| // © 2016 and later: Unicode, Inc. and others. |
| // License & terms of use: http://www.unicode.org/copyright.html |
| /* |
| ******************************************************************************* |
| * |
| * Copyright (C) 2009-2014, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| * |
| ******************************************************************************* |
| * file name: normalizer2impl.cpp |
| * encoding: UTF-8 |
| * tab size: 8 (not used) |
| * indentation:4 |
| * |
| * created on: 2009nov22 |
| * created by: Markus W. Scherer |
| */ |
| |
| // #define UCPTRIE_DEBUG |
| |
| #include "unicode/utypes.h" |
| |
| #if !UCONFIG_NO_NORMALIZATION |
| |
| #include "unicode/bytestream.h" |
| #include "unicode/edits.h" |
| #include "unicode/normalizer2.h" |
| #include "unicode/stringoptions.h" |
| #include "unicode/ucptrie.h" |
| #include "unicode/udata.h" |
| #include "unicode/umutablecptrie.h" |
| #include "unicode/ustring.h" |
| #include "unicode/utf16.h" |
| #include "unicode/utf8.h" |
| #include "bytesinkutil.h" |
| #include "cmemory.h" |
| #include "mutex.h" |
| #include "normalizer2impl.h" |
| #include "putilimp.h" |
| #include "uassert.h" |
| #include "ucptrie_impl.h" |
| #include "uset_imp.h" |
| #include "uvector.h" |
| |
| U_NAMESPACE_BEGIN |
| |
| namespace { |
| |
| /** |
| * UTF-8 lead byte for minNoMaybeCP. |
| * Can be lower than the actual lead byte for c. |
| * Typically U+0300 for NFC/NFD, U+00A0 for NFKC/NFKD, U+0041 for NFKC_Casefold. |
| */ |
| inline uint8_t leadByteForCP(UChar32 c) { |
| if (c <= 0x7f) { |
| return (uint8_t)c; |
| } else if (c <= 0x7ff) { |
| return (uint8_t)(0xc0+(c>>6)); |
| } else { |
| // Should not occur because ccc(U+0300)!=0. |
| return 0xe0; |
| } |
| } |
| |
| /** |
| * Returns the code point from one single well-formed UTF-8 byte sequence |
| * between cpStart and cpLimit. |
| * |
| * Trie UTF-8 macros do not assemble whole code points (for efficiency). |
| * When we do need the code point, we call this function. |
| * We should not need it for normalization-inert data (norm16==0). |
| * Illegal sequences yield the error value norm16==0 just like real normalization-inert code points. |
| */ |
| UChar32 codePointFromValidUTF8(const uint8_t *cpStart, const uint8_t *cpLimit) { |
| // Similar to U8_NEXT_UNSAFE(s, i, c). |
| U_ASSERT(cpStart < cpLimit); |
| uint8_t c = *cpStart; |
| switch(cpLimit-cpStart) { |
| case 1: |
| return c; |
| case 2: |
| return ((c&0x1f)<<6) | (cpStart[1]&0x3f); |
| case 3: |
| // no need for (c&0xf) because the upper bits are truncated after <<12 in the cast to (UChar) |
| return (UChar)((c<<12) | ((cpStart[1]&0x3f)<<6) | (cpStart[2]&0x3f)); |
| case 4: |
| return ((c&7)<<18) | ((cpStart[1]&0x3f)<<12) | ((cpStart[2]&0x3f)<<6) | (cpStart[3]&0x3f); |
| default: |
| UPRV_UNREACHABLE; // Should not occur. |
| } |
| } |
| |
| /** |
| * Returns the last code point in [start, p[ if it is valid and in U+1000..U+D7FF. |
| * Otherwise returns a negative value. |
| */ |
| UChar32 previousHangulOrJamo(const uint8_t *start, const uint8_t *p) { |
| if ((p - start) >= 3) { |
| p -= 3; |
| uint8_t l = *p; |
| uint8_t t1, t2; |
| if (0xe1 <= l && l <= 0xed && |
| (t1 = (uint8_t)(p[1] - 0x80)) <= 0x3f && |
| (t2 = (uint8_t)(p[2] - 0x80)) <= 0x3f && |
| (l < 0xed || t1 <= 0x1f)) { |
| return ((l & 0xf) << 12) | (t1 << 6) | t2; |
| } |
| } |
| return U_SENTINEL; |
| } |
| |
| /** |
| * Returns the offset from the Jamo T base if [src, limit[ starts with a single Jamo T code point. |
| * Otherwise returns a negative value. |
| */ |
| int32_t getJamoTMinusBase(const uint8_t *src, const uint8_t *limit) { |
| // Jamo T: E1 86 A8..E1 87 82 |
| if ((limit - src) >= 3 && *src == 0xe1) { |
| if (src[1] == 0x86) { |
| uint8_t t = src[2]; |
| // The first Jamo T is U+11A8 but JAMO_T_BASE is 11A7. |
| // Offset 0 does not correspond to any conjoining Jamo. |
| if (0xa8 <= t && t <= 0xbf) { |
| return t - 0xa7; |
| } |
| } else if (src[1] == 0x87) { |
| uint8_t t = src[2]; |
| if ((int8_t)t <= (int8_t)0x82u) { |
| return t - (0xa7 - 0x40); |
| } |
| } |
| } |
| return -1; |
| } |
| |
| void |
| appendCodePointDelta(const uint8_t *cpStart, const uint8_t *cpLimit, int32_t delta, |
| ByteSink &sink, Edits *edits) { |
| char buffer[U8_MAX_LENGTH]; |
| int32_t length; |
| int32_t cpLength = (int32_t)(cpLimit - cpStart); |
| if (cpLength == 1) { |
| // The builder makes ASCII map to ASCII. |
| buffer[0] = (uint8_t)(*cpStart + delta); |
| length = 1; |
| } else { |
| int32_t trail = *(cpLimit-1) + delta; |
| if (0x80 <= trail && trail <= 0xbf) { |
| // The delta only changes the last trail byte. |
| --cpLimit; |
| length = 0; |
| do { buffer[length++] = *cpStart++; } while (cpStart < cpLimit); |
| buffer[length++] = (uint8_t)trail; |
| } else { |
| // Decode the code point, add the delta, re-encode. |
| UChar32 c = codePointFromValidUTF8(cpStart, cpLimit) + delta; |
| length = 0; |
| U8_APPEND_UNSAFE(buffer, length, c); |
| } |
| } |
| if (edits != nullptr) { |
| edits->addReplace(cpLength, length); |
| } |
| sink.Append(buffer, length); |
| } |
| |
| } // namespace |
| |
| // ReorderingBuffer -------------------------------------------------------- *** |
| |
| ReorderingBuffer::ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest, |
| UErrorCode &errorCode) : |
| impl(ni), str(dest), |
| start(str.getBuffer(8)), reorderStart(start), limit(start), |
| remainingCapacity(str.getCapacity()), lastCC(0) { |
| if (start == nullptr && U_SUCCESS(errorCode)) { |
| // getBuffer() already did str.setToBogus() |
| errorCode = U_MEMORY_ALLOCATION_ERROR; |
| } |
| } |
| |
| UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) { |
| int32_t length=str.length(); |
| start=str.getBuffer(destCapacity); |
| if(start==NULL) { |
| // getBuffer() already did str.setToBogus() |
| errorCode=U_MEMORY_ALLOCATION_ERROR; |
| return FALSE; |
| } |
| limit=start+length; |
| remainingCapacity=str.getCapacity()-length; |
| reorderStart=start; |
| if(start==limit) { |
| lastCC=0; |
| } else { |
| setIterator(); |
| lastCC=previousCC(); |
| // Set reorderStart after the last code point with cc<=1 if there is one. |
| if(lastCC>1) { |
| while(previousCC()>1) {} |
| } |
| reorderStart=codePointLimit; |
| } |
| return TRUE; |
| } |
| |
| UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const { |
| int32_t length=(int32_t)(limit-start); |
| return |
| length==(int32_t)(otherLimit-otherStart) && |
| 0==u_memcmp(start, otherStart, length); |
| } |
| |
| UBool ReorderingBuffer::equals(const uint8_t *otherStart, const uint8_t *otherLimit) const { |
| U_ASSERT((otherLimit - otherStart) <= INT32_MAX); // ensured by caller |
| int32_t length = (int32_t)(limit - start); |
| int32_t otherLength = (int32_t)(otherLimit - otherStart); |
| // For equal strings, UTF-8 is at least as long as UTF-16, and at most three times as long. |
| if (otherLength < length || (otherLength / 3) > length) { |
| return FALSE; |
| } |
| // Compare valid strings from between normalization boundaries. |
| // (Invalid sequences are normalization-inert.) |
| for (int32_t i = 0, j = 0;;) { |
| if (i >= length) { |
| return j >= otherLength; |
| } else if (j >= otherLength) { |
| return FALSE; |
| } |
| // Not at the end of either string yet. |
| UChar32 c, other; |
| U16_NEXT_UNSAFE(start, i, c); |
| U8_NEXT_UNSAFE(otherStart, j, other); |
| if (c != other) { |
| return FALSE; |
| } |
| } |
| } |
| |
| UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) { |
| if(remainingCapacity<2 && !resize(2, errorCode)) { |
| return FALSE; |
| } |
| if(lastCC<=cc || cc==0) { |
| limit[0]=U16_LEAD(c); |
| limit[1]=U16_TRAIL(c); |
| limit+=2; |
| lastCC=cc; |
| if(cc<=1) { |
| reorderStart=limit; |
| } |
| } else { |
| insert(c, cc); |
| } |
| remainingCapacity-=2; |
| return TRUE; |
| } |
| |
| UBool ReorderingBuffer::append(const UChar *s, int32_t length, UBool isNFD, |
| uint8_t leadCC, uint8_t trailCC, |
| UErrorCode &errorCode) { |
| if(length==0) { |
| return TRUE; |
| } |
| if(remainingCapacity<length && !resize(length, errorCode)) { |
| return FALSE; |
| } |
| remainingCapacity-=length; |
| if(lastCC<=leadCC || leadCC==0) { |
| if(trailCC<=1) { |
| reorderStart=limit+length; |
| } else if(leadCC<=1) { |
| reorderStart=limit+1; // Ok if not a code point boundary. |
| } |
| const UChar *sLimit=s+length; |
| do { *limit++=*s++; } while(s!=sLimit); |
| lastCC=trailCC; |
| } else { |
| int32_t i=0; |
| UChar32 c; |
| U16_NEXT(s, i, length, c); |
| insert(c, leadCC); // insert first code point |
| while(i<length) { |
| U16_NEXT(s, i, length, c); |
| if(i<length) { |
| if (isNFD) { |
| leadCC = Normalizer2Impl::getCCFromYesOrMaybe(impl.getRawNorm16(c)); |
| } else { |
| leadCC = impl.getCC(impl.getNorm16(c)); |
| } |
| } else { |
| leadCC=trailCC; |
| } |
| append(c, leadCC, errorCode); |
| } |
| } |
| return TRUE; |
| } |
| |
| UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) { |
| int32_t cpLength=U16_LENGTH(c); |
| if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) { |
| return FALSE; |
| } |
| remainingCapacity-=cpLength; |
| if(cpLength==1) { |
| *limit++=(UChar)c; |
| } else { |
| limit[0]=U16_LEAD(c); |
| limit[1]=U16_TRAIL(c); |
| limit+=2; |
| } |
| lastCC=0; |
| reorderStart=limit; |
| return TRUE; |
| } |
| |
| UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) { |
| if(s==sLimit) { |
| return TRUE; |
| } |
| int32_t length=(int32_t)(sLimit-s); |
| if(remainingCapacity<length && !resize(length, errorCode)) { |
| return FALSE; |
| } |
| u_memcpy(limit, s, length); |
| limit+=length; |
| remainingCapacity-=length; |
| lastCC=0; |
| reorderStart=limit; |
| return TRUE; |
| } |
| |
| void ReorderingBuffer::remove() { |
| reorderStart=limit=start; |
| remainingCapacity=str.getCapacity(); |
| lastCC=0; |
| } |
| |
| void ReorderingBuffer::removeSuffix(int32_t suffixLength) { |
| if(suffixLength<(limit-start)) { |
| limit-=suffixLength; |
| remainingCapacity+=suffixLength; |
| } else { |
| limit=start; |
| remainingCapacity=str.getCapacity(); |
| } |
| lastCC=0; |
| reorderStart=limit; |
| } |
| |
| UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) { |
| int32_t reorderStartIndex=(int32_t)(reorderStart-start); |
| int32_t length=(int32_t)(limit-start); |
| str.releaseBuffer(length); |
| int32_t newCapacity=length+appendLength; |
| int32_t doubleCapacity=2*str.getCapacity(); |
| if(newCapacity<doubleCapacity) { |
| newCapacity=doubleCapacity; |
| } |
| if(newCapacity<256) { |
| newCapacity=256; |
| } |
| start=str.getBuffer(newCapacity); |
| if(start==NULL) { |
| // getBuffer() already did str.setToBogus() |
| errorCode=U_MEMORY_ALLOCATION_ERROR; |
| return FALSE; |
| } |
| reorderStart=start+reorderStartIndex; |
| limit=start+length; |
| remainingCapacity=str.getCapacity()-length; |
| return TRUE; |
| } |
| |
| void ReorderingBuffer::skipPrevious() { |
| codePointLimit=codePointStart; |
