| /* |
| ******************************************************************************* |
| * |
| * Copyright (C) 2005-2011, International Business Machines |
| * Corporation and others. All Rights Reserved. |
| * |
| ******************************************************************************* |
| * file name: utext.cpp |
| * encoding: US-ASCII |
| * tab size: 8 (not used) |
| * indentation:4 |
| * |
| * created on: 2005apr12 |
| * created by: Markus W. Scherer |
| */ |
| |
| #include "unicode/utypes.h" |
| #include "unicode/ustring.h" |
| #include "unicode/unistr.h" |
| #include "unicode/chariter.h" |
| #include "unicode/utext.h" |
| #include "ustr_imp.h" |
| #include "cmemory.h" |
| #include "cstring.h" |
| #include "uassert.h" |
| #include "putilimp.h" |
| |
| U_NAMESPACE_USE |
| |
| #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex)) |
| |
| |
| static UBool |
| utext_access(UText *ut, int64_t index, UBool forward) { |
| return ut->pFuncs->access(ut, index, forward); |
| } |
| |
| |
| |
| U_CAPI UBool U_EXPORT2 |
| utext_moveIndex32(UText *ut, int32_t delta) { |
| UChar32 c; |
| if (delta > 0) { |
| do { |
| if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, TRUE)) { |
| return FALSE; |
| } |
| c = ut->chunkContents[ut->chunkOffset]; |
| if (U16_IS_SURROGATE(c)) { |
| c = utext_next32(ut); |
| if (c == U_SENTINEL) { |
| return FALSE; |
| } |
| } else { |
| ut->chunkOffset++; |
| } |
| } while(--delta>0); |
| |
| } else if (delta<0) { |
| do { |
| if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FALSE)) { |
| return FALSE; |
| } |
| c = ut->chunkContents[ut->chunkOffset-1]; |
| if (U16_IS_SURROGATE(c)) { |
| c = utext_previous32(ut); |
| if (c == U_SENTINEL) { |
| return FALSE; |
| } |
| } else { |
| ut->chunkOffset--; |
| } |
| } while(++delta<0); |
| } |
| |
| return TRUE; |
| } |
| |
| |
| U_CAPI int64_t U_EXPORT2 |
| utext_nativeLength(UText *ut) { |
| return ut->pFuncs->nativeLength(ut); |
| } |
| |
| |
| U_CAPI UBool U_EXPORT2 |
| utext_isLengthExpensive(const UText *ut) { |
| UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0; |
| return r; |
| } |
| |
| |
| U_CAPI int64_t U_EXPORT2 |
| utext_getNativeIndex(const UText *ut) { |
| if(ut->chunkOffset <= ut->nativeIndexingLimit) { |
| return ut->chunkNativeStart+ut->chunkOffset; |
| } else { |
| return ut->pFuncs->mapOffsetToNative(ut); |
| } |
| } |
| |
| |
| U_CAPI void U_EXPORT2 |
| utext_setNativeIndex(UText *ut, int64_t index) { |
| if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { |
| // The desired position is outside of the current chunk. |
| // Access the new position. Assume a forward iteration from here, |
| // which will also be optimimum for a single random access. |
| // Reverse iterations may suffer slightly. |
| ut->pFuncs->access(ut, index, TRUE); |
| } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) { |
| // utf-16 indexing. |
| ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart); |
| } else { |
| ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
| } |
| // The convention is that the index must always be on a code point boundary. |
| // Adjust the index position if it is in the middle of a surrogate pair. |
| if (ut->chunkOffset<ut->chunkLength) { |
| UChar c= ut->chunkContents[ut->chunkOffset]; |
| if (UTF16_IS_TRAIL(c)) { |
| if (ut->chunkOffset==0) { |
| ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE); |
| } |
| if (ut->chunkOffset>0) { |
| UChar lead = ut->chunkContents[ut->chunkOffset-1]; |
| if (UTF16_IS_LEAD(lead)) { |
| ut->chunkOffset--; |
| } |
| } |
| } |
| } |
| } |
| |
| |
| |
| U_CAPI int64_t U_EXPORT2 |
| utext_getPreviousNativeIndex(UText *ut) { |
| // |
| // Fast-path the common case. |
| // Common means current position is not at the beginning of a chunk |
| // and the preceding character is not supplementary. |
| // |
| int32_t i = ut->chunkOffset - 1; |
| int64_t result; |
| if (i >= 0) { |
| UChar c = ut->chunkContents[i]; |
| if (U16_IS_TRAIL(c) == FALSE) { |
| if (i <= ut->nativeIndexingLimit) { |
| result = ut->chunkNativeStart + i; |
| } else { |
| ut->chunkOffset = i; |
| result = ut->pFuncs->mapOffsetToNative(ut); |
| ut->chunkOffset++; |
| } |
| return result; |
| } |
| } |
| |
| // If at the start of text, simply return 0. |
| if (ut->chunkOffset==0 && ut->chunkNativeStart==0) { |
| return 0; |
| } |
| |
| // Harder, less common cases. We are at a chunk boundary, or on a surrogate. |
| // Keep it simple, use other functions to handle the edges. |
| // |
| utext_previous32(ut); |
| result = UTEXT_GETNATIVEINDEX(ut); |
| utext_next32(ut); |
| return result; |
| } |
| |
| |
| // |
| // utext_current32. Get the UChar32 at the current position. |
| // UText iteration position is always on a code point boundary, |
| // never on the trail half of a surrogate pair. |
| // |
| U_CAPI UChar32 U_EXPORT2 |
| utext_current32(UText *ut) { |
| UChar32 c; |
| if (ut->chunkOffset==ut->chunkLength) { |
| // Current position is just off the end of the chunk. |
| if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { |
| // Off the end of the text. |
| return U_SENTINEL; |
| } |
| } |
| |
| c = ut->chunkContents[ut->chunkOffset]; |
| if (U16_IS_LEAD(c) == FALSE) { |
| // Normal, non-supplementary case. |
| return c; |
| } |
| |
| // |
| // Possible supplementary char. |
| // |
| UChar32 trail = 0; |
| UChar32 supplementaryC = c; |
| if ((ut->chunkOffset+1) < ut->chunkLength) { |
| // The trail surrogate is in the same chunk. |
| trail = ut->chunkContents[ut->chunkOffset+1]; |
| } else { |
| // The trail surrogate is in a different chunk. |
| // Because we must maintain the iteration position, we need to switch forward |
| // into the new chunk, get the trail surrogate, then revert the chunk back to the |
| // original one. |
| // An edge case to be careful of: the entire text may end with an unpaired |
| // leading surrogate. The attempt to access the trail will fail, but |
| // the original position before the unpaired lead still needs to be restored. |
| int64_t nativePosition = ut->chunkNativeLimit; |
| int32_t originalOffset = ut->chunkOffset; |
| if (ut->pFuncs->access(ut, nativePosition, TRUE)) { |
| trail = ut->chunkContents[ut->chunkOffset]; |
| } |
| UBool r = ut->pFuncs->access(ut, nativePosition, FALSE); // reverse iteration flag loads preceding chunk |
| U_ASSERT(r==TRUE); |
| ut->chunkOffset = originalOffset; |
| if(!r) { |
| return U_SENTINEL; |
| } |
| } |
| |
| if (U16_IS_TRAIL(trail)) { |
| supplementaryC = U16_GET_SUPPLEMENTARY(c, trail); |
| } |
| return supplementaryC; |
| |
| } |
| |
| |
| U_CAPI UChar32 U_EXPORT2 |
| utext_char32At(UText *ut, int64_t nativeIndex) { |
| UChar32 c = U_SENTINEL; |
| |
| // Fast path the common case. |
| if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) { |
| ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart); |
| c = ut->chunkContents[ut->chunkOffset]; |
| if (U16_IS_SURROGATE(c) == FALSE) { |
| return c; |
| } |
| } |
| |
| |
| utext_setNativeIndex(ut, nativeIndex); |
| if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) { |
| c = ut->chunkContents[ut->chunkOffset]; |
| if (U16_IS_SURROGATE(c)) { |
| // For surrogates, let current32() deal with the complications |
| // of supplementaries that may span chunk boundaries. |
| c = utext_current32(ut); |
| } |
| } |
| return c; |
| } |
| |
| |
| U_CAPI UChar32 U_EXPORT2 |
| utext_next32(UText *ut) { |
| UChar32 c; |
| |
| if (ut->chunkOffset >= ut->chunkLength) { |
| if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { |
| return U_SENTINEL; |
| } |
| } |
| |
| c = ut->chunkContents[ut->chunkOffset++]; |
| if (U16_IS_LEAD(c) == FALSE) { |
| // Normal case, not supplementary. |
| // (A trail surrogate seen here is just returned as is, as a surrogate value. |
| // It cannot be part of a pair.) |
| return c; |
| } |
| |
| if (ut->chunkOffset >= ut->chunkLength) { |
| if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { |
| // c is an unpaired lead surrogate at the end of the text. |
| // return it as it is. |
| return c; |
| } |
| } |
| UChar32 trail = ut->chunkContents[ut->chunkOffset]; |
| if (U16_IS_TRAIL(trail) == FALSE) { |
| // c was an unpaired lead surrogate, not at the end of the text. |
| // return it as it is (unpaired). Iteration position is on the |
| // following character, possibly in the next chunk, where the |
| // trail surrogate would have been if it had existed. |
| return c; |
| } |
| |
| UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail); |
| ut->chunkOffset++; // move iteration position over the trail surrogate. |
| return supplementary; |
| } |
| |
| |
| U_CAPI UChar32 U_EXPORT2 |
| utext_previous32(UText *ut) { |
| UChar32 c; |
| |
| if (ut->chunkOffset <= 0) { |
| if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) { |
| return U_SENTINEL; |
| } |
| } |
| ut->chunkOffset--; |
| c = ut->chunkContents[ut->chunkOffset]; |
| if (U16_IS_TRAIL(c) == FALSE) { |
| // Normal case, not supplementary. |
| // (A lead surrogate seen here is just returned as is, as a surrogate value. |
| // It cannot be part of a pair.) |
| return c; |
| } |
| |
| if (ut->chunkOffset <= 0) { |
| if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) { |
| // c is an unpaired trail surrogate at the start of the text. |
| // return it as it is. |
| return c; |
| } |
| } |
| |
| UChar32 lead = ut->chunkContents[ut->chunkOffset-1]; |
| if (U16_IS_LEAD(lead) == FALSE) { |
| // c was an unpaired trail surrogate, not at the end of the text. |
| // return it as it is (unpaired). Iteration position is at c |
| return c; |
| } |
| |
| UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c); |
| ut->chunkOffset--; // move iteration position over the lead surrogate. |
| return supplementary; |
| } |
| |
| |
| |
| U_CAPI UChar32 U_EXPORT2 |
| utext_next32From(UText *ut, int64_t index) { |
| UChar32 c = U_SENTINEL; |
| |
| if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { |
| // Desired position is outside of the current chunk. |
| if(!ut->pFuncs->access(ut, index, TRUE)) { |
| // no chunk available here |
| return U_SENTINEL; |
| } |
| } else if (index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { |
| // Desired position is in chunk, with direct 1:1 native to UTF16 indexing |
| ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
| } else { |
| // Desired position is in chunk, with non-UTF16 indexing. |
| ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
| } |
| |
| c = ut->chunkContents[ut->chunkOffset++]; |
| if (U16_IS_SURROGATE(c)) { |
| // Surrogates. Many edge cases. Use other functions that already |
| // deal with the problems. |
| utext_setNativeIndex(ut, index); |
| c = utext_next32(ut); |
| } |
| return c; |
| } |
| |
| |
| U_CAPI UChar32 U_EXPORT2 |
| utext_previous32From(UText *ut, int64_t index) { |
| // |
| // Return the character preceding the specified index. |
| // Leave the iteration position at the start of the character that was returned. |
| // |
| UChar32 cPrev; // The character preceding cCurr, which is what we will return. |
