| // © 2016 and later: Unicode, Inc. and others. |
| // License & terms of use: http://www.unicode.org/copyright.html |
| /* |
| ******************************************************************************* |
| * Copyright (C) 2013-2015, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| ******************************************************************************* |
| * collationfastlatinbuilder.cpp |
| * |
| * created on: 2013aug09 |
| * created by: Markus W. Scherer |
| */ |
| |
| #define DEBUG_COLLATION_FAST_LATIN_BUILDER 0 // 0 or 1 or 2 |
| #if DEBUG_COLLATION_FAST_LATIN_BUILDER |
| #include <stdio.h> |
| #include <string> |
| #endif |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_COLLATION |
| |
| #include "unicode/ucol.h" |
| #include "unicode/ucharstrie.h" |
| #include "unicode/unistr.h" |
| #include "unicode/uobject.h" |
| #include "unicode/uscript.h" |
| #include "cmemory.h" |
| #include "collation.h" |
| #include "collationdata.h" |
| #include "collationfastlatin.h" |
| #include "collationfastlatinbuilder.h" |
| #include "uassert.h" |
| #include "uvectr64.h" |
| |
| U_NAMESPACE_BEGIN |
| |
| struct CollationData; |
| |
| namespace { |
| |
| /** |
| * Compare two signed int64_t values as if they were unsigned. |
| */ |
| int32_t |
| compareInt64AsUnsigned(int64_t a, int64_t b) { |
| if((uint64_t)a < (uint64_t)b) { |
| return -1; |
| } else if((uint64_t)a > (uint64_t)b) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| // TODO: Merge this with the near-identical version in collationbasedatabuilder.cpp |
| /** |
| * Like Java Collections.binarySearch(List, String, Comparator). |
| * |
| * @return the index>=0 where the item was found, |
| * or the index<0 for inserting the string at ~index in sorted order |
| */ |
| int32_t |
| binarySearch(const int64_t list[], int32_t limit, int64_t ce) { |
| if (limit == 0) { return ~0; } |
| int32_t start = 0; |
| for (;;) { |
| int32_t i = (start + limit) / 2; |
| int32_t cmp = compareInt64AsUnsigned(ce, list[i]); |
| if (cmp == 0) { |
| return i; |
| } else if (cmp < 0) { |
| if (i == start) { |
| return ~start; // insert ce before i |
| } |
| limit = i; |
| } else { |
| if (i == start) { |
| return ~(start + 1); // insert ce after i |
| } |
| start = i; |
| } |
| } |
| } |
| |
| } // namespace |
| |
| CollationFastLatinBuilder::CollationFastLatinBuilder(UErrorCode &errorCode) |
| : ce0(0), ce1(0), |
| contractionCEs(errorCode), uniqueCEs(errorCode), |
| miniCEs(NULL), |
| firstDigitPrimary(0), firstLatinPrimary(0), lastLatinPrimary(0), |
| firstShortPrimary(0), shortPrimaryOverflow(FALSE), |
| headerLength(0) { |
| } |
| |
| CollationFastLatinBuilder::~CollationFastLatinBuilder() { |
| uprv_free(miniCEs); |
| } |
| |
| UBool |
| CollationFastLatinBuilder::forData(const CollationData &data, UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode)) { return FALSE; } |
| if(!result.isEmpty()) { // This builder is not reusable. |
| errorCode = U_INVALID_STATE_ERROR; |
| return FALSE; |
| } |
| if(!loadGroups(data, errorCode)) { return FALSE; } |
| |
| // Fast handling of digits. |
| firstShortPrimary = firstDigitPrimary; |
| getCEs(data, errorCode); |
| if(!encodeUniqueCEs(errorCode)) { return FALSE; } |
| if(shortPrimaryOverflow) { |
