG_ZONE_FIELD, DT_LONG, 4, 0},
{CAP_Z, UDATPG_ZONE_FIELD, DT_NARROW - DT_DELTA, 1, 3},
{CAP_Z, UDATPG_ZONE_FIELD, DT_LONG - DT_DELTA, 4, 0},
{CAP_Z, UDATPG_ZONE_FIELD, DT_SHORT - DT_DELTA, 5, 0},
{CAP_O, UDATPG_ZONE_FIELD, DT_SHORT - DT_DELTA, 1, 0},
{CAP_O, UDATPG_ZONE_FIELD, DT_LONG - DT_DELTA, 4, 0},
{CAP_V, UDATPG_ZONE_FIELD, DT_SHORT - DT_DELTA, 1, 0},
{CAP_V, UDATPG_ZONE_FIELD, DT_LONG - DT_DELTA, 2, 0},
{CAP_V, UDATPG_ZONE_FIELD, DT_LONG-1 - DT_DELTA, 3, 0},
{CAP_V, UDATPG_ZONE_FIELD, DT_LONG-2 - DT_DELTA, 4, 0},
{CAP_X, UDATPG_ZONE_FIELD, DT_NARROW - DT_DELTA, 1, 0},
{CAP_X, UDATPG_ZONE_FIELD, DT_SHORT - DT_DELTA, 2, 0},
{CAP_X, UDATPG_ZONE_FIELD, DT_LONG - DT_DELTA, 4, 0},
{LOW_X, UDATPG_ZONE_FIELD, DT_NARROW - DT_DELTA, 1, 0},
{LOW_X, UDATPG_ZONE_FIELD, DT_SHORT - DT_DELTA, 2, 0},
{LOW_X, UDATPG_ZONE_FIELD, DT_LONG - DT_DELTA, 4, 0},
{0, UDATPG_FIELD_COUNT, 0, 0, 0} , // last row of dtTypes[]
};
static const char* const CLDR_FIELD_APPEND[] = {
"Era", "Year", "Quarter", "Month", "Week", "*", "Day-Of-Week",
"*", "*", "Day", "*", // The UDATPG_x_FIELD constants and these fields have a different order than in ICU4J
"Hour", "Minute", "Second", "*", "Timezone"
};
static const char* const CLDR_FIELD_NAME[UDATPG_FIELD_COUNT] = {
"era", "year", "quarter", "month", "week", "weekOfMonth", "weekday",
"dayOfYear", "weekdayOfMonth", "day", "dayperiod", // The UDATPG_x_FIELD constants and these fields have a different order than in ICU4J
"hour", "minute", "second", "*", "zone"
};
static const char* const CLDR_FIELD_WIDTH[] = { // [UDATPG_WIDTH_COUNT]
"", "-short", "-narrow"
};
// TODO(ticket:13619): remove when definition uncommented in dtptngen.h.
static const int32_t UDATPG_WIDTH_COUNT = UDATPG_NARROW + 1;
static constexpr UDateTimePGDisplayWidth UDATPG_WIDTH_APPENDITEM = UDATPG_WIDE;
static constexpr int32_t UDATPG_FIELD_KEY_MAX = 24; // max length of CLDR field tag (type + width)
// For appendItems
static const UChar UDATPG_ItemFormat[]= {0x7B, 0x30, 0x7D, 0x20, 0x251C, 0x7B, 0x32, 0x7D, 0x3A,
0x20, 0x7B, 0x31, 0x7D, 0x2524, 0}; // {0} \u251C{2}: {1}\u2524
//static const UChar repeatedPatterns[6]={CAP_G, CAP_E, LOW_Z, LOW_V, CAP_Q, 0}; // "GEzvQ"
static const char DT_DateTimePatternsTag[]="DateTimePatterns";
static const char DT_DateTimeCalendarTag[]="calendar";
static const char DT_DateTimeGregorianTag[]="gregorian";
static const char DT_DateTimeAppendItemsTag[]="appendItems";
static const char DT_DateTimeFieldsTag[]="fields";
static const char DT_DateTimeAvailableFormatsTag[]="availableFormats";
//static const UnicodeString repeatedPattern=UnicodeString(repeatedPatterns);
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DateTimePatternGenerator)
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DTSkeletonEnumeration)
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DTRedundantEnumeration)
DateTimePatternGenerator* U_EXPORT2
DateTimePatternGenerator::createInstance(UErrorCode& status) {
return createInstance(Locale::getDefault(), status);
}
DateTimePatternGenerator* U_EXPORT2
DateTimePatternGenerator::createInstance(const Locale& locale, UErrorCode& status) {
if (U_FAILURE(status)) {
return nullptr;
}
LocalPointer<DateTimePatternGenerator> result(
new DateTimePatternGenerator(locale, status), status);
return U_SUCCESS(status) ? result.orphan() : nullptr;
}
DateTimePatternGenerator* U_EXPORT2
DateTimePatternGenerator::createInstanceNoStdPat(const Locale& locale, UErrorCode& status) {
if (U_FAILURE(status)) {
return nullptr;
}
LocalPointer<DateTimePatternGenerator> result(
new DateTimePatternGenerator(locale, status, true), status);
return U_SUCCESS(status) ? result.orphan() : nullptr;
}
DateTimePatternGenerator* U_EXPORT2
DateTimePatternGenerator::createEmptyInstance(UErrorCode& status) {
if (U_FAILURE(status)) {
return nullptr;
}
LocalPointer<DateTimePatternGenerator> result(
new DateTimePatternGenerator(status), status);
return U_SUCCESS(status) ? result.orphan() : nullptr;
}
DateTimePatternGenerator::DateTimePatternGenerator(UErrorCode &status) :
skipMatcher(nullptr),
fAvailableFormatKeyHash(nullptr),
fDefaultHourFormatChar(0),
internalErrorCode(U_ZERO_ERROR)
{
fp = new FormatParser();
dtMatcher = new DateTimeMatcher();
distanceInfo = new DistanceInfo();
patternMap = new PatternMap();
if (fp == nullptr || dtMatcher == nullptr || distanceInfo == nullptr || patternMap == nullptr) {
internalErrorCode = status = U_MEMORY_ALLOCATION_ERROR;
}
}
DateTimePatternGenerator::DateTimePatternGenerator(const Locale& locale, UErrorCode &status, UBool skipStdPatterns) :
skipMatcher(nullptr),
fAvailableFormatKeyHash(nullptr),
fDefaultHourFormatChar(0),
internalErrorCode(U_ZERO_ERROR)
{
fp = new FormatParser();
dtMatcher = new DateTimeMatcher();
distanceInfo = new DistanceInfo();
patternMap = new PatternMap();
if (fp == nullptr || dtMatcher == nullptr || distanceInfo == nullptr || patternMap == nullptr) {
internalErrorCode = status = U_MEMORY_ALLOCATION_ERROR;
}
else {
initData(locale, status, skipStdPatterns);
}
}
DateTimePatternGenerator::DateTimePatternGenerator(const DateTimePatternGenerator& other) :
UObject(),
skipMatcher(nullptr),
fAvailableFormatKeyHash(nullptr),
fDefaultHourFormatChar(0),
internalErrorCode(U_ZERO_ERROR)
{
fp = new FormatParser();
dtMatcher = new DateTimeMatcher();
distanceInfo = new DistanceInfo();
patternMap = new PatternMap();
if (fp == nullptr || dtMatcher == nullptr || distanceInfo == nullptr || patternMap == nullptr) {
internalErrorCode = U_MEMORY_ALLOCATION_ERROR;
}
*this=other;
}
DateTimePatternGenerator&
DateTimePatternGenerator::operator=(const DateTimePatternGenerator& other) {
// reflexive case
if (&other == this) {
return *this;
}
internalErrorCode = other.internalErrorCode;
pLocale = other.pLocale;
fDefaultHourFormatChar = other.fDefaultHourFormatChar;
*fp = *(other.fp);
dtMatcher->copyFrom(other.dtMatcher->skeleton);
*distanceInfo = *(other.distanceInfo);
dateTimeFormat = other.dateTimeFormat;
decimal = other.decimal;
// NUL-terminate for the C API.
dateTimeFormat.getTerminatedBuffer();
decimal.getTerminatedBuffer();
delete skipMatcher;
if ( other.skipMatcher == nullptr ) {
skipMatcher = nullptr;
}
else {
skipMatcher = new DateTimeMatcher(*other.skipMatcher);
if (skipMatcher == nullptr)
{
internalErrorCode = U_MEMORY_ALLOCATION_ERROR;
return *this;
}
}
for (int32_t i=0; i< UDATPG_FIELD_COUNT; ++i ) {
appendItemFormats[i] = other.appendItemFormats[i];
appendItemFormats[i].getTerminatedBuffer(); // NUL-terminate for the C API.
for (int32_t j=0; j< UDATPG_WIDTH_COUNT; ++j ) {
fieldDisplayNames[i][j] = other.fieldDisplayNames[i][j];
fieldDisplayNames[i][j].getTerminatedBuffer(); // NUL-terminate for the C API.
}
}
patternMap->copyFrom(*other.patternMap, internalErrorCode);
copyHashtable(other.fAvailableFormatKeyHash, internalErrorCode);
return *this;
}
UBool
DateTimePatternGenerator::operator==(const DateTimePatternGenerator& other) const {
if (this == &other) {
return TRUE;
}
if ((pLocale==other.pLocale) && (patternMap->equals(*other.patternMap)) &&
(dateTimeFormat==other.dateTimeFormat) && (decimal==other.decimal)) {
for ( int32_t i=0 ; i<UDATPG_FIELD_COUNT; ++i ) {
if (appendItemFormats[i] != other.appendItemFormats[i]) {
return FALSE;
}
for (int32_t j=0; j< UDATPG_WIDTH_COUNT; ++j ) {
if (fieldDisplayNames[i][j] != other.fieldDisplayNames[i][j]) {
return FALSE;
}
}
}
return TRUE;
}
else {
return FALSE;
}
}
UBool
DateTimePatternGenerator::operator!=(const DateTimePatternGenerator& other) const {
return !operator==(other);
}
DateTimePatternGenerator::~DateTimePatternGenerator() {
if (fAvailableFormatKeyHash!=nullptr) {
delete fAvailableFormatKeyHash;
}
if (fp != nullptr) delete fp;
if (dtMatcher != nullptr) delete dtMatcher;
if (distanceInfo != nullptr) delete distanceInfo;
if (patternMap != nullptr) delete patternMap;
if (skipMatcher != nullptr) delete skipMatcher;
}
namespace {
UInitOnce initOnce = U_INITONCE_INITIALIZER;
UHashtable *localeToAllowedHourFormatsMap = nullptr;
// Value deleter for hashmap.
U_CFUNC void U_CALLCONV deleteAllowedHourFormats(void *ptr) {
uprv_free(ptr);
}
// Close hashmap at cleanup.