| |
| // Address the chunk containg the position preceding the incoming index |
| // A tricky edge case: |
| // We try to test the requested native index against the chunkNativeStart to determine |
| // whether the character preceding the one at the index is in the current chunk. |
| // BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the |
| // requested index is on something other than the first position of the first char. |
| // |
| if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) { |
| // Requested native index is outside of the current chunk. |
| if(!ut->pFuncs->access(ut, index, FALSE)) { |
| // no chunk available here |
| return U_SENTINEL; |
| } |
| } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { |
| // Direct UTF-16 indexing. |
| ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
| } else { |
| ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
| if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) { |
| // no chunk available here |
| return U_SENTINEL; |
| } |
| } |
| |
| // |
| // Simple case with no surrogates. |
| // |
| ut->chunkOffset--; |
| cPrev = ut->chunkContents[ut->chunkOffset]; |
| |
| if (U16_IS_SURROGATE(cPrev)) { |
| // Possible supplementary. Many edge cases. |
| // Let other functions do the heavy lifting. |
| utext_setNativeIndex(ut, index); |
| cPrev = utext_previous32(ut); |
| } |
| return cPrev; |
| } |
| |
| |
| U_CAPI int32_t U_EXPORT2 |
| utext_extract(UText *ut, |
| int64_t start, int64_t limit, |
| UChar *dest, int32_t destCapacity, |
| UErrorCode *status) { |
| return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status); |
| } |
| |
| |
| |
| U_CAPI UBool U_EXPORT2 |
| utext_equals(const UText *a, const UText *b) { |
| if (a==NULL || b==NULL || |
| a->magic != UTEXT_MAGIC || |
| b->magic != UTEXT_MAGIC) { |
| // Null or invalid arguments don't compare equal to anything. |
| return FALSE; |
| } |
| |
| if (a->pFuncs != b->pFuncs) { |
| // Different types of text providers. |
| return FALSE; |
| } |
| |
| if (a->context != b->context) { |
| // Different sources (different strings) |
| return FALSE; |
| } |
| if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) { |
| // Different current position in the string. |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| U_CAPI int32_t U_EXPORT2 |
| utext_compare(UText *s1, int32_t length1, |
| UText *s2, int32_t length2) { |
| UChar32 c1 = 0, c2 = 0; |
| |
| if(length1<0 && length2<0) { |
| /* strcmp style, go until end of string */ |
| for(;;) { |
| c1 = UTEXT_NEXT32(s1); |
| c2 = UTEXT_NEXT32(s2); |
| if(c1 != c2) { |
| break; |
| } else if(c1 == U_SENTINEL) { |
| return 0; |
| } |
| } |
| } else { |
| if(length1 < 0) { |
| length1 = INT32_MIN; |
| } else if (length2 < 0) { |
| length2 = INT32_MIN; |
| } |
| |
| /* memcmp/UnicodeString style, both length-specified */ |
| while((length1 > 0 || length1 == INT32_MIN) && (length2 > 0 || length2 == INT32_MIN)) { |
| c1 = UTEXT_NEXT32(s1); |
| c2 = UTEXT_NEXT32(s2); |
| |
| if(c1 != c2) { |
| break; |
| } else if(c1 == U_SENTINEL) { |
| return 0; |
| } |
| |
| if (length1 != INT32_MIN) { |
| length1 -= 1; |
| } |
| if (length2 != INT32_MIN) { |
| length2 -= 1; |
| } |
| } |
| |
| if(length1 <= 0 && length1 != INT32_MIN) { |
| if(length2 <= 0) { |
| return 0; |
| } else { |
| return -1; |
| } |
| } else if(length2 <= 0 && length2 != INT32_MIN) { |
| if (length1 <= 0) { |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| } |
| |
| return (int32_t)c1-(int32_t)c2; |
| } |
| |
| U_CAPI int32_t U_EXPORT2 |
| utext_compareNativeLimit(UText *s1, int64_t limit1, |
| UText *s2, int64_t limit2) { |
| UChar32 c1, c2; |
| |
| if(limit1<0 && limit2<0) { |
| /* strcmp style, go until end of string */ |
| for(;;) { |
| c1 = UTEXT_NEXT32(s1); |
| c2 = UTEXT_NEXT32(s2); |
| if(c1 != c2) { |
| return (int32_t)c1-(int32_t)c2; |
| } else if(c1 == U_SENTINEL) { |
| return 0; |
| } |
| } |
| } else { |
| /* memcmp/UnicodeString style, both length-specified */ |
| int64_t index1 = (limit1 >= 0 ? UTEXT_GETNATIVEINDEX(s1) : 0); |
| int64_t index2 = (limit2 >= 0 ? UTEXT_GETNATIVEINDEX(s2) : 0); |
| |
| while((limit1 < 0 || index1 < limit1) && (limit2 < 0 || index2 < limit2)) { |
| c1 = UTEXT_NEXT32(s1); |
| c2 = UTEXT_NEXT32(s2); |
| |
| if(c1 != c2) { |
| return (int32_t)c1-(int32_t)c2; |
| } else if(c1 == U_SENTINEL) { |
| return 0; |
| } |
| |
| if (limit1 >= 0) { |
| index1 = UTEXT_GETNATIVEINDEX(s1); |
| } |
| if (limit2 >= 0) { |
| index2 = UTEXT_GETNATIVEINDEX(s2); |
| } |
| } |
| |
| if(limit1 >= 0 && index1 >= limit1) { |
| if(index2 >= limit2) { |
| return 0; |
| } else { |
| return -1; |
| } |
| } else { |
| if(index1 >= limit1) { |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| } |
| } |
| |
| U_CAPI int32_t U_EXPORT2 |
| utext_caseCompare(UText *s1, int32_t length1, |
| UText *s2, int32_t length2, |
| uint32_t options, UErrorCode *pErrorCode) { |
| const UCaseProps *csp; |
| |
| /* case folding variables */ |
| const UChar *p; |
| int32_t length; |
| |
| /* case folding buffers, only use current-level start/limit */ |
| UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1]; |
| int32_t foldOffset1, foldOffset2, foldLength1, foldLength2; |
| |
| /* current code points */ |
| UChar32 c1, c2; |
| uint8_t cLength1, cLength2; |
| |
| /* argument checking */ |
| if(U_FAILURE(*pErrorCode)) { |
| return 0; |
| } |
| if(s1==NULL || s2==NULL) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return 0; |
| } |
| |
| csp=ucase_getSingleton(); |
| |
| /* for variable-length strings */ |
| if(length1 < 0) { |
| length1 = INT32_MIN; |
| } |
| if (length2 < 0) { |
| length2 = INT32_MIN; |
| } |
| |
| /* initialize */ |
| foldOffset1 = foldOffset2 = foldLength1 = foldLength2 = 0; |
| |
| /* comparison loop */ |
| while((foldOffset1 < foldLength1 || length1 > 0 || length1 == INT32_MIN) && |
| (foldOffset2 < foldLength2 || length2 > 0 || length2 == INT32_MIN)) { |
| if(foldOffset1 < foldLength1) { |
| U16_NEXT_UNSAFE(fold1, foldOffset1, c1); |
| cLength1 = 0; |
| } else { |
| c1 = UTEXT_NEXT32(s1); |
| if (c1 != U_SENTINEL) { |
| cLength1 = U16_LENGTH(c1); |
| |
| length = ucase_toFullFolding(csp, c1, &p, options); |
| if(length >= 0) { |
| if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle 0-length folded-case strings |
| u_memcpy(fold1, p, length); |
| foldOffset1 = 0; |
| foldLength1 = length; |
| U16_NEXT_UNSAFE(fold1, foldOffset1, c1); |
| } else { |
| c1 = length; |
| } |
| } |
| } |
| |
| if(length1 != INT32_MIN) { |
| length1 -= 1; |
| } |
| } |
| |
| if(foldOffset2 < foldLength2) { |
| U16_NEXT_UNSAFE(fold2, foldOffset2, c2); |
| cLength2 = 0; |
| } else { |
| c2 = UTEXT_NEXT32(s2); |
| if (c2 != U_SENTINEL) { |
| cLength2 = U16_LENGTH(c2); |
| |
| length = ucase_toFullFolding(csp, c2, &p, options); |
| if(length >= 0) { |
| if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle 0-length folded-case strings |
| u_memcpy(fold2, p, length); |
| foldOffset2 = 0; |
| foldLength2 = length; |
| U16_NEXT_UNSAFE(fold2, foldOffset2, c2); |
| } else { |
| c2 = length; |
| } |
| } |
| } else if(c1 == U_SENTINEL) { |
| return 0; // end of both strings at once |
| } |
| |
| if(length2 != INT32_MIN) { |
| length2 -= 1; |
| } |
| } |
| |
| if(c1 != c2) { |
| return (int32_t)c1-(int32_t)c2; |
| } |
| } |
| |
| /* By now at least one of the strings is out of characters */ |
| length1 += foldLength1 - foldOffset1; |
| length2 += foldLength2 - foldOffset2; |
| |
| if(length1 <= 0 && length1 != INT32_MIN) { |
| if(length2 <= 0) { |
| return 0; |
| } else { |
| return -1; |
| } |
| } else { |
| if (length1 <= 0) { |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| } |
| |
| U_CAPI int32_t U_EXPORT2 |
| utext_caseCompareNativeLimit(UText *s1, int64_t limit1, |
| UText *s2, int64_t limit2, |
| uint32_t options, UErrorCode *pErrorCode) { |
| const UCaseProps *csp; |
| |
| /* case folding variables */ |
| const UChar *p; |
| int32_t length; |
| |
| /* case folding buffers, only use current-level start/limit */ |
| UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1]; |
| int32_t foldOffset1, foldOffset2, foldLength1, foldLength2; |
| |
| /* current code points */ |
| UChar32 c1, c2; |
| |
| /* native indexes into s1 and s2 */ |
| int64_t index1, index2; |
| |
| /* argument checking */ |
| if(U_FAILURE(*pErrorCode)) { |
| return 0; |
| } |
| if(s1==NULL || s2==NULL) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return 0; |
| } |
| |
| csp=ucase_getSingleton(); |
| |
| /* initialize */ |
| index1 = (limit1 >= 0 ? UTEXT_GETNATIVEINDEX(s1) : 0); |
| index2 = (limit2 >= 0 ? UTEXT_GETNATIVEINDEX(s2) : 0); |
| |
| foldOffset1 = foldOffset2 = foldLength1 = foldLength2 = 0; |
| |
| /* comparison loop */ |
| while((foldOffset1 < foldLength1 || limit1 < 0 || index1 < limit1) && |
| (foldOffset2 < foldLength2 || limit2 < 0 || index2 < limit2)) { |
| if(foldOffset1 < foldLength1) { |
| U16_NEXT_UNSAFE(fold1, foldOffset1, c1); |
| } else { |
| c1 = UTEXT_NEXT32(s1); |
| if (c1 != U_SENTINEL) { |
| length = ucase_toFullFolding(csp, c1, &p, options); |
| if(length >= 0) { |
| if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle 0-length folded-case strings |
| u_memcpy(fold1, p, length); |
| foldOffset1 = 0; |
| foldLength1 = length; |
| U16_NEXT_UNSAFE(fold1, foldOffset1, c1); |
| } else { |
| c1 = length; |
| } |
| } |
| } |
| |
| if (limit1 >= 0) { |
| index1 = UTEXT_GETNATIVEINDEX(s1); |
| } |
| } |
| |
| if(foldOffset2 < foldLength2) { |
| U16_NEXT_UNSAFE(fold2, foldOffset2, c2); |
| } else { |
| c2 = UTEXT_NEXT32(s2); |
| if (c2 != U_SENTINEL) { |
| length = ucase_toFullFolding(csp, c2, &p, options); |
| if(length >= 0) { |
| if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle 0-length folded-case strings |
| u_memcpy(fold2, p, length); |
| foldOffset2 = 0; |
| foldLength2 = length; |
| U16_NEXT_UNSAFE(fold2, foldOffset2, c2); |
| } else { |
| c2 = length; |
| } |
| } |
| } else if(c1 == U_SENTINEL) { |
| return 0; |
| } |
| |
| if (limit2 >= 0) { |
| index2 = UTEXT_GETNATIVEINDEX(s2); |
| } |
| } |
| |
| if(c1 != c2) { |
| return (int32_t)c1-(int32_t)c2; |
| } |
| } |
| |
| /* By now at least one of the strings is out of characters */ |
| index1 -= foldLength1 - foldOffset1; |
| index2 -= foldLength2 - foldOffset2; |
| |
| if(limit1 >= 0 && index1 >= limit1) { |
| if(index2 >= limit2) { |
| return 0; |
| } else { |
| return -1; |
| } |
| } else { |
| if(index1 >= limit1) { |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| } |
| |
| |
| U_CAPI UBool U_EXPORT2 |
| utext_isWritable(const UText *ut) |
| { |
| UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0; |
| return b; |
| } |
| |
| |
| U_CAPI void U_EXPORT2 |
| utext_freeze(UText *ut) { |
| // Zero out the WRITABLE flag. |
| ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE)); |
| } |
| |
| |
| U_CAPI UBool U_EXPORT2 |
| utext_hasMetaData(const UText *ut) |
| { |
| UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0; |
| return b; |
| } |
| |
| |
| |
| U_CAPI int32_t U_EXPORT2 |