| // Give digits long mini primaries, |
| // so that there are more short primaries for letters. |
| firstShortPrimary = firstLatinPrimary; |
| resetCEs(); |
| getCEs(data, errorCode); |
| if(!encodeUniqueCEs(errorCode)) { return FALSE; } |
| } |
| // Note: If we still have a short-primary overflow but not a long-primary overflow, |
| // then we could calculate how many more long primaries would fit, |
| // and set the firstShortPrimary to that many after the current firstShortPrimary, |
| // and try again. |
| // However, this might only benefit the en_US_POSIX tailoring, |
| // and it is simpler to suppress building fast Latin data for it in genrb, |
| // or by returning FALSE here if shortPrimaryOverflow. |
| |
| UBool ok = !shortPrimaryOverflow && |
| encodeCharCEs(errorCode) && encodeContractions(errorCode); |
| contractionCEs.removeAllElements(); // might reduce heap memory usage |
| uniqueCEs.removeAllElements(); |
| return ok; |
| } |
| |
| UBool |
| CollationFastLatinBuilder::loadGroups(const CollationData &data, UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode)) { return FALSE; } |
| headerLength = 1 + NUM_SPECIAL_GROUPS; |
| uint32_t r0 = (CollationFastLatin::VERSION << 8) | headerLength; |
| result.append((UChar)r0); |
| // The first few reordering groups should be special groups |
| // (space, punct, ..., digit) followed by Latn, then Grek and other scripts. |
| for(int32_t i = 0; i < NUM_SPECIAL_GROUPS; ++i) { |
| lastSpecialPrimaries[i] = data.getLastPrimaryForGroup(UCOL_REORDER_CODE_FIRST + i); |
| if(lastSpecialPrimaries[i] == 0) { |
| // missing data |
| return FALSE; |
| } |
| result.append((UChar)0); // reserve a slot for this group |
| } |
| |
| firstDigitPrimary = data.getFirstPrimaryForGroup(UCOL_REORDER_CODE_DIGIT); |
| firstLatinPrimary = data.getFirstPrimaryForGroup(USCRIPT_LATIN); |
| lastLatinPrimary = data.getLastPrimaryForGroup(USCRIPT_LATIN); |
| if(firstDigitPrimary == 0 || firstLatinPrimary == 0) { |
| // missing data |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| UBool |
| CollationFastLatinBuilder::inSameGroup(uint32_t p, uint32_t q) const { |
| // Both or neither need to be encoded as short primaries, |
| // so that we can test only one and use the same bit mask. |
| if(p >= firstShortPrimary) { |
| return q >= firstShortPrimary; |
| } else if(q >= firstShortPrimary) { |
| return FALSE; |
| } |
| // Both or neither must be potentially-variable, |
| // so that we can test only one and determine if both are variable. |
| uint32_t lastVariablePrimary = lastSpecialPrimaries[NUM_SPECIAL_GROUPS - 1]; |
| if(p > lastVariablePrimary) { |
| return q > lastVariablePrimary; |
| } else if(q > lastVariablePrimary) { |
| return FALSE; |
| } |
| // Both will be encoded with long mini primaries. |
| // They must be in the same special reordering group, |
| // so that we can test only one and determine if both are variable. |
| U_ASSERT(p != 0 && q != 0); |
| for(int32_t i = 0;; ++i) { // will terminate |
| uint32_t lastPrimary = lastSpecialPrimaries[i]; |
| if(p <= lastPrimary) { |
| return q <= lastPrimary; |
| } else if(q <= lastPrimary) { |
| return FALSE; |
| } |
| } |
| } |
| |
| void |
| CollationFastLatinBuilder::resetCEs() { |
