| // © 2016 and later: Unicode, Inc. and others. |
| // License & terms of use: http://www.unicode.org/copyright.html |
| /* |
| ******************************************************************************* |
| * Copyright (C) 2010-2014, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| ******************************************************************************* |
| * collationiterator.cpp |
| * |
| * created on: 2010oct27 |
| * created by: Markus W. Scherer |
| */ |
| |
| #include "utypeinfo.h" // for 'typeid' to work |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_COLLATION |
| |
| #include "unicode/ucharstrie.h" |
| #include "unicode/ustringtrie.h" |
| #include "charstr.h" |
| #include "cmemory.h" |
| #include "collation.h" |
| #include "collationdata.h" |
| #include "collationfcd.h" |
| #include "collationiterator.h" |
| #include "normalizer2impl.h" |
| #include "uassert.h" |
| #include "uvectr32.h" |
| |
| U_NAMESPACE_BEGIN |
| |
| CollationIterator::CEBuffer::~CEBuffer() {} |
| |
| UBool |
| CollationIterator::CEBuffer::ensureAppendCapacity(int32_t appCap, UErrorCode &errorCode) { |
| int32_t capacity = buffer.getCapacity(); |
| if((length + appCap) <= capacity) { return TRUE; } |
| if(U_FAILURE(errorCode)) { return FALSE; } |
| do { |
| if(capacity < 1000) { |
| capacity *= 4; |
| } else { |
| capacity *= 2; |
| } |
| } while(capacity < (length + appCap)); |
| int64_t *p = buffer.resize(capacity, length); |
| if(p == NULL) { |
| errorCode = U_MEMORY_ALLOCATION_ERROR; |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| // State of combining marks skipped in discontiguous contraction. |
| // We create a state object on first use and keep it around deactivated between uses. |
| class SkippedState : public UMemory { |
| public: |
| // Born active but empty. |
| SkippedState() : pos(0), skipLengthAtMatch(0) {} |
| void clear() { |
| oldBuffer.remove(); |
| pos = 0; |
| // The newBuffer is reset by setFirstSkipped(). |
| } |
| |
| UBool isEmpty() const { return oldBuffer.isEmpty(); } |
| |
| UBool hasNext() const { return pos < oldBuffer.length(); } |
| |
| // Requires hasNext(). |
| UChar32 next() { |
| UChar32 c = oldBuffer.char32At(pos); |
| pos += U16_LENGTH(c); |
| return c; |
| } |
| |
| // Accounts for one more input code point read beyond the end of the marks buffer. |
| void incBeyond() { |
| U_ASSERT(!hasNext()); |
| ++pos; |
| } |
| |
| // Goes backward through the skipped-marks buffer. |
| // Returns the number of code points read beyond the skipped marks |
| // that need to be backtracked through normal input. |
| int32_t backwardNumCodePoints(int32_t n) { |
| int32_t length = oldBuffer.length(); |
| int32_t beyond = pos - length; |
| if(beyond > 0) { |
| if(beyond >= n) { |
| // Not back far enough to re-enter the oldBuffer. |
| pos -= n; |
| return n; |
| } else { |
| // Back out all beyond-oldBuffer code points and re-enter the buffer. |
| pos = oldBuffer.moveIndex32(length, beyond - n); |
| return beyond; |
| } |
| } else { |
| // Go backwards from inside the oldBuffer. |
| pos = oldBuffer.moveIndex32(pos, -n); |
| return 0; |
| } |
| } |
| |
| void setFirstSkipped(UChar32 c) { |
| skipLengthAtMatch = 0; |
| newBuffer.setTo(c); |
| } |
| |
| void skip(UChar32 c) { |
| newBuffer.append(c); |
| } |
| |
| void recordMatch() { skipLengthAtMatch = newBuffer.length(); } |
| |
| // Replaces the characters we consumed with the newly skipped ones. |
| void replaceMatch() { |
| // Note: UnicodeString.replace() pins pos to at most length(). |
| oldBuffer.replace(0, pos, newBuffer, 0, skipLengthAtMatch); |
| pos = 0; |
| } |
| |
| void saveTrieState(const UCharsTrie &trie) { trie.saveState(state); } |
| void resetToTrieState(UCharsTrie &trie) const { trie.resetToState(state); } |
| |
| private: |
| // Combining marks skipped in previous discontiguous-contraction matching. |
| // After that discontiguous contraction was completed, we start reading them from here. |
| UnicodeString oldBuffer; |
| // Combining marks newly skipped in current discontiguous-contraction matching. |
| // These might have been read from the normal text or from the oldBuffer. |
| UnicodeString newBuffer; |
| // Reading index in oldBuffer, |