| UChar c=*--codePointStart; |
| if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) { |
| --codePointStart; |
| } |
| } |
| |
| uint8_t ReorderingBuffer::previousCC() { |
| codePointLimit=codePointStart; |
| if(reorderStart>=codePointStart) { |
| return 0; |
| } |
| UChar32 c=*--codePointStart; |
| UChar c2; |
| if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) { |
| --codePointStart; |
| c=U16_GET_SUPPLEMENTARY(c2, c); |
| } |
| return impl.getCCFromYesOrMaybeCP(c); |
| } |
| |
| // Inserts c somewhere before the last character. |
| // Requires 0<cc<lastCC which implies reorderStart<limit. |
| void ReorderingBuffer::insert(UChar32 c, uint8_t cc) { |
| for(setIterator(), skipPrevious(); previousCC()>cc;) {} |
| // insert c at codePointLimit, after the character with prevCC<=cc |
| UChar *q=limit; |
| UChar *r=limit+=U16_LENGTH(c); |
| do { |
| *--r=*--q; |
| } while(codePointLimit!=q); |
| writeCodePoint(q, c); |
| if(cc<=1) { |
| reorderStart=r; |
| } |
| } |
| |
| // Normalizer2Impl --------------------------------------------------------- *** |
| |
| struct CanonIterData : public UMemory { |
| CanonIterData(UErrorCode &errorCode); |
| ~CanonIterData(); |
| void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode); |
| UMutableCPTrie *mutableTrie; |
| UCPTrie *trie; |
| UVector canonStartSets; // contains UnicodeSet * |
| }; |
| |
| Normalizer2Impl::~Normalizer2Impl() { |
| delete fCanonIterData; |
| } |
| |
| void |
| Normalizer2Impl::init(const int32_t *inIndexes, const UCPTrie *inTrie, |
| const uint16_t *inExtraData, const uint8_t *inSmallFCD) { |
| minDecompNoCP = static_cast<UChar>(inIndexes[IX_MIN_DECOMP_NO_CP]); |
| minCompNoMaybeCP = static_cast<UChar>(inIndexes[IX_MIN_COMP_NO_MAYBE_CP]); |
| minLcccCP = static_cast<UChar>(inIndexes[IX_MIN_LCCC_CP]); |
| |
| minYesNo = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO]); |
| minYesNoMappingsOnly = static_cast<uint16_t>(inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY]); |
| minNoNo = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO]); |
| minNoNoCompBoundaryBefore = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE]); |
| minNoNoCompNoMaybeCC = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC]); |
| minNoNoEmpty = static_cast<uint16_t>(inIndexes[IX_MIN_NO_NO_EMPTY]); |
| limitNoNo = static_cast<uint16_t>(inIndexes[IX_LIMIT_NO_NO]); |
| minMaybeYes = static_cast<uint16_t>(inIndexes[IX_MIN_MAYBE_YES]); |
| U_ASSERT((minMaybeYes & 7) == 0); // 8-aligned for noNoDelta bit fields |
| centerNoNoDelta = (minMaybeYes >> DELTA_SHIFT) - MAX_DELTA - 1; |
| |
| normTrie=inTrie; |
| |
| maybeYesCompositions=inExtraData; |
| extraData=maybeYesCompositions+((MIN_NORMAL_MAYBE_YES-minMaybeYes)>>OFFSET_SHIFT); |
| |
| smallFCD=inSmallFCD; |
| } |
| |
| U_CDECL_BEGIN |
| |
| static uint32_t U_CALLCONV |
| segmentStarterMapper(const void * /*context*/, uint32_t value) { |
| return value&CANON_NOT_SEGMENT_STARTER; |
| } |
| |
| U_CDECL_END |
| |
| void |
| Normalizer2Impl::addLcccChars(UnicodeSet &set) const { |
| UChar32 start = 0, end; |
| uint32_t norm16; |
| while ((end = ucptrie_getRange(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT, |
| nullptr, nullptr, &norm16)) >= 0) { |
| if (norm16 > Normalizer2Impl::MIN_NORMAL_MAYBE_YES && |
| norm16 != Normalizer2Impl::JAMO_VT) { |
| set.add(start, end); |
| } else if (minNoNoCompNoMaybeCC <= norm16 && norm16 < limitNoNo) { |
| uint16_t fcd16 = getFCD16(start); |
| if (fcd16 > 0xff) { set.add(start, end); } |
| } |
| start = end + 1; |
| } |
| } |
| |
| void |
| Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const { |
| // Add the start code point of each same-value range of the trie. |
| UChar32 start = 0, end; |
| uint32_t value; |
| while ((end = ucptrie_getRange(normTrie, start, UCPMAP_RANGE_FIXED_LEAD_SURROGATES, INERT, |
| nullptr, nullptr, &value)) >= 0) { |
| sa->add(sa->set, start); |
| if (start != end && isAlgorithmicNoNo((uint16_t)value) && |
| (value & Normalizer2Impl::DELTA_TCCC_MASK) > Normalizer2Impl::DELTA_TCCC_1) { |
| // Range of code points with same-norm16-value algorithmic decompositions. |
| // They might have different non-zero FCD16 values. |
| uint16_t prevFCD16 = getFCD16(start); |
| while (++start <= end) { |
| uint16_t fcd16 = getFCD16(start); |
| if (fcd16 != prevFCD16) { |
| sa->add(sa->set, start); |
| prevFCD16 = fcd16; |
| } |
| } |
| } |
| start = end + 1; |
| } |
| |
| /* add Hangul LV syllables and LV+1 because of skippables */ |
| for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) { |
| sa->add(sa->set, c); |
| sa->add(sa->set, c+1); |
| } |
| sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */ |
| } |
| |
| void |
| Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const { |
| // Add the start code point of each same-value range of the canonical iterator data trie. |
| if (!ensureCanonIterData(errorCode)) { return; } |
| // Currently only used for the SEGMENT_STARTER property. |
| UChar32 start = 0, end; |
| uint32_t value; |
| while ((end = ucptrie_getRange(fCanonIterData->trie, start, UCPMAP_RANGE_NORMAL, 0, |
| segmentStarterMapper, nullptr, &value)) >= 0) { |
| sa->add(sa->set, start); |
| start = end + 1; |
| } |
| } |
| |
| const UChar * |
| Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src, |
| UChar32 minNeedDataCP, |
| ReorderingBuffer *buffer, |
| UErrorCode &errorCode) const { |
| // Make some effort to support NUL-terminated strings reasonably. |
| // Take the part of the fast quick check loop that does not look up |
| // data and check the first part of the string. |
| // After this prefix, determine the string length to simplify the rest |
| // of the code. |
| const UChar *prevSrc=src; |
| UChar c; |
| while((c=*src++)<minNeedDataCP && c!=0) {} |
| // Back out the last character for full processing. |
| // Copy this prefix. |
| if(--src!=prevSrc) { |
| if(buffer!=NULL) { |
| buffer->appendZeroCC(prevSrc, src, errorCode); |
| } |
| } |
| return src; |
| } |
| |
| UnicodeString & |
| Normalizer2Impl::decompose(const UnicodeString &src, UnicodeString &dest, |
| UErrorCode &errorCode) const { |
| if(U_FAILURE(errorCode)) { |
| dest.setToBogus(); |
| return dest; |
| } |
| const UChar *sArray=src.getBuffer(); |
| if(&dest==&src || sArray==NULL) { |
| errorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| dest.setToBogus(); |
| return dest; |
| } |
| decompose(sArray, sArray+src.length(), dest, src.length(), errorCode); |
| return dest; |
| } |
| |
| void |
| Normalizer2Impl::decompose(const UChar *src, const UChar *limit, |
| UnicodeString &dest, |
| int32_t destLengthEstimate, |
| UErrorCode &errorCode) const { |
| if(destLengthEstimate<0 && limit!=NULL) { |
| destLengthEstimate=(int32_t)(limit-src); |
| } |
| dest.remove(); |
| ReorderingBuffer buffer(*this, dest); |
| if(buffer.init(destLengthEstimate, errorCode)) { |
| decompose(src, limit, &buffer, errorCode); |
| } |
| } |
| |
| // Dual functionality: |
| // buffer!=NULL: normalize |
| // buffer==NULL: isNormalized/spanQuickCheckYes |
| const UChar * |
| Normalizer2Impl::decompose(const UChar *src, const UChar *limit, |
| ReorderingBuffer *buffer, |
| UErrorCode &errorCode) const { |
| UChar32 minNoCP=minDecompNoCP; |
| if(limit==NULL) { |
| src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode); |
| if(U_FAILURE(errorCode)) { |
| return src; |
| } |
| limit=u_strchr(src, 0); |
| } |
| |
| const UChar *prevSrc; |
| UChar32 c=0; |
| uint16_t norm16=0; |
| |
| // only for quick check |
| const UChar *prevBoundary=src; |
| uint8_t prevCC=0; |
| |
| for(;;) { |
| // count code units below the minimum or with irrelevant data for the quick check |
| for(prevSrc=src; src!=limit;) { |
| if( (c=*src)<minNoCP || |
| isMostDecompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c)) |
| ) { |
| ++src; |
| } else if(!U16_IS_LEAD(c)) { |
| break; |
| } else { |
| UChar c2; |
| if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
| c=U16_GET_SUPPLEMENTARY(c, c2); |
| norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c); |
| if(isMostDecompYesAndZeroCC(norm16)) { |
| src+=2; |
| } else { |
| break; |
| } |
| } else { |
| ++src; // unpaired lead surrogate: inert |
| } |
| } |
| } |
| // copy these code units all at once |
| if(src!=prevSrc) { |
| if(buffer!=NULL) { |
| if(!buffer->appendZeroCC(prevSrc, src, errorCode)) { |
| break; |
| } |
| } else { |
| prevCC=0; |
| prevBoundary=src; |
| } |
| } |
| if(src==limit) { |
| break; |
| } |
| |
| // Check one above-minimum, relevant code point. |
| src+=U16_LENGTH(c); |
| if(buffer!=NULL) { |
| if(!decompose(c, norm16, *buffer, errorCode)) { |
| break; |
| } |
| } else { |
| if(isDecompYes(norm16)) { |
| uint8_t cc=getCCFromYesOrMaybe(norm16); |
| if(prevCC<=cc || cc==0) { |
| prevCC=cc; |
| if(cc<=1) { |
| prevBoundary=src; |
| } |
| continue; |
| } |
| } |
| return prevBoundary; // "no" or cc out of order |
| } |
| } |
| return src; |
| } |
| |
| // Decompose a short piece of text which is likely to contain characters that |
| // fail the quick check loop and/or where the quick check loop's overhead |
| // is unlikely to be amortized. |
| // Called by the compose() and makeFCD() implementations. |
| const UChar * |
| Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit, |
| UBool stopAtCompBoundary, UBool onlyContiguous, |
| ReorderingBuffer &buffer, UErrorCode &errorCode) const { |
| if (U_FAILURE(errorCode)) { |
| return nullptr; |
| } |
| while(src<limit) { |
| if (stopAtCompBoundary && *src < minCompNoMaybeCP) { |
| return src; |
| } |
| const UChar *prevSrc = src; |
| UChar32 c; |
| uint16_t norm16; |
| UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16); |
| if (stopAtCompBoundary && norm16HasCompBoundaryBefore(norm16)) { |
| return prevSrc; |
| } |
| if(!decompose(c, norm16, buffer, errorCode)) { |
| return nullptr; |
| } |
| if (stopAtCompBoundary && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
| return src; |
| } |
| } |
| return src; |
| } |
| |
| UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16, |
| ReorderingBuffer &buffer, |
| UErrorCode &errorCode) const { |
| // get the decomposition and the lead and trail cc's |
| if (norm16 >= limitNoNo) { |
| if (isMaybeOrNonZeroCC(norm16)) { |
| return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode); |
| } |
| // Maps to an isCompYesAndZeroCC. |
| c=mapAlgorithmic(c, norm16); |
| norm16=getRawNorm16(c); |
| } |
| if (norm16 < minYesNo) { |
| // c does not decompose |
| return buffer.append(c, 0, errorCode); |
| } else if(isHangulLV(norm16) || isHangulLVT(norm16)) { |
| // Hangul syllable: decompose algorithmically |
| UChar jamos[3]; |
| return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode); |
| } |
| // c decomposes, get everything from the variable-length extra data |
| const uint16_t *mapping=getMapping(norm16); |
| uint16_t firstUnit=*mapping; |
