| // © 2016 and later: Unicode, Inc. and others. |
| // License & terms of use: http://www.unicode.org/copyright.html |
| /* ------------------------------------------------------------------ */ |
| /* decNumber package local type, tuning, and macro definitions */ |
| /* ------------------------------------------------------------------ */ |
| /* Copyright (c) IBM Corporation, 2000-2016. All rights reserved. */ |
| /* */ |
| /* This software is made available under the terms of the */ |
| /* ICU License -- ICU 1.8.1 and later. */ |
| /* */ |
| /* The description and User's Guide ("The decNumber C Library") for */ |
| /* this software is called decNumber.pdf. This document is */ |
| /* available, together with arithmetic and format specifications, */ |
| /* testcases, and Web links, on the General Decimal Arithmetic page. */ |
| /* */ |
| /* Please send comments, suggestions, and corrections to the author: */ |
| /* mfc@uk.ibm.com */ |
| /* Mike Cowlishaw, IBM Fellow */ |
| /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ |
| /* ------------------------------------------------------------------ */ |
| /* This header file is included by all modules in the decNumber */ |
| /* library, and contains local type definitions, tuning parameters, */ |
| /* etc. It should not need to be used by application programs. */ |
| /* decNumber.h or one of decDouble (etc.) must be included first. */ |
| /* ------------------------------------------------------------------ */ |
| |
| #if !defined(DECNUMBERLOC) |
| #define DECNUMBERLOC |
| #define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */ |
| #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */ |
| |
| #include <stdlib.h> /* for abs */ |
| #include <string.h> /* for memset, strcpy */ |
| #include "decContext.h" |
| |
| /* Conditional code flag -- set this to match hardware platform */ |
| #if !defined(DECLITEND) |
| #define DECLITEND 1 /* 1=little-endian, 0=big-endian */ |
| #endif |
| |
| /* Conditional code flag -- set this to 1 for best performance */ |
| #if !defined(DECUSE64) |
| #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */ |
| #endif |
| |
| /* Conditional check flags -- set these to 0 for best performance */ |
| #if !defined(DECCHECK) |
| #define DECCHECK 0 /* 1 to enable robust checking */ |
| #endif |
| #if !defined(DECALLOC) |
| #define DECALLOC 0 /* 1 to enable memory accounting */ |
| #endif |
| #if !defined(DECTRACE) |
| #define DECTRACE 0 /* 1 to trace certain internals, etc. */ |
| #endif |
| |
| /* Tuning parameter for decNumber (arbitrary precision) module */ |
| #if !defined(DECBUFFER) |
| #define DECBUFFER 36 /* Size basis for local buffers. This */ |
| /* should be a common maximum precision */ |
| /* rounded up to a multiple of 4; must */ |
| /* be zero or positive. */ |
| #endif |
| |
| /* ---------------------------------------------------------------- */ |
| /* Definitions for all modules (general-purpose) */ |
| /* ---------------------------------------------------------------- */ |
| |
| /* Local names for common types -- for safety, decNumber modules do */ |
| /* not use int or long directly. */ |
| #define Flag uint8_t |
| #define Byte int8_t |
| #define uByte uint8_t |
| #define Short int16_t |
| #define uShort uint16_t |
| #define Int int32_t |
| #define uInt uint32_t |
| #define Unit decNumberUnit |
| #if DECUSE64 |
| #define Long int64_t |
| #define uLong uint64_t |
| #endif |
| |
| /* Development-use definitions */ |
| typedef long int LI; /* for printf arguments only */ |
| #define DECNOINT 0 /* 1 to check no internal use of 'int' */ |
| /* or stdint types */ |
| #if DECNOINT |
| /* if these interfere with your C includes, do not set DECNOINT */ |
| #define int ? /* enable to ensure that plain C 'int' */ |
| #define long ?? /* .. or 'long' types are not used */ |
| #endif |
| |
| /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */ |
| /* (that is, sets w to be the high-order word of the 64-bit result; */ |
| /* the low-order word is simply u*v.) */ |
| /* This version is derived from Knuth via Hacker's Delight; */ |
| /* it seems to optimize better than some others tried */ |
| #define LONGMUL32HI(w, u, v) { \ |
| uInt u0, u1, v0, v1, w0, w1, w2, t; \ |
| u0=u & 0xffff; u1=u>>16; \ |
| v0=v & 0xffff; v1=v>>16; \ |
| w0=u0*v0; \ |
| t=u1*v0 + (w0>>16); \ |
| w1=t & 0xffff; w2=t>>16; \ |