| // or counter for how many code points have been read beyond oldBuffer (pos-oldBuffer.length()). |
| int32_t pos; |
| // newBuffer.length() at the time of the last matching character. |
| // When a partial match fails, we back out skipped and partial-matching input characters. |
| int32_t skipLengthAtMatch; |
| // We save the trie state before we attempt to match a character, |
| // so that we can skip it and try the next one. |
| UCharsTrie::State state; |
| }; |
| |
| CollationIterator::CollationIterator(const CollationIterator &other) |
| : UObject(other), |
| trie(other.trie), |
| data(other.data), |
| cesIndex(other.cesIndex), |
| skipped(NULL), |
| numCpFwd(other.numCpFwd), |
| isNumeric(other.isNumeric) { |
| UErrorCode errorCode = U_ZERO_ERROR; |
| int32_t length = other.ceBuffer.length; |
| if(length > 0 && ceBuffer.ensureAppendCapacity(length, errorCode)) { |
| for(int32_t i = 0; i < length; ++i) { |
| ceBuffer.set(i, other.ceBuffer.get(i)); |
| } |
| ceBuffer.length = length; |
| } else { |
| cesIndex = 0; |
| } |
| } |
| |
| CollationIterator::~CollationIterator() { |
| delete skipped; |
| } |
| |
| UBool |
| CollationIterator::operator==(const CollationIterator &other) const { |
| // Subclasses: Call this method and then add more specific checks. |
| // Compare the iterator state but not the collation data (trie & data fields): |
| // Assume that the caller compares the data. |
| // Ignore skipped since that should be unused between calls to nextCE(). |
| // (It only stays around to avoid another memory allocation.) |
| if(!(typeid(*this) == typeid(other) && |
| ceBuffer.length == other.ceBuffer.length && |
| cesIndex == other.cesIndex && |
| numCpFwd == other.numCpFwd && |
| isNumeric == other.isNumeric)) { |
| return FALSE; |
| } |
| for(int32_t i = 0; i < ceBuffer.length; ++i) { |
| if(ceBuffer.get(i) != other.ceBuffer.get(i)) { return FALSE; } |
| } |
| return TRUE; |
| } |
| |
| void |
| CollationIterator::reset() { |
| cesIndex = ceBuffer.length = 0; |
| if(skipped != NULL) { skipped->clear(); } |
| } |
| |
| int32_t |
| CollationIterator::fetchCEs(UErrorCode &errorCode) { |
| while(U_SUCCESS(errorCode) && nextCE(errorCode) != Collation::NO_CE) { |
| // No need to loop for each expansion CE. |
| cesIndex = ceBuffer.length; |
| } |
| return ceBuffer.length; |
| } |
| |
| uint32_t |
| CollationIterator::handleNextCE32(UChar32 &c, UErrorCode &errorCode) { |
| c = nextCodePoint(errorCode); |
| return (c < 0) ? Collation::FALLBACK_CE32 : data->getCE32(c); |
| } |
| |
| UChar |
| CollationIterator::handleGetTrailSurrogate() { |
| return 0; |
| } |
| |
| UBool |
| CollationIterator::foundNULTerminator() { |
| return FALSE; |
| } |
| |
| UBool |
| CollationIterator::forbidSurrogateCodePoints() const { |
| return FALSE; |
| } |
| |
| uint32_t |
| CollationIterator::getDataCE32(UChar32 c) const { |
| return data->getCE32(c); |
| } |
| |
| uint32_t |
| CollationIterator::getCE32FromBuilderData(uint32_t /*ce32*/, UErrorCode &errorCode) { |
| if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; } |
| return 0; |
| } |
| |
| int64_t |
| CollationIterator::nextCEFromCE32(const CollationData *d, UChar32 c, uint32_t ce32, |
| UErrorCode &errorCode) { |
| --ceBuffer.length; // Undo ceBuffer.incLength(). |
| appendCEsFromCE32(d, c, ce32, TRUE, errorCode); |
| if(U_SUCCESS(errorCode)) { |
| return ceBuffer.get(cesIndex++); |
| } else { |
| return Collation::NO_CE_PRIMARY; |
| } |
| } |
| |
| void |
| CollationIterator::appendCEsFromCE32(const CollationData *d, UChar32 c, uint32_t ce32, |
| UBool forward, UErrorCode &errorCode) { |
| while(Collation::isSpecialCE32(ce32)) { |
| switch(Collation::tagFromCE32(ce32)) { |
| case Collation::FALLBACK_TAG: |
| case Collation::RESERVED_TAG_3: |
| if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; } |
| return; |
| case Collation::LONG_PRIMARY_TAG: |
| ceBuffer.append(Collation::ceFromLongPrimaryCE32(ce32), errorCode); |
| return; |
| case Collation::LONG_SECONDARY_TAG: |
| ceBuffer.append(Collation::ceFromLongSecondaryCE32(ce32), errorCode); |
| return; |
| case Collation::LATIN_EXPANSION_TAG: |
| if(ceBuffer.ensureAppendCapacity(2, errorCode)) { |