| int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
| uint8_t leadCC, trailCC; |
| trailCC=(uint8_t)(firstUnit>>8); |
| if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
| leadCC=(uint8_t)(*(mapping-1)>>8); |
| } else { |
| leadCC=0; |
| } |
| return buffer.append((const UChar *)mapping+1, length, TRUE, leadCC, trailCC, errorCode); |
| } |
| |
| // Dual functionality: |
| // sink != nullptr: normalize |
| // sink == nullptr: isNormalized/spanQuickCheckYes |
| const uint8_t * |
| Normalizer2Impl::decomposeUTF8(uint32_t options, |
| const uint8_t *src, const uint8_t *limit, |
| ByteSink *sink, Edits *edits, UErrorCode &errorCode) const { |
| U_ASSERT(limit != nullptr); |
| UnicodeString s16; |
| uint8_t minNoLead = leadByteForCP(minDecompNoCP); |
| |
| const uint8_t *prevBoundary = src; |
| // only for quick check |
| uint8_t prevCC = 0; |
| |
| for (;;) { |
| // Fast path: Scan over a sequence of characters below the minimum "no" code point, |
| // or with (decompYes && ccc==0) properties. |
| const uint8_t *fastStart = src; |
| const uint8_t *prevSrc; |
| uint16_t norm16 = 0; |
| |
| for (;;) { |
| if (src == limit) { |
| if (prevBoundary != limit && sink != nullptr) { |
| ByteSinkUtil::appendUnchanged(prevBoundary, limit, |
| *sink, options, edits, errorCode); |
| } |
| return src; |
| } |
| if (*src < minNoLead) { |
| ++src; |
| } else { |
| prevSrc = src; |
| UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16); |
| if (!isMostDecompYesAndZeroCC(norm16)) { |
| break; |
| } |
| } |
| } |
| // isMostDecompYesAndZeroCC(norm16) is false, that is, norm16>=minYesNo, |
| // and the current character at [prevSrc..src[ is not a common case with cc=0 |
| // (MIN_NORMAL_MAYBE_YES or JAMO_VT). |
| // It could still be a maybeYes with cc=0. |
| if (prevSrc != fastStart) { |
| // The fast path looped over yes/0 characters before the current one. |
| if (sink != nullptr && |
| !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
| *sink, options, edits, errorCode)) { |
| break; |
| } |
| prevBoundary = prevSrc; |
| prevCC = 0; |
| } |
| |
| // Medium-fast path: Quick check. |
| if (isMaybeOrNonZeroCC(norm16)) { |
| // Does not decompose. |
| uint8_t cc = getCCFromYesOrMaybe(norm16); |
| if (prevCC <= cc || cc == 0) { |
| prevCC = cc; |
| if (cc <= 1) { |
| if (sink != nullptr && |
| !ByteSinkUtil::appendUnchanged(prevBoundary, src, |
| *sink, options, edits, errorCode)) { |
| break; |
| } |
| prevBoundary = src; |
| } |
| continue; |
| } |
| } |
| if (sink == nullptr) { |
| return prevBoundary; // quick check: "no" or cc out of order |
| } |
| |
| // Slow path |
| // Decompose up to and including the current character. |
| if (prevBoundary != prevSrc && norm16HasDecompBoundaryBefore(norm16)) { |
| if (!ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
| *sink, options, edits, errorCode)) { |
| break; |
| } |
| prevBoundary = prevSrc; |
| } |
| ReorderingBuffer buffer(*this, s16, errorCode); |
| if (U_FAILURE(errorCode)) { |
| break; |
| } |
| decomposeShort(prevBoundary, src, STOP_AT_LIMIT, FALSE /* onlyContiguous */, |
| buffer, errorCode); |
| // Decompose until the next boundary. |
| if (buffer.getLastCC() > 1) { |
| src = decomposeShort(src, limit, STOP_AT_DECOMP_BOUNDARY, FALSE /* onlyContiguous */, |
| buffer, errorCode); |
| } |
| if (U_FAILURE(errorCode)) { |
| break; |
| } |
| if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals() |
| errorCode = U_INDEX_OUTOFBOUNDS_ERROR; |
| break; |
| } |
| // We already know there was a change if the original character decomposed; |
| // otherwise compare. |
| if (isMaybeOrNonZeroCC(norm16) && buffer.equals(prevBoundary, src)) { |
| if (!ByteSinkUtil::appendUnchanged(prevBoundary, src, |
| *sink, options, edits, errorCode)) { |
| break; |
| } |
| } else { |
| if (!ByteSinkUtil::appendChange(prevBoundary, src, buffer.getStart(), buffer.length(), |
| *sink, edits, errorCode)) { |
| break; |
| } |
| } |
| prevBoundary = src; |
| prevCC = 0; |
| } |
| return src; |
| } |
| |
| const uint8_t * |
| Normalizer2Impl::decomposeShort(const uint8_t *src, const uint8_t *limit, |
| StopAt stopAt, UBool onlyContiguous, |
| ReorderingBuffer &buffer, UErrorCode &errorCode) const { |
| if (U_FAILURE(errorCode)) { |
| return nullptr; |
| } |
| while (src < limit) { |
| const uint8_t *prevSrc = src; |
| uint16_t norm16; |
| UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16); |
| // Get the decomposition and the lead and trail cc's. |
| UChar32 c = U_SENTINEL; |
| if (norm16 >= limitNoNo) { |
| if (isMaybeOrNonZeroCC(norm16)) { |
| // No comp boundaries around this character. |
| uint8_t cc = getCCFromYesOrMaybe(norm16); |
| if (cc == 0 && stopAt == STOP_AT_DECOMP_BOUNDARY) { |
| return prevSrc; |
| } |
| c = codePointFromValidUTF8(prevSrc, src); |
| if (!buffer.append(c, cc, errorCode)) { |
| return nullptr; |
| } |
| if (stopAt == STOP_AT_DECOMP_BOUNDARY && buffer.getLastCC() <= 1) { |
| return src; |
| } |
| continue; |
| } |
| // Maps to an isCompYesAndZeroCC. |
| if (stopAt != STOP_AT_LIMIT) { |
| return prevSrc; |
| } |
| c = codePointFromValidUTF8(prevSrc, src); |
| c = mapAlgorithmic(c, norm16); |
| norm16 = getRawNorm16(c); |
| } else if (stopAt != STOP_AT_LIMIT && norm16 < minNoNoCompNoMaybeCC) { |
| return prevSrc; |
| } |
| // norm16!=INERT guarantees that [prevSrc, src[ is valid UTF-8. |
| // We do not see invalid UTF-8 here because |
| // its norm16==INERT is normalization-inert, |
| // so it gets copied unchanged in the fast path, |
| // and we stop the slow path where invalid UTF-8 begins. |
| // c >= 0 is the result of an algorithmic mapping. |
| U_ASSERT(c >= 0 || norm16 != INERT); |
| if (norm16 < minYesNo) { |
| if (c < 0) { |
| c = codePointFromValidUTF8(prevSrc, src); |
| } |
| // does not decompose |
| if (!buffer.append(c, 0, errorCode)) { |
| return nullptr; |
| } |
| } else if (isHangulLV(norm16) || isHangulLVT(norm16)) { |
| // Hangul syllable: decompose algorithmically |
| if (c < 0) { |
| c = codePointFromValidUTF8(prevSrc, src); |
| } |
| char16_t jamos[3]; |
| if (!buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode)) { |
| return nullptr; |
| } |
| } else { |
| // The character decomposes, get everything from the variable-length extra data. |
| const uint16_t *mapping = getMapping(norm16); |
| uint16_t firstUnit = *mapping; |
| int32_t length = firstUnit & MAPPING_LENGTH_MASK; |
| uint8_t trailCC = (uint8_t)(firstUnit >> 8); |
| uint8_t leadCC; |
| if (firstUnit & MAPPING_HAS_CCC_LCCC_WORD) { |
| leadCC = (uint8_t)(*(mapping-1) >> 8); |
| } else { |
| leadCC = 0; |
| } |
| if (leadCC == 0 && stopAt == STOP_AT_DECOMP_BOUNDARY) { |
| return prevSrc; |
| } |
| if (!buffer.append((const char16_t *)mapping+1, length, TRUE, leadCC, trailCC, errorCode)) { |
| return nullptr; |
| } |
| } |
| if ((stopAt == STOP_AT_COMP_BOUNDARY && norm16HasCompBoundaryAfter(norm16, onlyContiguous)) || |
| (stopAt == STOP_AT_DECOMP_BOUNDARY && buffer.getLastCC() <= 1)) { |
| return src; |
| } |
| } |
| return src; |
| } |
| |
| const UChar * |
| Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const { |
| uint16_t norm16; |
| if(c<minDecompNoCP || isMaybeOrNonZeroCC(norm16=getNorm16(c))) { |
| // c does not decompose |
| return nullptr; |
| } |
| const UChar *decomp = nullptr; |
| if(isDecompNoAlgorithmic(norm16)) { |
| // Maps to an isCompYesAndZeroCC. |
| c=mapAlgorithmic(c, norm16); |
| decomp=buffer; |
| length=0; |
| U16_APPEND_UNSAFE(buffer, length, c); |
| // The mapping might decompose further. |
| norm16 = getRawNorm16(c); |
| } |
| if (norm16 < minYesNo) { |
| return decomp; |
| } else if(isHangulLV(norm16) || isHangulLVT(norm16)) { |
| // Hangul syllable: decompose algorithmically |
| length=Hangul::decompose(c, buffer); |
| return buffer; |
| } |
| // c decomposes, get everything from the variable-length extra data |
| const uint16_t *mapping=getMapping(norm16); |
| length=*mapping&MAPPING_LENGTH_MASK; |
| return (const UChar *)mapping+1; |
| } |
| |
| // The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1 |
| // so that a raw mapping fits that consists of one unit ("rm0") |
| // plus all but the first two code units of the normal mapping. |
| // The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK. |
| const UChar * |
| Normalizer2Impl::getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const { |
| uint16_t norm16; |
| if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) { |
| // c does not decompose |
| return NULL; |
| } else if(isHangulLV(norm16) || isHangulLVT(norm16)) { |
| // Hangul syllable: decompose algorithmically |
| Hangul::getRawDecomposition(c, buffer); |
| length=2; |
| return buffer; |
| } else if(isDecompNoAlgorithmic(norm16)) { |
| c=mapAlgorithmic(c, norm16); |
| length=0; |
| U16_APPEND_UNSAFE(buffer, length, c); |
| return buffer; |
| } |
| // c decomposes, get everything from the variable-length extra data |
| const uint16_t *mapping=getMapping(norm16); |
| uint16_t firstUnit=*mapping; |
| int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping |
| if(firstUnit&MAPPING_HAS_RAW_MAPPING) { |
| // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word. |
| // Bit 7=MAPPING_HAS_CCC_LCCC_WORD |
| const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1; |
| uint16_t rm0=*rawMapping; |
| if(rm0<=MAPPING_LENGTH_MASK) { |
| length=rm0; |
| return (const UChar *)rawMapping-rm0; |
| } else { |
| // Copy the normal mapping and replace its first two code units with rm0. |
| buffer[0]=(UChar)rm0; |
| u_memcpy(buffer+1, (const UChar *)mapping+1+2, mLength-2); |
| length=mLength-1; |
| return buffer; |
| } |
| } else { |
| length=mLength; |
| return (const UChar *)mapping+1; |
| } |
| } |
| |
| void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit, |
| UBool doDecompose, |
| UnicodeString &safeMiddle, |
| ReorderingBuffer &buffer, |
| UErrorCode &errorCode) const { |
| buffer.copyReorderableSuffixTo(safeMiddle); |
| if(doDecompose) { |
| decompose(src, limit, &buffer, errorCode); |
| return; |
| } |
| // Just merge the strings at the boundary. |
| bool isFirst = true; |
| uint8_t firstCC = 0, prevCC = 0, cc; |
| const UChar *p = src; |
| while (p != limit) { |
| const UChar *codePointStart = p; |
| UChar32 c; |
| uint16_t norm16; |
| UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16); |
| if ((cc = getCC(norm16)) == 0) { |
| p = codePointStart; |
| break; |
| } |
| if (isFirst) { |
| firstCC = cc; |
| isFirst = false; |
| } |
| prevCC = cc; |
| } |
| if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
| limit=u_strchr(p, 0); |
| } |
| |
| if (buffer.append(src, (int32_t)(p - src), FALSE, firstCC, prevCC, errorCode)) { |
| buffer.appendZeroCC(p, limit, errorCode); |
| } |
| } |
| |
| UBool Normalizer2Impl::hasDecompBoundaryBefore(UChar32 c) const { |
| return c < minLcccCP || (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) || |
| norm16HasDecompBoundaryBefore(getNorm16(c)); |