| utext_replace(UText *ut, |
| int64_t nativeStart, int64_t nativeLimit, |
| const UChar *replacementText, int32_t replacementLength, |
| UErrorCode *status) |
| { |
| if (U_FAILURE(*status)) { |
| return 0; |
| } |
| if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { |
| *status = U_NO_WRITE_PERMISSION; |
| return 0; |
| } |
| int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status); |
| return i; |
| } |
| |
| U_CAPI void U_EXPORT2 |
| utext_copy(UText *ut, |
| int64_t nativeStart, int64_t nativeLimit, |
| int64_t destIndex, |
| UBool move, |
| UErrorCode *status) |
| { |
| if (U_FAILURE(*status)) { |
| return; |
| } |
| if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { |
| *status = U_NO_WRITE_PERMISSION; |
| return; |
| } |
| ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status); |
| } |
| |
| |
| |
| U_CAPI UText * U_EXPORT2 |
| utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) { |
| UText *result; |
| result = src->pFuncs->clone(dest, src, deep, status); |
| if (readOnly) { |
| utext_freeze(result); |
| } |
| return result; |
| } |
| |
| |
| |
| //------------------------------------------------------------------------------ |
| // |
| // UText common functions implementation |
| // |
| //------------------------------------------------------------------------------ |
| |
| // |
| // UText.flags bit definitions |
| // |
| enum { |
| UTEXT_HEAP_ALLOCATED = 1, // 1 if ICU has allocated this UText struct on the heap. |
| // 0 if caller provided storage for the UText. |
| |
| UTEXT_EXTRA_HEAP_ALLOCATED = 2, // 1 if ICU has allocated extra storage as a separate |
| // heap block. |
| // 0 if there is no separate allocation. Either no extra |
| // storage was requested, or it is appended to the end |
| // of the main UText storage. |
| |
| UTEXT_OPEN = 4 // 1 if this UText is currently open |
| // 0 if this UText is not open. |
| }; |
| |
| |
| // |
| // Extended form of a UText. The purpose is to aid in computing the total size required |
| // when a provider asks for a UText to be allocated with extra storage. |
| |
| struct ExtendedUText { |
| UText ut; |
| UAlignedMemory extension; |
| }; |
| |
| static const UText emptyText = UTEXT_INITIALIZER; |
| |
| U_CAPI UText * U_EXPORT2 |
| utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) { |
| if (U_FAILURE(*status)) { |
| return ut; |
| } |
| |
| if (ut == NULL) { |
| // We need to heap-allocate storage for the new UText |
| int32_t spaceRequired = sizeof(UText); |
| if (extraSpace > 0) { |
| spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(UAlignedMemory); |
| } |
| ut = (UText *)uprv_malloc(spaceRequired); |
| if (ut == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| return NULL; |
| } else { |
| *ut = emptyText; |
| ut->flags |= UTEXT_HEAP_ALLOCATED; |
| if (spaceRequired>0) { |
| ut->extraSize = extraSpace; |
| ut->pExtra = &((ExtendedUText *)ut)->extension; |
| } |
| } |
| } else { |
| // We have been supplied with an already existing UText. |
| // Verify that it really appears to be a UText. |
| if (ut->magic != UTEXT_MAGIC) { |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return ut; |
| } |
| // If the ut is already open and there's a provider supplied close |
| // function, call it. |
| if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL) { |
| ut->pFuncs->close(ut); |
| } |
| ut->flags &= ~UTEXT_OPEN; |
| |
| // If extra space was requested by our caller, check whether |
| // sufficient already exists, and allocate new if needed. |
| if (extraSpace > ut->extraSize) { |
| // Need more space. If there is existing separately allocated space, |
| // delete it first, then allocate new space. |
| if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { |
| uprv_free(ut->pExtra); |
| ut->extraSize = 0; |
| } |
| ut->pExtra = uprv_malloc(extraSpace); |
| if (ut->pExtra == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| } else { |
| ut->extraSize = extraSpace; |
| ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED; |
| } |
| } |
| } |
| if (U_SUCCESS(*status)) { |
| ut->flags |= UTEXT_OPEN; |
| |
| // Initialize all remaining fields of the UText. |
| // |
| ut->context = NULL; |
| ut->chunkContents = NULL; |
| ut->p = NULL; |
| ut->q = NULL; |
| ut->r = NULL; |
| ut->a = 0; |
| ut->b = 0; |
| ut->c = 0; |
| ut->chunkOffset = 0; |
| ut->chunkLength = 0; |
| ut->chunkNativeStart = 0; |
| ut->chunkNativeLimit = 0; |
| ut->nativeIndexingLimit = 0; |
| ut->providerProperties = 0; |
| ut->privA = 0; |
| ut->privB = 0; |
| ut->privC = 0; |
| ut->privP = NULL; |
| if (ut->pExtra!=NULL && ut->extraSize>0) |
| uprv_memset(ut->pExtra, 0, ut->extraSize); |
| |
| } |
| return ut; |
| } |
| |
| |
| U_CAPI UText * U_EXPORT2 |
| utext_close(UText *ut) { |
| if (ut==NULL || |
| ut->magic != UTEXT_MAGIC || |
| (ut->flags & UTEXT_OPEN) == 0) |
| { |
| // The supplied ut is not an open UText. |
| // Do nothing. |
| return ut; |
| } |
| |
| // If the provider gave us a close function, call it now. |
| // This will clean up anything allocated specifically by the provider. |
| if (ut->pFuncs->close != NULL) { |
| ut->pFuncs->close(ut); |
| } |
| ut->flags &= ~UTEXT_OPEN; |
| |
| // If we (the framework) allocated the UText or subsidiary storage, |
| // delete it. |
| if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { |
| uprv_free(ut->pExtra); |
| ut->pExtra = NULL; |
| ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED; |
| ut->extraSize = 0; |
| } |
| |
| // Zero out function table of the closed UText. This is a defensive move, |
| // inteded to cause applications that inadvertantly use a closed |
| // utext to crash with null pointer errors. |
| ut->pFuncs = NULL; |
| |
| if (ut->flags & UTEXT_HEAP_ALLOCATED) { |
| // This UText was allocated by UText setup. We need to free it. |
| // Clear magic, so we can detect if the user messes up and immediately |
| // tries to reopen another UText using the deleted storage. |
| ut->magic = 0; |
| uprv_free(ut); |
| ut = NULL; |
| } |
| return ut; |
| } |
| |
| |
| |
| |
| // |
| // invalidateChunk Reset a chunk to have no contents, so that the next call |
| // to access will cause new data to load. |
| // This is needed when copy/move/replace operate directly on the |
| // backing text, potentially putting it out of sync with the |
| // contents in the chunk. |
| // |
| static void |
| invalidateChunk(UText *ut) { |
| ut->chunkLength = 0; |
| ut->chunkNativeLimit = 0; |
| ut->chunkNativeStart = 0; |
| ut->chunkOffset = 0; |
| ut->nativeIndexingLimit = 0; |
| } |
| |
| // |
| // pinIndex Do range pinning on a native index parameter. |
| // 64 bit pinning is done in place. |
| // 32 bit truncated result is returned as a convenience for |
| // use in providers that don't need 64 bits. |
| static int32_t |
| pinIndex(int64_t &index, int64_t limit) { |
| if (index<0) { |
| index = 0; |
| } else if (index > limit) { |
| index = limit; |
| } |
| return (int32_t)index; |
| } |
| |
| |
| U_CDECL_BEGIN |
| |
| // |
| // Pointer relocation function, |
| // a utility used by shallow clone. |
| // Adjust a pointer that refers to something within one UText (the source) |
| // to refer to the same relative offset within a another UText (the target) |
| // |
| static void adjustPointer(UText *dest, const void **destPtr, const UText *src) { |
| // convert all pointers to (char *) so that byte address arithmetic will work. |
| char *dptr = (char *)*destPtr; |
| char *dUText = (char *)dest; |
| char *sUText = (char *)src; |
| |
| if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) { |
| // target ptr was to something within the src UText's pExtra storage. |
| // relocate it into the target UText's pExtra region. |
| *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra); |
| } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) { |
| // target ptr was pointing to somewhere within the source UText itself. |
| // Move it to the same offset within the target UText. |
| *destPtr = dUText + (dptr-sUText); |
| } |
| } |
| |
| |
| // |
| // Clone. This is a generic copy-the-utext-by-value clone function that can be |
| // used as-is with some utext types, and as a helper by other clones. |
| // |
| static UText * U_CALLCONV |
| shallowTextClone(UText * dest, const UText * src, UErrorCode * status) { |
| if (U_FAILURE(*status)) { |
| return NULL; |
| } |
| int32_t srcExtraSize = src->extraSize; |
| |
| // |
| // Use the generic text_setup to allocate storage if required. |
| // |
| dest = utext_setup(dest, srcExtraSize, status); |
| if (U_FAILURE(*status)) { |
| return dest; |
| } |
| |
| // |
| // flags (how the UText was allocated) and the pointer to the |
| // extra storage must retain the values in the cloned utext that |
| // were set up by utext_setup. Save them separately before |
| // copying the whole struct. |
| // |
| void *destExtra = dest->pExtra; |
| int32_t flags = dest->flags; |
| |
| |
| // |
| // Copy the whole UText struct by value. |
| // Any "Extra" storage is copied also. |
| // |
| int sizeToCopy = src->sizeOfStruct; |
| if (sizeToCopy > dest->sizeOfStruct) { |
| sizeToCopy = dest->sizeOfStruct; |
| } |
| uprv_memcpy(dest, src, sizeToCopy); |
| dest->pExtra = destExtra; |
| dest->flags = flags; |
| if (srcExtraSize > 0) { |
| uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize); |
| } |
| |
| // |
| // Relocate any pointers in the target that refer to the UText itself |
| // to point to the cloned copy rather than the original source. |
| // |
| adjustPointer(dest, &dest->context, src); |
| adjustPointer(dest, &dest->p, src); |
| adjustPointer(dest, &dest->q, src); |
| adjustPointer(dest, &dest->r, src); |
| adjustPointer(dest, (const void **)&dest->chunkContents, src); |
| |
| return dest; |
| } |
| |
| |
| U_CDECL_END |
| |
| |
| |
| //------------------------------------------------------------------------------ |
| // |
| // UText implementation for UTF-8 char * strings (read-only) |
| // Limitation: string length must be <= 0x7fffffff in length. |
| // (length must for in an int32_t variable) |
| // |
| // Use of UText data members: |
| // context pointer to UTF-8 string |
| // utext.b is the input string length (bytes). |
| // utext.c Length scanned so far in string |
| // (for optimizing finding length of zero terminated strings.) |
| // utext.p pointer to the current buffer |
| // utext.q pointer to the other buffer. |
| // |
| //------------------------------------------------------------------------------ |
| |
| // Chunk size. |
| // Must be less than 85, because of byte mapping from UChar indexes to native indexes. |
| // Worst case is three native bytes to one UChar. (Supplemenaries are 4 native bytes |
| // to two UChars.) |
| // |
| enum { UTF8_TEXT_CHUNK_SIZE=32 }; |
| |
| // |
| // UTF8Buf Two of these structs will be set up in the UText's extra allocated space. |
| // Each contains the UChar chunk buffer, the to and from native maps, and |
| // header info. |
| // |
| // because backwards iteration fills the buffers starting at the end and |