| ceBuffer.set(ceBuffer.length, Collation::latinCE0FromCE32(ce32)); |
| ceBuffer.set(ceBuffer.length + 1, Collation::latinCE1FromCE32(ce32)); |
| ceBuffer.length += 2; |
| } |
| return; |
| case Collation::EXPANSION32_TAG: { |
| const uint32_t *ce32s = d->ce32s + Collation::indexFromCE32(ce32); |
| int32_t length = Collation::lengthFromCE32(ce32); |
| if(ceBuffer.ensureAppendCapacity(length, errorCode)) { |
| do { |
| ceBuffer.appendUnsafe(Collation::ceFromCE32(*ce32s++)); |
| } while(--length > 0); |
| } |
| return; |
| } |
| case Collation::EXPANSION_TAG: { |
| const int64_t *ces = d->ces + Collation::indexFromCE32(ce32); |
| int32_t length = Collation::lengthFromCE32(ce32); |
| if(ceBuffer.ensureAppendCapacity(length, errorCode)) { |
| do { |
| ceBuffer.appendUnsafe(*ces++); |
| } while(--length > 0); |
| } |
| return; |
| } |
| case Collation::BUILDER_DATA_TAG: |
| ce32 = getCE32FromBuilderData(ce32, errorCode); |
| if(U_FAILURE(errorCode)) { return; } |
| if(ce32 == Collation::FALLBACK_CE32) { |
| d = data->base; |
| ce32 = d->getCE32(c); |
| } |
| break; |
| case Collation::PREFIX_TAG: |
| if(forward) { backwardNumCodePoints(1, errorCode); } |
| ce32 = getCE32FromPrefix(d, ce32, errorCode); |
| if(forward) { forwardNumCodePoints(1, errorCode); } |
| break; |
| case Collation::CONTRACTION_TAG: { |
| const UChar *p = d->contexts + Collation::indexFromCE32(ce32); |
| uint32_t defaultCE32 = CollationData::readCE32(p); // Default if no suffix match. |
| if(!forward) { |
| // Backward contractions are handled by previousCEUnsafe(). |
| // c has contractions but they were not found. |
| ce32 = defaultCE32; |
| break; |
| } |
| UChar32 nextCp; |
| if(skipped == NULL && numCpFwd < 0) { |
| // Some portion of nextCE32FromContraction() pulled out here as an ASCII fast path, |
| // avoiding the function call and the nextSkippedCodePoint() overhead. |
| nextCp = nextCodePoint(errorCode); |
| if(nextCp < 0) { |
| // No more text. |
| ce32 = defaultCE32; |
| break; |
| } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 && |
| !CollationFCD::mayHaveLccc(nextCp)) { |
| // All contraction suffixes start with characters with lccc!=0 |
| // but the next code point has lccc==0. |
| backwardNumCodePoints(1, errorCode); |
| ce32 = defaultCE32; |
| break; |
| } |
| } else { |
| nextCp = nextSkippedCodePoint(errorCode); |
| if(nextCp < 0) { |
| // No more text. |
| ce32 = defaultCE32; |
| break; |
| } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 && |
| !CollationFCD::mayHaveLccc(nextCp)) { |
| // All contraction suffixes start with characters with lccc!=0 |
| // but the next code point has lccc==0. |
| backwardNumSkipped(1, errorCode); |
| ce32 = defaultCE32; |
| break; |
| } |
| } |
| ce32 = nextCE32FromContraction(d, ce32, p + 2, defaultCE32, nextCp, errorCode); |
| if(ce32 == Collation::NO_CE32) { |
| // CEs from a discontiguous contraction plus the skipped combining marks |
| // have been appended already. |
| return; |
| } |
| break; |
| } |
| case Collation::DIGIT_TAG: |
| if(isNumeric) { |
| appendNumericCEs(ce32, forward, errorCode); |
| return; |
| } else { |
| // Fetch the non-numeric-collation CE32 and continue. |
| ce32 = d->ce32s[Collation::indexFromCE32(ce32)]; |
| break; |
| } |
| case Collation::U0000_TAG: |
| U_ASSERT(c == 0); |
| if(forward && foundNULTerminator()) { |
| // Handle NUL-termination. (Not needed in Java.) |
| ceBuffer.append(Collation::NO_CE, errorCode); |
| return; |
| } else { |
| // Fetch the normal ce32 for U+0000 and continue. |
| ce32 = d->ce32s[0]; |
| break; |
| } |
| case Collation::HANGUL_TAG: { |
| const uint32_t *jamoCE32s = d->jamoCE32s; |
| c -= Hangul::HANGUL_BASE; |
| UChar32 t = c % Hangul::JAMO_T_COUNT; |
| c /= Hangul::JAMO_T_COUNT; |
| UChar32 v = c % Hangul::JAMO_V_COUNT; |
| c /= Hangul::JAMO_V_COUNT; |
| if((ce32 & Collation::HANGUL_NO_SPECIAL_JAMO) != 0) { |
| // None of the Jamo CE32s are isSpecialCE32(). |
| // Avoid recursive function calls and per-Jamo tests. |
| if(ceBuffer.ensureAppendCapacity(t == 0 ? 2 : 3, errorCode)) { |
| ceBuffer.set(ceBuffer.length, Collation::ceFromCE32(jamoCE32s[c])); |
| ceBuffer.set(ceBuffer.length + 1, Collation::ceFromCE32(jamoCE32s[19 + v])); |
| ceBuffer.length += 2; |