| } |
| |
| UBool Normalizer2Impl::norm16HasDecompBoundaryBefore(uint16_t norm16) const { |
| if (norm16 < minNoNoCompNoMaybeCC) { |
| return TRUE; |
| } |
| if (norm16 >= limitNoNo) { |
| return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT; |
| } |
| // c decomposes, get everything from the variable-length extra data |
| const uint16_t *mapping=getMapping(norm16); |
| uint16_t firstUnit=*mapping; |
| // TRUE if leadCC==0 (hasFCDBoundaryBefore()) |
| return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0; |
| } |
| |
| UBool Normalizer2Impl::hasDecompBoundaryAfter(UChar32 c) const { |
| if (c < minDecompNoCP) { |
| return TRUE; |
| } |
| if (c <= 0xffff && !singleLeadMightHaveNonZeroFCD16(c)) { |
| return TRUE; |
| } |
| return norm16HasDecompBoundaryAfter(getNorm16(c)); |
| } |
| |
| UBool Normalizer2Impl::norm16HasDecompBoundaryAfter(uint16_t norm16) const { |
| if(norm16 <= minYesNo || isHangulLVT(norm16)) { |
| return TRUE; |
| } |
| if (norm16 >= limitNoNo) { |
| if (isMaybeOrNonZeroCC(norm16)) { |
| return norm16 <= MIN_NORMAL_MAYBE_YES || norm16 == JAMO_VT; |
| } |
| // Maps to an isCompYesAndZeroCC. |
| return (norm16 & DELTA_TCCC_MASK) <= DELTA_TCCC_1; |
| } |
| // c decomposes, get everything from the variable-length extra data |
| const uint16_t *mapping=getMapping(norm16); |
| uint16_t firstUnit=*mapping; |
| // decomp after-boundary: same as hasFCDBoundaryAfter(), |
| // fcd16<=1 || trailCC==0 |
| if(firstUnit>0x1ff) { |
| return FALSE; // trailCC>1 |
| } |
| if(firstUnit<=0xff) { |
| return TRUE; // trailCC==0 |
| } |
| // if(trailCC==1) test leadCC==0, same as checking for before-boundary |
| // TRUE if leadCC==0 (hasFCDBoundaryBefore()) |
| return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0; |
| } |
| |
| /* |
| * Finds the recomposition result for |
| * a forward-combining "lead" character, |
| * specified with a pointer to its compositions list, |
| * and a backward-combining "trail" character. |
| * |
| * If the lead and trail characters combine, then this function returns |
| * the following "compositeAndFwd" value: |
| * Bits 21..1 composite character |
| * Bit 0 set if the composite is a forward-combining starter |
| * otherwise it returns -1. |
| * |
| * The compositions list has (trail, compositeAndFwd) pair entries, |
| * encoded as either pairs or triples of 16-bit units. |
| * The last entry has the high bit of its first unit set. |
| * |
| * The list is sorted by ascending trail characters (there are no duplicates). |
| * A linear search is used. |
| * |
| * See normalizer2impl.h for a more detailed description |
| * of the compositions list format. |
| */ |
| int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) { |
| uint16_t key1, firstUnit; |
| if(trail<COMP_1_TRAIL_LIMIT) { |
| // trail character is 0..33FF |
| // result entry may have 2 or 3 units |
| key1=(uint16_t)(trail<<1); |
| while(key1>(firstUnit=*list)) { |
| list+=2+(firstUnit&COMP_1_TRIPLE); |
| } |
| if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { |
| if(firstUnit&COMP_1_TRIPLE) { |
| return ((int32_t)list[1]<<16)|list[2]; |
| } else { |
| return list[1]; |
| } |
| } |
| } else { |
| // trail character is 3400..10FFFF |
| // result entry has 3 units |
| key1=(uint16_t)(COMP_1_TRAIL_LIMIT+ |
| (((trail>>COMP_1_TRAIL_SHIFT))& |
| ~COMP_1_TRIPLE)); |
| uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT); |
| uint16_t secondUnit; |
| for(;;) { |
| if(key1>(firstUnit=*list)) { |
| list+=2+(firstUnit&COMP_1_TRIPLE); |
| } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { |
| if(key2>(secondUnit=list[1])) { |
| if(firstUnit&COMP_1_LAST_TUPLE) { |
| break; |
| } else { |
| list+=3; |
| } |
| } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) { |
| return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2]; |
| } else { |
| break; |
| } |
| } else { |
| break; |
| } |
| } |
| } |
| return -1; |
| } |
| |
| /** |
| * @param list some character's compositions list |
| * @param set recursively receives the composites from these compositions |
| */ |
| void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const { |
| uint16_t firstUnit; |
| int32_t compositeAndFwd; |
| do { |
| firstUnit=*list; |
| if((firstUnit&COMP_1_TRIPLE)==0) { |
| compositeAndFwd=list[1]; |
| list+=2; |
| } else { |
| compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2]; |
| list+=3; |
| } |
| UChar32 composite=compositeAndFwd>>1; |
| if((compositeAndFwd&1)!=0) { |
| addComposites(getCompositionsListForComposite(getRawNorm16(composite)), set); |
| } |
| set.add(composite); |
| } while((firstUnit&COMP_1_LAST_TUPLE)==0); |
| } |
| |
| /* |
| * Recomposes the buffer text starting at recomposeStartIndex |
| * (which is in NFD - decomposed and canonically ordered), |
| * and truncates the buffer contents. |
| * |
| * Note that recomposition never lengthens the text: |
| * Any character consists of either one or two code units; |
| * a composition may contain at most one more code unit than the original starter, |
| * while the combining mark that is removed has at least one code unit. |
| */ |
| void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex, |
| UBool onlyContiguous) const { |
| UChar *p=buffer.getStart()+recomposeStartIndex; |
| UChar *limit=buffer.getLimit(); |
| if(p==limit) { |
| return; |
| } |
| |
| UChar *starter, *pRemove, *q, *r; |
| const uint16_t *compositionsList; |
| UChar32 c, compositeAndFwd; |
| uint16_t norm16; |
| uint8_t cc, prevCC; |
| UBool starterIsSupplementary; |
| |
| // Some of the following variables are not used until we have a forward-combining starter |
| // and are only initialized now to avoid compiler warnings. |
| compositionsList=NULL; // used as indicator for whether we have a forward-combining starter |
| starter=NULL; |
| starterIsSupplementary=FALSE; |
| prevCC=0; |
| |
| for(;;) { |
| UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16); |
| cc=getCCFromYesOrMaybe(norm16); |
| if( // this character combines backward and |
| isMaybe(norm16) && |
| // we have seen a starter that combines forward and |
| compositionsList!=NULL && |
| // the backward-combining character is not blocked |
| (prevCC<cc || prevCC==0) |
| ) { |
| if(isJamoVT(norm16)) { |
| // c is a Jamo V/T, see if we can compose it with the previous character. |
| if(c<Hangul::JAMO_T_BASE) { |
| // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T. |
| UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE); |
| if(prev<Hangul::JAMO_L_COUNT) { |
| pRemove=p-1; |
| UChar syllable=(UChar) |
| (Hangul::HANGUL_BASE+ |
| (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* |
| Hangul::JAMO_T_COUNT); |
| UChar t; |
| if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) { |
| ++p; |
| syllable+=t; // The next character was a Jamo T. |
| } |
| *starter=syllable; |
| // remove the Jamo V/T |
| q=pRemove; |
| r=p; |
| while(r<limit) { |
| *q++=*r++; |
| } |
| limit=q; |
| p=pRemove; |
| } |
| } |
| /* |
| * No "else" for Jamo T: |
| * Since the input is in NFD, there are no Hangul LV syllables that |
| * a Jamo T could combine with. |
| * All Jamo Ts are combined above when handling Jamo Vs. |
| */ |
| if(p==limit) { |
| break; |
| } |
| compositionsList=NULL; |
| continue; |
| } else if((compositeAndFwd=combine(compositionsList, c))>=0) { |
| // The starter and the combining mark (c) do combine. |
| UChar32 composite=compositeAndFwd>>1; |
| |
| // Replace the starter with the composite, remove the combining mark. |
| pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark |
| if(starterIsSupplementary) { |
| if(U_IS_SUPPLEMENTARY(composite)) { |
| // both are supplementary |
| starter[0]=U16_LEAD(composite); |
| starter[1]=U16_TRAIL(composite); |
| } else { |
| *starter=(UChar)composite; |
| // The composite is shorter than the starter, |
| // move the intermediate characters forward one. |
| starterIsSupplementary=FALSE; |
| q=starter+1; |
| r=q+1; |
| while(r<pRemove) { |
| *q++=*r++; |
| } |
| --pRemove; |
| } |
| } else if(U_IS_SUPPLEMENTARY(composite)) { |
| // The composite is longer than the starter, |
| // move the intermediate characters back one. |
| starterIsSupplementary=TRUE; |
| ++starter; // temporarily increment for the loop boundary |
| q=pRemove; |
| r=++pRemove; |
| while(starter<q) { |
| *--r=*--q; |
| } |
| *starter=U16_TRAIL(composite); |
| *--starter=U16_LEAD(composite); // undo the temporary increment |
| } else { |
| // both are on the BMP |
| *starter=(UChar)composite; |
| } |
| |
| /* remove the combining mark by moving the following text over it */ |
| if(pRemove<p) { |
| q=pRemove; |
| r=p; |
| while(r<limit) { |
| *q++=*r++; |
| } |
| limit=q; |
| p=pRemove; |
| } |
| // Keep prevCC because we removed the combining mark. |
| |
| if(p==limit) { |
| break; |
| } |
| // Is the composite a starter that combines forward? |
| if(compositeAndFwd&1) { |
| compositionsList= |
| getCompositionsListForComposite(getRawNorm16(composite)); |
| } else { |
| compositionsList=NULL; |
| } |
| |
| // We combined; continue with looking for compositions. |
| continue; |
| } |
| } |
| |
| // no combination this time |
| prevCC=cc; |
| if(p==limit) { |
| break; |
| } |
| |
| // If c did not combine, then check if it is a starter. |
| if(cc==0) { |
| // Found a new starter. |
| if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) { |
| // It may combine with something, prepare for it. |
| if(U_IS_BMP(c)) { |
| starterIsSupplementary=FALSE; |
| starter=p-1; |
| } else { |
| starterIsSupplementary=TRUE; |
| starter=p-2; |
| } |
| } |
| } else if(onlyContiguous) { |
| // FCC: no discontiguous compositions; any intervening character blocks. |
| compositionsList=NULL; |
| } |
| } |
| buffer.setReorderingLimit(limit); |
| } |
| |
| UChar32 |
| Normalizer2Impl::composePair(UChar32 a, UChar32 b) const { |
| uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16 |
| const uint16_t *list; |
| if(isInert(norm16)) { |
| return U_SENTINEL; |
| } else if(norm16<minYesNoMappingsOnly) { |
| // a combines forward. |
| if(isJamoL(norm16)) { |
| b-=Hangul::JAMO_V_BASE; |
| if(0<=b && b<Hangul::JAMO_V_COUNT) { |
| return |
| (Hangul::HANGUL_BASE+ |
| ((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)* |
| Hangul::JAMO_T_COUNT); |
| } else { |
| return U_SENTINEL; |
| } |
| } else if(isHangulLV(norm16)) { |
| b-=Hangul::JAMO_T_BASE; |
| if(0<b && b<Hangul::JAMO_T_COUNT) { // not b==0! |
| return a+b; |
| } else { |
| return U_SENTINEL; |
| } |
| } else { |
| // 'a' has a compositions list in extraData |
| list=getMapping(norm16); |
| if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list |
| list+= // mapping pointer |
| 1+ // +1 to skip the first unit with the mapping length |
| (*list&MAPPING_LENGTH_MASK); // + mapping length |
| } |
| } |
| } else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) { |
| return U_SENTINEL; |
| } else { |