| // working towards the front, the filled part of the buffers may not begin |
| // at the start of the available storage for the buffers. |
| // |
| // Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for |
| // the last character added being a supplementary, and thus requiring a surrogate |
| // pair. Doing this is simpler than checking for the edge case. |
| // |
| |
| struct UTF8Buf { |
| int32_t bufNativeStart; // Native index of first char in UChar buf |
| int32_t bufNativeLimit; // Native index following last char in buf. |
| int32_t bufStartIdx; // First filled position in buf. |
| int32_t bufLimitIdx; // Limit of filled range in buf. |
| int32_t bufNILimit; // Limit of native indexing part of buf |
| int32_t toUCharsMapStart; // Native index corresponding to |
| // mapToUChars[0]. |
| // Set to bufNativeStart when filling forwards. |
| // Set to computed value when filling backwards. |
| |
| UChar buf[UTF8_TEXT_CHUNK_SIZE+4]; // The UChar buffer. Requires one extra position beyond the |
| // the chunk size, to allow for surrogate at the end. |
| // Length must be identical to mapToNative array, below, |
| // because of the way indexing works when the array is |
| // filled backwards during a reverse iteration. Thus, |
| // the additional extra size. |
| uint8_t mapToNative[UTF8_TEXT_CHUNK_SIZE+4]; // map UChar index in buf to |
| // native offset from bufNativeStart. |
| // Requires two extra slots, |
| // one for a supplementary starting in the last normal position, |
| // and one for an entry for the buffer limit position. |
| uint8_t mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to |
| // correspoding offset in filled part of buf. |
| int32_t align; |
| }; |
| |
| U_CDECL_BEGIN |
| |
| // |
| // utf8TextLength |
| // |
| // Get the length of the string. If we don't already know it, |
| // we'll need to scan for the trailing nul. |
| // |
| static int64_t U_CALLCONV |
| utf8TextLength(UText *ut) { |
| if (ut->b < 0) { |
| // Zero terminated string, and we haven't scanned to the end yet. |
| // Scan it now. |
| const char *r = (const char *)ut->context + ut->c; |
| while (*r != 0) { |
| r++; |
| } |
| if ((r - (const char *)ut->context) < 0x7fffffff) { |
| ut->b = (int32_t)(r - (const char *)ut->context); |
| } else { |
| // Actual string was bigger (more than 2 gig) than we |
| // can handle. Clip it to 2 GB. |
| ut->b = 0x7fffffff; |
| } |
| ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| } |
| return ut->b; |
| } |
| |
| |
| |
| |
| |
| |
| static UBool U_CALLCONV |
| utf8TextAccess(UText *ut, int64_t index, UBool forward) { |
| // |
| // Apologies to those who are allergic to goto statements. |
| // Consider each goto to a labelled block to be the equivalent of |
| // call the named block as if it were a function(); |
| // return; |
| // |
| const uint8_t *s8=(const uint8_t *)ut->context; |
| UTF8Buf *u8b = NULL; |
| int32_t length = ut->b; // Length of original utf-8 |
| int32_t ix= (int32_t)index; // Requested index, trimmed to 32 bits. |
| int32_t mapIndex = 0; |
| if (index<0) { |
| ix=0; |
| } else if (index > 0x7fffffff) { |
| // Strings with 64 bit lengths not supported by this UTF-8 provider. |
| ix = 0x7fffffff; |
| } |
| |
| // Pin requested index to the string length. |
| if (ix>length) { |
| if (length>=0) { |
| ix=length; |
| } else if (ix>=ut->c) { |
| // Zero terminated string, and requested index is beyond |
| // the region that has already been scanned. |
| // Scan up to either the end of the string or to the |
| // requested position, whichever comes first. |
| while (ut->c<ix && s8[ut->c]!=0) { |
| ut->c++; |
| } |
| // TODO: support for null terminated string length > 32 bits. |
| if (s8[ut->c] == 0) { |
| // We just found the actual length of the string. |
| // Trim the requested index back to that. |
| ix = ut->c; |
| ut->b = ut->c; |
| length = ut->c; |
| ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| } |
| } |
| } |
| |
| // |
| // Dispatch to the appropriate action for a forward iteration request. |
| // |
| if (forward) { |
| if (ix==ut->chunkNativeLimit) { |
| // Check for normal sequential iteration cases first. |
| if (ix==length) { |
| // Just reached end of string |
| // Don't swap buffers, but do set the |
| // current buffer position. |
| ut->chunkOffset = ut->chunkLength; |
| return FALSE; |
| } else { |
| // End of current buffer. |
| // check whether other buffer already has what we need. |
| UTF8Buf *altB = (UTF8Buf *)ut->q; |
| if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) { |
| goto swapBuffers; |
| } |
| } |
| } |
| |
| // A random access. Desired index could be in either or niether buf. |
| // For optimizing the order of testing, first check for the index |
| // being in the other buffer. This will be the case for uses that |
| // move back and forth over a fairly limited range |
| { |
| u8b = (UTF8Buf *)ut->q; // the alternate buffer |
| if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) { |
| // Requested index is in the other buffer. |
| goto swapBuffers; |
| } |
| if (ix == length) { |
| // Requested index is end-of-string. |
| // (this is the case of randomly seeking to the end. |
| // The case of iterating off the end is handled earlier.) |
| if (ix == ut->chunkNativeLimit) { |
| // Current buffer extends up to the end of the string. |
| // Leave it as the current buffer. |
| ut->chunkOffset = ut->chunkLength; |
| return FALSE; |
| } |
| if (ix == u8b->bufNativeLimit) { |
| // Alternate buffer extends to the end of string. |
| // Swap it in as the current buffer. |
| goto swapBuffersAndFail; |
| } |
| |
| // Neither existing buffer extends to the end of the string. |
| goto makeStubBuffer; |
| } |
| |
| if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) { |
| // Requested index is in neither buffer. |
| goto fillForward; |
| } |
| |
| // Requested index is in this buffer. |
| u8b = (UTF8Buf *)ut->p; // the current buffer |
| mapIndex = ix - u8b->toUCharsMapStart; |
| ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
| return TRUE; |
| |
| } |
| } |
| |
| |
| // |
| // Dispatch to the appropriate action for a |
| // Backwards Diretion iteration request. |
| // |
| if (ix==ut->chunkNativeStart) { |
| // Check for normal sequential iteration cases first. |
| if (ix==0) { |
| // Just reached the start of string |
| // Don't swap buffers, but do set the |
| // current buffer position. |
| ut->chunkOffset = 0; |
| return FALSE; |
| } else { |
| // Start of current buffer. |
| // check whether other buffer already has what we need. |
| UTF8Buf *altB = (UTF8Buf *)ut->q; |
| if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) { |
| goto swapBuffers; |
| } |
| } |
| } |
| |
| // A random access. Desired index could be in either or niether buf. |
| // For optimizing the order of testing, |
| // Most likely case: in the other buffer. |
| // Second most likely: in neither buffer. |
| // Unlikely, but must work: in the current buffer. |
| u8b = (UTF8Buf *)ut->q; // the alternate buffer |
| if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) { |
| // Requested index is in the other buffer. |
| goto swapBuffers; |
| } |
| // Requested index is start-of-string. |
| // (this is the case of randomly seeking to the start. |
| // The case of iterating off the start is handled earlier.) |
| if (ix==0) { |
| if (u8b->bufNativeStart==0) { |
| // Alternate buffer contains the data for the start string. |
| // Make it be the current buffer. |
| goto swapBuffersAndFail; |
| } else { |
| // Request for data before the start of string, |
| // neither buffer is usable. |
| // set up a zero-length buffer. |
| goto makeStubBuffer; |
| } |
| } |
| |
| if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) { |
| // Requested index is in neither buffer. |
| goto fillReverse; |
| } |
| |
| // Requested index is in this buffer. |
| // Set the utf16 buffer index. |
| u8b = (UTF8Buf *)ut->p; |
| mapIndex = ix - u8b->toUCharsMapStart; |
| ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
| if (ut->chunkOffset==0) { |
| // This occurs when the first character in the text is |
| // a multi-byte UTF-8 char, and the requested index is to |
| // one of the trailing bytes. Because there is no preceding , |
| // character, this access fails. We can't pick up on the |
| // situation sooner because the requested index is not zero. |
| return FALSE; |
| } else { |
| return TRUE; |
| } |
| |
| |
| |
| swapBuffers: |
| // The alternate buffer (ut->q) has the string data that was requested. |
| // Swap the primary and alternate buffers, and set the |
| // chunk index into the new primary buffer. |
| { |
| u8b = (UTF8Buf *)ut->q; |
| ut->q = ut->p; |
| ut->p = u8b; |
| ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; |
| ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; |
| ut->chunkNativeStart = u8b->bufNativeStart; |
| ut->chunkNativeLimit = u8b->bufNativeLimit; |
| ut->nativeIndexingLimit = u8b->bufNILimit; |
| |
| // Index into the (now current) chunk |
| // Use the map to set the chunk index. It's more trouble than it's worth |
| // to check whether native indexing can be used. |
| U_ASSERT(ix>=u8b->bufNativeStart); |
| U_ASSERT(ix<=u8b->bufNativeLimit); |
| mapIndex = ix - u8b->toUCharsMapStart; |
| U_ASSERT(mapIndex>=0); |
| U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars)); |
| ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
| |
| return TRUE; |
| } |
| |
| |
| swapBuffersAndFail: |
| // We got a request for either the start or end of the string, |
| // with iteration continuing in the out-of-bounds direction. |
| // The alternate buffer already contains the data up to the |
| // start/end. |
| // Swap the buffers, then return failure, indicating that we couldn't |
| // make things correct for continuing the iteration in the requested |
| // direction. The position & buffer are correct should the |
| // user decide to iterate in the opposite direction. |
| u8b = (UTF8Buf *)ut->q; |
| ut->q = ut->p; |
| ut->p = u8b; |
| ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; |
| ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; |
| ut->chunkNativeStart = u8b->bufNativeStart; |
| ut->chunkNativeLimit = u8b->bufNativeLimit; |
| ut->nativeIndexingLimit = u8b->bufNILimit; |
| |
| // Index into the (now current) chunk |
| // For this function (swapBuffersAndFail), the requested index |
| // will always be at either the start or end of the chunk. |
| if (ix==u8b->bufNativeLimit) { |
| ut->chunkOffset = ut->chunkLength; |
| } else { |
| ut->chunkOffset = 0; |
| U_ASSERT(ix == u8b->bufNativeStart); |
| } |
| return FALSE; |
| |
| makeStubBuffer: |
| // The user has done a seek/access past the start or end |
| // of the string. Rather than loading data that is likely |
| // to never be used, just set up a zero-length buffer at |
| // the position. |
| u8b = (UTF8Buf *)ut->q; |
| u8b->bufNativeStart = ix; |
| u8b->bufNativeLimit = ix; |
| u8b->bufStartIdx = 0; |
| u8b->bufLimitIdx = 0; |
| u8b->bufNILimit = 0; |
| u8b->toUCharsMapStart = ix; |