| if(t != 0) { |
| ceBuffer.appendUnsafe(Collation::ceFromCE32(jamoCE32s[39 + t])); |
| } |
| } |
| return; |
| } else { |
| // We should not need to compute each Jamo code point. |
| // In particular, there should be no offset or implicit ce32. |
| appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[c], forward, errorCode); |
| appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[19 + v], forward, errorCode); |
| if(t == 0) { return; } |
| // offset 39 = 19 + 21 - 1: |
| // 19 = JAMO_L_COUNT |
| // 21 = JAMO_T_COUNT |
| // -1 = omit t==0 |
| ce32 = jamoCE32s[39 + t]; |
| c = U_SENTINEL; |
| break; |
| } |
| } |
| case Collation::LEAD_SURROGATE_TAG: { |
| U_ASSERT(forward); // Backward iteration should never see lead surrogate code _unit_ data. |
| U_ASSERT(U16_IS_LEAD(c)); |
| UChar trail; |
| if(U16_IS_TRAIL(trail = handleGetTrailSurrogate())) { |
| c = U16_GET_SUPPLEMENTARY(c, trail); |
| ce32 &= Collation::LEAD_TYPE_MASK; |
| if(ce32 == Collation::LEAD_ALL_UNASSIGNED) { |
| ce32 = Collation::UNASSIGNED_CE32; // unassigned-implicit |
| } else if(ce32 == Collation::LEAD_ALL_FALLBACK || |
| (ce32 = d->getCE32FromSupplementary(c)) == Collation::FALLBACK_CE32) { |
| // fall back to the base data |
| d = d->base; |
| ce32 = d->getCE32FromSupplementary(c); |
| } |
| } else { |
| // c is an unpaired surrogate. |
| ce32 = Collation::UNASSIGNED_CE32; |
| } |
| break; |
| } |
| case Collation::OFFSET_TAG: |
| U_ASSERT(c >= 0); |
| ceBuffer.append(d->getCEFromOffsetCE32(c, ce32), errorCode); |
| return; |
| case Collation::IMPLICIT_TAG: |
| U_ASSERT(c >= 0); |
| if(U_IS_SURROGATE(c) && forbidSurrogateCodePoints()) { |
| ce32 = Collation::FFFD_CE32; |
| break; |
| } else { |
| ceBuffer.append(Collation::unassignedCEFromCodePoint(c), errorCode); |
| return; |
| } |
| } |
| } |
| ceBuffer.append(Collation::ceFromSimpleCE32(ce32), errorCode); |
| } |
| |
| uint32_t |
| CollationIterator::getCE32FromPrefix(const CollationData *d, uint32_t ce32, |
| UErrorCode &errorCode) { |
| const UChar *p = d->contexts + Collation::indexFromCE32(ce32); |
| ce32 = CollationData::readCE32(p); // Default if no prefix match. |
| p += 2; |
| // Number of code points read before the original code point. |
| int32_t lookBehind = 0; |
| UCharsTrie prefixes(p); |
| for(;;) { |
| UChar32 c = previousCodePoint(errorCode); |
| if(c < 0) { break; } |
| ++lookBehind; |
| UStringTrieResult match = prefixes.nextForCodePoint(c); |
| if(USTRINGTRIE_HAS_VALUE(match)) { |
| ce32 = (uint32_t)prefixes.getValue(); |
| } |
| if(!USTRINGTRIE_HAS_NEXT(match)) { break; } |
| } |
| forwardNumCodePoints(lookBehind, errorCode); |
| return ce32; |
| } |
| |
| UChar32 |
| CollationIterator::nextSkippedCodePoint(UErrorCode &errorCode) { |
| if(skipped != NULL && skipped->hasNext()) { return skipped->next(); } |
| if(numCpFwd == 0) { return U_SENTINEL; } |
| UChar32 c = nextCodePoint(errorCode); |
| if(skipped != NULL && !skipped->isEmpty() && c >= 0) { skipped->incBeyond(); } |
| if(numCpFwd > 0 && c >= 0) { --numCpFwd; } |
| return c; |
| } |
| |
| void |
| CollationIterator::backwardNumSkipped(int32_t n, UErrorCode &errorCode) { |
| if(skipped != NULL && !skipped->isEmpty()) { |
| n = skipped->backwardNumCodePoints(n); |
| } |
| backwardNumCodePoints(n, errorCode); |
| if(numCpFwd >= 0) { numCpFwd += n; } |
| } |
| |
| uint32_t |
| CollationIterator::nextCE32FromContraction(const CollationData *d, uint32_t contractionCE32, |
| const UChar *p, uint32_t ce32, UChar32 c, |
| UErrorCode &errorCode) { |
| // c: next code point after the original one |
| |
| // Number of code points read beyond the original code point. |
| // Needed for discontiguous contraction matching. |
| int32_t lookAhead = 1; |
| // Number of code points read since the last match (initially only c). |
| int32_t sinceMatch = 1; |
| // Normally we only need a contiguous match, |
| // and therefore need not remember the suffixes state from before a mismatch for retrying. |
| // If we are already processing skipped combining marks, then we do track the state. |
| UCharsTrie suffixes(p); |
| if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); } |
| UStringTrieResult match = suffixes.firstForCodePoint(c); |
| for(;;) { |