| contractionCEs.removeAllElements(); |
| uniqueCEs.removeAllElements(); |
| shortPrimaryOverflow = FALSE; |
| result.truncate(headerLength); |
| } |
| |
| void |
| CollationFastLatinBuilder::getCEs(const CollationData &data, UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode)) { return; } |
| int32_t i = 0; |
| for(UChar c = 0;; ++i, ++c) { |
| if(c == CollationFastLatin::LATIN_LIMIT) { |
| c = CollationFastLatin::PUNCT_START; |
| } else if(c == CollationFastLatin::PUNCT_LIMIT) { |
| break; |
| } |
| const CollationData *d; |
| uint32_t ce32 = data.getCE32(c); |
| if(ce32 == Collation::FALLBACK_CE32) { |
| d = data.base; |
| ce32 = d->getCE32(c); |
| } else { |
| d = &data; |
| } |
| if(getCEsFromCE32(*d, c, ce32, errorCode)) { |
| charCEs[i][0] = ce0; |
| charCEs[i][1] = ce1; |
| addUniqueCE(ce0, errorCode); |
| addUniqueCE(ce1, errorCode); |
| } else { |
| // bail out for c |
| charCEs[i][0] = ce0 = Collation::NO_CE; |
| charCEs[i][1] = ce1 = 0; |
| } |
| if(c == 0 && !isContractionCharCE(ce0)) { |
| // Always map U+0000 to a contraction. |
| // Write a contraction list with only a default value if there is no real contraction. |
| U_ASSERT(contractionCEs.isEmpty()); |
| addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode); |
| charCEs[0][0] = ((int64_t)Collation::NO_CE_PRIMARY << 32) | CONTRACTION_FLAG; |
| charCEs[0][1] = 0; |
| } |
| } |
| // Terminate the last contraction list. |
| contractionCEs.addElement(CollationFastLatin::CONTR_CHAR_MASK, errorCode); |
| } |
| |
| UBool |
| CollationFastLatinBuilder::getCEsFromCE32(const CollationData &data, UChar32 c, uint32_t ce32, |
| UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode)) { return FALSE; } |
| ce32 = data.getFinalCE32(ce32); |
| ce1 = 0; |
| if(Collation::isSimpleOrLongCE32(ce32)) { |
| ce0 = Collation::ceFromCE32(ce32); |
| } else { |
| switch(Collation::tagFromCE32(ce32)) { |
| case Collation::LATIN_EXPANSION_TAG: |
| ce0 = Collation::latinCE0FromCE32(ce32); |
| ce1 = Collation::latinCE1FromCE32(ce32); |
| break; |
| case Collation::EXPANSION32_TAG: { |
| const uint32_t *ce32s = data.ce32s + Collation::indexFromCE32(ce32); |
| int32_t length = Collation::lengthFromCE32(ce32); |
| if(length <= 2) { |
| ce0 = Collation::ceFromCE32(ce32s[0]); |
| if(length == 2) { |
| ce1 = Collation::ceFromCE32(ce32s[1]); |
| } |
| break; |
| } else { |
| return FALSE; |
| } |
| } |
| case Collation::EXPANSION_TAG: { |
| const int64_t *ces = data.ces + Collation::indexFromCE32(ce32); |
| int32_t length = Collation::lengthFromCE32(ce32); |
| if(length <= 2) { |
| ce0 = ces[0]; |
| if(length == 2) { |
| ce1 = ces[1]; |
| } |
| break; |
| } else { |
| return FALSE; |
| } |
| } |
| // Note: We could support PREFIX_TAG (assert c>=0) |
| // by recursing on its default CE32 and checking that none of the prefixes starts |
| // with a fast Latin character. |
| // However, currently (2013) there are only the L-before-middle-dot |
| // prefix mappings in the Latin range, and those would be rejected anyway. |
| case Collation::CONTRACTION_TAG: |
| U_ASSERT(c >= 0); |
| return getCEsFromContractionCE32(data, ce32, errorCode); |
| case Collation::OFFSET_TAG: |
| U_ASSERT(c >= 0); |
| ce0 = data.getCEFromOffsetCE32(c, ce32); |
| break; |
| default: |