U_CFUNC UBool U_CALLCONV allowedHourFormatsCleanup() {
uhash_close(localeToAllowedHourFormatsMap);
return TRUE;
}
enum AllowedHourFormat{
ALLOWED_HOUR_FORMAT_UNKNOWN = -1,
ALLOWED_HOUR_FORMAT_h,
ALLOWED_HOUR_FORMAT_H,
ALLOWED_HOUR_FORMAT_K, // Added ICU-20383, used by JP
ALLOWED_HOUR_FORMAT_k, // Added ICU-20383, not currently used
ALLOWED_HOUR_FORMAT_hb,
ALLOWED_HOUR_FORMAT_hB,
ALLOWED_HOUR_FORMAT_Kb, // Added ICU-20383, not currently used
ALLOWED_HOUR_FORMAT_KB, // Added ICU-20383, not currently used
// ICU-20383 The following are unlikely and not currently used
ALLOWED_HOUR_FORMAT_Hb,
ALLOWED_HOUR_FORMAT_HB
};
} // namespace
void
DateTimePatternGenerator::initData(const Locale& locale, UErrorCode &status, UBool skipStdPatterns) {
//const char *baseLangName = locale.getBaseName(); // unused
skipMatcher = nullptr;
fAvailableFormatKeyHash=nullptr;
addCanonicalItems(status);
if (!skipStdPatterns) { // skip to prevent circular dependency when called from SimpleDateFormat::construct
addICUPatterns(locale, status);
}
addCLDRData(locale, status);
setDateTimeFromCalendar(locale, status);
setDecimalSymbols(locale, status);
umtx_initOnce(initOnce, loadAllowedHourFormatsData, status);
getAllowedHourFormats(locale, status);
// If any of the above methods failed then the object is in an invalid state.
internalErrorCode = status;
} // DateTimePatternGenerator::initData
namespace {
struct AllowedHourFormatsSink : public ResourceSink {
// Initialize sub-sinks.
AllowedHourFormatsSink() {}
virtual ~AllowedHourFormatsSink();
virtual void put(const char *key, ResourceValue &value, UBool /*noFallback*/,
UErrorCode &errorCode) {
ResourceTable timeData = value.getTable(errorCode);
if (U_FAILURE(errorCode)) { return; }
for (int32_t i = 0; timeData.getKeyAndValue(i, key, value); ++i) {
const char *regionOrLocale = key;
ResourceTable formatList = value.getTable(errorCode);
if (U_FAILURE(errorCode)) { return; }
// below we construct a list[] that has an entry for the "preferred" value at [0],
// followed by 1 or more entries for the "allowed" values, terminated with an
// entry for ALLOWED_HOUR_FORMAT_UNKNOWN (not included in length below)
LocalMemory<int32_t> list;
int32_t length = 0;
int32_t preferredFormat = ALLOWED_HOUR_FORMAT_UNKNOWN;
for (int32_t j = 0; formatList.getKeyAndValue(j, key, value); ++j) {
if (uprv_strcmp(key, "allowed") == 0) {
if (value.getType() == URES_STRING) {
length = 2; // 1 preferred to add later, 1 allowed to add now
if (list.allocateInsteadAndReset(length + 1) == nullptr) {
errorCode = U_MEMORY_ALLOCATION_ERROR;
return;
}
list[1] = getHourFormatFromUnicodeString(value.getUnicodeString(errorCode));
}
else {
ResourceArray allowedFormats = value.getArray(errorCode);
length = allowedFormats.getSize() + 1; // 1 preferred, getSize allowed
if (list.allocateInsteadAndReset(length + 1) == nullptr) {
errorCode = U_MEMORY_ALLOCATION_ERROR;
return;
}
for (int32_t k = 1; k < length; ++k) {
allowedFormats.getValue(k-1, value);
list[k] = getHourFormatFromUnicodeString(value.getUnicodeString(errorCode));
}
}
} else if (uprv_strcmp(key, "preferred") == 0) {
preferredFormat = getHourFormatFromUnicodeString(value.getUnicodeString(errorCode));
}
}
if (length > 1) {
list[0] = (preferredFormat!=ALLOWED_HOUR_FORMAT_UNKNOWN)? preferredFormat: list[1];
} else {
// fallback handling for missing data
length = 2; // 1 preferred, 1 allowed
if (list.allocateInsteadAndReset(length + 1) == nullptr) {
errorCode = U_MEMORY_ALLOCATION_ERROR;
return;
}
list[0] = (preferredFormat!=ALLOWED_HOUR_FORMAT_UNKNOWN)? preferredFormat: ALLOWED_HOUR_FORMAT_H;
list[1] = list[0];
}
list[length] = ALLOWED_HOUR_FORMAT_UNKNOWN;
// At this point list[] will have at least two non-ALLOWED_HOUR_FORMAT_UNKNOWN entries,
// followed by ALLOWED_HOUR_FORMAT_UNKNOWN.
uhash_put(localeToAllowedHourFormatsMap, const_cast<char *>(regionOrLocale), list.orphan(), &errorCode);
if (U_FAILURE(errorCode)) { return; }
}
}
AllowedHourFormat getHourFormatFromUnicodeString(const UnicodeString &s) {
if (s.length() == 1) {
if (s[0] == LOW_H) { return ALLOWED_HOUR_FORMAT_h; }
if (s[0] == CAP_H) { return ALLOWED_HOUR_FORMAT_H; }
if (s[0] == CAP_K) { return ALLOWED_HOUR_FORMAT_K; }
if (s[0] == LOW_K) { return ALLOWED_HOUR_FORMAT_k; }
} else if (s.length() == 2) {
if (s[0] == LOW_H && s[1] == LOW_B) { return ALLOWED_HOUR_FORMAT_hb; }
if (s[0] == LOW_H && s[1] == CAP_B) { return ALLOWED_HOUR_FORMAT_hB; }
if (s[0] == CAP_K && s[1] == LOW_B) { return ALLOWED_HOUR_FORMAT_Kb; }
if (s[0] == CAP_K && s[1] == CAP_B) { return ALLOWED_HOUR_FORMAT_KB; }
if (s[0] == CAP_H && s[1] == LOW_B) { return ALLOWED_HOUR_FORMAT_Hb; }
if (s[0] == CAP_H && s[1] == CAP_B) { return ALLOWED_HOUR_FORMAT_HB; }
}
return ALLOWED_HOUR_FORMAT_UNKNOWN;
}
};
} // namespace
AllowedHourFormatsSink::~AllowedHourFormatsSink() {}
U_CFUNC void U_CALLCONV DateTimePatternGenerator::loadAllowedHourFormatsData(UErrorCode &status) {
if (U_FAILURE(status)) { return; }
localeToAllowedHourFormatsMap = uhash_open(
uhash_hashChars, uhash_compareChars, nullptr, &status);
if (U_FAILURE(status)) { return; }
uhash_setValueDeleter(localeToAllowedHourFormatsMap, deleteAllowedHourFormats);
ucln_i18n_registerCleanup(UCLN_I18N_ALLOWED_HOUR_FORMATS, allowedHourFormatsCleanup);
LocalUResourceBundlePointer rb(ures_openDirect(nullptr, "supplementalData", &status));
if (U_FAILURE(status)) { return; }
AllowedHourFormatsSink sink;
// TODO: Currently in the enumeration each table allocates a new array.
// Try to reduce the number of memory allocations. Consider storing a
// UVector32 with the concatenation of all of the sub-arrays, put the start index
// into the hashmap, store 6 single-value sub-arrays right at the beginning of the
// vector (at index enum*2) for easy data sharing, copy sub-arrays into runtime
// object. Remember to clean up the vector, too.
ures_getAllItemsWithFallback(rb.getAlias(), "timeData", sink, status);
}
static int32_t* getAllowedHourFormatsLangCountry(const char* language, const char* country, UErrorCode& status) {
CharString langCountry;
langCountry.append(language, status);
langCountry.append('_', status);
langCountry.append(country, status);
int32_t* allowedFormats;
allowedFormats = (int32_t *)uhash_get(localeToAllowedHourFormatsMap, langCountry.data());
if (allowedFormats == nullptr) {
allowedFormats = (int32_t *)uhash_get(localeToAllowedHourFormatsMap, const_cast<char *>(country));
}
return allowedFormats;
}
void DateTimePatternGenerator::getAllowedHourFormats(const Locale &locale, UErrorCode &status) {
if (U_FAILURE(status)) { return; }
const char *language = locale.getLanguage();
const char *country = locale.getCountry();
Locale maxLocale; // must be here for correct lifetime
if (*language == '\0' || *country == '\0') {
maxLocale = locale;
UErrorCode localStatus = U_ZERO_ERROR;
maxLocale.addLikelySubtags(localStatus);
if (U_SUCCESS(localStatus)) {
language = maxLocale.getLanguage();
country = maxLocale.getCountry();
}
}
if (*language == '\0') {
// Unexpected, but fail gracefully
language = "und";
}
if (*country == '\0') {
country = "001";
}
int32_t* allowedFormats = getAllowedHourFormatsLangCountry(language, country, status);
// We need to check if there is an hour cycle on locale
char buffer[8];
int32_t count = locale.getKeywordValue("hours", buffer, sizeof(buffer), status);
fDefaultHourFormatChar = 0;
if (U_SUCCESS(status) && count > 0) {
if(uprv_strcmp(buffer, "h24") == 0) {
fDefaultHourFormatChar = LOW_K;
} else if(uprv_strcmp(buffer, "h23") == 0) {
fDefaultHourFormatChar = CAP_H;
} else if(uprv_strcmp(buffer, "h12") == 0) {
fDefaultHourFormatChar = LOW_H;
} else if(uprv_strcmp(buffer, "h11") == 0) {
fDefaultHourFormatChar = CAP_K;
}
}
// Check if the region has an alias
if (allowedFormats == nullptr) {
UErrorCode localStatus = U_ZERO_ERROR;
const Region* region = Region::getInstance(country, localStatus);
if (U_SUCCESS(localStatus)) {
country = region->getRegionCode(); // the real region code
allowedFormats = getAllowedHourFormatsLangCountry(language, country, status);
}
}
if (allowedFormats != nullptr) { // Lookup is successful
// Here allowedFormats points to a list consisting of key for preferredFormat,
// followed by one or more keys for allowedFormats, then followed by ALLOWED_HOUR_FORMAT_UNKNOWN.
if (!fDefaultHourFormatChar) {
switch (allowedFormats[0]) {
case ALLOWED_HOUR_FORMAT_h: fDefaultHourFormatChar = LOW_H; break;
case ALLOWED_HOUR_FORMAT_H: fDefaultHourFormatChar = CAP_H; break;
case ALLOWED_HOUR_FORMAT_K: fDefaultHourFormatChar = CAP_K; break;
case ALLOWED_HOUR_FORMAT_k: fDefaultHourFormatChar = LOW_K; break;
default: fDefaultHourFormatChar = CAP_H; break;
}
}
for (int32_t i = 0; i < UPRV_LENGTHOF(fAllowedHourFormats); ++i) {
fAllowedHourFormats[i] = allowedFormats[i + 1];
if (fAllowedHourFormats[i] == ALLOWED_HOUR_FORMAT_UNKNOWN) {
break;
}
}
} else { // Lookup failed, twice
if (!fDefaultHourFormatChar) {
fDefaultHourFormatChar = CAP_H;
}
fAllowedHourFormats[0] = ALLOWED_HOUR_FORMAT_H;
fAllowedHourFormats[1] = ALLOWED_HOUR_FORMAT_UNKNOWN;
}
}
UDateFormatHourCycle
DateTimePatternGenerator::getDefaultHourCycle(UErrorCode& status) const {
if (U_FAILURE(status)) {
return UDAT_HOUR_CYCLE_23;
}
if (fDefaultHourFormatChar == 0) {
// We need to return something, but the caller should ignore it
// anyways since the returned status is a failure.
