blob: eb2d63570c2e123e7206ecaafdb80aa17e2d696c [file] [log] [blame]
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
**********************************************************************
* Copyright (C) 2005-2016, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_CONVERSION
#include "cmemory.h"
#include "csmatch.h"
#include "csrmbcs.h"
#include <math.h>
U_NAMESPACE_BEGIN
#define min(x,y) (((x)<(y))?(x):(y))
static const uint16_t commonChars_sjis [] = {
// TODO: This set of data comes from the character frequency-
// of-occurence analysis tool. The data needs to be moved
// into a resource and loaded from there.
0x8140, 0x8141, 0x8142, 0x8145, 0x815b, 0x8169, 0x816a, 0x8175, 0x8176, 0x82a0,
0x82a2, 0x82a4, 0x82a9, 0x82aa, 0x82ab, 0x82ad, 0x82af, 0x82b1, 0x82b3, 0x82b5,
0x82b7, 0x82bd, 0x82be, 0x82c1, 0x82c4, 0x82c5, 0x82c6, 0x82c8, 0x82c9, 0x82cc,
0x82cd, 0x82dc, 0x82e0, 0x82e7, 0x82e8, 0x82e9, 0x82ea, 0x82f0, 0x82f1, 0x8341,
0x8343, 0x834e, 0x834f, 0x8358, 0x835e, 0x8362, 0x8367, 0x8375, 0x8376, 0x8389,
0x838a, 0x838b, 0x838d, 0x8393, 0x8e96, 0x93fa, 0x95aa};
static const uint16_t commonChars_euc_jp[] = {
// TODO: This set of data comes from the character frequency-
// of-occurence analysis tool. The data needs to be moved
// into a resource and loaded from there.
0xa1a1, 0xa1a2, 0xa1a3, 0xa1a6, 0xa1bc, 0xa1ca, 0xa1cb, 0xa1d6, 0xa1d7, 0xa4a2,
0xa4a4, 0xa4a6, 0xa4a8, 0xa4aa, 0xa4ab, 0xa4ac, 0xa4ad, 0xa4af, 0xa4b1, 0xa4b3,
0xa4b5, 0xa4b7, 0xa4b9, 0xa4bb, 0xa4bd, 0xa4bf, 0xa4c0, 0xa4c1, 0xa4c3, 0xa4c4,
0xa4c6, 0xa4c7, 0xa4c8, 0xa4c9, 0xa4ca, 0xa4cb, 0xa4ce, 0xa4cf, 0xa4d0, 0xa4de,
0xa4df, 0xa4e1, 0xa4e2, 0xa4e4, 0xa4e8, 0xa4e9, 0xa4ea, 0xa4eb, 0xa4ec, 0xa4ef,
0xa4f2, 0xa4f3, 0xa5a2, 0xa5a3, 0xa5a4, 0xa5a6, 0xa5a7, 0xa5aa, 0xa5ad, 0xa5af,
0xa5b0, 0xa5b3, 0xa5b5, 0xa5b7, 0xa5b8, 0xa5b9, 0xa5bf, 0xa5c3, 0xa5c6, 0xa5c7,
0xa5c8, 0xa5c9, 0xa5cb, 0xa5d0, 0xa5d5, 0xa5d6, 0xa5d7, 0xa5de, 0xa5e0, 0xa5e1,
0xa5e5, 0xa5e9, 0xa5ea, 0xa5eb, 0xa5ec, 0xa5ed, 0xa5f3, 0xb8a9, 0xb9d4, 0xbaee,
0xbbc8, 0xbef0, 0xbfb7, 0xc4ea, 0xc6fc, 0xc7bd, 0xcab8, 0xcaf3, 0xcbdc, 0xcdd1};
static const uint16_t commonChars_euc_kr[] = {
// TODO: This set of data comes from the character frequency-
// of-occurence analysis tool. The data needs to be moved
// into a resource and loaded from there.