| return FALSE; |
| } |
| } |
| // A mapping can be completely ignorable. |
| if(ce0 == 0) { return ce1 == 0; } |
| // We do not support an ignorable ce0 unless it is completely ignorable. |
| uint32_t p0 = (uint32_t)(ce0 >> 32); |
| if(p0 == 0) { return FALSE; } |
| // We only support primaries up to the Latin script. |
| if(p0 > lastLatinPrimary) { return FALSE; } |
| // We support non-common secondary and case weights only together with short primaries. |
| uint32_t lower32_0 = (uint32_t)ce0; |
| if(p0 < firstShortPrimary) { |
| uint32_t sc0 = lower32_0 & Collation::SECONDARY_AND_CASE_MASK; |
| if(sc0 != Collation::COMMON_SECONDARY_CE) { return FALSE; } |
| } |
| // No below-common tertiary weights. |
| if((lower32_0 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; } |
| if(ce1 != 0) { |
| // Both primaries must be in the same group, |
| // or both must get short mini primaries, |
| // or a short-primary CE is followed by a secondary CE. |
| // This is so that we can test the first primary and use the same mask for both, |
| // and determine for both whether they are variable. |
| uint32_t p1 = (uint32_t)(ce1 >> 32); |
| if(p1 == 0 ? p0 < firstShortPrimary : !inSameGroup(p0, p1)) { return FALSE; } |
| uint32_t lower32_1 = (uint32_t)ce1; |
| // No tertiary CEs. |
| if((lower32_1 >> 16) == 0) { return FALSE; } |
| // We support non-common secondary and case weights |
| // only for secondary CEs or together with short primaries. |
| if(p1 != 0 && p1 < firstShortPrimary) { |
| uint32_t sc1 = lower32_1 & Collation::SECONDARY_AND_CASE_MASK; |
| if(sc1 != Collation::COMMON_SECONDARY_CE) { return FALSE; } |
| } |
| // No below-common tertiary weights. |
| if((lower32_1 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; } |
| } |
| // No quaternary weights. |
| if(((ce0 | ce1) & Collation::QUATERNARY_MASK) != 0) { return FALSE; } |
| return TRUE; |
| } |
| |
| UBool |
| CollationFastLatinBuilder::getCEsFromContractionCE32(const CollationData &data, uint32_t ce32, |
| UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode)) { return FALSE; } |
| const UChar *p = data.contexts + Collation::indexFromCE32(ce32); |
| ce32 = CollationData::readCE32(p); // Default if no suffix match. |
| // Since the original ce32 is not a prefix mapping, |
| // the default ce32 must not be another contraction. |
| U_ASSERT(!Collation::isContractionCE32(ce32)); |
| int32_t contractionIndex = contractionCEs.size(); |
| if(getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) { |
| addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode); |
| } else { |
| // Bail out for c-without-contraction. |
| addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, Collation::NO_CE, 0, errorCode); |
| } |
| // Handle an encodable contraction unless the next contraction is too long |
| // and starts with the same character. |
| int32_t prevX = -1; |
| UBool addContraction = FALSE; |
| UCharsTrie::Iterator suffixes(p + 2, 0, errorCode); |
| while(suffixes.next(errorCode)) { |
| const UnicodeString &suffix = suffixes.getString(); |
| int32_t x = CollationFastLatin::getCharIndex(suffix.charAt(0)); |
| if(x < 0) { continue; } // ignore anything but fast Latin text |
| if(x == prevX) { |
| if(addContraction) { |