status = U_UNSUPPORTED_ERROR;
return UDAT_HOUR_CYCLE_23;
}
switch (fDefaultHourFormatChar) {
case CAP_K:
return UDAT_HOUR_CYCLE_11;
case LOW_H:
return UDAT_HOUR_CYCLE_12;
case CAP_H:
return UDAT_HOUR_CYCLE_23;
case LOW_K:
return UDAT_HOUR_CYCLE_24;
default:
UPRV_UNREACHABLE;
}
}
UnicodeString
DateTimePatternGenerator::getSkeleton(const UnicodeString& pattern, UErrorCode&
/*status*/) {
FormatParser fp2;
DateTimeMatcher matcher;
PtnSkeleton localSkeleton;
matcher.set(pattern, &fp2, localSkeleton);
return localSkeleton.getSkeleton();
}
UnicodeString
DateTimePatternGenerator::staticGetSkeleton(
const UnicodeString& pattern, UErrorCode& /*status*/) {
FormatParser fp;
DateTimeMatcher matcher;
PtnSkeleton localSkeleton;
matcher.set(pattern, &fp, localSkeleton);
return localSkeleton.getSkeleton();
}
UnicodeString
DateTimePatternGenerator::getBaseSkeleton(const UnicodeString& pattern, UErrorCode& /*status*/) {
FormatParser fp2;
DateTimeMatcher matcher;
PtnSkeleton localSkeleton;
matcher.set(pattern, &fp2, localSkeleton);
return localSkeleton.getBaseSkeleton();
}
UnicodeString
DateTimePatternGenerator::staticGetBaseSkeleton(
const UnicodeString& pattern, UErrorCode& /*status*/) {
FormatParser fp;
DateTimeMatcher matcher;
PtnSkeleton localSkeleton;
matcher.set(pattern, &fp, localSkeleton);
return localSkeleton.getBaseSkeleton();
}
void
DateTimePatternGenerator::addICUPatterns(const Locale& locale, UErrorCode& status) {
if (U_FAILURE(status)) { return; }
UnicodeString dfPattern;
UnicodeString conflictingString;
DateFormat* df;
// Load with ICU patterns
for (int32_t i=DateFormat::kFull; i<=DateFormat::kShort; i++) {
DateFormat::EStyle style = (DateFormat::EStyle)i;
df = DateFormat::createDateInstance(style, locale);
SimpleDateFormat* sdf;
if (df != nullptr && (sdf = dynamic_cast<SimpleDateFormat*>(df)) != nullptr) {
sdf->toPattern(dfPattern);
addPattern(dfPattern, FALSE, conflictingString, status);
}
// TODO Maybe we should return an error when the date format isn't simple.
delete df;
if (U_FAILURE(status)) { return; }
df = DateFormat::createTimeInstance(style, locale);
if (df != nullptr && (sdf = dynamic_cast<SimpleDateFormat*>(df)) != nullptr) {
sdf->toPattern(dfPattern);
addPattern(dfPattern, FALSE, conflictingString, status);
// TODO: C++ and Java are inconsistent (see #12568).
// C++ uses MEDIUM, but Java uses SHORT.
if ( i==DateFormat::kShort && !dfPattern.isEmpty() ) {
consumeShortTimePattern(dfPattern, status);
}
}
// TODO Maybe we should return an error when the date format isn't simple.
delete df;
if (U_FAILURE(status)) { return; }
}
}
void
DateTimePatternGenerator::hackTimes(const UnicodeString& hackPattern, UErrorCode& status) {
UnicodeString conflictingString;
fp->set(hackPattern);
UnicodeString mmss;
UBool gotMm=FALSE;
for (int32_t i=0; i<fp->itemNumber; ++i) {
UnicodeString field = fp->items[i];
if ( fp->isQuoteLiteral(field) ) {
if ( gotMm ) {
UnicodeString quoteLiteral;
fp->getQuoteLiteral(quoteLiteral, &i);
mmss += quoteLiteral;
}
}
else {
if (fp->isPatternSeparator(field) && gotMm) {
mmss+=field;
}
else {
UChar ch=field.charAt(0);
if (ch==LOW_M) {
gotMm=TRUE;
mmss+=field;
}
else {
if (ch==LOW_S) {
if (!gotMm) {
break;
}
mmss+= field;
addPattern(mmss, FALSE, conflictingString, status);
break;
}
else {
if (gotMm || ch==LOW_Z || ch==CAP_Z || ch==LOW_V || ch==CAP_V) {
break;
}
}
}
}
}
}
}
#define ULOC_LOCALE_IDENTIFIER_CAPACITY (ULOC_FULLNAME_CAPACITY + 1 + ULOC_KEYWORD_AND_VALUES_CAPACITY)
void
DateTimePatternGenerator::getCalendarTypeToUse(const Locale& locale, CharString& destination, UErrorCode& err) {
destination.clear().append(DT_DateTimeGregorianTag, -1, err); // initial default
if ( U_SUCCESS(err) ) {
UErrorCode localStatus = U_ZERO_ERROR;
char localeWithCalendarKey[ULOC_LOCALE_IDENTIFIER_CAPACITY];
// obtain a locale that always has the calendar key value that should be used
ures_getFunctionalEquivalent(
localeWithCalendarKey,
ULOC_LOCALE_IDENTIFIER_CAPACITY,
nullptr,
"calendar",
"calendar",
locale.getName(),
nullptr,
FALSE,
&localStatus);
localeWithCalendarKey[ULOC_LOCALE_IDENTIFIER_CAPACITY-1] = 0; // ensure null termination
// now get the calendar key value from that locale
char calendarType[ULOC_KEYWORDS_CAPACITY];
int32_t calendarTypeLen = uloc_getKeywordValue(
localeWithCalendarKey,
"calendar",
calendarType,
ULOC_KEYWORDS_CAPACITY,
&localStatus);
// If the input locale was invalid, don't fail with missing resource error, instead
// continue with default of Gregorian.
if (U_FAILURE(localStatus) && localStatus != U_MISSING_RESOURCE_ERROR) {
err = localStatus;
return;
}
if (calendarTypeLen > 0 && calendarTypeLen < ULOC_KEYWORDS_CAPACITY) {
destination.clear().append(calendarType, -1, err);
if (U_FAILURE(err)) { return; }
}
}
}
void
DateTimePatternGenerator::consumeShortTimePattern(const UnicodeString& shortTimePattern,
UErrorCode& status) {
if (U_FAILURE(status)) { return; }
// ICU-20383 No longer set fDefaultHourFormatChar to the hour format character from
// this pattern; instead it is set from localeToAllowedHourFormatsMap which now
// includes entries for both preferred and allowed formats.
// HACK for hh:ss
hackTimes(shortTimePattern, status);
}
struct DateTimePatternGenerator::AppendItemFormatsSink : public ResourceSink {
// Destination for data, modified via setters.
DateTimePatternGenerator& dtpg;
AppendItemFormatsSink(DateTimePatternGenerator& _dtpg) : dtpg(_dtpg) {}
virtual ~AppendItemFormatsSink();
virtual void put(const char *key, ResourceValue &value, UBool /*noFallback*/,
UErrorCode &errorCode) {
ResourceTable itemsTable = value.getTable(errorCode);
if (U_FAILURE(errorCode)) { return; }
for (int32_t i = 0; itemsTable.getKeyAndValue(i, key, value); ++i) {
UDateTimePatternField field = dtpg.getAppendFormatNumber(key);
if (field == UDATPG_FIELD_COUNT) { continue; }
const UnicodeString& valueStr = value.getUnicodeString(errorCode);
if (dtpg.getAppendItemFormat(field).isEmpty() && !valueStr.isEmpty()) {
dtpg.setAppendItemFormat(field, valueStr);
}
}
}
void fillInMissing() {
UnicodeString defaultItemFormat(TRUE, UDATPG_ItemFormat, UPRV_LENGTHOF(UDATPG_ItemFormat)-1); // Read-only alias.
for (int32_t i = 0; i < UDATPG_FIELD_COUNT; i++) {
UDateTimePatternField field = (UDateTimePatternField)i;
if (dtpg.getAppendItemFormat(field).isEmpty()) {
dtpg.setAppendItemFormat(field, defaultItemFormat);
}
}
}
};
struct DateTimePatternGenerator::AppendItemNamesSink : public ResourceSink {
// Destination for data, modified via setters.
DateTimePatternGenerator& dtpg;
AppendItemNamesSink(DateTimePatternGenerator& _dtpg) : dtpg(_dtpg) {}
virtual ~AppendItemNamesSink();
virtual void put(const char *key, ResourceValue &value, UBool /*noFallback*/,
UErrorCode &errorCode) {
ResourceTable itemsTable = value.getTable(errorCode);
if (U_FAILURE(errorCode)) { return; }
for (int32_t i = 0; itemsTable.getKeyAndValue(i, key, value); ++i) {
UDateTimePGDisplayWidth width;
UDateTimePatternField field = dtpg.getFieldAndWidthIndices(key, &width);
if (field == UDATPG_FIELD_COUNT) { continue; }
ResourceTable detailsTable = value.getTable(errorCode);
if (U_FAILURE(errorCode)) { return; }
for (int32_t j = 0; detailsTable.getKeyAndValue(j, key, value); ++j) {
if (uprv_strcmp(key, "dn") != 0) { continue; }
const UnicodeString& valueStr = value.getUnicodeString(errorCode);
if (dtpg.getFieldDisplayName(field,width).isEmpty() && !valueStr.isEmpty()) {
dtpg.setFieldDisplayName(field,width,valueStr);
}
break;
}
}
}
void fillInMissing() {
for (int32_t i = 0; i < UDATPG_FIELD_COUNT; i++) {
UnicodeString& valueStr = dtpg.getMutableFieldDisplayName((UDateTimePatternField)i, UDATPG_WIDE);
if (valueStr.isEmpty()) {
valueStr = CAP_F;
U_ASSERT(i < 20);
if (i < 10) {
// F0, F1, ..., F9
valueStr += (UChar)(i+0x30);
} else {
// F10, F11, ...
valueStr += (UChar)0x31;
valueStr += (UChar)(i-10 + 0x30);
}
// NUL-terminate for the C API.
valueStr.getTerminatedBuffer();
}
for (int32_t j = 1; j < UDATPG_WIDTH_COUNT; j++) {
UnicodeString& valueStr2 = dtpg.getMutableFieldDisplayName((UDateTimePatternField)i, (UDateTimePGDisplayWidth)j);
if (valueStr2.isEmpty()) {
valueStr2 = dtpg.getFieldDisplayName((UDateTimePatternField)i, (UDateTimePGDisplayWidth)(j-1));
}
}
}
}
};
struct DateTimePatternGenerator::AvailableFormatsSink : public ResourceSink {
// Destination for data, modified via setters.
DateTimePatternGenerator& dtpg;
// Temporary variable, required for calling addPatternWithSkeleton.
UnicodeString conflictingPattern;
AvailableFormatsSink(DateTimePatternGenerator& _dtpg) : dtpg(_dtpg) {}
virtual ~AvailableFormatsSink();
virtual void put(const char *key, ResourceValue &value, UBool isRoot,
UErrorCode &errorCode) {
ResourceTable itemsTable = value.getTable(errorCode);
if (U_FAILURE(errorCode)) { return; }
for (int32_t i = 0; itemsTable.getKeyAndValue(i, key, value); ++i) {
const UnicodeString formatKey(key, -1, US_INV);
if (!dtpg.isAvailableFormatSet(formatKey) ) {
dtpg.setAvailableFormat(formatKey, errorCode);
// Add pattern with its associated skeleton. Override any duplicate
// derived from std patterns, but not a previous availableFormats entry:
const UnicodeString& formatValue = value.getUnicodeString(errorCode);
conflictingPattern.remove();
dtpg.addPatternWithSkeleton(formatValue, &formatKey, !isRoot, conflictingPattern, errorCode);
}
}
}
};
// Virtual destructors must be defined out of line.
DateTimePatternGenerator::AppendItemFormatsSink::~AppendItemFormatsSink() {}
DateTimePatternGenerator::AppendItemNamesSink::~AppendItemNamesSink() {}
DateTimePatternGenerator::AvailableFormatsSink::~AvailableFormatsSink() {}
void
DateTimePatternGenerator::addCLDRData(const Locale& locale, UErrorCode& errorCode) {
if (U_FAILURE(errorCode)) { return; }
UnicodeString rbPattern, value, field;
CharString path;
LocalUResourceBundlePointer rb(ures_open(nullptr, locale.getName(), &errorCode));
if (U_FAILURE(errorCode)) { return; }
CharString calendarTypeToUse; // to be filled in with the type to use, if all goes well
getCalendarTypeToUse(locale, calendarTypeToUse, errorCode);
if (U_FAILURE(errorCode)) { return; }
// Local err to ignore resource not found exceptions
UErrorCode err = U_ZERO_ERROR;
// Load append item formats.