| list=getCompositionsListForMaybe(norm16); |
| } |
| if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b |
| return U_SENTINEL; |
| } |
| #if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC |
| return combine(list, b)>>1; |
| #else |
| int32_t compositeAndFwd=combine(list, b); |
| return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL; |
| #endif |
| } |
| |
| // Very similar to composeQuickCheck(): Make the same changes in both places if relevant. |
| // doCompose: normalize |
| // !doCompose: isNormalized (buffer must be empty and initialized) |
| UBool |
| Normalizer2Impl::compose(const UChar *src, const UChar *limit, |
| UBool onlyContiguous, |
| UBool doCompose, |
| ReorderingBuffer &buffer, |
| UErrorCode &errorCode) const { |
| const UChar *prevBoundary=src; |
| UChar32 minNoMaybeCP=minCompNoMaybeCP; |
| if(limit==NULL) { |
| src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, |
| doCompose ? &buffer : NULL, |
| errorCode); |
| if(U_FAILURE(errorCode)) { |
| return FALSE; |
| } |
| limit=u_strchr(src, 0); |
| if (prevBoundary != src) { |
| if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) { |
| prevBoundary = src; |
| } else { |
| buffer.removeSuffix(1); |
| prevBoundary = --src; |
| } |
| } |
| } |
| |
| for (;;) { |
| // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point, |
| // or with (compYes && ccc==0) properties. |
| const UChar *prevSrc; |
| UChar32 c = 0; |
| uint16_t norm16 = 0; |
| for (;;) { |
| if (src == limit) { |
| if (prevBoundary != limit && doCompose) { |
| buffer.appendZeroCC(prevBoundary, limit, errorCode); |
| } |
| return TRUE; |
| } |
| if( (c=*src)<minNoMaybeCP || |
| isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c)) |
| ) { |
| ++src; |
| } else { |
| prevSrc = src++; |
| if(!U16_IS_LEAD(c)) { |
| break; |
| } else { |
| UChar c2; |
| if(src!=limit && U16_IS_TRAIL(c2=*src)) { |
| ++src; |
| c=U16_GET_SUPPLEMENTARY(c, c2); |
| norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c); |
| if(!isCompYesAndZeroCC(norm16)) { |
| break; |
| } |
| } |
| } |
| } |
| } |
| // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
| // The current character is either a "noNo" (has a mapping) |
| // or a "maybeYes" (combines backward) |
| // or a "yesYes" with ccc!=0. |
| // It is not a Hangul syllable or Jamo L because those have "yes" properties. |
| |
| // Medium-fast path: Handle cases that do not require full decomposition and recomposition. |
| if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes |
| if (!doCompose) { |
| return FALSE; |
| } |
| // Fast path for mapping a character that is immediately surrounded by boundaries. |
| // In this case, we need not decompose around the current character. |
| if (isDecompNoAlgorithmic(norm16)) { |
| // Maps to a single isCompYesAndZeroCC character |
| // which also implies hasCompBoundaryBefore. |
| if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) || |
| hasCompBoundaryBefore(src, limit)) { |
| if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
| break; |
| } |
| if(!buffer.append(mapAlgorithmic(c, norm16), 0, errorCode)) { |
| break; |
| } |
| prevBoundary = src; |
| continue; |
| } |
| } else if (norm16 < minNoNoCompBoundaryBefore) { |
| // The mapping is comp-normalized which also implies hasCompBoundaryBefore. |
| if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) || |
| hasCompBoundaryBefore(src, limit)) { |
| if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
| break; |
| } |
| const UChar *mapping = reinterpret_cast<const UChar *>(getMapping(norm16)); |
| int32_t length = *mapping++ & MAPPING_LENGTH_MASK; |
| if(!buffer.appendZeroCC(mapping, mapping + length, errorCode)) { |
| break; |
| } |
| prevBoundary = src; |
| continue; |
| } |
| } else if (norm16 >= minNoNoEmpty) { |
| // The current character maps to nothing. |
| // Simply omit it from the output if there is a boundary before _or_ after it. |
| // The character itself implies no boundaries. |
| if (hasCompBoundaryBefore(src, limit) || |
| hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) { |
| if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
| break; |
| } |
| prevBoundary = src; |
| continue; |
| } |
| } |
| // Other "noNo" type, or need to examine more text around this character: |
| // Fall through to the slow path. |
| } else if (isJamoVT(norm16) && prevBoundary != prevSrc) { |
| UChar prev=*(prevSrc-1); |
| if(c<Hangul::JAMO_T_BASE) { |
| // The current character is a Jamo Vowel, |
| // compose with previous Jamo L and following Jamo T. |
| UChar l = (UChar)(prev-Hangul::JAMO_L_BASE); |
| if(l<Hangul::JAMO_L_COUNT) { |
| if (!doCompose) { |
| return FALSE; |
| } |
| int32_t t; |
| if (src != limit && |
| 0 < (t = ((int32_t)*src - Hangul::JAMO_T_BASE)) && |
| t < Hangul::JAMO_T_COUNT) { |
| // The next character is a Jamo T. |
| ++src; |
| } else if (hasCompBoundaryBefore(src, limit)) { |
| // No Jamo T follows, not even via decomposition. |
| t = 0; |
| } else { |
| t = -1; |
| } |
| if (t >= 0) { |
| UChar32 syllable = Hangul::HANGUL_BASE + |
| (l*Hangul::JAMO_V_COUNT + (c-Hangul::JAMO_V_BASE)) * |
| Hangul::JAMO_T_COUNT + t; |
| --prevSrc; // Replace the Jamo L as well. |
| if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
| break; |
| } |
| if(!buffer.appendBMP((UChar)syllable, 0, errorCode)) { |
| break; |
| } |
| prevBoundary = src; |
| continue; |
| } |
| // If we see L+V+x where x!=T then we drop to the slow path, |
| // decompose and recompose. |
| // This is to deal with NFKC finding normal L and V but a |
| // compatibility variant of a T. |
| // We need to either fully compose that combination here |
| // (which would complicate the code and may not work with strange custom data) |
| // or use the slow path. |
| } |
| } else if (Hangul::isHangulLV(prev)) { |
| // The current character is a Jamo Trailing consonant, |
| // compose with previous Hangul LV that does not contain a Jamo T. |
| if (!doCompose) { |
| return FALSE; |
| } |
| UChar32 syllable = prev + c - Hangul::JAMO_T_BASE; |
| --prevSrc; // Replace the Hangul LV as well. |
| if (prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
| break; |
| } |
| if(!buffer.appendBMP((UChar)syllable, 0, errorCode)) { |
| break; |
| } |
| prevBoundary = src; |
| continue; |
| } |
| // No matching context, or may need to decompose surrounding text first: |
| // Fall through to the slow path. |
| } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC |
| // One or more combining marks that do not combine-back: |
| // Check for canonical order, copy unchanged if ok and |
| // if followed by a character with a boundary-before. |
| uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0 |
| if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) { |
| // Fails FCD test, need to decompose and contiguously recompose. |
| if (!doCompose) { |
| return FALSE; |
| } |
| } else { |
| // If !onlyContiguous (not FCC), then we ignore the tccc of |
| // the previous character which passed the quick check "yes && ccc==0" test. |
| const UChar *nextSrc; |
| uint16_t n16; |
| for (;;) { |
| if (src == limit) { |
| if (doCompose) { |
| buffer.appendZeroCC(prevBoundary, limit, errorCode); |
| } |
| return TRUE; |
| } |
| uint8_t prevCC = cc; |
| nextSrc = src; |
| UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, n16); |
| if (n16 >= MIN_YES_YES_WITH_CC) { |
| cc = getCCFromNormalYesOrMaybe(n16); |
| if (prevCC > cc) { |
| if (!doCompose) { |
| return FALSE; |
| } |
| break; |
| } |
| } else { |
| break; |
| } |
| src = nextSrc; |
| } |
| // src is after the last in-order combining mark. |
| // If there is a boundary here, then we continue with no change. |
| if (norm16HasCompBoundaryBefore(n16)) { |
| if (isCompYesAndZeroCC(n16)) { |
| src = nextSrc; |
| } |
| continue; |
| } |
| // Use the slow path. There is no boundary in [prevSrc, src[. |
| } |
| } |
| |
| // Slow path: Find the nearest boundaries around the current character, |
| // decompose and recompose. |
| if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) { |
| const UChar *p = prevSrc; |
| UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, norm16); |
| if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
| prevSrc = p; |
| } |
| } |
| if (doCompose && prevBoundary != prevSrc && !buffer.appendZeroCC(prevBoundary, prevSrc, errorCode)) { |
| break; |
| } |
| int32_t recomposeStartIndex=buffer.length(); |
| // We know there is not a boundary here. |
| decomposeShort(prevSrc, src, FALSE /* !stopAtCompBoundary */, onlyContiguous, |
| buffer, errorCode); |
| // Decompose until the next boundary. |
| src = decomposeShort(src, limit, TRUE /* stopAtCompBoundary */, onlyContiguous, |
| buffer, errorCode); |
| if (U_FAILURE(errorCode)) { |
| break; |
| } |
| if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals() |
| errorCode = U_INDEX_OUTOFBOUNDS_ERROR; |
| return TRUE; |
| } |
| recompose(buffer, recomposeStartIndex, onlyContiguous); |
| if(!doCompose) { |
| if(!buffer.equals(prevSrc, src)) { |
| return FALSE; |
| } |
| buffer.remove(); |
| } |
| prevBoundary=src; |
| } |
| return TRUE; |
| } |
| |
| // Very similar to compose(): Make the same changes in both places if relevant. |
| // pQCResult==NULL: spanQuickCheckYes |
| // pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES) |
| const UChar * |
| Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit, |
| UBool onlyContiguous, |
| UNormalizationCheckResult *pQCResult) const { |
| const UChar *prevBoundary=src; |
| UChar32 minNoMaybeCP=minCompNoMaybeCP; |
| if(limit==NULL) { |
| UErrorCode errorCode=U_ZERO_ERROR; |
| src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode); |
| limit=u_strchr(src, 0); |
| if (prevBoundary != src) { |
| if (hasCompBoundaryAfter(*(src-1), onlyContiguous)) { |
| prevBoundary = src; |
| } else { |
| prevBoundary = --src; |
| } |
| } |
| } |
| |
| for(;;) { |
| // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point, |
| // or with (compYes && ccc==0) properties. |
| const UChar *prevSrc; |
| UChar32 c = 0; |
| uint16_t norm16 = 0; |
| for (;;) { |
| if(src==limit) { |
| return src; |
| } |
| if( (c=*src)<minNoMaybeCP || |
| isCompYesAndZeroCC(norm16=UCPTRIE_FAST_BMP_GET(normTrie, UCPTRIE_16, c)) |
| ) { |
| ++src; |
| } else { |
| prevSrc = src++; |
| if(!U16_IS_LEAD(c)) { |
| break; |
| } else { |
| UChar c2; |
| if(src!=limit && U16_IS_TRAIL(c2=*src)) { |
| ++src; |
| c=U16_GET_SUPPLEMENTARY(c, c2); |
| norm16=UCPTRIE_FAST_SUPP_GET(normTrie, UCPTRIE_16, c); |
| if(!isCompYesAndZeroCC(norm16)) { |
| break; |
| } |
| } |
| } |
| } |
| } |
| // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
| // The current character is either a "noNo" (has a mapping) |
| // or a "maybeYes" (combines backward) |
| // or a "yesYes" with ccc!=0. |
| // It is not a Hangul syllable or Jamo L because those have "yes" properties. |
| |
| uint16_t prevNorm16 = INERT; |