| u8b->mapToNative[0] = 0; |
| u8b->mapToUChars[0] = 0; |
| goto swapBuffersAndFail; |
| |
| |
| |
| fillForward: |
| { |
| // Move the incoming index to a code point boundary. |
| U8_SET_CP_START(s8, 0, ix); |
| |
| // Swap the UText buffers. |
| // We want to fill what was previously the alternate buffer, |
| // and make what was the current buffer be the new alternate. |
| UTF8Buf *u8b = (UTF8Buf *)ut->q; |
| ut->q = ut->p; |
| ut->p = u8b; |
| |
| int32_t strLen = ut->b; |
| UBool nulTerminated = FALSE; |
| if (strLen < 0) { |
| strLen = 0x7fffffff; |
| nulTerminated = TRUE; |
| } |
| |
| UChar *buf = u8b->buf; |
| uint8_t *mapToNative = u8b->mapToNative; |
| uint8_t *mapToUChars = u8b->mapToUChars; |
| int32_t destIx = 0; |
| int32_t srcIx = ix; |
| UBool seenNonAscii = FALSE; |
| UChar32 c = 0; |
| |
| // Fill the chunk buffer and mapping arrays. |
| while (destIx<UTF8_TEXT_CHUNK_SIZE) { |
| c = s8[srcIx]; |
| if (c>0 && c<0x80) { |
| // Special case ASCII range for speed. |
| // zero is excluded to simplify bounds checking. |
| buf[destIx] = (UChar)c; |
| mapToNative[destIx] = (uint8_t)(srcIx - ix); |
| mapToUChars[srcIx-ix] = (uint8_t)destIx; |
| srcIx++; |
| destIx++; |
| } else { |
| // General case, handle everything. |
| if (seenNonAscii == FALSE) { |
| seenNonAscii = TRUE; |
| u8b->bufNILimit = destIx; |
| } |
| |
| int32_t cIx = srcIx; |
| int32_t dIx = destIx; |
| int32_t dIxSaved = destIx; |
| U8_NEXT(s8, srcIx, strLen, c); |
| if (c==0 && nulTerminated) { |
| srcIx--; |
| break; |
| } |
| if (c<0) { |
| // Illegal UTF-8. Replace with sub character. |
| c = 0x0fffd; |
| } |
| |
| U16_APPEND_UNSAFE(buf, destIx, c); |
| do { |
| mapToNative[dIx++] = (uint8_t)(cIx - ix); |
| } while (dIx < destIx); |
| |
| do { |
| mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved; |
| } while (cIx < srcIx); |
| } |
| if (srcIx>=strLen) { |
| break; |
| } |
| |
| } |
| |
| // store Native <--> Chunk Map entries for the end of the buffer. |
| // There is no actual character here, but the index position is valid. |
| mapToNative[destIx] = (uint8_t)(srcIx - ix); |
| mapToUChars[srcIx - ix] = (uint8_t)destIx; |
| |
| // fill in Buffer descriptor |
| u8b->bufNativeStart = ix; |
| u8b->bufNativeLimit = srcIx; |
| u8b->bufStartIdx = 0; |
| u8b->bufLimitIdx = destIx; |
| if (seenNonAscii == FALSE) { |
| u8b->bufNILimit = destIx; |
| } |
| u8b->toUCharsMapStart = u8b->bufNativeStart; |
| |
| // Set UText chunk to refer to this buffer. |
| ut->chunkContents = buf; |
| ut->chunkOffset = 0; |
| ut->chunkLength = u8b->bufLimitIdx; |
| ut->chunkNativeStart = u8b->bufNativeStart; |
| ut->chunkNativeLimit = u8b->bufNativeLimit; |
| ut->nativeIndexingLimit = u8b->bufNILimit; |
| |
| // For zero terminated strings, keep track of the maximum point |
| // scanned so far. |
| if (nulTerminated && srcIx>ut->c) { |
| ut->c = srcIx; |
| if (c==0) { |
| // We scanned to the end. |
| // Remember the actual length. |
| ut->b = srcIx; |
| ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| } |
| } |
| return TRUE; |
| } |
| |
| |
| fillReverse: |
| { |
| // Move the incoming index to a code point boundary. |
| // Can only do this if the incoming index is somewhere in the interior of the string. |
| // If index is at the end, there is no character there to look at. |
| if (ix != ut->b) { |
| U8_SET_CP_START(s8, 0, ix); |
| } |
| |
| // Swap the UText buffers. |
| // We want to fill what was previously the alternate buffer, |
| // and make what was the current buffer be the new alternate. |
| UTF8Buf *u8b = (UTF8Buf *)ut->q; |
| ut->q = ut->p; |
| ut->p = u8b; |
| |
| UChar *buf = u8b->buf; |
| uint8_t *mapToNative = u8b->mapToNative; |
| uint8_t *mapToUChars = u8b->mapToUChars; |
| int32_t toUCharsMapStart = ix - (UTF8_TEXT_CHUNK_SIZE*3 + 1); |
| int32_t destIx = UTF8_TEXT_CHUNK_SIZE+2; // Start in the overflow region |
| // at end of buffer to leave room |
| // for a surrogate pair at the |
| // buffer start. |
| int32_t srcIx = ix; |
| int32_t bufNILimit = destIx; |
| UChar32 c; |
| |
| // Map to/from Native Indexes, fill in for the position at the end of |
| // the buffer. |
| // |
| mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
| mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; |
| |
| // Fill the chunk buffer |
| // Work backwards, filling from the end of the buffer towards the front. |
| // |
| while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) { |
| srcIx--; |
| destIx--; |
| |
| // Get last byte of the UTF-8 character |
| c = s8[srcIx]; |
| if (c<0x80) { |
| // Special case ASCII range for speed. |
| buf[destIx] = (UChar)c; |
| mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; |
| mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
| } else { |
| // General case, handle everything non-ASCII. |
| |
| int32_t sIx = srcIx; // ix of last byte of multi-byte u8 char |
| |
| // Get the full character from the UTF8 string. |
| // use code derived from tbe macros in utf.8 |
| // Leaves srcIx pointing at the first byte of the UTF-8 char. |
| // |
| if (c<=0xbf) { |
| c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -1); |
| // leaves srcIx at first byte of the multi-byte char. |
| } else { |
| c=0x0fffd; |
| } |
| |
| // Store the character in UTF-16 buffer. |
| if (c<0x10000) { |
| buf[destIx] = (UChar)c; |
| mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
| } else { |
| buf[destIx] = U16_TRAIL(c); |
| mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
| buf[--destIx] = U16_LEAD(c); |
| mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
| } |
| |
| // Fill in the map from native indexes to UChars buf index. |
| do { |
| mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx; |
| } while (sIx >= srcIx); |
| |
| // Set native indexing limit to be the current position. |
| // We are processing a non-ascii, non-native-indexing char now; |
| // the limit will be here if the rest of the chars to be |
| // added to this buffer are ascii. |
| bufNILimit = destIx; |
| } |
| } |
| u8b->bufNativeStart = srcIx; |
| u8b->bufNativeLimit = ix; |
| u8b->bufStartIdx = destIx; |
| u8b->bufLimitIdx = UTF8_TEXT_CHUNK_SIZE+2; |
| u8b->bufNILimit = bufNILimit - u8b->bufStartIdx; |
| u8b->toUCharsMapStart = toUCharsMapStart; |
| |
| ut->chunkContents = &buf[u8b->bufStartIdx]; |
| ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; |
| ut->chunkOffset = ut->chunkLength; |
| ut->chunkNativeStart = u8b->bufNativeStart; |
| ut->chunkNativeLimit = u8b->bufNativeLimit; |
| ut->nativeIndexingLimit = u8b->bufNILimit; |
| return TRUE; |
| } |
| |
| } |
| |
| |
| |
| // |
| // This is a slightly modified copy of u_strFromUTF8, |
| // Inserts a Replacement Char rather than failing on invalid UTF-8 |
| // Removes unnecessary features. |
| // |
| static UChar* |
| utext_strFromUTF8(UChar *dest, |
| int32_t destCapacity, |
| int32_t *pDestLength, |
| const char* src, |
| int32_t srcLength, // required. NUL terminated not supported. |
| UErrorCode *pErrorCode |
| ) |
| { |
| |
| UChar *pDest = dest; |
| UChar *pDestLimit = dest+destCapacity; |
| UChar32 ch=0; |
| int32_t index = 0; |
| int32_t reqLength = 0; |
| uint8_t* pSrc = (uint8_t*) src; |
| |
| |
| while((index < srcLength)&&(pDest<pDestLimit)){ |
| ch = pSrc[index++]; |
| if(ch <=0x7f){ |
| *pDest++=(UChar)ch; |
| }else{ |
| ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -1); |
| if(ch<0){ |
| ch = 0xfffd; |
| } |
| if(U_IS_BMP(ch)){ |
| *(pDest++)=(UChar)ch; |
| }else{ |
| *(pDest++)=UTF16_LEAD(ch); |
| if(pDest<pDestLimit){ |
| *(pDest++)=UTF16_TRAIL(ch); |
| }else{ |
| reqLength++; |
| break; |
| } |
| } |
| } |
| } |
| /* donot fill the dest buffer just count the UChars needed */ |
| while(index < srcLength){ |
| ch = pSrc[index++]; |
| if(ch <= 0x7f){ |
| reqLength++; |
| }else{ |
| ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -1); |
| if(ch<0){ |
| ch = 0xfffd; |
| } |
| reqLength+=U16_LENGTH(ch); |
| } |
| } |
| |
| reqLength+=(int32_t)(pDest - dest); |
| |
| if(pDestLength){ |
| *pDestLength = reqLength; |
| } |
| |
| /* Terminate the buffer */ |
| u_terminateUChars(dest,destCapacity,reqLength,pErrorCode); |
| |
| return dest; |
| } |
| |
| |
| |
| static int32_t U_CALLCONV |
| utf8TextExtract(UText *ut, |
| int64_t start, int64_t limit, |
| UChar *dest, int32_t destCapacity, |
| UErrorCode *pErrorCode) { |
| if(U_FAILURE(*pErrorCode)) { |
| return 0; |
| } |
| if(destCapacity<0 || (dest==NULL && destCapacity>0)) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return 0; |
| } |
| int32_t length = ut->b; |
| int32_t start32 = pinIndex(start, length); |
| int32_t limit32 = pinIndex(limit, length); |
| |
| if(start32>limit32) { |
| *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| return 0; |
| } |
| |
| |
| // adjust the incoming indexes to land on code point boundaries if needed. |
| // adjust by no more than three, because that is the largest number of trail bytes |
| // in a well formed UTF8 character. |
| const uint8_t *buf = (const uint8_t *)ut->context; |
| int i; |
| if (start32 < ut->chunkNativeLimit) { |
| for (i=0; i<3; i++) { |
| if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) { |
| break; |
| } |
| start32--; |
| } |
| } |
| |
| if (limit32 < ut->chunkNativeLimit) { |
| for (i=0; i<3; i++) { |
| if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) { |
| break; |
| } |
| limit32--; |
| } |
| } |
| |
| // Do the actual extract. |
| int32_t destLength=0; |
| utext_strFromUTF8(dest, destCapacity, &destLength, |
| (const char *)ut->context+start32, limit32-start32, |
| pErrorCode); |
| utf8TextAccess(ut, limit32, TRUE); |
| return destLength; |
| } |
| |
| // |
| // utf8TextMapOffsetToNative |
| // |
| // Map a chunk (UTF-16) offset to a native index. |
| static int64_t U_CALLCONV |
| utf8TextMapOffsetToNative(const UText *ut) { |
| // |
| UTF8Buf *u8b = (UTF8Buf *)ut->p; |
| U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength); |
| int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart; |
| U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit); |
| return nativeOffset; |
| } |
| |
| // |
| // Map a native index to the corrsponding chunk offset |
| // |
| static int32_t U_CALLCONV |
| utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) { |
| U_ASSERT(index64 <= 0x7fffffff); |
| int32_t index = (int32_t)index64; |
| UTF8Buf *u8b = (UTF8Buf *)ut->p; |
| U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit); |
| U_ASSERT(index<=ut->chunkNativeLimit); |
| int32_t mapIndex = index - u8b->toUCharsMapStart; |
| int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
| U_ASSERT(offset>=0 && offset<=ut->chunkLength); |
| return offset; |
| } |
| |
| static UText * U_CALLCONV |
| utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) |
| { |
| // First do a generic shallow clone. Does everything needed for the UText struct itself. |
| dest = shallowTextClone(dest, src, status); |
| |
| // For deep clones, make a copy of the string. |
| // The copied storage is owned by the newly created clone. |
| // |