| UChar32 nextCp; |
| if(USTRINGTRIE_HAS_VALUE(match)) { |
| ce32 = (uint32_t)suffixes.getValue(); |
| if(!USTRINGTRIE_HAS_NEXT(match) || (c = nextSkippedCodePoint(errorCode)) < 0) { |
| return ce32; |
| } |
| if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); } |
| sinceMatch = 1; |
| } else if(match == USTRINGTRIE_NO_MATCH || (nextCp = nextSkippedCodePoint(errorCode)) < 0) { |
| // No match for c, or partial match (USTRINGTRIE_NO_VALUE) and no further text. |
| // Back up if necessary, and try a discontiguous contraction. |
| if((contractionCE32 & Collation::CONTRACT_TRAILING_CCC) != 0 && |
| // Discontiguous contraction matching extends an existing match. |
| // If there is no match yet, then there is nothing to do. |
| ((contractionCE32 & Collation::CONTRACT_SINGLE_CP_NO_MATCH) == 0 || |
| sinceMatch < lookAhead)) { |
| // The last character of at least one suffix has lccc!=0, |
| // allowing for discontiguous contractions. |
| // UCA S2.1.1 only processes non-starters immediately following |
| // "a match in the table" (sinceMatch=1). |
| if(sinceMatch > 1) { |
| // Return to the state after the last match. |
| // (Return to sinceMatch=0 and re-fetch the first partially-matched character.) |
| backwardNumSkipped(sinceMatch, errorCode); |
| c = nextSkippedCodePoint(errorCode); |
| lookAhead -= sinceMatch - 1; |
| sinceMatch = 1; |
| } |
| if(d->getFCD16(c) > 0xff) { |
| return nextCE32FromDiscontiguousContraction( |
| d, suffixes, ce32, lookAhead, c, errorCode); |
| } |
| } |
| break; |
| } else { |
| // Continue after partial match (USTRINGTRIE_NO_VALUE) for c. |
| // It does not have a result value, therefore it is not itself "a match in the table". |
| // If a partially-matched c has ccc!=0 then |
| // it might be skipped in discontiguous contraction. |
| c = nextCp; |
| ++sinceMatch; |
| } |
| ++lookAhead; |
| match = suffixes.nextForCodePoint(c); |
| } |
| backwardNumSkipped(sinceMatch, errorCode); |
| return ce32; |
| } |
| |
| uint32_t |
| CollationIterator::nextCE32FromDiscontiguousContraction( |
| const CollationData *d, UCharsTrie &suffixes, uint32_t ce32, |
| int32_t lookAhead, UChar32 c, |
| UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode)) { return 0; } |
| |
| // UCA section 3.3.2 Contractions: |
| // Contractions that end with non-starter characters |
| // are known as discontiguous contractions. |
| // ... discontiguous contractions must be detected in input text |
| // whenever the final sequence of non-starter characters could be rearranged |
| // so as to make a contiguous matching sequence that is canonically equivalent. |
| |
| // UCA: http://www.unicode.org/reports/tr10/#S2.1 |
| // S2.1 Find the longest initial substring S at each point that has a match in the table. |
| // S2.1.1 If there are any non-starters following S, process each non-starter C. |
| // S2.1.2 If C is not blocked from S, find if S + C has a match in the table. |
| // Note: A non-starter in a string is called blocked |
| // if there is another non-starter of the same canonical combining class or zero |
| // between it and the last character of canonical combining class 0. |
| // S2.1.3 If there is a match, replace S by S + C, and remove C. |
| |
| // First: Is a discontiguous contraction even possible? |
| uint16_t fcd16 = d->getFCD16(c); |
| U_ASSERT(fcd16 > 0xff); // The caller checked this already, as a shortcut. |
| UChar32 nextCp = nextSkippedCodePoint(errorCode); |
| if(nextCp < 0) { |
| // No further text. |
| backwardNumSkipped(1, errorCode); |
| return ce32; |
| } |
| ++lookAhead; |
| uint8_t prevCC = (uint8_t)fcd16; |
| fcd16 = d->getFCD16(nextCp); |
| if(fcd16 <= 0xff) { |
| // The next code point after c is a starter (S2.1.1 "process each non-starter"). |
| backwardNumSkipped(2, errorCode); |
| return ce32; |
| } |
| |
| // We have read and matched (lookAhead-2) code points, |
| // read non-matching c and peeked ahead at nextCp. |
| // Return to the state before the mismatch and continue matching with nextCp. |
| if(skipped == NULL || skipped->isEmpty()) { |
| if(skipped == NULL) { |
| skipped = new SkippedState(); |
| if(skipped == NULL) { |
| errorCode = U_MEMORY_ALLOCATION_ERROR; |
| return 0; |
| } |
| } |