AppendItemFormatsSink appendItemFormatsSink(*this);
path.clear()
.append(DT_DateTimeCalendarTag, errorCode)
.append('/', errorCode)
.append(calendarTypeToUse, errorCode)
.append('/', errorCode)
.append(DT_DateTimeAppendItemsTag, errorCode); // i.e., calendar/xxx/appendItems
if (U_FAILURE(errorCode)) { return; }
ures_getAllItemsWithFallback(rb.getAlias(), path.data(), appendItemFormatsSink, err);
appendItemFormatsSink.fillInMissing();
// Load CLDR item names.
err = U_ZERO_ERROR;
AppendItemNamesSink appendItemNamesSink(*this);
ures_getAllItemsWithFallback(rb.getAlias(), DT_DateTimeFieldsTag, appendItemNamesSink, err);
appendItemNamesSink.fillInMissing();
// Load the available formats from CLDR.
err = U_ZERO_ERROR;
initHashtable(errorCode);
if (U_FAILURE(errorCode)) { return; }
AvailableFormatsSink availableFormatsSink(*this);
path.clear()
.append(DT_DateTimeCalendarTag, errorCode)
.append('/', errorCode)
.append(calendarTypeToUse, errorCode)
.append('/', errorCode)
.append(DT_DateTimeAvailableFormatsTag, errorCode); // i.e., calendar/xxx/availableFormats
if (U_FAILURE(errorCode)) { return; }
ures_getAllItemsWithFallback(rb.getAlias(), path.data(), availableFormatsSink, err);
}
void
DateTimePatternGenerator::initHashtable(UErrorCode& err) {
if (U_FAILURE(err)) { return; }
if (fAvailableFormatKeyHash!=nullptr) {
return;
}
LocalPointer<Hashtable> hash(new Hashtable(FALSE, err), err);
if (U_SUCCESS(err)) {
fAvailableFormatKeyHash = hash.orphan();
}
}
void
DateTimePatternGenerator::setAppendItemFormat(UDateTimePatternField field, const UnicodeString& value) {
appendItemFormats[field] = value;
// NUL-terminate for the C API.
appendItemFormats[field].getTerminatedBuffer();
}
const UnicodeString&
DateTimePatternGenerator::getAppendItemFormat(UDateTimePatternField field) const {
return appendItemFormats[field];
}
void
DateTimePatternGenerator::setAppendItemName(UDateTimePatternField field, const UnicodeString& value) {
setFieldDisplayName(field, UDATPG_WIDTH_APPENDITEM, value);
}
const UnicodeString&
DateTimePatternGenerator::getAppendItemName(UDateTimePatternField field) const {
return fieldDisplayNames[field][UDATPG_WIDTH_APPENDITEM];
}
void
DateTimePatternGenerator::setFieldDisplayName(UDateTimePatternField field, UDateTimePGDisplayWidth width, const UnicodeString& value) {
fieldDisplayNames[field][width] = value;
// NUL-terminate for the C API.
fieldDisplayNames[field][width].getTerminatedBuffer();
}
UnicodeString
DateTimePatternGenerator::getFieldDisplayName(UDateTimePatternField field, UDateTimePGDisplayWidth width) const {
return fieldDisplayNames[field][width];
}
UnicodeString&
DateTimePatternGenerator::getMutableFieldDisplayName(UDateTimePatternField field, UDateTimePGDisplayWidth width) {
return fieldDisplayNames[field][width];
}
void
DateTimePatternGenerator::getAppendName(UDateTimePatternField field, UnicodeString& value) {
value = SINGLE_QUOTE;
value += fieldDisplayNames[field][UDATPG_WIDTH_APPENDITEM];
value += SINGLE_QUOTE;
}
UnicodeString
DateTimePatternGenerator::getBestPattern(const UnicodeString& patternForm, UErrorCode& status) {
return getBestPattern(patternForm, UDATPG_MATCH_NO_OPTIONS, status);
}
UnicodeString
DateTimePatternGenerator::getBestPattern(const UnicodeString& patternForm, UDateTimePatternMatchOptions options, UErrorCode& status) {
if (U_FAILURE(status)) {
return UnicodeString();
}
if (U_FAILURE(internalErrorCode)) {
status = internalErrorCode;
return UnicodeString();
}
const UnicodeString *bestPattern = nullptr;
UnicodeString dtFormat;
UnicodeString resultPattern;
int32_t flags = kDTPGNoFlags;
int32_t dateMask=(1<<UDATPG_DAYPERIOD_FIELD) - 1;
int32_t timeMask=(1<<UDATPG_FIELD_COUNT) - 1 - dateMask;
// Replace hour metacharacters 'j', 'C' and 'J', set flags as necessary
UnicodeString patternFormMapped = mapSkeletonMetacharacters(patternForm, &flags, status);
if (U_FAILURE(status)) {
return UnicodeString();
}
resultPattern.remove();
dtMatcher->set(patternFormMapped, fp);
const PtnSkeleton* specifiedSkeleton = nullptr;
bestPattern=getBestRaw(*dtMatcher, -1, distanceInfo, status, &specifiedSkeleton);
if (U_FAILURE(status)) {
return UnicodeString();
}
if ( distanceInfo->missingFieldMask==0 && distanceInfo->extraFieldMask==0 ) {
resultPattern = adjustFieldTypes(*bestPattern, specifiedSkeleton, flags, options);
return resultPattern;
}
int32_t neededFields = dtMatcher->getFieldMask();
UnicodeString datePattern=getBestAppending(neededFields & dateMask, flags, status, options);
UnicodeString timePattern=getBestAppending(neededFields & timeMask, flags, status, options);
if (U_FAILURE(status)) {
return UnicodeString();
}
if (datePattern.length()==0) {
if (timePattern.length()==0) {
resultPattern.remove();
}
else {
return timePattern;
}
}
if (timePattern.length()==0) {
return datePattern;
}
resultPattern.remove();
status = U_ZERO_ERROR;
dtFormat=getDateTimeFormat();
SimpleFormatter(dtFormat, 2, 2, status).format(timePattern, datePattern, resultPattern, status);
return resultPattern;
}
/*
* Map a skeleton that may have metacharacters jJC to one without, by replacing
* the metacharacters with locale-appropriate fields of h/H/k/K and of a/b/B
* (depends on fDefaultHourFormatChar and fAllowedHourFormats being set, which in
* turn depends on initData having been run). This method also updates the flags
* as necessary. Returns the updated skeleton.
*/
UnicodeString
DateTimePatternGenerator::mapSkeletonMetacharacters(const UnicodeString& patternForm, int32_t* flags, UErrorCode& status) {
UnicodeString patternFormMapped;
patternFormMapped.remove();
UBool inQuoted = FALSE;
int32_t patPos, patLen = patternForm.length();
for (patPos = 0; patPos < patLen; patPos++) {
UChar patChr = patternForm.charAt(patPos);
if (patChr == SINGLE_QUOTE) {
inQuoted = !inQuoted;
} else if (!inQuoted) {
// Handle special mappings for 'j' and 'C' in which fields lengths
// 1,3,5 => hour field length 1
// 2,4,6 => hour field length 2
// 1,2 => abbreviated dayPeriod (field length 1..3)
// 3,4 => long dayPeriod (field length 4)
// 5,6 => narrow dayPeriod (field length 5)
if (patChr == LOW_J || patChr == CAP_C) {
int32_t extraLen = 0; // 1 less than total field length
while (patPos+1 < patLen && patternForm.charAt(patPos+1)==patChr) {
extraLen++;
patPos++;
}
int32_t hourLen = 1 + (extraLen & 1);
int32_t dayPeriodLen = (extraLen < 2)? 1: 3 + (extraLen >> 1);
UChar hourChar = LOW_H;
UChar dayPeriodChar = LOW_A;
if (patChr == LOW_J) {
hourChar = fDefaultHourFormatChar;
} else {
AllowedHourFormat bestAllowed;
if (fAllowedHourFormats[0] != ALLOWED_HOUR_FORMAT_UNKNOWN) {
bestAllowed = (AllowedHourFormat)fAllowedHourFormats[0];
} else {
status = U_INVALID_FORMAT_ERROR;
return UnicodeString();
}
if (bestAllowed == ALLOWED_HOUR_FORMAT_H || bestAllowed == ALLOWED_HOUR_FORMAT_HB || bestAllowed == ALLOWED_HOUR_FORMAT_Hb) {
hourChar = CAP_H;
} else if (bestAllowed == ALLOWED_HOUR_FORMAT_K || bestAllowed == ALLOWED_HOUR_FORMAT_KB || bestAllowed == ALLOWED_HOUR_FORMAT_Kb) {
hourChar = CAP_K;
} else if (bestAllowed == ALLOWED_HOUR_FORMAT_k) {
hourChar = LOW_K;
}
// in #13183 just add b/B to skeleton, no longer need to set special flags
if (bestAllowed == ALLOWED_HOUR_FORMAT_HB || bestAllowed == ALLOWED_HOUR_FORMAT_hB || bestAllowed == ALLOWED_HOUR_FORMAT_KB) {
dayPeriodChar = CAP_B;
} else if (bestAllowed == ALLOWED_HOUR_FORMAT_Hb || bestAllowed == ALLOWED_HOUR_FORMAT_hb || bestAllowed == ALLOWED_HOUR_FORMAT_Kb) {
dayPeriodChar = LOW_B;
}
}
if (hourChar==CAP_H || hourChar==LOW_K) {
dayPeriodLen = 0;
}
while (dayPeriodLen-- > 0) {
patternFormMapped.append(dayPeriodChar);
}
while (hourLen-- > 0) {
patternFormMapped.append(hourChar);
}
} else if (patChr == CAP_J) {
// Get pattern for skeleton with H, then replace H or k
// with fDefaultHourFormatChar (if different)
patternFormMapped.append(CAP_H);
*flags |= kDTPGSkeletonUsesCapJ;
} else {
patternFormMapped.append(patChr);
}
}
}
return patternFormMapped;
}
UnicodeString
DateTimePatternGenerator::replaceFieldTypes(const UnicodeString& pattern,
const UnicodeString& skeleton,
UErrorCode& status) {
return replaceFieldTypes(pattern, skeleton, UDATPG_MATCH_NO_OPTIONS, status);
}
UnicodeString
DateTimePatternGenerator::replaceFieldTypes(const UnicodeString& pattern,
const UnicodeString& skeleton,
UDateTimePatternMatchOptions options,
UErrorCode& status) {
if (U_FAILURE(status)) {
return UnicodeString();
}
if (U_FAILURE(internalErrorCode)) {
status = internalErrorCode;
return UnicodeString();
}
dtMatcher->set(skeleton, fp);
UnicodeString result = adjustFieldTypes(pattern, nullptr, kDTPGNoFlags, options);
return result;
}
void
DateTimePatternGenerator::setDecimal(const UnicodeString& newDecimal) {
this->decimal = newDecimal;
// NUL-terminate for the C API.
this->decimal.getTerminatedBuffer();
}
const UnicodeString&
DateTimePatternGenerator::getDecimal() const {
return decimal;
}
void
DateTimePatternGenerator::addCanonicalItems(UErrorCode& status) {
if (U_FAILURE(status)) { return; }
UnicodeString conflictingPattern;
for (int32_t i=0; i<UDATPG_FIELD_COUNT; i++) {
if (Canonical_Items[i] > 0) {
addPattern(UnicodeString(Canonical_Items[i]), FALSE, conflictingPattern, status);
}
if (U_FAILURE(status)) { return; }
}
}
void
DateTimePatternGenerator::setDateTimeFormat(const UnicodeString& dtFormat) {
dateTimeFormat = dtFormat;
// NUL-terminate for the C API.