| w1=u0*v1 + w1; \ |
| (w)=u1*v1 + w2 + (w1>>16);} |
| |
| /* ROUNDUP -- round an integer up to a multiple of n */ |
| #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n) |
| #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */ |
| |
| /* ROUNDDOWN -- round an integer down to a multiple of n */ |
| #define ROUNDDOWN(i, n) (((i)/n)*n) |
| #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */ |
| |
| /* References to multi-byte sequences under different sizes; these */ |
| /* require locally declared variables, but do not violate strict */ |
| /* aliasing or alignment (as did the UINTAT simple cast to uInt). */ |
| /* Variables needed are uswork, uiwork, etc. [so do not use at same */ |
| /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */ |
| |
| /* Return a uInt, etc., from bytes starting at a char* or uByte* */ |
| #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork) |
| #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork) |
| |
| /* Store a uInt, etc., into bytes starting at a char* or uByte*. */ |
| /* Returns i, evaluated, for convenience; has to use uiwork because */ |
| /* i may be an expression. */ |
| #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork) |
| #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork) |
| |
| /* X10 and X100 -- multiply integer i by 10 or 100 */ |
| /* [shifts are usually faster than multiply; could be conditional] */ |
| #define X10(i) (((i)<<1)+((i)<<3)) |
| #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6)) |
| |
| /* MAXI and MINI -- general max & min (not in ANSI) for integers */ |
| #define MAXI(x,y) ((x)<(y)?(y):(x)) |
| #define MINI(x,y) ((x)>(y)?(y):(x)) |
| |
| /* Useful constants */ |
| #define BILLION 1000000000 /* 10**9 */ |
| /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */ |
| #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0') |
| |
| |
| /* ---------------------------------------------------------------- */ |
| /* Definitions for arbitrary-precision modules (only valid after */ |
| /* decNumber.h has been included) */ |
| /* ---------------------------------------------------------------- */ |
| |
| /* Limits and constants */ |
| #define DECNUMMAXP 999999999 /* maximum precision code can handle */ |
| #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */ |
| #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */ |
| #if (DECNUMMAXP != DEC_MAX_DIGITS) |
| #error Maximum digits mismatch |
| #endif |
| #if (DECNUMMAXE != DEC_MAX_EMAX) |
| #error Maximum exponent mismatch |
| #endif |
| #if (DECNUMMINE != DEC_MIN_EMIN) |
| #error Minimum exponent mismatch |
| #endif |
| |
| /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */ |
| /* digits, and D2UTABLE -- the initializer for the D2U table */ |
| #ifndef DECDPUN |
| // no-op |
| #elif DECDPUN==1 |
| #define DECDPUNMAX 9 |
| #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \ |
| 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \ |
| 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \ |
| 48,49} |
| #elif DECDPUN==2 |
| #define DECDPUNMAX 99 |
| #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \ |
| 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \ |
| 18,19,19,20,20,21,21,22,22,23,23,24,24,25} |
| #elif DECDPUN==3 |
| #define DECDPUNMAX 999 |
| #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \ |
| 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \ |
| 13,14,14,14,15,15,15,16,16,16,17} |
| #elif DECDPUN==4 |
| #define DECDPUNMAX 9999 |
| #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \ |
| 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \ |
| 11,11,11,12,12,12,12,13} |
| #elif DECDPUN==5 |
| #define DECDPUNMAX 99999 |
| #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \ |
| 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \ |
| 9,9,10,10,10,10} |
| #elif DECDPUN==6 |
| #define DECDPUNMAX 999999 |
| #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \ |
| 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \ |
| 8,8,8,8,8,9} |
| #elif DECDPUN==7 |
| #define DECDPUNMAX 9999999 |
| #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \ |
| 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \ |
| 7,7,7,7,7,7} |
| #elif DECDPUN==8 |
| #define DECDPUNMAX 99999999 |
| #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \ |
| 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \ |
| 6,6,6,6,6,7} |
| #elif DECDPUN==9 |
| #define DECDPUNMAX 999999999 |
| #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \ |
| 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \ |
| 5,5,6,6,6,6} |
| #else |
| #error DECDPUN must be in the range 1-9 |
| #endif |
| |
| /* ----- Shared data (in decNumber.c) ----- */ |
| /* Public lookup table used by the D2U macro (see below) */ |
| #define DECMAXD2U 49 |
| /*extern const uByte d2utable[DECMAXD2U+1];*/ |
| |
| /* ----- Macros ----- */ |
| /* ISZERO -- return true if decNumber dn is a zero */ |
| /* [performance-critical in some situations] */ |
| #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */ |
| |
| /* D2U -- return the number of Units needed to hold d digits */ |
| /* (runtime version, with table lookaside for small d) */ |
| #if defined(DECDPUN) && DECDPUN==8 |
| #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3)) |
| #elif defined(DECDPUN) && DECDPUN==4 |
| #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2)) |
| #else |
| #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN) |
| #endif |
| /* SD2U -- static D2U macro (for compile-time calculation) */ |
| #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN) |
| |
| /* MSUDIGITS -- returns digits in msu, from digits, calculated */ |
| /* using D2U */ |
| #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN) |
| |
| /* D2N -- return the number of decNumber structs that would be */ |
| /* needed to contain that number of digits (and the initial */ |
| /* decNumber struct) safely. Note that one Unit is included in the */ |
| /* initial structure. Used for allocating space that is aligned on */ |
| /* a decNumber struct boundary. */ |
| #define D2N(d) \ |
| ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber)) |
| |
| /* TODIGIT -- macro to remove the leading digit from the unsigned */ |
| /* integer u at column cut (counting from the right, LSD=0) and */ |
| /* place it as an ASCII character into the character pointed to by */ |
| /* c. Note that cut must be <= 9, and the maximum value for u is */ |
| /* 2,000,000,000 (as is needed for negative exponents of */ |
| /* subnormals). The unsigned integer pow is used as a temporary */ |
| /* variable. */ |
| #define TODIGIT(u, cut, c, pow) UPRV_BLOCK_MACRO_BEGIN { \ |
| *(c)='0'; \ |
| pow=DECPOWERS[cut]*2; \ |
| if ((u)>pow) { \ |
| pow*=4; \ |
| if ((u)>=pow) {(u)-=pow; *(c)+=8;} \ |
| pow/=2; \ |
| if ((u)>=pow) {(u)-=pow; *(c)+=4;} \ |
| pow/=2; \ |
| } \ |
| if ((u)>=pow) {(u)-=pow; *(c)+=2;} \ |
| pow/=2; \ |
| if ((u)>=pow) {(u)-=pow; *(c)+=1;} \ |
| } UPRV_BLOCK_MACRO_END |
| |
| /* ---------------------------------------------------------------- */ |
| /* Definitions for fixed-precision modules (only valid after */ |
| /* decSingle.h, decDouble.h, or decQuad.h has been included) */ |
| /* ---------------------------------------------------------------- */ |
| |
| /* bcdnum -- a structure describing a format-independent finite */ |
| /* number, whose coefficient is a string of bcd8 uBytes */ |
| typedef struct { |
| uByte *msd; /* -> most significant digit */ |
| uByte *lsd; /* -> least ditto */ |
| uInt sign; /* 0=positive, DECFLOAT_Sign=negative */ |
| Int exponent; /* Unadjusted signed exponent (q), or */ |
| /* DECFLOAT_NaN etc. for a special */ |
| } bcdnum; |
| |
| /* Test if exponent or bcdnum exponent must be a special, etc. */ |
| #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp) |
| #define EXPISINF(exp) (exp==DECFLOAT_Inf) |
| #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN) |
| #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent)) |
| |
| /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */ |
| /* (array) notation (the 0 word or byte contains the sign bit), */ |
| /* automatically adjusting for endianness; similarly address a word */ |
| /* in the next-wider format (decFloatWider, or dfw) */ |
| #define DECWORDS (DECBYTES/4) |
| #define DECWWORDS (DECWBYTES/4) |
| #if DECLITEND |
| #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)]) |
| #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)]) |
| #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)]) |
| #else |
| #define DFBYTE(df, off) ((df)->bytes[off]) |
| #define DFWORD(df, off) ((df)->words[off]) |
| #define DFWWORD(dfw, off) ((dfw)->words[off]) |
| #endif |