| // Bail out for all contractions starting with this character. |
| addContractionEntry(x, Collation::NO_CE, 0, errorCode); |
| addContraction = FALSE; |
| } |
| continue; |
| } |
| if(addContraction) { |
| addContractionEntry(prevX, ce0, ce1, errorCode); |
| } |
| ce32 = (uint32_t)suffixes.getValue(); |
| if(suffix.length() == 1 && getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) { |
| addContraction = TRUE; |
| } else { |
| addContractionEntry(x, Collation::NO_CE, 0, errorCode); |
| addContraction = FALSE; |
| } |
| prevX = x; |
| } |
| if(addContraction) { |
| addContractionEntry(prevX, ce0, ce1, errorCode); |
| } |
| if(U_FAILURE(errorCode)) { return FALSE; } |
| // Note: There might not be any fast Latin contractions, but |
| // we need to enter contraction handling anyway so that we can bail out |
| // when there is a non-fast-Latin character following. |
| // For example: Danish &Y<<u+umlaut, when we compare Y vs. u\u0308 we need to see the |
| // following umlaut and bail out, rather than return the difference of Y vs. u. |
| ce0 = ((int64_t)Collation::NO_CE_PRIMARY << 32) | CONTRACTION_FLAG | contractionIndex; |
| ce1 = 0; |
| return TRUE; |
| } |
| |
| void |
| CollationFastLatinBuilder::addContractionEntry(int32_t x, int64_t cce0, int64_t cce1, |
| UErrorCode &errorCode) { |
| contractionCEs.addElement(x, errorCode); |
| contractionCEs.addElement(cce0, errorCode); |
| contractionCEs.addElement(cce1, errorCode); |
| addUniqueCE(cce0, errorCode); |
| addUniqueCE(cce1, errorCode); |
| } |
| |
| void |
| CollationFastLatinBuilder::addUniqueCE(int64_t ce, UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode)) { return; } |
| if(ce == 0 || (uint32_t)(ce >> 32) == Collation::NO_CE_PRIMARY) { return; } |
| ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits |
| int32_t i = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce); |
| if(i < 0) { |
| uniqueCEs.insertElementAt(ce, ~i, errorCode); |
| } |
| } |
| |
| uint32_t |
| CollationFastLatinBuilder::getMiniCE(int64_t ce) const { |
| ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits |
| int32_t index = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce); |
| U_ASSERT(index >= 0); |
| return miniCEs[index]; |
| } |
| |
| UBool |
| CollationFastLatinBuilder::encodeUniqueCEs(UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode)) { return FALSE; } |
| uprv_free(miniCEs); |
| miniCEs = (uint16_t *)uprv_malloc(uniqueCEs.size() * 2); |
| if(miniCEs == NULL) { |
| errorCode = U_MEMORY_ALLOCATION_ERROR; |
| return FALSE; |
| } |
| int32_t group = 0; |
| uint32_t lastGroupPrimary = lastSpecialPrimaries[group]; |
| // The lowest unique CE must be at least a secondary CE. |
| U_ASSERT(((uint32_t)uniqueCEs.elementAti(0) >> 16) != 0); |
| uint32_t prevPrimary = 0; |
| uint32_t prevSecondary = 0; |
| uint32_t pri = 0; |
| uint32_t sec = 0; |
| uint32_t ter = CollationFastLatin::COMMON_TER; |
| for(int32_t i = 0; i < uniqueCEs.size(); ++i) { |
| int64_t ce = uniqueCEs.elementAti(i); |
| // Note: At least one of the p/s/t weights changes from one unique CE to the next. |
| // (uniqueCEs does not store case bits.) |
| uint32_t p = (uint32_t)(ce >> 32); |
| if(p != prevPrimary) { |
| while(p > lastGroupPrimary) { |