dateTimeFormat.getTerminatedBuffer();
}
const UnicodeString&
DateTimePatternGenerator::getDateTimeFormat() const {
return dateTimeFormat;
}
void
DateTimePatternGenerator::setDateTimeFromCalendar(const Locale& locale, UErrorCode& status) {
if (U_FAILURE(status)) { return; }
const UChar *resStr;
int32_t resStrLen = 0;
LocalPointer<Calendar> fCalendar(Calendar::createInstance(locale, status), status);
if (U_FAILURE(status)) { return; }
LocalUResourceBundlePointer calData(ures_open(nullptr, locale.getBaseName(), &status));
if (U_FAILURE(status)) { return; }
ures_getByKey(calData.getAlias(), DT_DateTimeCalendarTag, calData.getAlias(), &status);
if (U_FAILURE(status)) { return; }
LocalUResourceBundlePointer dateTimePatterns;
if (fCalendar->getType() != nullptr && *fCalendar->getType() != '\0'
&& uprv_strcmp(fCalendar->getType(), DT_DateTimeGregorianTag) != 0) {
dateTimePatterns.adoptInstead(ures_getByKeyWithFallback(calData.getAlias(), fCalendar->getType(),
nullptr, &status));
ures_getByKeyWithFallback(dateTimePatterns.getAlias(), DT_DateTimePatternsTag,
dateTimePatterns.getAlias(), &status);
}
if (dateTimePatterns.isNull() || status == U_MISSING_RESOURCE_ERROR) {
status = U_ZERO_ERROR;
dateTimePatterns.adoptInstead(ures_getByKeyWithFallback(calData.getAlias(), DT_DateTimeGregorianTag,
dateTimePatterns.orphan(), &status));
ures_getByKeyWithFallback(dateTimePatterns.getAlias(), DT_DateTimePatternsTag,
dateTimePatterns.getAlias(), &status);
}
if (U_FAILURE(status)) { return; }
if (ures_getSize(dateTimePatterns.getAlias()) <= DateFormat::kDateTime)
{
status = U_INVALID_FORMAT_ERROR;
return;
}
resStr = ures_getStringByIndex(dateTimePatterns.getAlias(), (int32_t)DateFormat::kDateTime, &resStrLen, &status);
setDateTimeFormat(UnicodeString(TRUE, resStr, resStrLen));
}
void
DateTimePatternGenerator::setDecimalSymbols(const Locale& locale, UErrorCode& status) {
DecimalFormatSymbols dfs = DecimalFormatSymbols(locale, status);
if(U_SUCCESS(status)) {
decimal = dfs.getSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
// NUL-terminate for the C API.
decimal.getTerminatedBuffer();
}
}
UDateTimePatternConflict
DateTimePatternGenerator::addPattern(
const UnicodeString& pattern,
UBool override,
UnicodeString &conflictingPattern,
UErrorCode& status)
{
if (U_FAILURE(internalErrorCode)) {
status = internalErrorCode;
return UDATPG_NO_CONFLICT;
}
return addPatternWithSkeleton(pattern, nullptr, override, conflictingPattern, status);
}
// For DateTimePatternGenerator::addPatternWithSkeleton -
// If skeletonToUse is specified, then an availableFormats entry is being added. In this case:
// 1. We pass that skeleton to matcher.set instead of having it derive a skeleton from the pattern.
// 2. If the new entry's skeleton or basePattern does match an existing entry but that entry also had a skeleton specified
// (i.e. it was also from availableFormats), then the new entry does not override it regardless of the value of the override
// parameter. This prevents later availableFormats entries from a parent locale overriding earlier ones from the actual
// specified locale. However, availableFormats entries *should* override entries with matching skeleton whose skeleton was
// derived (i.e. entries derived from the standard date/time patters for the specified locale).
// 3. When adding the pattern (patternMap->add), we set a new boolean to indicate that the added entry had a
// specified skeleton (which sets a new field in the PtnElem in the PatternMap).
UDateTimePatternConflict
DateTimePatternGenerator::addPatternWithSkeleton(
const UnicodeString& pattern,
const UnicodeString* skeletonToUse,
UBool override,
UnicodeString& conflictingPattern,
UErrorCode& status)
{
if (U_FAILURE(internalErrorCode)) {
status = internalErrorCode;
return UDATPG_NO_CONFLICT;
}
UnicodeString basePattern;
PtnSkeleton skeleton;
UDateTimePatternConflict conflictingStatus = UDATPG_NO_CONFLICT;
DateTimeMatcher matcher;
if ( skeletonToUse == nullptr ) {
matcher.set(pattern, fp, skeleton);
matcher.getBasePattern(basePattern);
} else {
matcher.set(*skeletonToUse, fp, skeleton); // no longer trims skeleton fields to max len 3, per #7930
matcher.getBasePattern(basePattern); // or perhaps instead: basePattern = *skeletonToUse;
}
// We only care about base conflicts - and replacing the pattern associated with a base - if:
// 1. the conflicting previous base pattern did *not* have an explicit skeleton; in that case the previous
// base + pattern combination was derived from either (a) a canonical item, (b) a standard format, or
// (c) a pattern specified programmatically with a previous call to addPattern (which would only happen
// if we are getting here from a subsequent call to addPattern).
// 2. a skeleton is specified for the current pattern, but override=false; in that case we are checking
// availableFormats items from root, which should not override any previous entry with the same base.
UBool entryHadSpecifiedSkeleton;
const UnicodeString *duplicatePattern = patternMap->getPatternFromBasePattern(basePattern, entryHadSpecifiedSkeleton);
if (duplicatePattern != nullptr && (!entryHadSpecifiedSkeleton || (skeletonToUse != nullptr && !override))) {
conflictingStatus = UDATPG_BASE_CONFLICT;
conflictingPattern = *duplicatePattern;
if (!override) {
return conflictingStatus;
}
}
// The only time we get here with override=true and skeletonToUse!=null is when adding availableFormats
// items from CLDR data. In that case, we don't want an item from a parent locale to replace an item with
// same skeleton from the specified locale, so skip the current item if skeletonWasSpecified is true for
// the previously-specified conflicting item.
const PtnSkeleton* entrySpecifiedSkeleton = nullptr;
duplicatePattern = patternMap->getPatternFromSkeleton(skeleton, &entrySpecifiedSkeleton);
if (duplicatePattern != nullptr ) {
conflictingStatus = UDATPG_CONFLICT;
conflictingPattern = *duplicatePattern;
if (!override || (skeletonToUse != nullptr && entrySpecifiedSkeleton != nullptr)) {
return conflictingStatus;
}
}
patternMap->add(basePattern, skeleton, pattern, skeletonToUse != nullptr, status);
if(U_FAILURE(status)) {
return conflictingStatus;
}
return UDATPG_NO_CONFLICT;
}
UDateTimePatternField
DateTimePatternGenerator::getAppendFormatNumber(const char* field) const {
for (int32_t i=0; i<UDATPG_FIELD_COUNT; ++i ) {
if (uprv_strcmp(CLDR_FIELD_APPEND[i], field)==0) {
return (UDateTimePatternField)i;
}
}
return UDATPG_FIELD_COUNT;
}
UDateTimePatternField
DateTimePatternGenerator::getFieldAndWidthIndices(const char* key, UDateTimePGDisplayWidth* widthP) const {
char cldrFieldKey[UDATPG_FIELD_KEY_MAX + 1];
uprv_strncpy(cldrFieldKey, key, UDATPG_FIELD_KEY_MAX);
cldrFieldKey[UDATPG_FIELD_KEY_MAX]=0; // ensure termination
*widthP = UDATPG_WIDE;
char* hyphenPtr = uprv_strchr(cldrFieldKey, '-');
if (hyphenPtr) {
for (int32_t i=UDATPG_WIDTH_COUNT-1; i>0; --i) {
if (uprv_strcmp(CLDR_FIELD_WIDTH[i], hyphenPtr)==0) {
*widthP=(UDateTimePGDisplayWidth)i;
break;
}
}
*hyphenPtr = 0; // now delete width portion of key
}
for (int32_t i=0; i<UDATPG_FIELD_COUNT; ++i ) {
if (uprv_strcmp(CLDR_FIELD_NAME[i],cldrFieldKey)==0) {
return (UDateTimePatternField)i;
}
}
return UDATPG_FIELD_COUNT;
}
const UnicodeString*
DateTimePatternGenerator::getBestRaw(DateTimeMatcher& source,
int32_t includeMask,
DistanceInfo* missingFields,
UErrorCode &status,
const PtnSkeleton** specifiedSkeletonPtr) {
int32_t bestDistance = 0x7fffffff;
int32_t bestMissingFieldMask = -1;
DistanceInfo tempInfo;
const UnicodeString *bestPattern=nullptr;
const PtnSkeleton* specifiedSkeleton=nullptr;
PatternMapIterator it(status);
if (U_FAILURE(status)) { return nullptr; }
for (it.set(*patternMap); it.hasNext(); ) {
DateTimeMatcher trial = it.next();
if (trial.equals(skipMatcher)) {
continue;
}
int32_t distance=source.getDistance(trial, includeMask, tempInfo);
// Because we iterate over a map the order is undefined. Can change between implementations,
// versions, and will very likely be different between Java and C/C++.
// So if we have patterns with the same distance we also look at the missingFieldMask,
// and we favour the smallest one. Because the field is a bitmask this technically means we
// favour differences in the "least significant fields". For example we prefer the one with differences
// in seconds field vs one with difference in the hours field.
if (distance<bestDistance || (distance==bestDistance && bestMissingFieldMask<tempInfo.missingFieldMask)) {
bestDistance=distance;
bestMissingFieldMask=tempInfo.missingFieldMask;
bestPattern=patternMap->getPatternFromSkeleton(*trial.getSkeletonPtr(), &specifiedSkeleton);
missingFields->setTo(tempInfo);
if (distance==0) {
break;
}
}
}
// If the best raw match had a specified skeleton and that skeleton was requested by the caller,
// then return it too. This generally happens when the caller needs to pass that skeleton
// through to adjustFieldTypes so the latter can do a better job.
if (bestPattern && specifiedSkeletonPtr) {
*specifiedSkeletonPtr = specifiedSkeleton;
}
return bestPattern;
}
UnicodeString
DateTimePatternGenerator::adjustFieldTypes(const UnicodeString& pattern,
const PtnSkeleton* specifiedSkeleton,
int32_t flags,
UDateTimePatternMatchOptions options) {
UnicodeString newPattern;
fp->set(pattern);
for (int32_t i=0; i < fp->itemNumber; i++) {
UnicodeString field = fp->items[i];
if ( fp->isQuoteLiteral(field) ) {
UnicodeString quoteLiteral;
fp->getQuoteLiteral(quoteLiteral, &i);
newPattern += quoteLiteral;
}
else {
if (fp->isPatternSeparator(field)) {
newPattern+=field;
continue;
}
int32_t canonicalIndex = fp->getCanonicalIndex(field);
if (canonicalIndex < 0) {
newPattern+=field;
continue; // don't adjust
}
const dtTypeElem *row = &dtTypes[canonicalIndex];
int32_t typeValue = row->field;
// handle day periods - with #13183, no longer need special handling here, integrated with normal types
if ((flags & kDTPGFixFractionalSeconds) != 0 && typeValue == UDATPG_SECOND_FIELD) {
field += decimal;
dtMatcher->skeleton.original.appendFieldTo(UDATPG_FRACTIONAL_SECOND_FIELD, field);
} else if (dtMatcher->skeleton.type[typeValue]!=0) {
// Here:
// - "reqField" is the field from the originally requested skeleton after replacement
// of metacharacters 'j', 'C' and 'J', with length "reqFieldLen".