0xb0a1, 0xb0b3, 0xb0c5, 0xb0cd, 0xb0d4, 0xb0e6, 0xb0ed, 0xb0f8, 0xb0fa, 0xb0fc,
0xb1b8, 0xb1b9, 0xb1c7, 0xb1d7, 0xb1e2, 0xb3aa, 0xb3bb, 0xb4c2, 0xb4cf, 0xb4d9,
0xb4eb, 0xb5a5, 0xb5b5, 0xb5bf, 0xb5c7, 0xb5e9, 0xb6f3, 0xb7af, 0xb7c2, 0xb7ce,
0xb8a6, 0xb8ae, 0xb8b6, 0xb8b8, 0xb8bb, 0xb8e9, 0xb9ab, 0xb9ae, 0xb9cc, 0xb9ce,
0xb9fd, 0xbab8, 0xbace, 0xbad0, 0xbaf1, 0xbbe7, 0xbbf3, 0xbbfd, 0xbcad, 0xbcba,
0xbcd2, 0xbcf6, 0xbdba, 0xbdc0, 0xbdc3, 0xbdc5, 0xbec6, 0xbec8, 0xbedf, 0xbeee,
0xbef8, 0xbefa, 0xbfa1, 0xbfa9, 0xbfc0, 0xbfe4, 0xbfeb, 0xbfec, 0xbff8, 0xc0a7,
0xc0af, 0xc0b8, 0xc0ba, 0xc0bb, 0xc0bd, 0xc0c7, 0xc0cc, 0xc0ce, 0xc0cf, 0xc0d6,
0xc0da, 0xc0e5, 0xc0fb, 0xc0fc, 0xc1a4, 0xc1a6, 0xc1b6, 0xc1d6, 0xc1df, 0xc1f6,
0xc1f8, 0xc4a1, 0xc5cd, 0xc6ae, 0xc7cf, 0xc7d1, 0xc7d2, 0xc7d8, 0xc7e5, 0xc8ad};
static const uint16_t commonChars_big5[] = {
// TODO: This set of data comes from the character frequency-
// of-occurence analysis tool. The data needs to be moved
// into a resource and loaded from there.
0xa140, 0xa141, 0xa142, 0xa143, 0xa147, 0xa149, 0xa175, 0xa176, 0xa440, 0xa446,
0xa447, 0xa448, 0xa451, 0xa454, 0xa457, 0xa464, 0xa46a, 0xa46c, 0xa477, 0xa4a3,
0xa4a4, 0xa4a7, 0xa4c1, 0xa4ce, 0xa4d1, 0xa4df, 0xa4e8, 0xa4fd, 0xa540, 0xa548,
0xa558, 0xa569, 0xa5cd, 0xa5e7, 0xa657, 0xa661, 0xa662, 0xa668, 0xa670, 0xa6a8,
0xa6b3, 0xa6b9, 0xa6d3, 0xa6db, 0xa6e6, 0xa6f2, 0xa740, 0xa751, 0xa759, 0xa7da,
0xa8a3, 0xa8a5, 0xa8ad, 0xa8d1, 0xa8d3, 0xa8e4, 0xa8fc, 0xa9c0, 0xa9d2, 0xa9f3,
0xaa6b, 0xaaba, 0xaabe, 0xaacc, 0xaafc, 0xac47, 0xac4f, 0xacb0, 0xacd2, 0xad59,
0xaec9, 0xafe0, 0xb0ea, 0xb16f, 0xb2b3, 0xb2c4, 0xb36f, 0xb44c, 0xb44e, 0xb54c,
0xb5a5, 0xb5bd, 0xb5d0, 0xb5d8, 0xb671, 0xb7ed, 0xb867, 0xb944, 0xbad8, 0xbb44,
0xbba1, 0xbdd1, 0xc2c4, 0xc3b9, 0xc440, 0xc45f};
static const uint16_t commonChars_gb_18030[] = {
// TODO: This set of data comes from the character frequency-
// of-occurence analysis tool. The data needs to be moved
// into a resource and loaded from there.