| U_ASSERT(pri <= CollationFastLatin::MAX_LONG); |
| // Set the group's header entry to the |
| // last "long primary" in or before the group. |
| result.setCharAt(1 + group, (UChar)pri); |
| if(++group < NUM_SPECIAL_GROUPS) { |
| lastGroupPrimary = lastSpecialPrimaries[group]; |
| } else { |
| lastGroupPrimary = 0xffffffff; |
| break; |
| } |
| } |
| if(p < firstShortPrimary) { |
| if(pri == 0) { |
| pri = CollationFastLatin::MIN_LONG; |
| } else if(pri < CollationFastLatin::MAX_LONG) { |
| pri += CollationFastLatin::LONG_INC; |
| } else { |
| #if DEBUG_COLLATION_FAST_LATIN_BUILDER |
| printf("long-primary overflow for %08x\n", p); |
| #endif |
| miniCEs[i] = CollationFastLatin::BAIL_OUT; |
| continue; |
| } |
| } else { |
| if(pri < CollationFastLatin::MIN_SHORT) { |
| pri = CollationFastLatin::MIN_SHORT; |
| } else if(pri < (CollationFastLatin::MAX_SHORT - CollationFastLatin::SHORT_INC)) { |
| // Reserve the highest primary weight for U+FFFF. |
| pri += CollationFastLatin::SHORT_INC; |
| } else { |
| #if DEBUG_COLLATION_FAST_LATIN_BUILDER |
| printf("short-primary overflow for %08x\n", p); |
| #endif |
| shortPrimaryOverflow = TRUE; |
| miniCEs[i] = CollationFastLatin::BAIL_OUT; |
| continue; |
| } |
| } |
| prevPrimary = p; |
| prevSecondary = Collation::COMMON_WEIGHT16; |
| sec = CollationFastLatin::COMMON_SEC; |
| ter = CollationFastLatin::COMMON_TER; |
| } |
| uint32_t lower32 = (uint32_t)ce; |
| uint32_t s = lower32 >> 16; |
| if(s != prevSecondary) { |
| if(pri == 0) { |
| if(sec == 0) { |
| sec = CollationFastLatin::MIN_SEC_HIGH; |
| } else if(sec < CollationFastLatin::MAX_SEC_HIGH) { |
| sec += CollationFastLatin::SEC_INC; |
| } else { |
| miniCEs[i] = CollationFastLatin::BAIL_OUT; |
| continue; |
| } |
| prevSecondary = s; |
| ter = CollationFastLatin::COMMON_TER; |
| } else if(s < Collation::COMMON_WEIGHT16) { |
| if(sec == CollationFastLatin::COMMON_SEC) { |
| sec = CollationFastLatin::MIN_SEC_BEFORE; |
| } else if(sec < CollationFastLatin::MAX_SEC_BEFORE) { |
| sec += CollationFastLatin::SEC_INC; |
| } else { |
| miniCEs[i] = CollationFastLatin::BAIL_OUT; |
| continue; |
| } |
| } else if(s == Collation::COMMON_WEIGHT16) { |
| sec = CollationFastLatin::COMMON_SEC; |
| } else { |
| if(sec < CollationFastLatin::MIN_SEC_AFTER) { |
| sec = CollationFastLatin::MIN_SEC_AFTER; |
| } else if(sec < CollationFastLatin::MAX_SEC_AFTER) { |
| sec += CollationFastLatin::SEC_INC; |
| } else { |
| miniCEs[i] = CollationFastLatin::BAIL_OUT; |
| continue; |
| } |
| } |
| prevSecondary = s; |
| ter = CollationFastLatin::COMMON_TER; |
| } |
| U_ASSERT((lower32 & Collation::CASE_MASK) == 0); // blanked out in uniqueCEs |
| uint32_t t = lower32 & Collation::ONLY_TERTIARY_MASK; |
| if(t > Collation::COMMON_WEIGHT16) { |
| if(ter < CollationFastLatin::MAX_TER_AFTER) { |
| ++ter; |
| } else { |
| miniCEs[i] = CollationFastLatin::BAIL_OUT; |
| continue; |
| } |
| } |
| if(CollationFastLatin::MIN_LONG <= pri && pri <= CollationFastLatin::MAX_LONG) { |
| U_ASSERT(sec == CollationFastLatin::COMMON_SEC); |
| miniCEs[i] = (uint16_t)(pri | ter); |
| } else { |
| miniCEs[i] = (uint16_t)(pri | sec | ter); |
| } |
| } |
| #if DEBUG_COLLATION_FAST_LATIN_BUILDER |
| printf("last mini primary: %04x\n", pri); |
| #endif |