| suffixes.reset(); |
| if(lookAhead > 2) { |
| // Replay the partial match so far. |
| backwardNumCodePoints(lookAhead, errorCode); |
| suffixes.firstForCodePoint(nextCodePoint(errorCode)); |
| for(int32_t i = 3; i < lookAhead; ++i) { |
| suffixes.nextForCodePoint(nextCodePoint(errorCode)); |
| } |
| // Skip c (which did not match) and nextCp (which we will try now). |
| forwardNumCodePoints(2, errorCode); |
| } |
| skipped->saveTrieState(suffixes); |
| } else { |
| // Reset to the trie state before the failed match of c. |
| skipped->resetToTrieState(suffixes); |
| } |
| |
| skipped->setFirstSkipped(c); |
| // Number of code points read since the last match (at this point: c and nextCp). |
| int32_t sinceMatch = 2; |
| c = nextCp; |
| for(;;) { |
| UStringTrieResult match; |
| // "If C is not blocked from S, find if S + C has a match in the table." (S2.1.2) |
| if(prevCC < (fcd16 >> 8) && USTRINGTRIE_HAS_VALUE(match = suffixes.nextForCodePoint(c))) { |
| // "If there is a match, replace S by S + C, and remove C." (S2.1.3) |
| // Keep prevCC unchanged. |
| ce32 = (uint32_t)suffixes.getValue(); |
| sinceMatch = 0; |
| skipped->recordMatch(); |
| if(!USTRINGTRIE_HAS_NEXT(match)) { break; } |
| skipped->saveTrieState(suffixes); |
| } else { |
| // No match for "S + C", skip C. |
| skipped->skip(c); |
| skipped->resetToTrieState(suffixes); |
| prevCC = (uint8_t)fcd16; |
| } |
| if((c = nextSkippedCodePoint(errorCode)) < 0) { break; } |
| ++sinceMatch; |
| fcd16 = d->getFCD16(c); |
| if(fcd16 <= 0xff) { |
| // The next code point after c is a starter (S2.1.1 "process each non-starter"). |
| break; |
| } |
| } |
| backwardNumSkipped(sinceMatch, errorCode); |
| UBool isTopDiscontiguous = skipped->isEmpty(); |
| skipped->replaceMatch(); |
| if(isTopDiscontiguous && !skipped->isEmpty()) { |
| // We did get a match after skipping one or more combining marks, |
| // and we are not in a recursive discontiguous contraction. |
| // Append CEs from the contraction ce32 |
| // and then from the combining marks that we skipped before the match. |
| c = U_SENTINEL; |
| for(;;) { |
| appendCEsFromCE32(d, c, ce32, TRUE, errorCode); |
| // Fetch CE32s for skipped combining marks from the normal data, with fallback, |
| // rather than from the CollationData where we found the contraction. |
| if(!skipped->hasNext()) { break; } |
| c = skipped->next(); |
| ce32 = getDataCE32(c); |
| if(ce32 == Collation::FALLBACK_CE32) { |
| d = data->base; |
| ce32 = d->getCE32(c); |
| } else { |
| d = data; |
| } |
| // Note: A nested discontiguous-contraction match |
| // replaces consumed combining marks with newly skipped ones |
| // and resets the reading position to the beginning. |
| } |
| skipped->clear(); |
| ce32 = Collation::NO_CE32; // Signal to the caller that the result is in the ceBuffer. |
| } |
| return ce32; |
| } |
| |
| void |
| CollationIterator::appendNumericCEs(uint32_t ce32, UBool forward, UErrorCode &errorCode) { |
| // Collect digits. |
| CharString digits; |
| if(forward) { |
| for(;;) { |
| char digit = Collation::digitFromCE32(ce32); |
| digits.append(digit, errorCode); |
| if(numCpFwd == 0) { break; } |
| UChar32 c = nextCodePoint(errorCode); |
| if(c < 0) { break; } |
| ce32 = data->getCE32(c); |
| if(ce32 == Collation::FALLBACK_CE32) { |
| ce32 = data->base->getCE32(c); |
| } |
| if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) { |
| backwardNumCodePoints(1, errorCode); |
| break; |
| } |
| if(numCpFwd > 0) { --numCpFwd; } |
| } |
| } else { |
| for(;;) { |
| char digit = Collation::digitFromCE32(ce32); |
| digits.append(digit, errorCode); |
| UChar32 c = previousCodePoint(errorCode); |
| if(c < 0) { break; } |
| ce32 = data->getCE32(c); |
| if(ce32 == Collation::FALLBACK_CE32) { |
| ce32 = data->base->getCE32(c); |
| } |
| if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) { |
| forwardNumCodePoints(1, errorCode); |
| break; |
| } |
| } |
| // Reverse the digit string. |
| char *p = digits.data(); |
| char *q = p + digits.length() - 1; |
| while(p < q) { |
| char digit = *p; |
| *p++ = *q; |
| *q-- = digit; |
| } |
| } |
| if(U_FAILURE(errorCode)) { return; } |
| int32_t pos = 0; |
| do { |
| // Skip leading zeros. |