0xa1a1, 0xa1a2, 0xa1a3, 0xa1a4, 0xa1b0, 0xa1b1, 0xa1f1, 0xa1f3, 0xa3a1, 0xa3ac,
0xa3ba, 0xb1a8, 0xb1b8, 0xb1be, 0xb2bb, 0xb3c9, 0xb3f6, 0xb4f3, 0xb5bd, 0xb5c4,
0xb5e3, 0xb6af, 0xb6d4, 0xb6e0, 0xb7a2, 0xb7a8, 0xb7bd, 0xb7d6, 0xb7dd, 0xb8b4,
0xb8df, 0xb8f6, 0xb9ab, 0xb9c9, 0xb9d8, 0xb9fa, 0xb9fd, 0xbacd, 0xbba7, 0xbbd6,
0xbbe1, 0xbbfa, 0xbcbc, 0xbcdb, 0xbcfe, 0xbdcc, 0xbecd, 0xbedd, 0xbfb4, 0xbfc6,
0xbfc9, 0xc0b4, 0xc0ed, 0xc1cb, 0xc2db, 0xc3c7, 0xc4dc, 0xc4ea, 0xc5cc, 0xc6f7,
0xc7f8, 0xc8ab, 0xc8cb, 0xc8d5, 0xc8e7, 0xc9cf, 0xc9fa, 0xcab1, 0xcab5, 0xcac7,
0xcad0, 0xcad6, 0xcaf5, 0xcafd, 0xccec, 0xcdf8, 0xceaa, 0xcec4, 0xced2, 0xcee5,
0xcfb5, 0xcfc2, 0xcfd6, 0xd0c2, 0xd0c5, 0xd0d0, 0xd0d4, 0xd1a7, 0xd2aa, 0xd2b2,
0xd2b5, 0xd2bb, 0xd2d4, 0xd3c3, 0xd3d0, 0xd3fd, 0xd4c2, 0xd4da, 0xd5e2, 0xd6d0};
static int32_t binarySearch(const uint16_t *array, int32_t len, uint16_t value)
{
int32_t start = 0, end = len-1;
int32_t mid = (start+end)/2;
while(start <= end) {
if(array[mid] == value) {
return mid;
}
if(array[mid] < value){
start = mid+1;
} else {
end = mid-1;
}
mid = (start+end)/2;
}
return -1;
}
IteratedChar::IteratedChar() :
charValue(0), index(-1), nextIndex(0), error(FALSE), done(FALSE)
{
// nothing else to do.
}
/*void IteratedChar::reset()
{
charValue = 0;
index = -1;
nextIndex = 0;
error = FALSE;
done = FALSE;
}*/
int32_t IteratedChar::nextByte(InputText *det)
{
if (nextIndex >= det->fRawLength) {
done = TRUE;
return -1;
}
return det->fRawInput[nextIndex++];
}
CharsetRecog_mbcs::~CharsetRecog_mbcs()
{
// nothing to do.
}
int32_t CharsetRecog_mbcs::match_mbcs(InputText *det, const uint16_t commonChars[], int32_t commonCharsLen) const {
int32_t singleByteCharCount = 0;
int32_t doubleByteCharCount = 0;
int32_t commonCharCount = 0;
int32_t badCharCount = 0;
int32_t totalCharCount = 0;
int32_t confidence = 0;
IteratedChar iter;
while (nextChar(&iter, det)) {
totalCharCount++;
if (iter.error) {
badCharCount++;
} else {
if (iter.charValue <= 0xFF) {
singleByteCharCount++;
} else {
doubleByteCharCount++;
if (commonChars != 0) {
if (binarySearch(commonChars, commonCharsLen, static_cast<uint16_t>(iter.charValue)) >= 0){
commonCharCount += 1;
}
}
}
}
if (badCharCount >= 2 && badCharCount*5 >= doubleByteCharCount) {
// Bail out early if the byte data is not matching the encoding scheme.
// break detectBlock;
return confidence;
}
}
if (doubleByteCharCount <= 10 && badCharCount == 0) {
// Not many multi-byte chars.
if (doubleByteCharCount == 0 && totalCharCount < 10) {
// There weren't any multibyte sequences, and there was a low density of non-ASCII single bytes.
// We don't have enough data to have any confidence.
// Statistical analysis of single byte non-ASCII characters would probably help here.
confidence = 0;
}
else {
// ASCII or ISO file? It's probably not our encoding,
// but is not incompatible with our encoding, so don't give it a zero.
confidence = 10;
}
return confidence;
}
//
// No match if there are too many characters that don't fit the encoding scheme.