| |
| /* Tests for sign or specials, directly on DECFLOATs */ |
| #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000) |
| #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000) |
| #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000) |
| #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000) |
| #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000) |
| #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000) |
| |
| /* Shared lookup tables */ |
| extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */ |
| extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */ |
| |
| /* Private generic (utility) routine */ |
| #if DECCHECK || DECTRACE |
| extern void decShowNum(const bcdnum *, const char *); |
| #endif |
| |
| /* Format-dependent macros and constants */ |
| #if defined(DECPMAX) |
| |
| /* Useful constants */ |
| #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */ |
| /* Top words for a zero */ |
| #define SINGLEZERO 0x22500000 |
| #define DOUBLEZERO 0x22380000 |
| #define QUADZERO 0x22080000 |
| /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */ |
| |
| /* Format-dependent common tests: */ |
| /* DFISZERO -- test for (any) zero */ |
| /* DFISCCZERO -- test for coefficient continuation being zero */ |
| /* DFISCC01 -- test for coefficient contains only 0s and 1s */ |
| /* DFISINT -- test for finite and exponent q=0 */ |
| /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */ |
| /* MSD=0 or 1 */ |
| /* ZEROWORD is also defined here. */ |
| /* In DFISZERO the first test checks the least-significant word */ |
| /* (most likely to be non-zero); the penultimate tests MSD and */ |
| /* DPDs in the signword, and the final test excludes specials and */ |
| /* MSD>7. DFISINT similarly has to allow for the two forms of */ |
| /* MSD codes. DFISUINT01 only has to allow for one form of MSD */ |
| /* code. */ |
| #if DECPMAX==7 |
| #define ZEROWORD SINGLEZERO |
| /* [test macros not needed except for Zero] */ |
| #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \ |
| && (DFWORD(df, 0)&0x60000000)!=0x60000000) |
| #elif DECPMAX==16 |
| #define ZEROWORD DOUBLEZERO |
| #define DFISZERO(df) ((DFWORD(df, 1)==0 \ |
| && (DFWORD(df, 0)&0x1c03ffff)==0 \ |
| && (DFWORD(df, 0)&0x60000000)!=0x60000000)) |
| #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \ |
| ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000) |
| #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000) |
| #define DFISCCZERO(df) (DFWORD(df, 1)==0 \ |
| && (DFWORD(df, 0)&0x0003ffff)==0) |
| #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \ |
| && (DFWORD(df, 1)&~0x49124491)==0) |
| #elif DECPMAX==34 |
| #define ZEROWORD QUADZERO |
| #define DFISZERO(df) ((DFWORD(df, 3)==0 \ |
| && DFWORD(df, 2)==0 \ |
| && DFWORD(df, 1)==0 \ |
| && (DFWORD(df, 0)&0x1c003fff)==0 \ |
| && (DFWORD(df, 0)&0x60000000)!=0x60000000)) |
| #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \ |
| ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000) |
| #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000) |
| #define DFISCCZERO(df) (DFWORD(df, 3)==0 \ |
| && DFWORD(df, 2)==0 \ |
| && DFWORD(df, 1)==0 \ |
| && (DFWORD(df, 0)&0x00003fff)==0) |
| |
| #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \ |
| && (DFWORD(df, 1)&~0x44912449)==0 \ |
| && (DFWORD(df, 2)&~0x12449124)==0 \ |
| && (DFWORD(df, 3)&~0x49124491)==0) |
| #endif |
| |
| /* Macros to test if a certain 10 bits of a uInt or pair of uInts */ |
| /* are a canonical declet [higher or lower bits are ignored]. */ |
| /* declet is at offset 0 (from the right) in a uInt: */ |
| #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e) |
| /* declet is at offset k (a multiple of 2) in a uInt: */ |
| #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \ |
| || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) |
| /* declet is at offset k (a multiple of 2) in a pair of uInts: */ |
| /* [the top 2 bits will always be in the more-significant uInt] */ |
| #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \ |
| || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \ |
| || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) |
| |
| /* Macro to test whether a full-length (length DECPMAX) BCD8 */ |
| /* coefficient, starting at uByte u, is all zeros */ |
| /* Test just the LSWord first, then the remainder as a sequence */ |