| while(pos < (digits.length() - 1) && digits[pos] == 0) { ++pos; } |
| // Write a sequence of CEs for at most 254 digits at a time. |
| int32_t segmentLength = digits.length() - pos; |
| if(segmentLength > 254) { segmentLength = 254; } |
| appendNumericSegmentCEs(digits.data() + pos, segmentLength, errorCode); |
| pos += segmentLength; |
| } while(U_SUCCESS(errorCode) && pos < digits.length()); |
| } |
| |
| void |
| CollationIterator::appendNumericSegmentCEs(const char *digits, int32_t length, UErrorCode &errorCode) { |
| U_ASSERT(1 <= length && length <= 254); |
| U_ASSERT(length == 1 || digits[0] != 0); |
| uint32_t numericPrimary = data->numericPrimary; |
| // Note: We use primary byte values 2..255: digits are not compressible. |
| if(length <= 7) { |
| // Very dense encoding for small numbers. |
| int32_t value = digits[0]; |
| for(int32_t i = 1; i < length; ++i) { |
| value = value * 10 + digits[i]; |
| } |
| // Primary weight second byte values: |
| // 74 byte values 2.. 75 for small numbers in two-byte primary weights. |
| // 40 byte values 76..115 for medium numbers in three-byte primary weights. |
| // 16 byte values 116..131 for large numbers in four-byte primary weights. |
| // 124 byte values 132..255 for very large numbers with 4..127 digit pairs. |
| int32_t firstByte = 2; |
| int32_t numBytes = 74; |
| if(value < numBytes) { |
| // Two-byte primary for 0..73, good for day & month numbers etc. |
| uint32_t primary = numericPrimary | ((firstByte + value) << 16); |
| ceBuffer.append(Collation::makeCE(primary), errorCode); |
| return; |
| } |
| value -= numBytes; |
| firstByte += numBytes; |
| numBytes = 40; |
| if(value < numBytes * 254) { |
| // Three-byte primary for 74..10233=74+40*254-1, good for year numbers and more. |
| uint32_t primary = numericPrimary | |
| ((firstByte + value / 254) << 16) | ((2 + value % 254) << 8); |
| ceBuffer.append(Collation::makeCE(primary), errorCode); |
| return; |
| } |
| value -= numBytes * 254; |
| firstByte += numBytes; |
| numBytes = 16; |
| if(value < numBytes * 254 * 254) { |
| // Four-byte primary for 10234..1042489=10234+16*254*254-1. |
| uint32_t primary = numericPrimary | (2 + value % 254); |
| value /= 254; |
| primary |= (2 + value % 254) << 8; |
| value /= 254; |
| primary |= (firstByte + value % 254) << 16; |
| ceBuffer.append(Collation::makeCE(primary), errorCode); |
| return; |
| } |
| // original value > 1042489 |
| } |
| U_ASSERT(length >= 7); |
| |
| // The second primary byte value 132..255 indicates the number of digit pairs (4..127), |
| // then we generate primary bytes with those pairs. |
| // Omit trailing 00 pairs. |
| // Decrement the value for the last pair. |
| |
| // Set the exponent. 4 pairs->132, 5 pairs->133, ..., 127 pairs->255. |
| int32_t numPairs = (length + 1) / 2; |
| uint32_t primary = numericPrimary | ((132 - 4 + numPairs) << 16); |
| // Find the length without trailing 00 pairs. |
| while(digits[length - 1] == 0 && digits[length - 2] == 0) { |
| length -= 2; |
| } |
| // Read the first pair. |
| uint32_t pair; |
| int32_t pos; |
| if(length & 1) { |
| // Only "half a pair" if we have an odd number of digits. |
| pair = digits[0]; |
| pos = 1; |
| } else { |
| pair = digits[0] * 10 + digits[1]; |
| pos = 2; |
| } |
| pair = 11 + 2 * pair; |
| // Add the pairs of digits between pos and length. |
| int32_t shift = 8; |
| while(pos < length) { |
| if(shift == 0) { |
| // Every three pairs/bytes we need to store a 4-byte-primary CE |
| // and start with a new CE with the '0' primary lead byte. |
| primary |= pair; |
| ceBuffer.append(Collation::makeCE(primary), errorCode); |
| primary = numericPrimary; |
| shift = 16; |
| } else { |
| primary |= pair << shift; |
| shift -= 8; |
| } |
| pair = 11 + 2 * (digits[pos] * 10 + digits[pos + 1]); |
| pos += 2; |
| } |
| primary |= (pair - 1) << shift; |
| ceBuffer.append(Collation::makeCE(primary), errorCode); |
| } |
| |
| int64_t |
| CollationIterator::previousCE(UVector32 &offsets, UErrorCode &errorCode) { |
| if(ceBuffer.length > 0) { |
| // Return the previous buffered CE. |
| return ceBuffer.get(--ceBuffer.length); |
| } |
| offsets.removeAllElements(); |
| int32_t limitOffset = getOffset(); |