| #if DEBUG_COLLATION_FAST_LATIN_BUILDER >= 2 |
| for(int32_t i = 0; i < uniqueCEs.size(); ++i) { |
| int64_t ce = uniqueCEs.elementAti(i); |
| printf("unique CE 0x%016lx -> 0x%04x\n", ce, miniCEs[i]); |
| } |
| #endif |
| return U_SUCCESS(errorCode); |
| } |
| |
| UBool |
| CollationFastLatinBuilder::encodeCharCEs(UErrorCode &errorCode) { |
| if(U_FAILURE(errorCode)) { return FALSE; } |
| int32_t miniCEsStart = result.length(); |
| for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) { |
| result.append((UChar)0); // initialize to completely ignorable |
| } |
| int32_t indexBase = result.length(); |
| for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) { |
| int64_t ce = charCEs[i][0]; |
| if(isContractionCharCE(ce)) { continue; } // defer contraction |
| uint32_t miniCE = encodeTwoCEs(ce, charCEs[i][1]); |
| if(miniCE > 0xffff) { |
| // Note: There is a chance that this new expansion is the same as a previous one, |
| // and if so, then we could reuse the other expansion. |
| // However, that seems unlikely. |
| int32_t expansionIndex = result.length() - indexBase; |
| if(expansionIndex > (int32_t)CollationFastLatin::INDEX_MASK) { |
| miniCE = CollationFastLatin::BAIL_OUT; |
| } else { |
| result.append((UChar)(miniCE >> 16)).append((UChar)miniCE); |
| miniCE = CollationFastLatin::EXPANSION | expansionIndex; |
| } |
| } |
| result.setCharAt(miniCEsStart + i, (UChar)miniCE); |
| } |
| return U_SUCCESS(errorCode); |
| } |
| |
| UBool |
| CollationFastLatinBuilder::encodeContractions(UErrorCode &errorCode) { |
| // We encode all contraction lists so that the first word of a list |
| // terminates the previous list, and we only need one additional terminator at the end. |
| if(U_FAILURE(errorCode)) { return FALSE; } |
| int32_t indexBase = headerLength + CollationFastLatin::NUM_FAST_CHARS; |
| int32_t firstContractionIndex = result.length(); |
| for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) { |
| int64_t ce = charCEs[i][0]; |
| if(!isContractionCharCE(ce)) { continue; } |
| int32_t contractionIndex = result.length() - indexBase; |
| if(contractionIndex > (int32_t)CollationFastLatin::INDEX_MASK) { |
| result.setCharAt(headerLength + i, CollationFastLatin::BAIL_OUT); |
| continue; |
| } |
| UBool firstTriple = TRUE; |
| for(int32_t index = (int32_t)ce & 0x7fffffff;; index += 3) { |
| int32_t x = static_cast<int32_t>(contractionCEs.elementAti(index)); |
| if((uint32_t)x == CollationFastLatin::CONTR_CHAR_MASK && !firstTriple) { break; } |
| int64_t cce0 = contractionCEs.elementAti(index + 1); |
| int64_t cce1 = contractionCEs.elementAti(index + 2); |
| uint32_t miniCE = encodeTwoCEs(cce0, cce1); |
| if(miniCE == CollationFastLatin::BAIL_OUT) { |
| result.append((UChar)(x | (1 << CollationFastLatin::CONTR_LENGTH_SHIFT))); |
| } else if(miniCE <= 0xffff) { |
| result.append((UChar)(x | (2 << CollationFastLatin::CONTR_LENGTH_SHIFT))); |
| result.append((UChar)miniCE); |
| } else { |
| result.append((UChar)(x | (3 << CollationFastLatin::CONTR_LENGTH_SHIFT))); |
| result.append((UChar)(miniCE >> 16)).append((UChar)miniCE); |
| } |
| firstTriple = FALSE; |
| } |
| // Note: There is a chance that this new contraction list is the same as a previous one, |
| // and if so, then we could truncate the result and reuse the other list. |