| /* of tests in order to avoid same-level use of UBTOUI */ |
| #if DECPMAX==7 |
| #define ISCOEFFZERO(u) ( \ |
| UBTOUI((u)+DECPMAX-4)==0 \ |
| && UBTOUS((u)+DECPMAX-6)==0 \ |
| && *(u)==0) |
| #elif DECPMAX==16 |
| #define ISCOEFFZERO(u) ( \ |
| UBTOUI((u)+DECPMAX-4)==0 \ |
| && UBTOUI((u)+DECPMAX-8)==0 \ |
| && UBTOUI((u)+DECPMAX-12)==0 \ |
| && UBTOUI(u)==0) |
| #elif DECPMAX==34 |
| #define ISCOEFFZERO(u) ( \ |
| UBTOUI((u)+DECPMAX-4)==0 \ |
| && UBTOUI((u)+DECPMAX-8)==0 \ |
| && UBTOUI((u)+DECPMAX-12)==0 \ |
| && UBTOUI((u)+DECPMAX-16)==0 \ |
| && UBTOUI((u)+DECPMAX-20)==0 \ |
| && UBTOUI((u)+DECPMAX-24)==0 \ |
| && UBTOUI((u)+DECPMAX-28)==0 \ |
| && UBTOUI((u)+DECPMAX-32)==0 \ |
| && UBTOUS(u)==0) |
| #endif |
| |
| /* Macros and masks for the exponent continuation field and MSD */ |
| /* Get the exponent continuation from a decFloat *df as an Int */ |
| #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL))) |
| /* Ditto, from the next-wider format */ |
| #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL))) |
| /* Get the biased exponent similarly */ |
| #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df))) |
| /* Get the unbiased exponent similarly */ |
| #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS) |
| /* Get the MSD similarly (as uInt) */ |
| #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26]) |
| |
| /* Compile-time computes of the exponent continuation field masks */ |
| /* full exponent continuation field: */ |
| #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) |
| /* same, not including its first digit (the qNaN/sNaN selector): */ |
| #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) |
| |
| /* Macros to decode the coefficient in a finite decFloat *df into */ |
| /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */ |
| |
| /* In-line sequence to convert least significant 10 bits of uInt */ |
| /* dpd to three BCD8 digits starting at uByte u. Note that an */ |
| /* extra byte is written to the right of the three digits because */ |
| /* four bytes are moved at a time for speed; the alternative */ |
| /* macro moves exactly three bytes (usually slower). */ |
| #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4) |
| #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3) |
| |
| /* Decode the declets. After extracting each one, it is decoded */ |
| /* to BCD8 using a table lookup (also used for variable-length */ |
| /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */ |
| /* length which is not used, here). Fixed-length 4-byte moves */ |
| /* are fast, however, almost everywhere, and so are used except */ |
| /* for the final three bytes (to avoid overrun). The code below */ |
| /* is 36 instructions for Doubles and about 70 for Quads, even */ |
| /* on IA32. */ |
| |
| /* Two macros are defined for each format: */ |
| /* GETCOEFF extracts the coefficient of the current format */ |
| /* GETWCOEFF extracts the coefficient of the next-wider format. */ |
| /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */ |
| |
| #if DECPMAX==7 |
| #define GETCOEFF(df, bcd) { \ |
| uInt sourhi=DFWORD(df, 0); \ |
| *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ |
| dpd2bcd8(bcd+1, sourhi>>10); \ |
| dpd2bcd83(bcd+4, sourhi);} |
| #define GETWCOEFF(df, bcd) { \ |
| uInt sourhi=DFWWORD(df, 0); \ |
| uInt sourlo=DFWWORD(df, 1); \ |
| *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ |
| dpd2bcd8(bcd+1, sourhi>>8); \ |
| dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ |
| dpd2bcd8(bcd+7, sourlo>>20); \ |
| dpd2bcd8(bcd+10, sourlo>>10); \ |
| dpd2bcd83(bcd+13, sourlo);} |
| |
| #elif DECPMAX==16 |
| #define GETCOEFF(df, bcd) { \ |
| uInt sourhi=DFWORD(df, 0); \ |
| uInt sourlo=DFWORD(df, 1); \ |
| *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ |
| dpd2bcd8(bcd+1, sourhi>>8); \ |
| dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ |
| dpd2bcd8(bcd+7, sourlo>>20); \ |
| dpd2bcd8(bcd+10, sourlo>>10); \ |
| dpd2bcd83(bcd+13, sourlo);} |
| #define GETWCOEFF(df, bcd) { \ |
| uInt sourhi=DFWWORD(df, 0); \ |
| uInt sourmh=DFWWORD(df, 1); \ |
| uInt sourml=DFWWORD(df, 2); \ |
| uInt sourlo=DFWWORD(df, 3); \ |
| *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ |
| dpd2bcd8(bcd+1, sourhi>>4); \ |
| dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ |
| dpd2bcd8(bcd+7, sourmh>>16); \ |