| UChar32 c = previousCodePoint(errorCode); |
| if(c < 0) { return Collation::NO_CE; } |
| if(data->isUnsafeBackward(c, isNumeric)) { |
| return previousCEUnsafe(c, offsets, errorCode); |
| } |
| // Simple, safe-backwards iteration: |
| // Get a CE going backwards, handle prefixes but no contractions. |
| uint32_t ce32 = data->getCE32(c); |
| const CollationData *d; |
| if(ce32 == Collation::FALLBACK_CE32) { |
| d = data->base; |
| ce32 = d->getCE32(c); |
| } else { |
| d = data; |
| } |
| if(Collation::isSimpleOrLongCE32(ce32)) { |
| return Collation::ceFromCE32(ce32); |
| } |
| appendCEsFromCE32(d, c, ce32, FALSE, errorCode); |
| if(U_SUCCESS(errorCode)) { |
| if(ceBuffer.length > 1) { |
| offsets.addElement(getOffset(), errorCode); |
| // For an expansion, the offset of each non-initial CE is the limit offset, |
| // consistent with forward iteration. |
| while(offsets.size() <= ceBuffer.length) { |
| offsets.addElement(limitOffset, errorCode); |
| } |
| } |
| return ceBuffer.get(--ceBuffer.length); |
| } else { |
| return Collation::NO_CE_PRIMARY; |
| } |
| } |
| |
| int64_t |
| CollationIterator::previousCEUnsafe(UChar32 c, UVector32 &offsets, UErrorCode &errorCode) { |
| // We just move through the input counting safe and unsafe code points |
| // without collecting the unsafe-backward substring into a buffer and |
| // switching to it. |
| // This is to keep the logic simple. Otherwise we would have to handle |
| // prefix matching going before the backward buffer, switching |
| // to iteration and back, etc. |
| // In the most important case of iterating over a normal string, |
| // reading from the string itself is already maximally fast. |
| // The only drawback there is that after getting the CEs we always |
| // skip backward to the safe character rather than switching out |
| // of a backwardBuffer. |
| // But this should not be the common case for previousCE(), |
| // and correctness and maintainability are more important than |
| // complex optimizations. |
| // Find the first safe character before c. |
| int32_t numBackward = 1; |
| while((c = previousCodePoint(errorCode)) >= 0) { |
| ++numBackward; |
| if(!data->isUnsafeBackward(c, isNumeric)) { |
| break; |
| } |
| } |
| // Set the forward iteration limit. |
| // Note: This counts code points. |
| // We cannot enforce a limit in the middle of a surrogate pair or similar. |
| numCpFwd = numBackward; |
| // Reset the forward iterator. |
| cesIndex = 0; |
| U_ASSERT(ceBuffer.length == 0); |
| // Go forward and collect the CEs. |
| int32_t offset = getOffset(); |
| while(numCpFwd > 0) { |
| // nextCE() normally reads one code point. |
| // Contraction matching and digit specials read more and check numCpFwd. |
| --numCpFwd; |
| // Append one or more CEs to the ceBuffer. |
| (void)nextCE(errorCode); |
| U_ASSERT(U_FAILURE(errorCode) || ceBuffer.get(ceBuffer.length - 1) != Collation::NO_CE); |
| // No need to loop for getting each expansion CE from nextCE(). |
| cesIndex = ceBuffer.length; |
| // However, we need to write an offset for each CE. |
| // This is for CollationElementIterator::getOffset() to return |
| // intermediate offsets from the unsafe-backwards segment. |
| U_ASSERT(offsets.size() < ceBuffer.length); |
| offsets.addElement(offset, errorCode); |
| // For an expansion, the offset of each non-initial CE is the limit offset, |
| // consistent with forward iteration. |
| offset = getOffset(); |
| while(offsets.size() < ceBuffer.length) { |
| offsets.addElement(offset, errorCode); |
| } |
| } |
| U_ASSERT(offsets.size() == ceBuffer.length); |
| // End offset corresponding to just after the unsafe-backwards segment. |
| offsets.addElement(offset, errorCode); |
| // Reset the forward iteration limit |
| // and move backward to before the segment for which we fetched CEs. |
| numCpFwd = -1; |
| backwardNumCodePoints(numBackward, errorCode); |
| // Use the collected CEs and return the last one. |
| cesIndex = 0; // Avoid cesIndex > ceBuffer.length when that gets decremented. |
| if(U_SUCCESS(errorCode)) { |
| return ceBuffer.get(--ceBuffer.length); |
| } else { |
| return Collation::NO_CE_PRIMARY; |
| } |
| } |
| |
| U_NAMESPACE_END |
| |
| #endif // !UCONFIG_NO_COLLATION |