| if (prevBoundary != prevSrc) { |
| if (norm16HasCompBoundaryBefore(norm16)) { |
| prevBoundary = prevSrc; |
| } else { |
| const UChar *p = prevSrc; |
| uint16_t n16; |
| UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, prevBoundary, p, c, n16); |
| if (norm16HasCompBoundaryAfter(n16, onlyContiguous)) { |
| prevBoundary = prevSrc; |
| } else { |
| prevBoundary = p; |
| prevNorm16 = n16; |
| } |
| } |
| } |
| |
| if(isMaybeOrNonZeroCC(norm16)) { |
| uint8_t cc=getCCFromYesOrMaybe(norm16); |
| if (onlyContiguous /* FCC */ && cc != 0 && |
| getTrailCCFromCompYesAndZeroCC(prevNorm16) > cc) { |
| // The [prevBoundary..prevSrc[ character |
| // passed the quick check "yes && ccc==0" test |
| // but is out of canonical order with the current combining mark. |
| } else { |
| // If !onlyContiguous (not FCC), then we ignore the tccc of |
| // the previous character which passed the quick check "yes && ccc==0" test. |
| const UChar *nextSrc; |
| for (;;) { |
| if (norm16 < MIN_YES_YES_WITH_CC) { |
| if (pQCResult != nullptr) { |
| *pQCResult = UNORM_MAYBE; |
| } else { |
| return prevBoundary; |
| } |
| } |
| if (src == limit) { |
| return src; |
| } |
| uint8_t prevCC = cc; |
| nextSrc = src; |
| UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, c, norm16); |
| if (isMaybeOrNonZeroCC(norm16)) { |
| cc = getCCFromYesOrMaybe(norm16); |
| if (!(prevCC <= cc || cc == 0)) { |
| break; |
| } |
| } else { |
| break; |
| } |
| src = nextSrc; |
| } |
| // src is after the last in-order combining mark. |
| if (isCompYesAndZeroCC(norm16)) { |
| prevBoundary = src; |
| src = nextSrc; |
| continue; |
| } |
| } |
| } |
| if(pQCResult!=NULL) { |
| *pQCResult=UNORM_NO; |
| } |
| return prevBoundary; |
| } |
| } |
| |
| void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit, |
| UBool doCompose, |
| UBool onlyContiguous, |
| UnicodeString &safeMiddle, |
| ReorderingBuffer &buffer, |
| UErrorCode &errorCode) const { |
| if(!buffer.isEmpty()) { |
| const UChar *firstStarterInSrc=findNextCompBoundary(src, limit, onlyContiguous); |
| if(src!=firstStarterInSrc) { |
| const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(), |
| buffer.getLimit(), onlyContiguous); |
| int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest); |
| UnicodeString middle(lastStarterInDest, destSuffixLength); |
| buffer.removeSuffix(destSuffixLength); |
| safeMiddle=middle; |
| middle.append(src, (int32_t)(firstStarterInSrc-src)); |
| const UChar *middleStart=middle.getBuffer(); |
| compose(middleStart, middleStart+middle.length(), onlyContiguous, |
| TRUE, buffer, errorCode); |
| if(U_FAILURE(errorCode)) { |
| return; |
| } |
| src=firstStarterInSrc; |
| } |
| } |
| if(doCompose) { |
| compose(src, limit, onlyContiguous, TRUE, buffer, errorCode); |
| } else { |
| if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
| limit=u_strchr(src, 0); |
| } |
| buffer.appendZeroCC(src, limit, errorCode); |
| } |
| } |
| |
| UBool |
| Normalizer2Impl::composeUTF8(uint32_t options, UBool onlyContiguous, |
| const uint8_t *src, const uint8_t *limit, |
| ByteSink *sink, Edits *edits, UErrorCode &errorCode) const { |
| U_ASSERT(limit != nullptr); |
| UnicodeString s16; |
| uint8_t minNoMaybeLead = leadByteForCP(minCompNoMaybeCP); |
| const uint8_t *prevBoundary = src; |
| |
| for (;;) { |
| // Fast path: Scan over a sequence of characters below the minimum "no or maybe" code point, |
| // or with (compYes && ccc==0) properties. |
| const uint8_t *prevSrc; |
| uint16_t norm16 = 0; |
| for (;;) { |
| if (src == limit) { |
| if (prevBoundary != limit && sink != nullptr) { |
| ByteSinkUtil::appendUnchanged(prevBoundary, limit, |
| *sink, options, edits, errorCode); |
| } |
| return TRUE; |
| } |
| if (*src < minNoMaybeLead) { |
| ++src; |
| } else { |
| prevSrc = src; |
| UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16); |
| if (!isCompYesAndZeroCC(norm16)) { |
| break; |
| } |
| } |
| } |
| // isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
| // The current character is either a "noNo" (has a mapping) |
| // or a "maybeYes" (combines backward) |
| // or a "yesYes" with ccc!=0. |
| // It is not a Hangul syllable or Jamo L because those have "yes" properties. |
| |
| // Medium-fast path: Handle cases that do not require full decomposition and recomposition. |
| if (!isMaybeOrNonZeroCC(norm16)) { // minNoNo <= norm16 < minMaybeYes |
| if (sink == nullptr) { |
| return FALSE; |
| } |
| // Fast path for mapping a character that is immediately surrounded by boundaries. |
| // In this case, we need not decompose around the current character. |
| if (isDecompNoAlgorithmic(norm16)) { |
| // Maps to a single isCompYesAndZeroCC character |
| // which also implies hasCompBoundaryBefore. |
| if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) || |
| hasCompBoundaryBefore(src, limit)) { |
| if (prevBoundary != prevSrc && |
| !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
| *sink, options, edits, errorCode)) { |
| break; |
| } |
| appendCodePointDelta(prevSrc, src, getAlgorithmicDelta(norm16), *sink, edits); |
| prevBoundary = src; |
| continue; |
| } |
| } else if (norm16 < minNoNoCompBoundaryBefore) { |
| // The mapping is comp-normalized which also implies hasCompBoundaryBefore. |
| if (norm16HasCompBoundaryAfter(norm16, onlyContiguous) || |
| hasCompBoundaryBefore(src, limit)) { |
| if (prevBoundary != prevSrc && |
| !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
| *sink, options, edits, errorCode)) { |
| break; |
| } |
| const uint16_t *mapping = getMapping(norm16); |
| int32_t length = *mapping++ & MAPPING_LENGTH_MASK; |
| if (!ByteSinkUtil::appendChange(prevSrc, src, (const UChar *)mapping, length, |
| *sink, edits, errorCode)) { |
| break; |
| } |
| prevBoundary = src; |
| continue; |
| } |
| } else if (norm16 >= minNoNoEmpty) { |
| // The current character maps to nothing. |
| // Simply omit it from the output if there is a boundary before _or_ after it. |
| // The character itself implies no boundaries. |
| if (hasCompBoundaryBefore(src, limit) || |
| hasCompBoundaryAfter(prevBoundary, prevSrc, onlyContiguous)) { |
| if (prevBoundary != prevSrc && |
| !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
| *sink, options, edits, errorCode)) { |
| break; |
| } |
| if (edits != nullptr) { |
| edits->addReplace((int32_t)(src - prevSrc), 0); |
| } |
| prevBoundary = src; |
| continue; |
| } |
| } |
| // Other "noNo" type, or need to examine more text around this character: |
| // Fall through to the slow path. |
| } else if (isJamoVT(norm16)) { |
| // Jamo L: E1 84 80..92 |
| // Jamo V: E1 85 A1..B5 |
| // Jamo T: E1 86 A8..E1 87 82 |
| U_ASSERT((src - prevSrc) == 3 && *prevSrc == 0xe1); |
| UChar32 prev = previousHangulOrJamo(prevBoundary, prevSrc); |
| if (prevSrc[1] == 0x85) { |
| // The current character is a Jamo Vowel, |
| // compose with previous Jamo L and following Jamo T. |
| UChar32 l = prev - Hangul::JAMO_L_BASE; |
| if ((uint32_t)l < Hangul::JAMO_L_COUNT) { |
| if (sink == nullptr) { |
| return FALSE; |
| } |
| int32_t t = getJamoTMinusBase(src, limit); |
| if (t >= 0) { |
| // The next character is a Jamo T. |
| src += 3; |
| } else if (hasCompBoundaryBefore(src, limit)) { |
| // No Jamo T follows, not even via decomposition. |
| t = 0; |
| } |
| if (t >= 0) { |
| UChar32 syllable = Hangul::HANGUL_BASE + |
| (l*Hangul::JAMO_V_COUNT + (prevSrc[2]-0xa1)) * |
| Hangul::JAMO_T_COUNT + t; |
| prevSrc -= 3; // Replace the Jamo L as well. |
| if (prevBoundary != prevSrc && |
| !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
| *sink, options, edits, errorCode)) { |
| break; |
| } |
| ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits); |
| prevBoundary = src; |
| continue; |
| } |
| // If we see L+V+x where x!=T then we drop to the slow path, |
| // decompose and recompose. |
| // This is to deal with NFKC finding normal L and V but a |
| // compatibility variant of a T. |
| // We need to either fully compose that combination here |
| // (which would complicate the code and may not work with strange custom data) |
| // or use the slow path. |
| } |
| } else if (Hangul::isHangulLV(prev)) { |
| // The current character is a Jamo Trailing consonant, |
| // compose with previous Hangul LV that does not contain a Jamo T. |
| if (sink == nullptr) { |
| return FALSE; |
| } |
| UChar32 syllable = prev + getJamoTMinusBase(prevSrc, src); |
| prevSrc -= 3; // Replace the Hangul LV as well. |
| if (prevBoundary != prevSrc && |
| !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
| *sink, options, edits, errorCode)) { |
| break; |
| } |
| ByteSinkUtil::appendCodePoint(prevSrc, src, syllable, *sink, edits); |
| prevBoundary = src; |
| continue; |
| } |
| // No matching context, or may need to decompose surrounding text first: |
| // Fall through to the slow path. |
| } else if (norm16 > JAMO_VT) { // norm16 >= MIN_YES_YES_WITH_CC |
| // One or more combining marks that do not combine-back: |
| // Check for canonical order, copy unchanged if ok and |
| // if followed by a character with a boundary-before. |
| uint8_t cc = getCCFromNormalYesOrMaybe(norm16); // cc!=0 |
| if (onlyContiguous /* FCC */ && getPreviousTrailCC(prevBoundary, prevSrc) > cc) { |
| // Fails FCD test, need to decompose and contiguously recompose. |
| if (sink == nullptr) { |
| return FALSE; |
| } |
| } else { |
| // If !onlyContiguous (not FCC), then we ignore the tccc of |
| // the previous character which passed the quick check "yes && ccc==0" test. |
| const uint8_t *nextSrc; |
| uint16_t n16; |
| for (;;) { |
| if (src == limit) { |
| if (sink != nullptr) { |
| ByteSinkUtil::appendUnchanged(prevBoundary, limit, |
| *sink, options, edits, errorCode); |
| } |
| return TRUE; |
| } |
| uint8_t prevCC = cc; |
| nextSrc = src; |
| UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, nextSrc, limit, n16); |
| if (n16 >= MIN_YES_YES_WITH_CC) { |
| cc = getCCFromNormalYesOrMaybe(n16); |
| if (prevCC > cc) { |
| if (sink == nullptr) { |
| return FALSE; |
| } |
| break; |
| } |
| } else { |
| break; |
| } |
| src = nextSrc; |
| } |
| // src is after the last in-order combining mark. |
| // If there is a boundary here, then we continue with no change. |
| if (norm16HasCompBoundaryBefore(n16)) { |
| if (isCompYesAndZeroCC(n16)) { |
| src = nextSrc; |
| } |
| continue; |
| } |
| // Use the slow path. There is no boundary in [prevSrc, src[. |
| } |
| } |
| |
| // Slow path: Find the nearest boundaries around the current character, |
| // decompose and recompose. |
| if (prevBoundary != prevSrc && !norm16HasCompBoundaryBefore(norm16)) { |
| const uint8_t *p = prevSrc; |
| UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, prevBoundary, p, norm16); |
| if (!norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
| prevSrc = p; |
| } |
| } |
| ReorderingBuffer buffer(*this, s16, errorCode); |
| if (U_FAILURE(errorCode)) { |