| dpd2bcd8(bcd+10, sourmh>>6); \ |
| dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ |
| dpd2bcd8(bcd+16, sourml>>18); \ |
| dpd2bcd8(bcd+19, sourml>>8); \ |
| dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ |
| dpd2bcd8(bcd+25, sourlo>>20); \ |
| dpd2bcd8(bcd+28, sourlo>>10); \ |
| dpd2bcd83(bcd+31, sourlo);} |
| |
| #elif DECPMAX==34 |
| #define GETCOEFF(df, bcd) { \ |
| uInt sourhi=DFWORD(df, 0); \ |
| uInt sourmh=DFWORD(df, 1); \ |
| uInt sourml=DFWORD(df, 2); \ |
| uInt sourlo=DFWORD(df, 3); \ |
| *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ |
| dpd2bcd8(bcd+1, sourhi>>4); \ |
| dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ |
| dpd2bcd8(bcd+7, sourmh>>16); \ |
| dpd2bcd8(bcd+10, sourmh>>6); \ |
| dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ |
| dpd2bcd8(bcd+16, sourml>>18); \ |
| dpd2bcd8(bcd+19, sourml>>8); \ |
| dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ |
| dpd2bcd8(bcd+25, sourlo>>20); \ |
| dpd2bcd8(bcd+28, sourlo>>10); \ |
| dpd2bcd83(bcd+31, sourlo);} |
| |
| #define GETWCOEFF(df, bcd) {??} /* [should never be used] */ |
| #endif |
| |
| /* Macros to decode the coefficient in a finite decFloat *df into */ |
| /* a base-billion uInt array, with the least-significant */ |
| /* 0-999999999 'digit' at offset 0. */ |
| |
| /* Decode the declets. After extracting each one, it is decoded */ |
| /* to binary using a table lookup. Three tables are used; one */ |
| /* the usual DPD to binary, the other two pre-multiplied by 1000 */ |
| /* and 1000000 to avoid multiplication during decode. These */ |
| /* tables can also be used for multiplying up the MSD as the DPD */ |
| /* code for 0 through 9 is the identity. */ |
| #define DPD2BIN0 DPD2BIN /* for prettier code */ |
| |
| #if DECPMAX==7 |
| #define GETCOEFFBILL(df, buf) { \ |
| uInt sourhi=DFWORD(df, 0); \ |
| (buf)[0]=DPD2BIN0[sourhi&0x3ff] \ |
| +DPD2BINK[(sourhi>>10)&0x3ff] \ |
| +DPD2BINM[DECCOMBMSD[sourhi>>26]];} |
| |
| #elif DECPMAX==16 |
| #define GETCOEFFBILL(df, buf) { \ |
| uInt sourhi, sourlo; \ |
| sourlo=DFWORD(df, 1); \ |
| (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ |
| +DPD2BINK[(sourlo>>10)&0x3ff] \ |
| +DPD2BINM[(sourlo>>20)&0x3ff]; \ |
| sourhi=DFWORD(df, 0); \ |
| (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \ |
| +DPD2BINK[(sourhi>>8)&0x3ff] \ |
| +DPD2BINM[DECCOMBMSD[sourhi>>26]];} |
| |
| #elif DECPMAX==34 |
| #define GETCOEFFBILL(df, buf) { \ |
| uInt sourhi, sourmh, sourml, sourlo; \ |
| sourlo=DFWORD(df, 3); \ |
| (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ |
| +DPD2BINK[(sourlo>>10)&0x3ff] \ |
| +DPD2BINM[(sourlo>>20)&0x3ff]; \ |
| sourml=DFWORD(df, 2); \ |
| (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \ |
| +DPD2BINK[(sourml>>8)&0x3ff] \ |
| +DPD2BINM[(sourml>>18)&0x3ff]; \ |
| sourmh=DFWORD(df, 1); \ |
| (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \ |
| +DPD2BINK[(sourmh>>6)&0x3ff] \ |
| +DPD2BINM[(sourmh>>16)&0x3ff]; \ |
| sourhi=DFWORD(df, 0); \ |
| (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \ |
| +DPD2BINK[(sourhi>>4)&0x3ff] \ |
| +DPD2BINM[DECCOMBMSD[sourhi>>26]];} |
| |
| #endif |
| |
| /* Macros to decode the coefficient in a finite decFloat *df into */ |
| /* a base-thousand uInt array (of size DECLETS+1, to allow for */ |
| /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/ |
| |
| /* Decode the declets. After extracting each one, it is decoded */ |
| /* to binary using a table lookup. */ |
| #if DECPMAX==7 |
| #define GETCOEFFTHOU(df, buf) { \ |
| uInt sourhi=DFWORD(df, 0); \ |
| (buf)[0]=DPD2BIN[sourhi&0x3ff]; \ |
| (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \ |
| (buf)[2]=DECCOMBMSD[sourhi>>26];} |
| |
| #elif DECPMAX==16 |
| #define GETCOEFFTHOU(df, buf) { \ |
| uInt sourhi, sourlo; \ |
| sourlo=DFWORD(df, 1); \ |
| (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ |
| (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ |
| (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ |
| sourhi=DFWORD(df, 0); \ |
| (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ |
| (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \ |
| (buf)[5]=DECCOMBMSD[sourhi>>26];} |
| |
| #elif DECPMAX==34 |
| #define GETCOEFFTHOU(df, buf) { \ |
| uInt sourhi, sourmh, sourml, sourlo; \ |
| sourlo=DFWORD(df, 3); \ |
| (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ |
| (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ |
| (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ |
| sourml=DFWORD(df, 2); \ |
| (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ |
| (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \ |
| (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \ |
| sourmh=DFWORD(df, 1); \ |
| (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ |
| (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \ |
| (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \ |
| sourhi=DFWORD(df, 0); \ |
| (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ |
| (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \ |
| (buf)[11]=DECCOMBMSD[sourhi>>26];} |
| #endif |
| |
| |
| /* Macros to decode the coefficient in a finite decFloat *df and */ |
| /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */ |
| /* After the addition then most significant 'digit' in the array */ |
| /* might have a value larger then 10 (with a maximum of 19). */ |
| #if DECPMAX==7 |
| #define ADDCOEFFTHOU(df, buf) { \ |
| uInt sourhi=DFWORD(df, 0); \ |
| (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \ |
| if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ |
| (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \ |
| if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ |
| (buf)[2]+=DECCOMBMSD[sourhi>>26];} |
| |
| #elif DECPMAX==16 |
| #define ADDCOEFFTHOU(df, buf) { \ |
| uInt sourhi, sourlo; \ |
| sourlo=DFWORD(df, 1); \ |
| (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ |
| if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ |
| (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ |
| if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ |
| (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ |
| if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ |
| sourhi=DFWORD(df, 0); \ |
| (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ |
| if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ |
| (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \ |
| if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ |
| (buf)[5]+=DECCOMBMSD[sourhi>>26];} |
| |
| #elif DECPMAX==34 |
| #define ADDCOEFFTHOU(df, buf) { \ |
| uInt sourhi, sourmh, sourml, sourlo; \ |
| sourlo=DFWORD(df, 3); \ |
| (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ |
| if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ |
| (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ |
| if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ |
| (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ |
| if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ |
| sourml=DFWORD(df, 2); \ |
| (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ |
| if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ |
| (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \ |
| if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ |
| (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \ |
| if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \ |
| sourmh=DFWORD(df, 1); \ |
| (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ |
| if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \ |
| (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \ |
| if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \ |
| (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \ |
| if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \ |
| sourhi=DFWORD(df, 0); \ |
| (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ |
| if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \ |
| (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \ |
| if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \ |
| (buf)[11]+=DECCOMBMSD[sourhi>>26];} |
| #endif |
| |
| |
| /* Set a decFloat to the maximum positive finite number (Nmax) */ |
| #if DECPMAX==7 |
| #define DFSETNMAX(df) \ |
| {DFWORD(df, 0)=0x77f3fcff;} |
| #elif DECPMAX==16 |
| #define DFSETNMAX(df) \ |
| {DFWORD(df, 0)=0x77fcff3f; \ |
| DFWORD(df, 1)=0xcff3fcff;} |
| #elif DECPMAX==34 |
| #define DFSETNMAX(df) \ |
| {DFWORD(df, 0)=0x77ffcff3; \ |
| DFWORD(df, 1)=0xfcff3fcf; \ |
| DFWORD(df, 2)=0xf3fcff3f; \ |
| DFWORD(df, 3)=0xcff3fcff;} |
| #endif |
| |
| /* [end of format-dependent macros and constants] */ |
| #endif |
| |
| #else |
| #error decNumberLocal included more than once |
| #endif |