// - "field" is the field from the found pattern.
//
// The adjusted field should consist of characters from the originally requested
// skeleton, except in the case of UDATPG_MONTH_FIELD or
// UDATPG_WEEKDAY_FIELD or UDATPG_YEAR_FIELD, in which case it should consist
// of characters from the found pattern. In some cases of UDATPG_HOUR_FIELD,
// there is adjustment following the "defaultHourFormatChar". There is explanation
// how it is done below.
//
// The length of the adjusted field (adjFieldLen) should match that in the originally
// requested skeleton, except that in the following cases the length of the adjusted field
// should match that in the found pattern (i.e. the length of this pattern field should
// not be adjusted):
// 1. typeValue is UDATPG_HOUR_FIELD/MINUTE/SECOND and the corresponding bit in options is
// not set (ticket #7180). Note, we may want to implement a similar change for other
// numeric fields (MM, dd, etc.) so the default behavior is to get locale preference for
// field length, but options bits can be used to override this.
// 2. There is a specified skeleton for the found pattern and one of the following is true:
// a) The length of the field in the skeleton (skelFieldLen) is equal to reqFieldLen.
// b) The pattern field is numeric and the skeleton field is not, or vice versa.
UChar reqFieldChar = dtMatcher->skeleton.original.getFieldChar(typeValue);
int32_t reqFieldLen = dtMatcher->skeleton.original.getFieldLength(typeValue);
if (reqFieldChar == CAP_E && reqFieldLen < 3)
reqFieldLen = 3; // 1-3 for E are equivalent to 3 for c,e
int32_t adjFieldLen = reqFieldLen;
if ( (typeValue==UDATPG_HOUR_FIELD && (options & UDATPG_MATCH_HOUR_FIELD_LENGTH)==0) ||
(typeValue==UDATPG_MINUTE_FIELD && (options & UDATPG_MATCH_MINUTE_FIELD_LENGTH)==0) ||
(typeValue==UDATPG_SECOND_FIELD && (options & UDATPG_MATCH_SECOND_FIELD_LENGTH)==0) ) {
adjFieldLen = field.length();
} else if (specifiedSkeleton) {
int32_t skelFieldLen = specifiedSkeleton->original.getFieldLength(typeValue);
UBool patFieldIsNumeric = (row->type > 0);
UBool skelFieldIsNumeric = (specifiedSkeleton->type[typeValue] > 0);
if (skelFieldLen == reqFieldLen || (patFieldIsNumeric && !skelFieldIsNumeric) || (skelFieldIsNumeric && !patFieldIsNumeric)) {
// don't adjust the field length in the found pattern
adjFieldLen = field.length();
}
}
UChar c = (typeValue!= UDATPG_HOUR_FIELD
&& typeValue!= UDATPG_MONTH_FIELD
&& typeValue!= UDATPG_WEEKDAY_FIELD
&& (typeValue!= UDATPG_YEAR_FIELD || reqFieldChar==CAP_Y))
? reqFieldChar
: field.charAt(0);
if (typeValue == UDATPG_HOUR_FIELD && fDefaultHourFormatChar != 0) {
// The adjustment here is required to match spec (https://www.unicode.org/reports/tr35/tr35-dates.html#dfst-hour).
// It is necessary to match the hour-cycle preferred by the Locale.
// Given that, we need to do the following adjustments:
// 1. When hour-cycle is h11 it should replace 'h' by 'K'.
// 2. When hour-cycle is h23 it should replace 'H' by 'k'.
// 3. When hour-cycle is h24 it should replace 'k' by 'H'.
// 4. When hour-cycle is h12 it should replace 'K' by 'h'.
if ((flags & kDTPGSkeletonUsesCapJ) != 0 || reqFieldChar == fDefaultHourFormatChar) {
c = fDefaultHourFormatChar;
} else if (reqFieldChar == LOW_H && fDefaultHourFormatChar == CAP_K) {
c = CAP_K;
} else if (reqFieldChar == CAP_H && fDefaultHourFormatChar == LOW_K) {
c = LOW_K;
} else if (reqFieldChar == LOW_K && fDefaultHourFormatChar == CAP_H) {
c = CAP_H;
} else if (reqFieldChar == CAP_K && fDefaultHourFormatChar == LOW_H) {
c = LOW_H;
}
}
field.remove();
for (int32_t j=adjFieldLen; j>0; --j) {
field += c;
}
}
newPattern+=field;
}
}
return newPattern;
}
UnicodeString
DateTimePatternGenerator::getBestAppending(int32_t missingFields, int32_t flags, UErrorCode &status, UDateTimePatternMatchOptions options) {
if (U_FAILURE(status)) {
return UnicodeString();
}
UnicodeString resultPattern, tempPattern;
const UnicodeString* tempPatternPtr;
int32_t lastMissingFieldMask=0;
if (missingFields!=0) {
resultPattern=UnicodeString();
const PtnSkeleton* specifiedSkeleton=nullptr;
tempPatternPtr = getBestRaw(*dtMatcher, missingFields, distanceInfo, status, &specifiedSkeleton);
if (U_FAILURE(status)) {
return UnicodeString();
}
tempPattern = *tempPatternPtr;
resultPattern = adjustFieldTypes(tempPattern, specifiedSkeleton, flags, options);
if ( distanceInfo->missingFieldMask==0 ) {
return resultPattern;
}
while (distanceInfo->missingFieldMask!=0) { // precondition: EVERY single field must work!
if ( lastMissingFieldMask == distanceInfo->missingFieldMask ) {
break; // cannot find the proper missing field
}
if (((distanceInfo->missingFieldMask & UDATPG_SECOND_AND_FRACTIONAL_MASK)==UDATPG_FRACTIONAL_MASK) &&
((missingFields & UDATPG_SECOND_AND_FRACTIONAL_MASK) == UDATPG_SECOND_AND_FRACTIONAL_MASK)) {
resultPattern = adjustFieldTypes(resultPattern, specifiedSkeleton, flags | kDTPGFixFractionalSeconds, options);
distanceInfo->missingFieldMask &= ~UDATPG_FRACTIONAL_MASK;
continue;
}
int32_t startingMask = distanceInfo->missingFieldMask;
tempPatternPtr = getBestRaw(*dtMatcher, distanceInfo->missingFieldMask, distanceInfo, status, &specifiedSkeleton);
if (U_FAILURE(status)) {
return UnicodeString();
}
tempPattern = *tempPatternPtr;
tempPattern = adjustFieldTypes(tempPattern, specifiedSkeleton, flags, options);
int32_t foundMask=startingMask& ~distanceInfo->missingFieldMask;
int32_t topField=getTopBitNumber(foundMask);
if (appendItemFormats[topField].length() != 0) {
UnicodeString appendName;
getAppendName((UDateTimePatternField)topField, appendName);
const UnicodeString *values[3] = {
&resultPattern,
&tempPattern,
&appendName
};
SimpleFormatter(appendItemFormats[topField], 2, 3, status).
formatAndReplace(values, 3, resultPattern, nullptr, 0, status);
}
lastMissingFieldMask = distanceInfo->missingFieldMask;
}
}
return resultPattern;
}
int32_t
DateTimePatternGenerator::getTopBitNumber(int32_t foundMask) const {
if ( foundMask==0 ) {
return 0;
}
int32_t i=0;
while (foundMask!=0) {
foundMask >>=1;
++i;
}
if (i-1 >UDATPG_ZONE_FIELD) {
return UDATPG_ZONE_FIELD;
}
else
return i-1;
}
void
DateTimePatternGenerator::setAvailableFormat(const UnicodeString &key, UErrorCode& err)
{
fAvailableFormatKeyHash->puti(key, 1, err);
}
UBool
DateTimePatternGenerator::isAvailableFormatSet(const UnicodeString &key) const {
return (UBool)(fAvailableFormatKeyHash->geti(key) == 1);
}
void
DateTimePatternGenerator::copyHashtable(Hashtable *other, UErrorCode &status) {
if (other == nullptr || U_FAILURE(status)) {
return;
}
if (fAvailableFormatKeyHash != nullptr) {
delete fAvailableFormatKeyHash;
fAvailableFormatKeyHash = nullptr;
}
initHashtable(status);
if(U_FAILURE(status)){
return;
}
int32_t pos = UHASH_FIRST;
const UHashElement* elem = nullptr;
// walk through the hash table and create a deep clone
while((elem = other->nextElement(pos))!= nullptr){
const UHashTok otherKeyTok = elem->key;
UnicodeString* otherKey = (UnicodeString*)otherKeyTok.pointer;
fAvailableFormatKeyHash->puti(*otherKey, 1, status);
if(U_FAILURE(status)){
return;
}
}
}
StringEnumeration*
DateTimePatternGenerator::getSkeletons(UErrorCode& status) const {
if (U_FAILURE(status)) {
return nullptr;
}
if (U_FAILURE(internalErrorCode)) {
status = internalErrorCode;
return nullptr;
}
LocalPointer<StringEnumeration> skeletonEnumerator(
new DTSkeletonEnumeration(*patternMap, DT_SKELETON, status), status);
return U_SUCCESS(status) ? skeletonEnumerator.orphan() : nullptr;
}
const UnicodeString&
DateTimePatternGenerator::getPatternForSkeleton(const UnicodeString& skeleton) const {
PtnElem *curElem;
if (skeleton.length() ==0) {
return emptyString;
}
curElem = patternMap->getHeader(skeleton.charAt(0));
while ( curElem != nullptr ) {
if ( curElem->skeleton->getSkeleton()==skeleton ) {
return curElem->pattern;
}
curElem = curElem->next.getAlias();
}
return emptyString;
}
StringEnumeration*
DateTimePatternGenerator::getBaseSkeletons(UErrorCode& status) const {
if (U_FAILURE(status)) {
return nullptr;
}
if (U_FAILURE(internalErrorCode)) {
status = internalErrorCode;
return nullptr;
}
LocalPointer<StringEnumeration> baseSkeletonEnumerator(
new DTSkeletonEnumeration(*patternMap, DT_BASESKELETON, status), status);
return U_SUCCESS(status) ? baseSkeletonEnumerator.orphan() : nullptr;
}
StringEnumeration*
DateTimePatternGenerator::getRedundants(UErrorCode& status) {
if (U_FAILURE(status)) { return nullptr; }
if (U_FAILURE(internalErrorCode)) {
status = internalErrorCode;
return nullptr;
}
LocalPointer<StringEnumeration> output(new DTRedundantEnumeration(), status);
if (U_FAILURE(status)) { return nullptr; }
const UnicodeString *pattern;
PatternMapIterator it(status);
if (U_FAILURE(status)) { return nullptr; }
for (it.set(*patternMap); it.hasNext(); ) {
DateTimeMatcher current = it.next();
pattern = patternMap->getPatternFromSkeleton(*(it.getSkeleton()));
if ( isCanonicalItem(*pattern) ) {
continue;
}
if ( skipMatcher == nullptr ) {
skipMatcher = new DateTimeMatcher(current);
if (skipMatcher == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return nullptr;
}
}
else {
*skipMatcher = current;
}
UnicodeString trial = getBestPattern(current.getPattern(), status);
if (U_FAILURE(status)) { return nullptr; }
if (trial == *pattern) {
((DTRedundantEnumeration *)output.getAlias())->add(*pattern, status);
if (U_FAILURE(status)) { return nullptr; }
}
if (current.equals(skipMatcher)) {
continue;
}
}
return output.orphan();
}
UBool
DateTimePatternGenerator::isCanonicalItem(const UnicodeString& item) const {
if ( item.length() != 1 ) {
return FALSE;
}
for (int32_t i=0; i<UDATPG_FIELD_COUNT; ++i) {
if (item.charAt(0)==Canonical_Items[i]) {
return TRUE;
}
}
return FALSE;
}
DateTimePatternGenerator*
DateTimePatternGenerator::clone() const {
return new DateTimePatternGenerator(*this);
}
PatternMap::PatternMap() {
for (int32_t i=0; i < MAX_PATTERN_ENTRIES; ++i ) {
boot[i] = nullptr;
}
isDupAllowed = TRUE;
}
void
PatternMap::copyFrom(const PatternMap& other, UErrorCode& status) {
if (U_FAILURE(status)) {
return;
}
this->isDupAllowed = other.isDupAllowed;
for (int32_t bootIndex = 0; bootIndex < MAX_PATTERN_ENTRIES; ++bootIndex) {
PtnElem *curElem, *otherElem, *prevElem=nullptr;
otherElem = other.boot[bootIndex];
while (otherElem != nullptr) {
LocalPointer<PtnElem> newElem(new PtnElem(otherElem->basePattern, otherElem->pattern), status);
if (U_FAILURE(status)) {
return; // out of memory
}
newElem->skeleton.adoptInsteadAndCheckErrorCode(new PtnSkeleton(*(otherElem->skeleton)), status);
if (U_FAILURE(status)) {
return; // out of memory
}
newElem->skeletonWasSpecified = otherElem->skeletonWasSpecified;
// Release ownership from the LocalPointer of the PtnElem object.