| break; |
| } |
| // We know there is not a boundary here. |
| decomposeShort(prevSrc, src, STOP_AT_LIMIT, onlyContiguous, |
| buffer, errorCode); |
| // Decompose until the next boundary. |
| src = decomposeShort(src, limit, STOP_AT_COMP_BOUNDARY, onlyContiguous, |
| buffer, errorCode); |
| if (U_FAILURE(errorCode)) { |
| break; |
| } |
| if ((src - prevSrc) > INT32_MAX) { // guard before buffer.equals() |
| errorCode = U_INDEX_OUTOFBOUNDS_ERROR; |
| return TRUE; |
| } |
| recompose(buffer, 0, onlyContiguous); |
| if (!buffer.equals(prevSrc, src)) { |
| if (sink == nullptr) { |
| return FALSE; |
| } |
| if (prevBoundary != prevSrc && |
| !ByteSinkUtil::appendUnchanged(prevBoundary, prevSrc, |
| *sink, options, edits, errorCode)) { |
| break; |
| } |
| if (!ByteSinkUtil::appendChange(prevSrc, src, buffer.getStart(), buffer.length(), |
| *sink, edits, errorCode)) { |
| break; |
| } |
| prevBoundary = src; |
| } |
| } |
| return TRUE; |
| } |
| |
| UBool Normalizer2Impl::hasCompBoundaryBefore(const UChar *src, const UChar *limit) const { |
| if (src == limit || *src < minCompNoMaybeCP) { |
| return TRUE; |
| } |
| UChar32 c; |
| uint16_t norm16; |
| UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, src, limit, c, norm16); |
| return norm16HasCompBoundaryBefore(norm16); |
| } |
| |
| UBool Normalizer2Impl::hasCompBoundaryBefore(const uint8_t *src, const uint8_t *limit) const { |
| if (src == limit) { |
| return TRUE; |
| } |
| uint16_t norm16; |
| UCPTRIE_FAST_U8_NEXT(normTrie, UCPTRIE_16, src, limit, norm16); |
| return norm16HasCompBoundaryBefore(norm16); |
| } |
| |
| UBool Normalizer2Impl::hasCompBoundaryAfter(const UChar *start, const UChar *p, |
| UBool onlyContiguous) const { |
| if (start == p) { |
| return TRUE; |
| } |
| UChar32 c; |
| uint16_t norm16; |
| UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16); |
| return norm16HasCompBoundaryAfter(norm16, onlyContiguous); |
| } |
| |
| UBool Normalizer2Impl::hasCompBoundaryAfter(const uint8_t *start, const uint8_t *p, |
| UBool onlyContiguous) const { |
| if (start == p) { |
| return TRUE; |
| } |
| uint16_t norm16; |
| UCPTRIE_FAST_U8_PREV(normTrie, UCPTRIE_16, start, p, norm16); |
| return norm16HasCompBoundaryAfter(norm16, onlyContiguous); |
| } |
| |
| const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p, |
| UBool onlyContiguous) const { |
| while (p != start) { |
| const UChar *codePointLimit = p; |
| UChar32 c; |
| uint16_t norm16; |
| UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16); |
| if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
| return codePointLimit; |
| } |
| if (hasCompBoundaryBefore(c, norm16)) { |
| return p; |
| } |
| } |
| return p; |
| } |
| |
| const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit, |
| UBool onlyContiguous) const { |
| while (p != limit) { |
| const UChar *codePointStart = p; |
| UChar32 c; |
| uint16_t norm16; |
| UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16); |
| if (hasCompBoundaryBefore(c, norm16)) { |
| return codePointStart; |
| } |
| if (norm16HasCompBoundaryAfter(norm16, onlyContiguous)) { |
| return p; |
| } |
| } |
| return p; |
| } |
| |
| uint8_t Normalizer2Impl::getPreviousTrailCC(const UChar *start, const UChar *p) const { |
| if (start == p) { |
| return 0; |
| } |
| int32_t i = (int32_t)(p - start); |
| UChar32 c; |
| U16_PREV(start, 0, i, c); |
| return (uint8_t)getFCD16(c); |
| } |
| |
| uint8_t Normalizer2Impl::getPreviousTrailCC(const uint8_t *start, const uint8_t *p) const { |
| if (start == p) { |
| return 0; |
| } |
| int32_t i = (int32_t)(p - start); |
| UChar32 c; |
| U8_PREV(start, 0, i, c); |
| return (uint8_t)getFCD16(c); |
| } |
| |
| // Note: normalizer2impl.cpp r30982 (2011-nov-27) |
| // still had getFCDTrie() which built and cached an FCD trie. |
| // That provided faster access to FCD data than getFCD16FromNormData() |
| // but required synchronization and consumed some 10kB of heap memory |
| // in any process that uses FCD (e.g., via collation). |
| // minDecompNoCP etc. and smallFCD[] are intended to help with any loss of performance, |
| // at least for ASCII & CJK. |
| |
| // Ticket 20907 - The optimizer in MSVC/Visual Studio versions below 16.4 has trouble with this |
| // function on Windows ARM64. As a work-around, we disable optimizations for this function. |
| // This work-around could/should be removed once the following versions of Visual Studio are no |
| // longer supported: All versions of VS2017, and versions of VS2019 below 16.4. |
| #if (defined(_MSC_VER) && (defined(_M_ARM64)) && (_MSC_VER < 1924)) |
| #pragma optimize( "", off ) |
| #endif |
| // Gets the FCD value from the regular normalization data. |
| uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const { |
| uint16_t norm16=getNorm16(c); |
| if (norm16 >= limitNoNo) { |
| if(norm16>=MIN_NORMAL_MAYBE_YES) { |
| // combining mark |
| norm16=getCCFromNormalYesOrMaybe(norm16); |
| return norm16|(norm16<<8); |
| } else if(norm16>=minMaybeYes) { |
| return 0; |
| } else { // isDecompNoAlgorithmic(norm16) |
| uint16_t deltaTrailCC = norm16 & DELTA_TCCC_MASK; |
| if (deltaTrailCC <= DELTA_TCCC_1) { |
| return deltaTrailCC >> OFFSET_SHIFT; |
| } |
| // Maps to an isCompYesAndZeroCC. |
| c=mapAlgorithmic(c, norm16); |
| norm16=getRawNorm16(c); |
| } |
| } |
| if(norm16<=minYesNo || isHangulLVT(norm16)) { |
| // no decomposition or Hangul syllable, all zeros |
| return 0; |
| } |
| // c decomposes, get everything from the variable-length extra data |
| const uint16_t *mapping=getMapping(norm16); |
| uint16_t firstUnit=*mapping; |
| norm16=firstUnit>>8; // tccc |
| if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
| norm16|=*(mapping-1)&0xff00; // lccc |
| } |
| return norm16; |
| } |
| #if (defined(_MSC_VER) && (defined(_M_ARM64)) && (_MSC_VER < 1924)) |
| #pragma optimize( "", on ) |
| #endif |
| |
| // Dual functionality: |
| // buffer!=NULL: normalize |
| // buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes |
| const UChar * |
| Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit, |
| ReorderingBuffer *buffer, |
| UErrorCode &errorCode) const { |
| // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1. |
| // Similar to the prevBoundary in the compose() implementation. |
| const UChar *prevBoundary=src; |
| int32_t prevFCD16=0; |
| if(limit==NULL) { |
| src=copyLowPrefixFromNulTerminated(src, minLcccCP, buffer, errorCode); |
| if(U_FAILURE(errorCode)) { |
| return src; |
| } |
| if(prevBoundary<src) { |
| prevBoundary=src; |
| // We know that the previous character's lccc==0. |
| // Fetching the fcd16 value was deferred for this below-U+0300 code point. |
| prevFCD16=getFCD16(*(src-1)); |
| if(prevFCD16>1) { |
| --prevBoundary; |
| } |
| } |
| limit=u_strchr(src, 0); |
| } |
| |
| // Note: In this function we use buffer->appendZeroCC() because we track |
| // the lead and trail combining classes here, rather than leaving it to |
| // the ReorderingBuffer. |
| // The exception is the call to decomposeShort() which uses the buffer |
| // in the normal way. |
| |
| const UChar *prevSrc; |
| UChar32 c=0; |
| uint16_t fcd16=0; |
| |
| for(;;) { |
| // count code units with lccc==0 |
| for(prevSrc=src; src!=limit;) { |
| if((c=*src)<minLcccCP) { |
| prevFCD16=~c; |
| ++src; |
| } else if(!singleLeadMightHaveNonZeroFCD16(c)) { |
| prevFCD16=0; |
| ++src; |
| } else { |
| if(U16_IS_LEAD(c)) { |
| UChar c2; |
| if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
| c=U16_GET_SUPPLEMENTARY(c, c2); |
| } |
| } |
| if((fcd16=getFCD16FromNormData(c))<=0xff) { |
| prevFCD16=fcd16; |
| src+=U16_LENGTH(c); |
| } else { |
| break; |
| } |
| } |
| } |
| // copy these code units all at once |
| if(src!=prevSrc) { |
| if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) { |
| break; |
| } |
| if(src==limit) { |
| break; |
| } |
| prevBoundary=src; |
| // We know that the previous character's lccc==0. |
| if(prevFCD16<0) { |
| // Fetching the fcd16 value was deferred for this below-minLcccCP code point. |
| UChar32 prev=~prevFCD16; |
| if(prev<minDecompNoCP) { |
| prevFCD16=0; |
| } else { |
| prevFCD16=getFCD16FromNormData(prev); |
| if(prevFCD16>1) { |
| --prevBoundary; |
| } |
| } |
| } else { |
| const UChar *p=src-1; |
| if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) { |
| --p; |
| // Need to fetch the previous character's FCD value because |
| // prevFCD16 was just for the trail surrogate code point. |
| prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1])); |
| // Still known to have lccc==0 because its lead surrogate unit had lccc==0. |
| } |
| if(prevFCD16>1) { |
| prevBoundary=p; |
| } |
| } |
| // The start of the current character (c). |
| prevSrc=src; |
| } else if(src==limit) { |
| break; |
| } |
| |
| src+=U16_LENGTH(c); |
| // The current character (c) at [prevSrc..src[ has a non-zero lead combining class. |
| // Check for proper order, and decompose locally if necessary. |
| if((prevFCD16&0xff)<=(fcd16>>8)) { |
| // proper order: prev tccc <= current lccc |
| if((fcd16&0xff)<=1) { |
| prevBoundary=src; |
| } |
| if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) { |
| break; |
| } |
| prevFCD16=fcd16; |
| continue; |
| } else if(buffer==NULL) { |
| return prevBoundary; // quick check "no" |
| } else { |
| /* |
| * Back out the part of the source that we copied or appended |
| * already but is now going to be decomposed. |
| * prevSrc is set to after what was copied/appended. |
| */ |
| buffer->removeSuffix((int32_t)(prevSrc-prevBoundary)); |
| /* |
| * Find the part of the source that needs to be decomposed, |
| * up to the next safe boundary. |
| */ |
| src=findNextFCDBoundary(src, limit); |
| /* |
| * The source text does not fulfill the conditions for FCD. |
| * Decompose and reorder a limited piece of the text. |
| */ |
| decomposeShort(prevBoundary, src, FALSE, FALSE, *buffer, errorCode); |
| if (U_FAILURE(errorCode)) { |
| break; |
| } |
| prevBoundary=src; |
| prevFCD16=0; |
| } |
| } |
| return src; |
| } |
| |
| void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit, |
| UBool doMakeFCD, |
| UnicodeString &safeMiddle, |
| ReorderingBuffer &buffer, |
| UErrorCode &errorCode) const { |
| if(!buffer.isEmpty()) { |
| const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit); |
| if(src!=firstBoundaryInSrc) { |
| const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(), |
| buffer.getLimit()); |
| int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest); |
| UnicodeString middle(lastBoundaryInDest, destSuffixLength); |
| buffer.removeSuffix(destSuffixLength); |
| safeMiddle=middle; |
| middle.append(src, (int32_t)(firstBoundaryInSrc-src)); |
| const UChar *middleStart=middle.getBuffer(); |
| makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode); |
| if(U_FAILURE(errorCode)) { |
| return; |
| } |
| src=firstBoundaryInSrc; |
| } |
| } |
| if(doMakeFCD) { |