| // TODO: There is an isssue with using utext_nativeLength(). |
| // That function is non-const in cases where the input was NUL terminated |
| // and the length has not yet been determined. |
| // This function (clone()) is const. |
| // There potentially a thread safety issue lurking here. |
| // |
| if (deep && U_SUCCESS(*status)) { |
| int32_t len = (int32_t)utext_nativeLength((UText *)src); |
| char *copyStr = (char *)uprv_malloc(len+1); |
| if (copyStr == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| } else { |
| uprv_memcpy(copyStr, src->context, len+1); |
| dest->context = copyStr; |
| dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
| } |
| } |
| return dest; |
| } |
| |
| |
| static void U_CALLCONV |
| utf8TextClose(UText *ut) { |
| // Most of the work of close is done by the generic UText framework close. |
| // All that needs to be done here is to delete the UTF8 string if the UText |
| // owns it. This occurs if the UText was created by cloning. |
| if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
| char *s = (char *)ut->context; |
| uprv_free(s); |
| ut->context = NULL; |
| } |
| } |
| |
| U_CDECL_END |
| |
| |
| static const struct UTextFuncs utf8Funcs = |
| { |
| sizeof(UTextFuncs), |
| 0, 0, 0, // Reserved alignment padding |
| utf8TextClone, |
| utf8TextLength, |
| utf8TextAccess, |
| utf8TextExtract, |
| NULL, /* replace*/ |
| NULL, /* copy */ |
| utf8TextMapOffsetToNative, |
| utf8TextMapIndexToUTF16, |
| utf8TextClose, |
| NULL, // spare 1 |
| NULL, // spare 2 |
| NULL // spare 3 |
| }; |
| |
| |
| static const char gEmptyString[] = {0}; |
| |
| U_CAPI UText * U_EXPORT2 |
| utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) { |
| if(U_FAILURE(*status)) { |
| return NULL; |
| } |
| if(s==NULL && length==0) { |
| s = gEmptyString; |
| } |
| |
| if(s==NULL || length<-1 || length>INT32_MAX) { |
| *status=U_ILLEGAL_ARGUMENT_ERROR; |
| return NULL; |
| } |
| |
| ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status); |
| if (U_FAILURE(*status)) { |
| return ut; |
| } |
| |
| ut->pFuncs = &utf8Funcs; |
| ut->context = s; |
| ut->b = (int32_t)length; |
| ut->c = (int32_t)length; |
| if (ut->c < 0) { |
| ut->c = 0; |
| ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| } |
| ut->p = ut->pExtra; |
| ut->q = (char *)ut->pExtra + sizeof(UTF8Buf); |
| return ut; |
| |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| //------------------------------------------------------------------------------ |
| // |
| // UText implementation wrapper for Replaceable (read/write) |
| // |
| // Use of UText data members: |
| // context pointer to Replaceable. |
| // p pointer to Replaceable if it is owned by the UText. |
| // |
| //------------------------------------------------------------------------------ |
| |
| |
| |
| // minimum chunk size for this implementation: 3 |
| // to allow for possible trimming for code point boundaries |
| enum { REP_TEXT_CHUNK_SIZE=10 }; |
| |
| struct ReplExtra { |
| /* |
| * Chunk UChars. |
| * +1 to simplify filling with surrogate pair at the end. |
| */ |
| UChar s[REP_TEXT_CHUNK_SIZE+1]; |
| }; |
| |
| |
| U_CDECL_BEGIN |
| |
| static UText * U_CALLCONV |
| repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { |
| // First do a generic shallow clone. Does everything needed for the UText struct itself. |
| dest = shallowTextClone(dest, src, status); |
| |
| // For deep clones, make a copy of the Replaceable. |
| // The copied Replaceable storage is owned by the newly created UText clone. |
| // A non-NULL pointer in UText.p is the signal to the close() function to delete |
| // it. |
| // |
| if (deep && U_SUCCESS(*status)) { |
| const Replaceable *replSrc = (const Replaceable *)src->context; |
| dest->context = replSrc->clone(); |
| dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
| |
| // with deep clone, the copy is writable, even when the source is not. |
| dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
| } |
| return dest; |
| } |
| |
| |
| static void U_CALLCONV |
| repTextClose(UText *ut) { |
| // Most of the work of close is done by the generic UText framework close. |
| // All that needs to be done here is delete the Replaceable if the UText |
| // owns it. This occurs if the UText was created by cloning. |
| if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
| Replaceable *rep = (Replaceable *)ut->context; |
| delete rep; |
| ut->context = NULL; |
| } |
| } |
| |
| |
| static int64_t U_CALLCONV |
| repTextLength(UText *ut) { |
| const Replaceable *replSrc = (const Replaceable *)ut->context; |
| int32_t len = replSrc->length(); |
| return len; |
| } |
| |
| |
| static UBool U_CALLCONV |
| repTextAccess(UText *ut, int64_t index, UBool forward) { |
| const Replaceable *rep=(const Replaceable *)ut->context; |
| int32_t length=rep->length(); // Full length of the input text (bigger than a chunk) |
| |
| // clip the requested index to the limits of the text. |
| int32_t index32 = pinIndex(index, length); |
| U_ASSERT(index<=INT32_MAX); |
| |
| |
| /* |
| * Compute start/limit boundaries around index, for a segment of text |
| * to be extracted. |
| * To allow for the possibility that our user gave an index to the trailing |
| * half of a surrogate pair, we must request one extra preceding UChar when |
| * going in the forward direction. This will ensure that the buffer has the |
| * entire code point at the specified index. |
| */ |
| if(forward) { |
| |
| if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) { |
| // Buffer already contains the requested position. |
| ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
| return TRUE; |
| } |
| if (index32>=length && ut->chunkNativeLimit==length) { |
| // Request for end of string, and buffer already extends up to it. |
| // Can't get the data, but don't change the buffer. |
| ut->chunkOffset = length - (int32_t)ut->chunkNativeStart; |
| return FALSE; |
| } |
| |
| ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1; |
| // Going forward, so we want to have the buffer with stuff at and beyond |
| // the requested index. The -1 gets us one code point before the |
| // requested index also, to handle the case of the index being on |
| // a trail surrogate of a surrogate pair. |
| if(ut->chunkNativeLimit > length) { |
| ut->chunkNativeLimit = length; |
| } |
| // unless buffer ran off end, start is index-1. |
| ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE; |
| if(ut->chunkNativeStart < 0) { |
| ut->chunkNativeStart = 0; |
| } |
| } else { |
| // Reverse iteration. Fill buffer with data preceding the requested index. |
| if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) { |
| // Requested position already in buffer. |
| ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart; |
| return TRUE; |
| } |
| if (index32==0 && ut->chunkNativeStart==0) { |
| // Request for start, buffer already begins at start. |
| // No data, but keep the buffer as is. |
| ut->chunkOffset = 0; |
| return FALSE; |
| } |
| |
| // Figure out the bounds of the chunk to extract for reverse iteration. |
| // Need to worry about chunk not splitting surrogate pairs, and while still |
| // containing the data we need. |
| // Fix by requesting a chunk that includes an extra UChar at the end. |
| // If this turns out to be a lead surrogate, we can lop it off and still have |
| // the data we wanted. |
| ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE; |
| if (ut->chunkNativeStart < 0) { |
| ut->chunkNativeStart = 0; |
| } |
| |
| ut->chunkNativeLimit = index32 + 1; |
| if (ut->chunkNativeLimit > length) { |
| ut->chunkNativeLimit = length; |
| } |
| } |
| |
| // Extract the new chunk of text from the Replaceable source. |
| ReplExtra *ex = (ReplExtra *)ut->pExtra; |
| // UnicodeString with its buffer a writable alias to the chunk buffer |
| UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/); |
| rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer); |
| |
| ut->chunkContents = ex->s; |
| ut->chunkLength = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart); |
| ut->chunkOffset = (int32_t)(index32 - ut->chunkNativeStart); |
| |
| // Surrogate pairs from the input text must not span chunk boundaries. |
| // If end of chunk could be the start of a surrogate, trim it off. |
| if (ut->chunkNativeLimit < length && |
| U16_IS_LEAD(ex->s[ut->chunkLength-1])) { |
| ut->chunkLength--; |
| ut->chunkNativeLimit--; |
| if (ut->chunkOffset > ut->chunkLength) { |
| ut->chunkOffset = ut->chunkLength; |
| } |
| } |
| |
| // if the first UChar in the chunk could be the trailing half of a surrogate pair, |
| // trim it off. |
| if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) { |
| ++(ut->chunkContents); |
| ++(ut->chunkNativeStart); |
| --(ut->chunkLength); |
| --(ut->chunkOffset); |
| } |
| |
| // adjust the index/chunkOffset to a code point boundary |
| U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset); |
| |
| // Use fast indexing for get/setNativeIndex() |
| ut->nativeIndexingLimit = ut->chunkLength; |
| |
| return TRUE; |
| } |
| |
| |
| |
| static int32_t U_CALLCONV |
| repTextExtract(UText *ut, |
| int64_t start, int64_t limit, |
| UChar *dest, int32_t destCapacity, |
| UErrorCode *status) { |
| const Replaceable *rep=(const Replaceable *)ut->context; |
| int32_t length=rep->length(); |
| |
| if(U_FAILURE(*status)) { |
| return 0; |
| } |
| if(destCapacity<0 || (dest==NULL && destCapacity>0)) { |
| *status=U_ILLEGAL_ARGUMENT_ERROR; |
| } |
| if(start>limit) { |
| *status=U_INDEX_OUTOFBOUNDS_ERROR; |
| return 0; |
| } |
| |
| int32_t start32 = pinIndex(start, length); |
| int32_t limit32 = pinIndex(limit, length); |
| |
| // adjust start, limit if they point to trail half of surrogates |
| if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) && |
| U_IS_SUPPLEMENTARY(rep->char32At(start32))){ |
| start32--; |
| } |
| if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) && |
| U_IS_SUPPLEMENTARY(rep->char32At(limit32))){ |
| limit32--; |
| } |
| |
| length=limit32-start32; |
| if(length>destCapacity) { |
| limit32 = start32 + destCapacity; |
| } |
| UnicodeString buffer(dest, 0, destCapacity); // writable alias |
| rep->extractBetween(start32, limit32, buffer); |
| repTextAccess(ut, limit32, TRUE); |
| |
| return u_terminateUChars(dest, destCapacity, length, status); |
| } |
| |
| static int32_t U_CALLCONV |
| repTextReplace(UText *ut, |
| int64_t start, int64_t limit, |
| const UChar *src, int32_t length, |
| UErrorCode *status) { |
| Replaceable *rep=(Replaceable *)ut->context; |
| int32_t oldLength; |
| |
| if(U_FAILURE(*status)) { |
| return 0; |
| } |
| if(src==NULL && length!=0) { |
| *status=U_ILLEGAL_ARGUMENT_ERROR; |
| return 0; |
| } |
| oldLength=rep->length(); // will subtract from new length |
| if(start>limit ) { |
| *status=U_INDEX_OUTOFBOUNDS_ERROR; |
| return 0; |
| } |
| |
| int32_t start32 = pinIndex(start, oldLength); |
| int32_t limit32 = pinIndex(limit, oldLength); |
| |
| // Snap start & limit to code point boundaries. |