// The PtnElem will now be owned by either the boot (for the first entry in the linked-list)
// or owned by the previous PtnElem object in the linked-list.
curElem = newElem.orphan();
if (this->boot[bootIndex] == nullptr) {
this->boot[bootIndex] = curElem;
} else {
if (prevElem != nullptr) {
prevElem->next.adoptInstead(curElem);
} else {
UPRV_UNREACHABLE;
}
}
prevElem = curElem;
otherElem = otherElem->next.getAlias();
}
}
}
PtnElem*
PatternMap::getHeader(UChar baseChar) const {
PtnElem* curElem;
if ( (baseChar >= CAP_A) && (baseChar <= CAP_Z) ) {
curElem = boot[baseChar-CAP_A];
}
else {
if ( (baseChar >=LOW_A) && (baseChar <= LOW_Z) ) {
curElem = boot[26+baseChar-LOW_A];
}
else {
return nullptr;
}
}
return curElem;
}
PatternMap::~PatternMap() {
for (int32_t i=0; i < MAX_PATTERN_ENTRIES; ++i ) {
if (boot[i] != nullptr ) {
delete boot[i];
boot[i] = nullptr;
}
}
} // PatternMap destructor
void
PatternMap::add(const UnicodeString& basePattern,
const PtnSkeleton& skeleton,
const UnicodeString& value,// mapped pattern value
UBool skeletonWasSpecified,
UErrorCode &status) {
UChar baseChar = basePattern.charAt(0);
PtnElem *curElem, *baseElem;
status = U_ZERO_ERROR;
// the baseChar must be A-Z or a-z
if ((baseChar >= CAP_A) && (baseChar <= CAP_Z)) {
baseElem = boot[baseChar-CAP_A];
}
else {
if ((baseChar >=LOW_A) && (baseChar <= LOW_Z)) {
baseElem = boot[26+baseChar-LOW_A];
}
else {
status = U_ILLEGAL_CHARACTER;
return;
}
}
if (baseElem == nullptr) {
LocalPointer<PtnElem> newElem(new PtnElem(basePattern, value), status);
if (U_FAILURE(status)) {
return; // out of memory
}
newElem->skeleton.adoptInsteadAndCheckErrorCode(new PtnSkeleton(skeleton), status);
if (U_FAILURE(status)) {
return; // out of memory
}
newElem->skeletonWasSpecified = skeletonWasSpecified;
if (baseChar >= LOW_A) {
boot[26 + (baseChar - LOW_A)] = newElem.orphan(); // the boot array now owns the PtnElem.
}
else {
boot[baseChar - CAP_A] = newElem.orphan(); // the boot array now owns the PtnElem.
}
}
if ( baseElem != nullptr ) {
curElem = getDuplicateElem(basePattern, skeleton, baseElem);
if (curElem == nullptr) {
// add new element to the list.
curElem = baseElem;
while( curElem -> next != nullptr )
{
curElem = curElem->next.getAlias();
}
LocalPointer<PtnElem> newElem(new PtnElem(basePattern, value), status);
if (U_FAILURE(status)) {
return; // out of memory
}
newElem->skeleton.adoptInsteadAndCheckErrorCode(new PtnSkeleton(skeleton), status);
if (U_FAILURE(status)) {
return; // out of memory
}
newElem->skeletonWasSpecified = skeletonWasSpecified;
curElem->next.adoptInstead(newElem.orphan());
curElem = curElem->next.getAlias();
}
else {
// Pattern exists in the list already.
if ( !isDupAllowed ) {
return;
}
// Overwrite the value.
curElem->pattern = value;
// It was a bug that we were not doing the following previously,
// though that bug hid other problems by making things partly work.
curElem->skeletonWasSpecified = skeletonWasSpecified;
}
}
} // PatternMap::add
// Find the pattern from the given basePattern string.
const UnicodeString *
PatternMap::getPatternFromBasePattern(const UnicodeString& basePattern, UBool& skeletonWasSpecified) const { // key to search for
PtnElem *curElem;
if ((curElem=getHeader(basePattern.charAt(0)))==nullptr) {
return nullptr; // no match
}
do {
if ( basePattern.compare(curElem->basePattern)==0 ) {
skeletonWasSpecified = curElem->skeletonWasSpecified;
return &(curElem->pattern);
}
curElem = curElem->next.getAlias();
} while (curElem != nullptr);
return nullptr;
} // PatternMap::getFromBasePattern
// Find the pattern from the given skeleton.
// At least when this is called from getBestRaw & addPattern (in which case specifiedSkeletonPtr is non-NULL),
// the comparison should be based on skeleton.original (which is unique and tied to the distance measurement in bestRaw)
// and not skeleton.baseOriginal (which is not unique); otherwise we may pick a different skeleton than the one with the
// optimum distance value in getBestRaw. When this is called from public getRedundants (specifiedSkeletonPtr is NULL),
// for now it will continue to compare based on baseOriginal so as not to change the behavior unnecessarily.
const UnicodeString *
PatternMap::getPatternFromSkeleton(const PtnSkeleton& skeleton, const PtnSkeleton** specifiedSkeletonPtr) const { // key to search for
PtnElem *curElem;
if (specifiedSkeletonPtr) {
*specifiedSkeletonPtr = nullptr;
}
// find boot entry
UChar baseChar = skeleton.getFirstChar();
if ((curElem=getHeader(baseChar))==nullptr) {
return nullptr; // no match
}
do {
UBool equal;
if (specifiedSkeletonPtr != nullptr) { // called from DateTimePatternGenerator::getBestRaw or addPattern, use original
equal = curElem->skeleton->original == skeleton.original;
} else { // called from DateTimePatternGenerator::getRedundants, use baseOriginal
equal = curElem->skeleton->baseOriginal == skeleton.baseOriginal;
}
if (equal) {
if (specifiedSkeletonPtr && curElem->skeletonWasSpecified) {
*specifiedSkeletonPtr = curElem->skeleton.getAlias();
}
return &(curElem->pattern);
}
curElem = curElem->next.getAlias();
} while (curElem != nullptr);
return nullptr;
}
UBool
PatternMap::equals(const PatternMap& other) const {
if ( this==&other ) {
return TRUE;
}
for (int32_t bootIndex = 0; bootIndex < MAX_PATTERN_ENTRIES; ++bootIndex) {
if (boot[bootIndex] == other.boot[bootIndex]) {
continue;
}
if ((boot[bootIndex] == nullptr) || (other.boot[bootIndex] == nullptr)) {
return FALSE;
}
PtnElem *otherElem = other.boot[bootIndex];
PtnElem *myElem = boot[bootIndex];
while ((otherElem != nullptr) || (myElem != nullptr)) {
if ( myElem == otherElem ) {
break;
}
if ((otherElem == nullptr) || (myElem == nullptr)) {
return FALSE;
}
if ( (myElem->basePattern != otherElem->basePattern) ||
(myElem->pattern != otherElem->pattern) ) {
return FALSE;
}
if ((myElem->skeleton.getAlias() != otherElem->skeleton.getAlias()) &&
!myElem->skeleton->equals(*(otherElem->skeleton))) {
return FALSE;
}
myElem = myElem->next.getAlias();
otherElem = otherElem->next.getAlias();
}
}
return TRUE;
}
// find any key existing in the mapping table already.
// return TRUE if there is an existing key, otherwise return FALSE.
PtnElem*
PatternMap::getDuplicateElem(
const UnicodeString &basePattern,
const PtnSkeleton &skeleton,
PtnElem *baseElem) {
PtnElem *curElem;
if ( baseElem == nullptr ) {
return nullptr;
}
else {
curElem = baseElem;
}
do {
if ( basePattern.compare(curElem->basePattern)==0 ) {
UBool isEqual = TRUE;
for (int32_t i = 0; i < UDATPG_FIELD_COUNT; ++i) {
if (curElem->skeleton->type[i] != skeleton.type[i] ) {
isEqual = FALSE;
break;
}
}
if (isEqual) {
return curElem;
}
}
curElem = curElem->next.getAlias();
} while( curElem != nullptr );
// end of the list
return nullptr;
} // PatternMap::getDuplicateElem
DateTimeMatcher::DateTimeMatcher(void) {
}
DateTimeMatcher::~DateTimeMatcher() {}
DateTimeMatcher::DateTimeMatcher(const DateTimeMatcher& other) {
copyFrom(other.skeleton);
}
DateTimeMatcher& DateTimeMatcher::operator=(const DateTimeMatcher& other) {
copyFrom(other.skeleton);
return *this;
}
void
DateTimeMatcher::set(const UnicodeString& pattern, FormatParser* fp) {
PtnSkeleton localSkeleton;
return set(pattern, fp, localSkeleton);
}
void
DateTimeMatcher::set(const UnicodeString& pattern, FormatParser* fp, PtnSkeleton& skeletonResult) {
int32_t i;
for (i=0; i<UDATPG_FIELD_COUNT; ++i) {
skeletonResult.type[i] = NONE;
}
skeletonResult.original.clear();
skeletonResult.baseOriginal.clear();
skeletonResult.addedDefaultDayPeriod = FALSE;
fp->set(pattern);
for (i=0; i < fp->itemNumber; i++) {
const UnicodeString& value = fp->items[i];
// don't skip 'a' anymore, dayPeriod handled specially below
if ( fp->isQuoteLiteral(value) ) {
UnicodeString quoteLiteral;
fp->getQuoteLiteral(quoteLiteral, &i);
continue;
}
int32_t canonicalIndex = fp->getCanonicalIndex(value);
if (canonicalIndex < 0) {
continue;
}
const dtTypeElem *row = &dtTypes[canonicalIndex];
int32_t field = row->field;
skeletonResult.original.populate(field, value);
UChar repeatChar = row->patternChar;
int32_t repeatCount = row->minLen;
skeletonResult.baseOriginal.populate(field, repeatChar, repeatCount);
int16_t subField = row->type;
if (row->type > 0) {
U_ASSERT(value.length() < INT16_MAX);
subField += static_cast<int16_t>(value.length());
}
skeletonResult.type[field] = subField;
}
// #20739, we have a skeleton with minutes and milliseconds, but no seconds
//
// Theoretically we would need to check and fix all fields with "gaps":
// for example year-day (no month), month-hour (no day), and so on, All the possible field combinations.
// Plus some smartness: year + hour => should we add month, or add day-of-year?
// What about month + day-of-week, or month + am/pm indicator.
// I think beyond a certain point we should not try to fix bad developer input and try guessing what they mean.