| makeFCD(src, limit, &buffer, errorCode); |
| } else { |
| if(limit==NULL) { // appendZeroCC() needs limit!=NULL |
| limit=u_strchr(src, 0); |
| } |
| buffer.appendZeroCC(src, limit, errorCode); |
| } |
| } |
| |
| const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const { |
| while(start<p) { |
| const UChar *codePointLimit = p; |
| UChar32 c; |
| uint16_t norm16; |
| UCPTRIE_FAST_U16_PREV(normTrie, UCPTRIE_16, start, p, c, norm16); |
| if (c < minDecompNoCP || norm16HasDecompBoundaryAfter(norm16)) { |
| return codePointLimit; |
| } |
| if (norm16HasDecompBoundaryBefore(norm16)) { |
| return p; |
| } |
| } |
| return p; |
| } |
| |
| const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const { |
| while(p<limit) { |
| const UChar *codePointStart=p; |
| UChar32 c; |
| uint16_t norm16; |
| UCPTRIE_FAST_U16_NEXT(normTrie, UCPTRIE_16, p, limit, c, norm16); |
| if (c < minLcccCP || norm16HasDecompBoundaryBefore(norm16)) { |
| return codePointStart; |
| } |
| if (norm16HasDecompBoundaryAfter(norm16)) { |
| return p; |
| } |
| } |
| return p; |
| } |
| |
| // CanonicalIterator data -------------------------------------------------- *** |
| |
| CanonIterData::CanonIterData(UErrorCode &errorCode) : |
| mutableTrie(umutablecptrie_open(0, 0, &errorCode)), trie(nullptr), |
| canonStartSets(uprv_deleteUObject, NULL, errorCode) {} |
| |
| CanonIterData::~CanonIterData() { |
| umutablecptrie_close(mutableTrie); |
| ucptrie_close(trie); |
| } |
| |
| void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) { |
| uint32_t canonValue = umutablecptrie_get(mutableTrie, decompLead); |
| if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) { |
| // origin is the first character whose decomposition starts with |
| // the character for which we are setting the value. |
| umutablecptrie_set(mutableTrie, decompLead, canonValue|origin, &errorCode); |
| } else { |
| // origin is not the first character, or it is U+0000. |
| UnicodeSet *set; |
| if((canonValue&CANON_HAS_SET)==0) { |
| set=new UnicodeSet; |
| if(set==NULL) { |
| errorCode=U_MEMORY_ALLOCATION_ERROR; |
| return; |
| } |
| UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK); |
| canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size(); |
| umutablecptrie_set(mutableTrie, decompLead, canonValue, &errorCode); |
| canonStartSets.addElement(set, errorCode); |
| if(firstOrigin!=0) { |
| set->add(firstOrigin); |
| } |
| } else { |
| set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)]; |
| } |
| set->add(origin); |
| } |
| } |
| |
| // C++ class for friend access to private Normalizer2Impl members. |
| class InitCanonIterData { |
| public: |
| static void doInit(Normalizer2Impl *impl, UErrorCode &errorCode); |
| }; |
| |
| U_CDECL_BEGIN |
| |
| // UInitOnce instantiation function for CanonIterData |
| static void U_CALLCONV |
| initCanonIterData(Normalizer2Impl *impl, UErrorCode &errorCode) { |
| InitCanonIterData::doInit(impl, errorCode); |
| } |
| |
| U_CDECL_END |
| |
| void InitCanonIterData::doInit(Normalizer2Impl *impl, UErrorCode &errorCode) { |
| U_ASSERT(impl->fCanonIterData == NULL); |
| impl->fCanonIterData = new CanonIterData(errorCode); |
| if (impl->fCanonIterData == NULL) { |
| errorCode=U_MEMORY_ALLOCATION_ERROR; |
| } |
| if (U_SUCCESS(errorCode)) { |
| UChar32 start = 0, end; |
| uint32_t value; |
| while ((end = ucptrie_getRange(impl->normTrie, start, |
| UCPMAP_RANGE_FIXED_LEAD_SURROGATES, Normalizer2Impl::INERT, |
| nullptr, nullptr, &value)) >= 0) { |
| // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters. |
| if (value != Normalizer2Impl::INERT) { |
| impl->makeCanonIterDataFromNorm16(start, end, value, *impl->fCanonIterData, errorCode); |
| } |
| start = end + 1; |
| } |
| #ifdef UCPTRIE_DEBUG |
| umutablecptrie_setName(impl->fCanonIterData->mutableTrie, "CanonIterData"); |
| #endif |
| impl->fCanonIterData->trie = umutablecptrie_buildImmutable( |
| impl->fCanonIterData->mutableTrie, UCPTRIE_TYPE_SMALL, UCPTRIE_VALUE_BITS_32, &errorCode); |
| umutablecptrie_close(impl->fCanonIterData->mutableTrie); |
| impl->fCanonIterData->mutableTrie = nullptr; |
| } |
| if (U_FAILURE(errorCode)) { |
| delete impl->fCanonIterData; |
| impl->fCanonIterData = NULL; |
| } |
| } |
| |
| void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, const uint16_t norm16, |
| CanonIterData &newData, |
| UErrorCode &errorCode) const { |
| if(isInert(norm16) || (minYesNo<=norm16 && norm16<minNoNo)) { |
| // Inert, or 2-way mapping (including Hangul syllable). |
| // We do not write a canonStartSet for any yesNo character. |
| // Composites from 2-way mappings are added at runtime from the |
| // starter's compositions list, and the other characters in |
| // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are |
| // "maybe" characters. |
| return; |
| } |
| for(UChar32 c=start; c<=end; ++c) { |
| uint32_t oldValue = umutablecptrie_get(newData.mutableTrie, c); |
| uint32_t newValue=oldValue; |
| if(isMaybeOrNonZeroCC(norm16)) { |
| // not a segment starter if it occurs in a decomposition or has cc!=0 |
| newValue|=CANON_NOT_SEGMENT_STARTER; |
| if(norm16<MIN_NORMAL_MAYBE_YES) { |
| newValue|=CANON_HAS_COMPOSITIONS; |
| } |
| } else if(norm16<minYesNo) { |
| newValue|=CANON_HAS_COMPOSITIONS; |
| } else { |
| // c has a one-way decomposition |
| UChar32 c2=c; |
| // Do not modify the whole-range norm16 value. |
| uint16_t norm16_2=norm16; |
| if (isDecompNoAlgorithmic(norm16_2)) { |
| // Maps to an isCompYesAndZeroCC. |
| c2 = mapAlgorithmic(c2, norm16_2); |
| norm16_2 = getRawNorm16(c2); |
| // No compatibility mappings for the CanonicalIterator. |
| U_ASSERT(!(isHangulLV(norm16_2) || isHangulLVT(norm16_2))); |
| } |
| if (norm16_2 > minYesNo) { |
| // c decomposes, get everything from the variable-length extra data |
| const uint16_t *mapping=getMapping(norm16_2); |
| uint16_t firstUnit=*mapping; |
| int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
| if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) { |
| if(c==c2 && (*(mapping-1)&0xff)!=0) { |
| newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0 |
| } |
| } |
| // Skip empty mappings (no characters in the decomposition). |
| if(length!=0) { |
| ++mapping; // skip over the firstUnit |
| // add c to first code point's start set |
| int32_t i=0; |
| U16_NEXT_UNSAFE(mapping, i, c2); |
| newData.addToStartSet(c, c2, errorCode); |
| // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a |
| // one-way mapping. A 2-way mapping is possible here after |
| // intermediate algorithmic mapping. |
| if(norm16_2>=minNoNo) { |
| while(i<length) { |
| U16_NEXT_UNSAFE(mapping, i, c2); |
| uint32_t c2Value = umutablecptrie_get(newData.mutableTrie, c2); |
| if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) { |
| umutablecptrie_set(newData.mutableTrie, c2, |
| c2Value|CANON_NOT_SEGMENT_STARTER, &errorCode); |
| } |
| } |
| } |
| } |
| } else { |
| // c decomposed to c2 algorithmically; c has cc==0 |
| newData.addToStartSet(c, c2, errorCode); |
| } |
| } |
| if(newValue!=oldValue) { |
| umutablecptrie_set(newData.mutableTrie, c, newValue, &errorCode); |
| } |
| } |
| } |
| |
| UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const { |
| // Logically const: Synchronized instantiation. |
| Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this); |
| umtx_initOnce(me->fCanonIterDataInitOnce, &initCanonIterData, me, errorCode); |
| return U_SUCCESS(errorCode); |
| } |
| |
| int32_t Normalizer2Impl::getCanonValue(UChar32 c) const { |
| return (int32_t)ucptrie_get(fCanonIterData->trie, c); |
| } |
| |
| const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const { |
| return *(const UnicodeSet *)fCanonIterData->canonStartSets[n]; |
| } |
| |
| UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const { |
| return getCanonValue(c)>=0; |
| } |
| |
| UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const { |
| int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER; |
| if(canonValue==0) { |
| return FALSE; |
| } |
| set.clear(); |
| int32_t value=canonValue&CANON_VALUE_MASK; |
| if((canonValue&CANON_HAS_SET)!=0) { |
| set.addAll(getCanonStartSet(value)); |
| } else if(value!=0) { |
| set.add(value); |
| } |
| if((canonValue&CANON_HAS_COMPOSITIONS)!=0) { |
| uint16_t norm16=getRawNorm16(c); |
| if(norm16==JAMO_L) { |
| UChar32 syllable= |
| (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT); |
| set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1); |
| } else { |
| addComposites(getCompositionsList(norm16), set); |
| } |
| } |
| return TRUE; |
| } |
| |
| U_NAMESPACE_END |
| |
| // Normalizer2 data swapping ----------------------------------------------- *** |
| |
| U_NAMESPACE_USE |
| |
| U_CAPI int32_t U_EXPORT2 |
| unorm2_swap(const UDataSwapper *ds, |
| const void *inData, int32_t length, void *outData, |
| UErrorCode *pErrorCode) { |
| const UDataInfo *pInfo; |
| int32_t headerSize; |
| |
| const uint8_t *inBytes; |
| uint8_t *outBytes; |
| |
| const int32_t *inIndexes; |
| int32_t indexes[Normalizer2Impl::IX_TOTAL_SIZE+1]; |
| |
| int32_t i, offset, nextOffset, size; |
| |
| /* udata_swapDataHeader checks the arguments */ |
| headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode); |
| if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
| return 0; |
| } |
| |
| /* check data format and format version */ |
| pInfo=(const UDataInfo *)((const char *)inData+4); |
| uint8_t formatVersion0=pInfo->formatVersion[0]; |
| if(!( |
| pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */ |
| pInfo->dataFormat[1]==0x72 && |
| pInfo->dataFormat[2]==0x6d && |
| pInfo->dataFormat[3]==0x32 && |
| (1<=formatVersion0 && formatVersion0<=4) |
| )) { |
| udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n", |
| pInfo->dataFormat[0], pInfo->dataFormat[1], |
| pInfo->dataFormat[2], pInfo->dataFormat[3], |
| pInfo->formatVersion[0]); |
| *pErrorCode=U_UNSUPPORTED_ERROR; |
| return 0; |
| } |
| |
| inBytes=(const uint8_t *)inData+headerSize; |
| outBytes=(uint8_t *)outData+headerSize; |
| |
| inIndexes=(const int32_t *)inBytes; |
| int32_t minIndexesLength; |
| if(formatVersion0==1) { |
| minIndexesLength=Normalizer2Impl::IX_MIN_MAYBE_YES+1; |
| } else if(formatVersion0==2) { |
| minIndexesLength=Normalizer2Impl::IX_MIN_YES_NO_MAPPINGS_ONLY+1; |
| } else { |
| minIndexesLength=Normalizer2Impl::IX_MIN_LCCC_CP+1; |
| } |
| |
| if(length>=0) { |
| length-=headerSize; |
| if(length<minIndexesLength*4) { |
| udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n", |
| length); |
| *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| return 0; |
| } |
| } |
| |
| /* read the first few indexes */ |
| for(i=0; i<UPRV_LENGTHOF(indexes); ++i) { |
| indexes[i]=udata_readInt32(ds, inIndexes[i]); |
| } |
| |
| /* get the total length of the data */ |
| size=indexes[Normalizer2Impl::IX_TOTAL_SIZE]; |
| |
| if(length>=0) { |
| if(length<size) { |
| |