| if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) && |
| start32>0 && U16_IS_LEAD(rep->charAt(start32-1))) |
| { |
| start32--; |
| } |
| if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) && |
| U16_IS_TRAIL(rep->charAt(limit32))) |
| { |
| limit32++; |
| } |
| |
| // Do the actual replace operation using methods of the Replaceable class |
| UnicodeString replStr((UBool)(length<0), src, length); // read-only alias |
| rep->handleReplaceBetween(start32, limit32, replStr); |
| int32_t newLength = rep->length(); |
| int32_t lengthDelta = newLength - oldLength; |
| |
| // Is the UText chunk buffer OK? |
| if (ut->chunkNativeLimit > start32) { |
| // this replace operation may have impacted the current chunk. |
| // invalidate it, which will force a reload on the next access. |
| invalidateChunk(ut); |
| } |
| |
| // set the iteration position to the end of the newly inserted replacement text. |
| int32_t newIndexPos = limit32 + lengthDelta; |
| repTextAccess(ut, newIndexPos, TRUE); |
| |
| return lengthDelta; |
| } |
| |
| |
| static void U_CALLCONV |
| repTextCopy(UText *ut, |
| int64_t start, int64_t limit, |
| int64_t destIndex, |
| UBool move, |
| UErrorCode *status) |
| { |
| Replaceable *rep=(Replaceable *)ut->context; |
| int32_t length=rep->length(); |
| |
| if(U_FAILURE(*status)) { |
| return; |
| } |
| if (start>limit || (start<destIndex && destIndex<limit)) |
| { |
| *status=U_INDEX_OUTOFBOUNDS_ERROR; |
| return; |
| } |
| |
| int32_t start32 = pinIndex(start, length); |
| int32_t limit32 = pinIndex(limit, length); |
| int32_t destIndex32 = pinIndex(destIndex, length); |
| |
| // TODO: snap input parameters to code point boundaries. |
| |
| if(move) { |
| // move: copy to destIndex, then replace original with nothing |
| int32_t segLength=limit32-start32; |
| rep->copy(start32, limit32, destIndex32); |
| if(destIndex32<start32) { |
| start32+=segLength; |
| limit32+=segLength; |
| } |
| rep->handleReplaceBetween(start32, limit32, UnicodeString()); |
| } else { |
| // copy |
| rep->copy(start32, limit32, destIndex32); |
| } |
| |
| // If the change to the text touched the region in the chunk buffer, |
| // invalidate the buffer. |
| int32_t firstAffectedIndex = destIndex32; |
| if (move && start32<firstAffectedIndex) { |
| firstAffectedIndex = start32; |
| } |
| if (firstAffectedIndex < ut->chunkNativeLimit) { |
| // changes may have affected range covered by the chunk |
| invalidateChunk(ut); |
| } |
| |
| // Put iteration position at the newly inserted (moved) block, |
| int32_t nativeIterIndex = destIndex32 + limit32 - start32; |
| if (move && destIndex32>start32) { |
| // moved a block of text towards the end of the string. |
| nativeIterIndex = destIndex32; |
| } |
| |
| // Set position, reload chunk if needed. |
| repTextAccess(ut, nativeIterIndex, TRUE); |
| } |
| |
| static const struct UTextFuncs repFuncs = |
| { |
| sizeof(UTextFuncs), |
| 0, 0, 0, // Reserved alignment padding |
| repTextClone, |
| repTextLength, |
| repTextAccess, |
| repTextExtract, |
| repTextReplace, |
| repTextCopy, |
| NULL, // MapOffsetToNative, |
| NULL, // MapIndexToUTF16, |
| repTextClose, |
| NULL, // spare 1 |
| NULL, // spare 2 |
| NULL // spare 3 |
| }; |
| |
| |
| U_CAPI UText * U_EXPORT2 |
| utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status) |
| { |
| if(U_FAILURE(*status)) { |
| return NULL; |
| } |
| if(rep==NULL) { |
| *status=U_ILLEGAL_ARGUMENT_ERROR; |
| return NULL; |
| } |
| ut = utext_setup(ut, sizeof(ReplExtra), status); |
| |
| ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
| if(rep->hasMetaData()) { |
| ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA); |
| } |
| |
| ut->pFuncs = &repFuncs; |
| ut->context = rep; |
| return ut; |
| } |
| |
| U_CDECL_END |
| |
| |
| |
| |
| |
| |
| |
| |
| //------------------------------------------------------------------------------ |
| // |
| // UText implementation for UnicodeString (read/write) and |
| // for const UnicodeString (read only) |
| // (same implementation, only the flags are different) |
| // |
| // Use of UText data members: |
| // context pointer to UnicodeString |
| // p pointer to UnicodeString IF this UText owns the string |
| // and it must be deleted on close(). NULL otherwise. |
| // |
| //------------------------------------------------------------------------------ |
| |
| U_CDECL_BEGIN |
| |
| |
| static UText * U_CALLCONV |
| unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { |
| // First do a generic shallow clone. Does everything needed for the UText struct itself. |
| dest = shallowTextClone(dest, src, status); |
| |
| // For deep clones, make a copy of the UnicodeSring. |
| // The copied UnicodeString storage is owned by the newly created UText clone. |
| // A non-NULL pointer in UText.p is the signal to the close() function to delete |
| // the UText. |
| // |
| if (deep && U_SUCCESS(*status)) { |
| const UnicodeString *srcString = (const UnicodeString *)src->context; |
| dest->context = new UnicodeString(*srcString); |
| dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
| |
| // with deep clone, the copy is writable, even when the source is not. |
| dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
| } |
| return dest; |
| } |
| |
| static void U_CALLCONV |
| unistrTextClose(UText *ut) { |
| // Most of the work of close is done by the generic UText framework close. |
| // All that needs to be done here is delete the UnicodeString if the UText |
| // owns it. This occurs if the UText was created by cloning. |
| if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
| UnicodeString *str = (UnicodeString *)ut->context; |
| delete str; |
| ut->context = NULL; |
| } |
| } |
| |
| |
| static int64_t U_CALLCONV |
| unistrTextLength(UText *t) { |
| return ((const UnicodeString *)t->context)->length(); |
| } |
| |
| |
| static UBool U_CALLCONV |
| unistrTextAccess(UText *ut, int64_t index, UBool forward) { |
| int32_t length = ut->chunkLength; |
| ut->chunkOffset = pinIndex(index, length); |
| |
| // Check whether request is at the start or end |
| UBool retVal = (forward && index<length) || (!forward && index>0); |
| return retVal; |
| } |
| |
| |
| |
| static int32_t U_CALLCONV |
| unistrTextExtract(UText *t, |
| int64_t start, int64_t limit, |
| UChar *dest, int32_t destCapacity, |
| UErrorCode *pErrorCode) { |
| const UnicodeString *us=(const UnicodeString *)t->context; |
| int32_t length=us->length(); |
| |
| if(U_FAILURE(*pErrorCode)) { |
| return 0; |
| } |
| if(destCapacity<0 || (dest==NULL && destCapacity>0)) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| } |
| if(start<0 || start>limit) { |
| *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| return 0; |
| } |
| |
| int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length; |
| int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length; |
| |
| length=limit32-start32; |
| if (destCapacity>0 && dest!=NULL) { |
| int32_t trimmedLength = length; |
| if(trimmedLength>destCapacity) { |
| trimmedLength=destCapacity; |
| } |
| us->extract(start32, trimmedLength, dest); |
| t->chunkOffset = start32+trimmedLength; |
| } else { |
| t->chunkOffset = start32; |
| } |
| u_terminateUChars(dest, destCapacity, length, pErrorCode); |
| return length; |
| } |
| |
| static int32_t U_CALLCONV |
| unistrTextReplace(UText *ut, |
| int64_t start, int64_t limit, |
| const UChar *src, int32_t length, |
| UErrorCode *pErrorCode) { |
| UnicodeString *us=(UnicodeString *)ut->context; |
| int32_t oldLength; |
| |
| if(U_FAILURE(*pErrorCode)) { |
| return 0; |
| } |
| if(src==NULL && length!=0) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| } |
| if(start>limit) { |
| *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| return 0; |
| } |
| oldLength=us->length(); |
| int32_t start32 = pinIndex(start, oldLength); |
| int32_t limit32 = pinIndex(limit, oldLength); |
| if (start32 < oldLength) { |
| start32 = us->getChar32Start(start32); |
| } |
| if (limit32 < oldLength) { |
| limit32 = us->getChar32Start(limit32); |
| } |
| |
| // replace |
| us->replace(start32, limit32-start32, src, length); |
| int32_t newLength = us->length(); |
| |
| // Update the chunk description. |
| ut->chunkContents = us->getBuffer(); |
| ut->chunkLength = newLength; |
| ut->chunkNativeLimit = newLength; |
| ut->nativeIndexingLimit = newLength; |
| |
| // Set iteration position to the point just following the newly inserted text. |
| int32_t lengthDelta = newLength - oldLength; |
| ut->chunkOffset = limit32 + lengthDelta; |
| |
| return lengthDelta; |
| } |
| |
| static void U_CALLCONV |
| unistrTextCopy(UText *ut, |
| int64_t start, int64_t limit, |
| int64_t destIndex, |
| UBool move, |
| UErrorCode *pErrorCode) { |
| UnicodeString *us=(UnicodeString *)ut->context; |
| int32_t length=us->length(); |
| |
| if(U_FAILURE(*pErrorCode)) { |
| return; |
| } |
| int32_t start32 = pinIndex(start, length); |
| int32_t limit32 = pinIndex(limit, length); |
| int32_t destIndex32 = pinIndex(destIndex, length); |
| |
| if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) { |
| *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| return; |
| } |
| |
| if(move) { |
| // move: copy to destIndex, then replace original with nothing |
| int32_t segLength=limit32-start32; |
| us->copy(start32, limit32, destIndex32); |
| if(destIndex32<start32) { |
| start32+=segLength; |
| } |
| us->replace(start32, segLength, NULL, 0); |
| } else { |
| // copy |
| us->copy(start32, limit32, destIndex32); |
| } |
| |
| // update chunk description, set iteration position. |
| ut->chunkContents = us->getBuffer(); |
| if (move==FALSE) { |
| // copy operation, string length grows |
| ut->chunkLength += limit32-start32; |
| ut->chunkNativeLimit = ut->chunkLength; |
| ut->nativeIndexingLimit = ut->chunkLength; |
| } |
| |
| // Iteration position to end of the newly inserted text. |
| ut->chunkOffset = destIndex32+limit32-start32; |
| if (move && destIndex32>start32) { |
| ut->chunkOffset = destIndex32; |
| } |
| |
| } |
| |
| static const struct UTextFuncs unistrFuncs = |
| { |
| sizeof(UTextFuncs), |
| 0, 0, 0, // Reserved alignment padding |
| unistrTextClone, |
| unistrTextLength, |
| unistrTextAccess, |
| unistrTextExtract, |
| unistrTextReplace, |
| unistrTextCopy, |
| NULL, // MapOffsetToNative, |
| NULL, // MapIndexToUTF16, |
| unistrTextClose, |
| NULL, // spare 1 |
| NULL, // spare 2 |
| NULL // spare 3 |
| }; |
| |
| |
| |
| U_CDECL_END |
| |
| |
| U_CAPI UText * U_EXPORT2 |
| utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { |
| ut = utext_openConstUnicodeString(ut, s, status); |
| if (U_SUCCESS(*status)) { |
| ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
| } |
| return ut; |
| } |
| |
| |
| |
| U_CAPI UText * U_EXPORT2 |
| utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) { |
| if (U_SUCCESS(*status) && s->isBogus()) { |
| // The UnicodeString is bogus, but we still need to detach the UText |
| // from whatever it was hooked to before, if anything. |