// (should we have zero tolerance for these?)
//
if (doubleByteCharCount < 20*badCharCount) {
confidence = 0;
return confidence;
}
if (commonChars == 0) {
// We have no statistics on frequently occuring characters.
// Assess confidence purely on having a reasonable number of
// multi-byte characters (the more the better)
confidence = 30 + doubleByteCharCount - 20*badCharCount;
if (confidence > 100) {
confidence = 100;
}
} else {
//
// Frequency of occurence statistics exist.
//
double maxVal = log((double)doubleByteCharCount / 4); /*(float)?*/
double scaleFactor = 90.0 / maxVal;
confidence = (int32_t)(log((double)commonCharCount+1) * scaleFactor + 10.0);
confidence = min(confidence, 100);
}
if (confidence < 0) {
confidence = 0;
}
return confidence;
}
CharsetRecog_sjis::~CharsetRecog_sjis()
{
// nothing to do
}
UBool CharsetRecog_sjis::nextChar(IteratedChar* it, InputText* det) const {
it->index = it->nextIndex;
it->error = FALSE;
int32_t firstByte = it->charValue = it->nextByte(det);
if (firstByte < 0) {
return FALSE;
}
if (firstByte <= 0x7F || (firstByte > 0xA0 && firstByte <= 0xDF)) {
return TRUE;
}
int32_t secondByte = it->nextByte(det);
if (secondByte >= 0) {
it->charValue = (firstByte << 8) | secondByte;
}
// else we'll handle the error later.
if (! ((secondByte >= 0x40 && secondByte <= 0x7F) || (secondByte >= 0x80 && secondByte <= 0xFE))) {
// Illegal second byte value.
it->error = TRUE;
}
return TRUE;
}
UBool CharsetRecog_sjis::match(InputText* det, CharsetMatch *results) const {
int32_t confidence = match_mbcs(det, commonChars_sjis, UPRV_LENGTHOF(commonChars_sjis));
results->set(det, this, confidence);
return (confidence > 0);
}
const char *CharsetRecog_sjis::getName() const
{
return "Shift_JIS";
}
const char *CharsetRecog_sjis::getLanguage() const
{
return "ja";
}
CharsetRecog_euc::~CharsetRecog_euc()
{
// nothing to do
}
UBool CharsetRecog_euc::nextChar(IteratedChar* it, InputText* det) const {
int32_t firstByte = 0;
int32_t secondByte = 0;
int32_t thirdByte = 0;
it->index = it->nextIndex;
it->error = FALSE;
firstByte = it->charValue = it->nextByte(det);
if (firstByte < 0) {
// Ran off the end of the input data
return FALSE;
}
if (firstByte <= 0x8D) {
// single byte char
return TRUE;
}
secondByte = it->nextByte(det);
if (secondByte >= 0) {
it->charValue = (it->charValue << 8) | secondByte;
}
// else we'll handle the error later.
if (firstByte >= 0xA1 && firstByte <= 0xFE) {
// Two byte Char
if (secondByte < 0xA1) {
it->error = TRUE;
}
return TRUE;
}
if (firstByte == 0x8E) {
// Code Set 2.
// In EUC-JP, total char size is 2 bytes, only one byte of actual char value.
// In EUC-TW, total char size is 4 bytes, three bytes contribute to char value.
// We don't know which we've got.
// Treat it like EUC-JP. If the data really was EUC-TW, the following two
// bytes will look like a well formed 2 byte char.
if (secondByte < 0xA1) {
it->error = TRUE;
}
return TRUE;
}
if (firstByte == 0x8F) {
// Code set 3.