| // However, that seems unlikely. |
| result.setCharAt(headerLength + i, |
| (UChar)(CollationFastLatin::CONTRACTION | contractionIndex)); |
| } |
| if(result.length() > firstContractionIndex) { |
| // Terminate the last contraction list. |
| result.append((UChar)CollationFastLatin::CONTR_CHAR_MASK); |
| } |
| if(result.isBogus()) { |
| errorCode = U_MEMORY_ALLOCATION_ERROR; |
| return FALSE; |
| } |
| #if DEBUG_COLLATION_FAST_LATIN_BUILDER |
| printf("** fast Latin %d * 2 = %d bytes\n", result.length(), result.length() * 2); |
| puts(" header & below-digit groups map"); |
| int32_t i = 0; |
| for(; i < headerLength; ++i) { |
| printf(" %04x", result[i]); |
| } |
| printf("\n char mini CEs"); |
| U_ASSERT(CollationFastLatin::NUM_FAST_CHARS % 16 == 0); |
| for(; i < indexBase; i += 16) { |
| UChar32 c = i - headerLength; |
| if(c >= CollationFastLatin::LATIN_LIMIT) { |
| c = CollationFastLatin::PUNCT_START + c - CollationFastLatin::LATIN_LIMIT; |
| } |
| printf("\n %04x:", c); |
| for(int32_t j = 0; j < 16; ++j) { |
| printf(" %04x", result[i + j]); |
| } |
| } |
| printf("\n expansions & contractions"); |
| for(; i < result.length(); ++i) { |
| if((i - indexBase) % 16 == 0) { puts(""); } |
| printf(" %04x", result[i]); |
| } |
| puts(""); |
| #endif |
| return TRUE; |
| } |
| |
| uint32_t |
| CollationFastLatinBuilder::encodeTwoCEs(int64_t first, int64_t second) const { |
| if(first == 0) { |
| return 0; // completely ignorable |
| } |
| if(first == Collation::NO_CE) { |
| return CollationFastLatin::BAIL_OUT; |
| } |
| U_ASSERT((uint32_t)(first >> 32) != Collation::NO_CE_PRIMARY); |
| |
| uint32_t miniCE = getMiniCE(first); |
| if(miniCE == CollationFastLatin::BAIL_OUT) { return miniCE; } |
| if(miniCE >= CollationFastLatin::MIN_SHORT) { |
| // Extract & copy the case bits. |
| // Shift them from normal CE bits 15..14 to mini CE bits 4..3. |
| uint32_t c = (((uint32_t)first & Collation::CASE_MASK) >> (14 - 3)); |
| // Only in mini CEs: Ignorable case bits = 0, lowercase = 1. |
| c += CollationFastLatin::LOWER_CASE; |
| miniCE |= c; |
| } |
| if(second == 0) { return miniCE; } |
| |
| uint32_t miniCE1 = getMiniCE(second); |
| if(miniCE1 == CollationFastLatin::BAIL_OUT) { return miniCE1; } |
| |
| uint32_t case1 = (uint32_t)second & Collation::CASE_MASK; |
| if(miniCE >= CollationFastLatin::MIN_SHORT && |
| (miniCE & CollationFastLatin::SECONDARY_MASK) == CollationFastLatin::COMMON_SEC) { |
| // Try to combine the two mini CEs into one. |
| uint32_t sec1 = miniCE1 & CollationFastLatin::SECONDARY_MASK; |
| uint32_t ter1 = miniCE1 & CollationFastLatin::TERTIARY_MASK; |
| if(sec1 >= CollationFastLatin::MIN_SEC_HIGH && case1 == 0 && |
| ter1 == CollationFastLatin::COMMON_TER) { |
| // sec1>=sec_high implies pri1==0. |
| return (miniCE & ~CollationFastLatin::SECONDARY_MASK) | sec1; |
| } |
| } |
| |
| if(miniCE1 <= CollationFastLatin::SECONDARY_MASK || CollationFastLatin::MIN_SHORT <= miniCE1) { |
| // Secondary CE, or a CE with a short primary, copy the case bits. |
| case1 = (case1 >> (14 - 3)) + CollationFastLatin::LOWER_CASE; |
| miniCE1 |= case1; |
| } |
| return (miniCE << 16) | miniCE1; |
| } |
| |
| U_NAMESPACE_END |
| |
| #endif // !UCONFIG_NO_COLLATION |