| utext_openUChars(ut, NULL, 0, status); |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return ut; |
| } |
| ut = utext_setup(ut, 0, status); |
| // note: use the standard (writable) function table for UnicodeString. |
| // The flag settings disable writing, so having the functions in |
| // the table is harmless. |
| if (U_SUCCESS(*status)) { |
| ut->pFuncs = &unistrFuncs; |
| ut->context = s; |
| ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); |
| ut->chunkContents = s->getBuffer(); |
| ut->chunkLength = s->length(); |
| ut->chunkNativeStart = 0; |
| ut->chunkNativeLimit = ut->chunkLength; |
| ut->nativeIndexingLimit = ut->chunkLength; |
| } |
| return ut; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // |
| // UText implementation for const UChar * strings |
| // |
| // Use of UText data members: |
| // context pointer to UnicodeString |
| // a length. -1 if not yet known. |
| // |
| // TODO: support 64 bit lengths. |
| // |
| //------------------------------------------------------------------------------ |
| |
| U_CDECL_BEGIN |
| |
| |
| static UText * U_CALLCONV |
| ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) { |
| // First do a generic shallow clone. |
| dest = shallowTextClone(dest, src, status); |
| |
| // For deep clones, make a copy of the string. |
| // The copied storage is owned by the newly created clone. |
| // A non-NULL pointer in UText.p is the signal to the close() function to delete |
| // it. |
| // |
| if (deep && U_SUCCESS(*status)) { |
| U_ASSERT(utext_nativeLength(dest) < INT32_MAX); |
| int32_t len = (int32_t)utext_nativeLength(dest); |
| |
| // The cloned string IS going to be NUL terminated, whether or not the original was. |
| const UChar *srcStr = (const UChar *)src->context; |
| UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar)); |
| if (copyStr == NULL) { |
| *status = U_MEMORY_ALLOCATION_ERROR; |
| } else { |
| int64_t i; |
| for (i=0; i<len; i++) { |
| copyStr[i] = srcStr[i]; |
| } |
| copyStr[len] = 0; |
| dest->context = copyStr; |
| dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
| } |
| } |
| return dest; |
| } |
| |
| |
| static void U_CALLCONV |
| ucstrTextClose(UText *ut) { |
| // Most of the work of close is done by the generic UText framework close. |
| // All that needs to be done here is delete the string if the UText |
| // owns it. This occurs if the UText was created by cloning. |
| if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
| UChar *s = (UChar *)ut->context; |
| uprv_free(s); |
| ut->context = NULL; |
| } |
| } |
| |
| |
| |
| static int64_t U_CALLCONV |
| ucstrTextLength(UText *ut) { |
| if (ut->a < 0) { |
| // null terminated, we don't yet know the length. Scan for it. |
| // Access is not convenient for doing this |
| // because the current interation postion can't be changed. |
| const UChar *str = (const UChar *)ut->context; |
| for (;;) { |
| if (str[ut->chunkNativeLimit] == 0) { |
| break; |
| } |
| ut->chunkNativeLimit++; |
| } |
| ut->a = ut->chunkNativeLimit; |
| ut->chunkLength = (int32_t)ut->chunkNativeLimit; |
| ut->nativeIndexingLimit = ut->chunkLength; |
| ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| } |
| return ut->a; |
| } |
| |
| |
| static UBool U_CALLCONV |
| ucstrTextAccess(UText *ut, int64_t index, UBool forward) { |
| const UChar *str = (const UChar *)ut->context; |
| |
| // pin the requested index to the bounds of the string, |
| // and set current iteration position. |
| if (index<0) { |
| index = 0; |
| } else if (index < ut->chunkNativeLimit) { |
| // The request data is within the chunk as it is known so far. |
| // Put index on a code point boundary. |
| U16_SET_CP_START(str, 0, index); |
| } else if (ut->a >= 0) { |
| // We know the length of this string, and the user is requesting something |
| // at or beyond the length. Pin the requested index to the length. |
| index = ut->a; |
| } else { |
| // Null terminated string, length not yet known, and the requested index |
| // is beyond where we have scanned so far. |
| // Scan to 32 UChars beyond the requested index. The strategy here is |
| // to avoid fully scanning a long string when the caller only wants to |
| // see a few characters at its beginning. |
| int32_t scanLimit = (int32_t)index + 32; |
| if ((index + 32)>INT32_MAX || (index + 32)<0 ) { // note: int64 expression |
| scanLimit = INT32_MAX; |
| } |
| |
| int32_t chunkLimit = (int32_t)ut->chunkNativeLimit; |
| for (; chunkLimit<scanLimit; chunkLimit++) { |
| if (str[chunkLimit] == 0) { |
| // We found the end of the string. Remember it, pin the requested index to it, |
| // and bail out of here. |
| ut->a = chunkLimit; |
| ut->chunkLength = chunkLimit; |
| ut->nativeIndexingLimit = chunkLimit; |
| if (index >= chunkLimit) { |
| index = chunkLimit; |
| } else { |
| U16_SET_CP_START(str, 0, index); |
| } |
| |
| ut->chunkNativeLimit = chunkLimit; |
| ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| goto breakout; |
| } |
| } |
| // We scanned through the next batch of UChars without finding the end. |
| U16_SET_CP_START(str, 0, index); |
| if (chunkLimit == INT32_MAX) { |
| // Scanned to the limit of a 32 bit length. |
| // Forceably trim the overlength string back so length fits in int32 |
| // TODO: add support for 64 bit strings. |
| ut->a = chunkLimit; |
| ut->chunkLength = chunkLimit; |
| ut->nativeIndexingLimit = chunkLimit; |
| if (index > chunkLimit) { |
| index = chunkLimit; |
| } |
| ut->chunkNativeLimit = chunkLimit; |
| ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| } else { |
| // The endpoint of a chunk must not be left in the middle of a surrogate pair. |
| // If the current end is on a lead surrogate, back the end up by one. |
| // It doesn't matter if the end char happens to be an unpaired surrogate, |
| // and it's simpler not to worry about it. |
| if (U16_IS_LEAD(str[chunkLimit-1])) { |
| --chunkLimit; |
| } |
| // Null-terminated chunk with end still unknown. |
| // Update the chunk length to reflect what has been scanned thus far. |
| // That the full length is still unknown is (still) flagged by |
| // ut->a being < 0. |
| ut->chunkNativeLimit = chunkLimit; |
| ut->nativeIndexingLimit = chunkLimit; |
| ut->chunkLength = chunkLimit; |
| } |
| |
| } |
| breakout: |
| U_ASSERT(index<=INT32_MAX); |
| ut->chunkOffset = (int32_t)index; |
| |
| // Check whether request is at the start or end |
| UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0); |
| return retVal; |
| } |
| |
| |
| |
| static int32_t U_CALLCONV |
| ucstrTextExtract(UText *ut, |
| int64_t start, int64_t limit, |
| UChar *dest, int32_t destCapacity, |
| UErrorCode *pErrorCode) |
| { |
| if(U_FAILURE(*pErrorCode)) { |
| return 0; |
| } |
| if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) { |
| *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| return 0; |
| } |
| |
| //const UChar *s=(const UChar *)ut->context; |
| int32_t si, di; |
| |
| int32_t start32; |
| int32_t limit32; |
| |
| // Access the start. Does two things we need: |
| // Pins 'start' to the length of the string, if it came in out-of-bounds. |
| // Snaps 'start' to the beginning of a code point. |
| ucstrTextAccess(ut, start, TRUE); |
| const UChar *s=ut->chunkContents; |
| start32 = ut->chunkOffset; |
| |
| int32_t strLength=(int32_t)ut->a; |
| if (strLength >= 0) { |
| limit32 = pinIndex(limit, strLength); |
| } else { |
| limit32 = pinIndex(limit, INT32_MAX); |
| } |
| |
| di = 0; |
| for (si=start32; si<limit32; si++) { |
| if (strLength<0 && s[si]==0) { |
| // Just hit the end of a null-terminated string. |
| ut->a = si; // set string length for this UText |
| ut->chunkNativeLimit = si; |
| ut->chunkLength = si; |
| ut->nativeIndexingLimit = si; |
| strLength = si; |
| break; |
| } |
| if (di<destCapacity) { |
| // only store if there is space. |
| dest[di] = s[si]; |
| } else { |
| if (strLength>=0) { |
| // We have filled the destination buffer, and the string length is known. |
| // Cut the loop short. There is no need to scan string termination. |
| di = limit32 - start32; |
| si = limit32; |
| break; |
| } |
| } |
| di++; |
| } |
| |
| // If the limit index points to a lead surrogate of a pair, |
| // add the corresponding trail surrogate to the destination. |
| if (si>0 && U16_IS_LEAD(s[si-1]) && |
| ((si<strLength || strLength<0) && U16_IS_TRAIL(s[si]))) |
| { |
| if (di<destCapacity) { |
| // store only if there is space in the output buffer. |
| dest[di++] = s[si++]; |
| } |
| } |
| |
| // Put iteration position at the point just following the extracted text |
| ut->chunkOffset = uprv_min(strLength, start32 + destCapacity); |
| |
| // Add a terminating NUL if space in the buffer permits, |
| // and set the error status as required. |
| u_terminateUChars(dest, destCapacity, di, pErrorCode); |
| return di; |
| } |
| |
| static const struct UTextFuncs ucstrFuncs = |
| { |
| sizeof(UTextFuncs), |
| 0, 0, 0, // Reserved alignment padding |
| ucstrTextClone, |
| ucstrTextLength, |
| ucstrTextAccess, |
| ucstrTextExtract, |
| NULL, // Replace |
| NULL, // Copy |
| NULL, // MapOffsetToNative, |
| NULL, // MapIndexToUTF16, |
| ucstrTextClose, |
| NULL, // spare 1 |
| NULL, // spare 2 |
| NULL, // spare 3 |
| }; |
| |
| U_CDECL_END |
| |
| static const UChar gEmptyUString[] = {0}; |
| |
| U_CAPI UText * U_EXPORT2 |
| utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status) { |
| if (U_FAILURE(*status)) { |
| return NULL; |
| } |
| if(s==NULL && length==0) { |
| s = gEmptyUString; |
| } |
| if (s==NULL || length < -1 || length>INT32_MAX) { |
| *status = U_ILLEGAL_ARGUMENT_ERROR; |
| return NULL; |
| } |
| ut = utext_setup(ut, 0, status); |
| if (U_SUCCESS(*status)) { |
| ut->pFuncs = &ucstrFuncs; |
| ut->context = s; |
| ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); |
| if (length==-1) { |
| ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| } |
| ut->a = length; |
| ut->chunkContents = s; |
| ut->chunkNativeStart = 0; |
| ut->chunkNativeLimit = length>=0? length : 0; |
| ut->chunkLength = (int32_t)ut->chunkNativeLimit; |
| ut->chunkOffset = 0; |
| ut->nativeIndexingLimit = ut->chunkLength; |
| } |
| return ut; |
| } |
| |
| |
| //------------------------------------------------------------------------------ |
| // |
| // UText implementation for text from ICU CharacterIterators |
| // |
| // Use of UText data members: |
| // context pointer to the CharacterIterator |
| // a length of the full text. |
| // p pointer to buffer 1 |
| // b start index of local buffer 1 contents |
| // q pointer to buffer 2 |
| // c start index of local buffer 2 contents |
| // r pointer to the character iterator if the UText owns it. |
| // Null otherwise. |
| // |
| //------------------------------------------------------------------------------ |
| #define CIBufSize 16 |
| |
| U_CDECL_BEGIN |
| static void U_CALLCONV |
| charIterTextClose(UText *ut) { |
| // Most of the work of close is done by the generic UText framework close. |
| // All that needs to be done here is delete the CharacterIterator if the UText |
| |