// Garbage in, garbage out.
if (!skeletonResult.original.isFieldEmpty(UDATPG_MINUTE_FIELD)
&& !skeletonResult.original.isFieldEmpty(UDATPG_FRACTIONAL_SECOND_FIELD)
&& skeletonResult.original.isFieldEmpty(UDATPG_SECOND_FIELD)) {
// Force the use of seconds
for (i = 0; dtTypes[i].patternChar != 0; i++) {
if (dtTypes[i].field == UDATPG_SECOND_FIELD) {
// first entry for UDATPG_SECOND_FIELD
skeletonResult.original.populate(UDATPG_SECOND_FIELD, dtTypes[i].patternChar, dtTypes[i].minLen);
skeletonResult.baseOriginal.populate(UDATPG_SECOND_FIELD, dtTypes[i].patternChar, dtTypes[i].minLen);
// We add value.length, same as above, when type is first initialized.
// The value we want to "fake" here is "s", and 1 means "s".length()
int16_t subField = dtTypes[i].type;
skeletonResult.type[UDATPG_SECOND_FIELD] = (subField > 0) ? subField + 1 : subField;
break;
}
}
}
// #13183, handle special behavior for day period characters (a, b, B)
if (!skeletonResult.original.isFieldEmpty(UDATPG_HOUR_FIELD)) {
if (skeletonResult.original.getFieldChar(UDATPG_HOUR_FIELD)==LOW_H || skeletonResult.original.getFieldChar(UDATPG_HOUR_FIELD)==CAP_K) {
// We have a skeleton with 12-hour-cycle format
if (skeletonResult.original.isFieldEmpty(UDATPG_DAYPERIOD_FIELD)) {
// But we do not have a day period in the skeleton; add the default DAYPERIOD (currently "a")
for (i = 0; dtTypes[i].patternChar != 0; i++) {
if ( dtTypes[i].field == UDATPG_DAYPERIOD_FIELD ) {
// first entry for UDATPG_DAYPERIOD_FIELD
skeletonResult.original.populate(UDATPG_DAYPERIOD_FIELD, dtTypes[i].patternChar, dtTypes[i].minLen);
skeletonResult.baseOriginal.populate(UDATPG_DAYPERIOD_FIELD, dtTypes[i].patternChar, dtTypes[i].minLen);
skeletonResult.type[UDATPG_DAYPERIOD_FIELD] = dtTypes[i].type;
skeletonResult.addedDefaultDayPeriod = TRUE;
break;
}
}
}
} else {
// Skeleton has 24-hour-cycle hour format and has dayPeriod, delete dayPeriod (i.e. ignore it)
skeletonResult.original.clearField(UDATPG_DAYPERIOD_FIELD);
skeletonResult.baseOriginal.clearField(UDATPG_DAYPERIOD_FIELD);
skeletonResult.type[UDATPG_DAYPERIOD_FIELD] = NONE;
}
}
copyFrom(skeletonResult);
}
void
DateTimeMatcher::getBasePattern(UnicodeString &result ) {
result.remove(); // Reset the result first.
skeleton.baseOriginal.appendTo(result);
}
UnicodeString
DateTimeMatcher::getPattern() {
UnicodeString result;
return skeleton.original.appendTo(result);
}
int32_t
DateTimeMatcher::getDistance(const DateTimeMatcher& other, int32_t includeMask, DistanceInfo& distanceInfo) const {
int32_t result = 0;
distanceInfo.clear();
for (int32_t i=0; i<UDATPG_FIELD_COUNT; ++i ) {
int32_t myType = (includeMask&(1<<i))==0 ? 0 : skeleton.type[i];
int32_t otherType = other.skeleton.type[i];
if (myType==otherType) {
continue;
}
if (myType==0) {// and other is not
result += EXTRA_FIELD;
distanceInfo.addExtra(i);
}
else {
if (otherType==0) {
result += MISSING_FIELD;
distanceInfo.addMissing(i);
}
else {
result += abs(myType - otherType);
}
}
}
return result;
}
void
DateTimeMatcher::copyFrom(const PtnSkeleton& newSkeleton) {
skeleton.copyFrom(newSkeleton);
}
void
DateTimeMatcher::copyFrom() {
// same as clear
skeleton.clear();
}
UBool
DateTimeMatcher::equals(const DateTimeMatcher* other) const {
if (other==nullptr) { return FALSE; }
return skeleton.original == other->skeleton.original;
}
int32_t
DateTimeMatcher::getFieldMask() const {
int32_t result = 0;
for (int32_t i=0; i<UDATPG_FIELD_COUNT; ++i) {
if (skeleton.type[i]!=0) {
result |= (1<<i);
}
}
return result;
}
PtnSkeleton*
DateTimeMatcher::getSkeletonPtr() {
return &skeleton;
}
FormatParser::FormatParser () {
status = START;
itemNumber = 0;
}
FormatParser::~FormatParser () {
}
// Find the next token with the starting position and length
// Note: the startPos may
FormatParser::TokenStatus
FormatParser::setTokens(const UnicodeString& pattern, int32_t startPos, int32_t *len) {
int32_t curLoc = startPos;
if ( curLoc >= pattern.length()) {
return DONE;
}
// check the current char is between A-Z or a-z
do {
UChar c=pattern.charAt(curLoc);
if ( (c>=CAP_A && c<=CAP_Z) || (c>=LOW_A && c<=LOW_Z) ) {
curLoc++;
}
else {
startPos = curLoc;
*len=1;
return ADD_TOKEN;
}
if ( pattern.charAt(curLoc)!= pattern.charAt(startPos) ) {
break; // not the same token
}
} while(curLoc <= pattern.length());
*len = curLoc-startPos;
return ADD_TOKEN;
}
void
FormatParser::set(const UnicodeString& pattern) {
int32_t startPos = 0;
TokenStatus result = START;
int32_t len = 0;
itemNumber = 0;
do {
result = setTokens( pattern, startPos, &len );
if ( result == ADD_TOKEN )
{
items[itemNumber++] = UnicodeString(pattern, startPos, len );
startPos += len;
}
else {
break;
}
} while (result==ADD_TOKEN && itemNumber < MAX_DT_TOKEN);
}
int32_t
FormatParser::getCanonicalIndex(const UnicodeString& s, UBool strict) {
int32_t len = s.length();
if (len == 0) {
return -1;
}
UChar ch = s.charAt(0);
// Verify that all are the same character.
for (int32_t l = 1; l < len; l++) {
if (ch != s.charAt(l)) {
return -1;
}
}
int32_t i = 0;
int32_t bestRow = -1;
while (dtTypes[i].patternChar != 0x0000) {
if ( dtTypes[i].patternChar != ch ) {
++i;
continue;
}
bestRow = i;
if (dtTypes[i].patternChar != dtTypes[i+1].patternChar) {
return i;
}
if (dtTypes[i+1].minLen <= len) {
++i;
continue;
}
return i;
}
return strict ? -1 : bestRow;
}
UBool
FormatParser::isQuoteLiteral(const UnicodeString& s) {
return (UBool)(s.charAt(0) == SINGLE_QUOTE);
}
// This function assumes the current itemIndex points to the quote literal.
// Please call isQuoteLiteral prior to this function.
void
FormatParser::getQuoteLiteral(UnicodeString& quote, int32_t *itemIndex) {
int32_t i = *itemIndex;
quote.remove();
if (items[i].charAt(0)==SINGLE_QUOTE) {
quote += items[i];
++i;
}
while ( i < itemNumber ) {
if ( items[i].charAt(0)==SINGLE_QUOTE ) {
if ( (i+1<itemNumber) && (items[i+1].charAt(0)==SINGLE_QUOTE)) {
// two single quotes e.g. 'o''clock'
quote += items[i++];
quote += items[i++];
continue;
}
else {
quote += items[i];
break;
}
}
else {
quote += items[i];
}
++i;
}
*itemIndex=i;
}
UBool
FormatParser::isPatternSeparator(const UnicodeString& field) const {
for (int32_t i=0; i<field.length(); ++i ) {
UChar c= field.charAt(i);
if ( (c==SINGLE_QUOTE) || (c==BACKSLASH) || (c==SPACE) || (c==COLON) ||
(c==QUOTATION_MARK) || (c==COMMA) || (c==HYPHEN) ||(items[i].charAt(0)==DOT) ) {
continue;
}
else {
return FALSE;
}
}
return TRUE;
}
DistanceInfo::~DistanceInfo() {}
void
DistanceInfo::setTo(const DistanceInfo& other) {
missingFieldMask = other.missingFieldMask;
extraFieldMask= other.extraFieldMask;
}
PatternMapIterator::PatternMapIterator(UErrorCode& status) :
bootIndex(0), nodePtr(nullptr), matcher(nullptr), patternMap(nullptr)
{
if (U_FAILURE(status)) { return; }
matcher.adoptInsteadAndCheckErrorCode(new DateTimeMatcher(), status);
}
PatternMapIterator::~PatternMapIterator() {
}
void
PatternMapIterator::set(PatternMap& newPatternMap) {
this->patternMap=&newPatternMap;
}
PtnSkeleton*
PatternMapIterator::getSkeleton() const {
if ( nodePtr == nullptr ) {
return nullptr;
}
else {
return nodePtr->skeleton.getAlias();
}
}
UBool
PatternMapIterator::hasNext() const {
int32_t headIndex = bootIndex;
PtnElem *curPtr = nodePtr;
if (patternMap==nullptr) {
return FALSE;
}
while ( headIndex < MAX_PATTERN_ENTRIES ) {
if ( curPtr != nullptr ) {
if ( curPtr->next != nullptr ) {
return TRUE;
}
else {
headIndex++;
curPtr=nullptr;
continue;
}
}
else {
if ( patternMap->boot[headIndex] != nullptr ) {
return TRUE;
}
else {
headIndex++;
continue;
}
}
}
return FALSE;
}
DateTimeMatcher&
PatternMapIterator::next() {
while ( bootIndex < MAX_PATTERN_ENTRIES ) {
if ( nodePtr != nullptr ) {
if ( nodePtr->next != nullptr ) {
nodePtr = nodePtr->next.getAlias();
break;
}
else {
bootIndex++;
nodePtr=nullptr;
continue;
}
}
else {
if ( patternMap->boot[bootIndex] != nullptr ) {
nodePtr = patternMap->boot[bootIndex];
break;
}
else {
bootIndex++;
continue;
}
}
}
if (nodePtr!=nullptr) {
matcher->copyFrom(*nodePtr->skeleton);
}
else {
matcher->copyFrom();
}
return *matcher;
}
SkeletonFields::SkeletonFields() {
// Set initial values to zero
clear();
}
void SkeletonFields::clear() {
uprv_memset(chars, 0, sizeof(chars));
uprv_memset(lengths, 0, sizeof(lengths));
}
void SkeletonFields::copyFrom(const SkeletonFields& other) {
uprv_memcpy(chars, other.chars, sizeof(chars));
uprv_memcpy(lengths, other.lengths, sizeof(lengths));
}
void SkeletonFields::clearField(int32_t field) {
chars[field] = 0;
lengths[field] = 0;
}
UChar SkeletonFields::getFieldChar(int32_t field) const {
return chars[field];
}
int32_t SkeletonFields::getFieldLength(int32_t field) const {
return lengths[field];
}
void SkeletonFields::populate(int32_t field, const UnicodeString& value) {
populate(field, value.charAt(0), value.length());
}
void SkeletonFields::populate(int32_t field, UChar ch, int32_t length) {
chars[field] = (int8_t) ch;
lengths[field] = (int8_t) length;
}
UBool SkeletonFields::isFieldEmpty(int32_t field) const {
return lengths[field] == 0;
}
UnicodeString& SkeletonFields::appendTo(UnicodeString& string) const {
for (int32_t i = 0; i < UDATPG_FIELD_COUNT; ++i) {
appendFieldTo(i, string);