// Three byte total char size, two bytes of actual char value.
thirdByte = it->nextByte(det);
it->charValue = (it->charValue << 8) | thirdByte;
if (thirdByte < 0xa1) {
// Bad second byte or ran off the end of the input data with a non-ASCII first byte.
it->error = TRUE;
}
}
return TRUE;
}
CharsetRecog_euc_jp::~CharsetRecog_euc_jp()
{
// nothing to do
}
const char *CharsetRecog_euc_jp::getName() const
{
return "EUC-JP";
}
const char *CharsetRecog_euc_jp::getLanguage() const
{
return "ja";
}
UBool CharsetRecog_euc_jp::match(InputText *det, CharsetMatch *results) const
{
int32_t confidence = match_mbcs(det, commonChars_euc_jp, UPRV_LENGTHOF(commonChars_euc_jp));
results->set(det, this, confidence);
return (confidence > 0);
}
CharsetRecog_euc_kr::~CharsetRecog_euc_kr()
{
// nothing to do
}
const char *CharsetRecog_euc_kr::getName() const
{
return "EUC-KR";
}
const char *CharsetRecog_euc_kr::getLanguage() const
{
return "ko";
}
UBool CharsetRecog_euc_kr::match(InputText *det, CharsetMatch *results) const
{
int32_t confidence = match_mbcs(det, commonChars_euc_kr, UPRV_LENGTHOF(commonChars_euc_kr));
results->set(det, this, confidence);
return (confidence > 0);
}
CharsetRecog_big5::~CharsetRecog_big5()
{
// nothing to do
}
UBool CharsetRecog_big5::nextChar(IteratedChar* it, InputText* det) const
{
int32_t firstByte;
it->index = it->nextIndex;
it->error = FALSE;
firstByte = it->charValue = it->nextByte(det);
if (firstByte < 0) {
return FALSE;
}
if (firstByte <= 0x7F || firstByte == 0xFF) {
// single byte character.
return TRUE;
}
int32_t secondByte = it->nextByte(det);
if (secondByte >= 0) {
it->charValue = (it->charValue << 8) | secondByte;
}
// else we'll handle the error later.
if (secondByte < 0x40 || secondByte == 0x7F || secondByte == 0xFF) {
it->error = TRUE;
}
return TRUE;
}
const char *CharsetRecog_big5::getName() const
{
return "Big5";
}
const char *CharsetRecog_big5::getLanguage() const
{
return "zh";
}
UBool CharsetRecog_big5::match(InputText *det, CharsetMatch *results) const
{
int32_t confidence = match_mbcs(det, commonChars_big5, UPRV_LENGTHOF(commonChars_big5));
results->set(det, this, confidence);
return (confidence > 0);
}
CharsetRecog_gb_18030::~CharsetRecog_gb_18030()
{
// nothing to do
}
UBool CharsetRecog_gb_18030::nextChar(IteratedChar* it, InputText* det) const {
int32_t firstByte = 0;
int32_t secondByte = 0;
int32_t thirdByte = 0;
int32_t fourthByte = 0;
it->index = it->nextIndex;
it->error = FALSE;
firstByte = it->charValue = it->nextByte(det);
if (firstByte < 0) {
// Ran off the end of the input data
return FALSE;
}
if (firstByte <= 0x80) {
// single byte char
return TRUE;
}
secondByte = it->nextByte(det);
if (secondByte >= 0) {
it->charValue = (it->charValue << 8) | secondByte;
}
// else we'll handle the error later.
if (firstByte >= 0x81 && firstByte <= 0xFE) {
// Two byte Char
if ((secondByte >= 0x40 && secondByte <= 0x7E) || (secondByte >=80 && secondByte <= 0xFE)) {
return TRUE;
}
// Four byte char
if (secondByte >= 0x30 && secondByte <= 0x39) {
thirdByte = it->nextByte(det);
if (thirdByte >= 0x81 && thirdByte <= 0xFE) {
fourthByte = it->nextByte(det);
if (fourthByte >= 0x30 && fourthByte <= 0x39) {
it->charValue = (it->charValue << 16) | (thirdByte << 8) | fourthByte;
return TRUE;
}
}
}
// Something wasn't valid, or we ran out of data (-1).
it->error = TRUE;
}
return TRUE;
}
const char *CharsetRecog_gb_18030::getName() const
{
return "GB18030";
}
const char *CharsetRecog_gb_18030::getLanguage() const
{
return "zh";
}
UBool CharsetRecog_gb_18030::match(InputText *det, CharsetMatch *results) const
{
int32_t confidence = match_mbcs(det, commonChars_gb_18030, UPRV_LENGTHOF(commonChars_gb_18030));
results->set(det, this, confidence);
return (confidence > 0);
}
U_NAMESPACE_END
#endif