|  | // © 2016 and later: Unicode, Inc. and others. | 
|  | // License & terms of use: http://www.unicode.org/copyright.html | 
|  | /* | 
|  | ********************************************************************** | 
|  | *   Copyright (c) 2002-2016, International Business Machines | 
|  | *   Corporation and others.  All Rights Reserved. | 
|  | ********************************************************************** | 
|  | */ | 
|  | // | 
|  | //  rbbitblb.cpp | 
|  | // | 
|  |  | 
|  |  | 
|  | #include "unicode/utypes.h" | 
|  |  | 
|  | #if !UCONFIG_NO_BREAK_ITERATION | 
|  |  | 
|  | #include "unicode/unistr.h" | 
|  | #include "rbbitblb.h" | 
|  | #include "rbbirb.h" | 
|  | #include "rbbisetb.h" | 
|  | #include "rbbidata.h" | 
|  | #include "cstring.h" | 
|  | #include "uassert.h" | 
|  | #include "uvectr32.h" | 
|  | #include "cmemory.h" | 
|  |  | 
|  | U_NAMESPACE_BEGIN | 
|  |  | 
|  | RBBITableBuilder::RBBITableBuilder(RBBIRuleBuilder *rb, RBBINode **rootNode, UErrorCode &status) : | 
|  | fRB(rb), | 
|  | fTree(*rootNode), | 
|  | fStatus(&status), | 
|  | fDStates(nullptr), | 
|  | fSafeTable(nullptr) { | 
|  | if (U_FAILURE(status)) { | 
|  | return; | 
|  | } | 
|  | // fDStates is UVector<RBBIStateDescriptor *> | 
|  | fDStates = new UVector(status); | 
|  | if (U_SUCCESS(status) && fDStates == nullptr ) { | 
|  | status = U_MEMORY_ALLOCATION_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | RBBITableBuilder::~RBBITableBuilder() { | 
|  | int i; | 
|  | for (i=0; i<fDStates->size(); i++) { | 
|  | delete (RBBIStateDescriptor *)fDStates->elementAt(i); | 
|  | } | 
|  | delete fDStates; | 
|  | delete fSafeTable; | 
|  | } | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   RBBITableBuilder::buildForwardTable  -  This is the main function for building | 
|  | //                               the DFA state transition table from the RBBI rules parse tree. | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void  RBBITableBuilder::buildForwardTable() { | 
|  |  | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If there were no rules, just return.  This situation can easily arise | 
|  | //   for the reverse rules. | 
|  | if (fTree==NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // | 
|  | // Walk through the tree, replacing any references to $variables with a copy of the | 
|  | //   parse tree for the substition expression. | 
|  | // | 
|  | fTree = fTree->flattenVariables(); | 
|  | #ifdef RBBI_DEBUG | 
|  | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ftree")) { | 
|  | RBBIDebugPuts("\nParse tree after flattening variable references."); | 
|  | RBBINode::printTree(fTree, TRUE); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // | 
|  | // If the rules contained any references to {bof} | 
|  | //   add a {bof} <cat> <former root of tree> to the | 
|  | //   tree.  Means that all matches must start out with the | 
|  | //   {bof} fake character. | 
|  | // | 
|  | if (fRB->fSetBuilder->sawBOF()) { | 
|  | RBBINode *bofTop    = new RBBINode(RBBINode::opCat); | 
|  | RBBINode *bofLeaf   = new RBBINode(RBBINode::leafChar); | 
|  | // Delete and exit if memory allocation failed. | 
|  | if (bofTop == NULL || bofLeaf == NULL) { | 
|  | *fStatus = U_MEMORY_ALLOCATION_ERROR; | 
|  | delete bofTop; | 
|  | delete bofLeaf; | 
|  | return; | 
|  | } | 
|  | bofTop->fLeftChild  = bofLeaf; | 
|  | bofTop->fRightChild = fTree; | 
|  | bofLeaf->fParent    = bofTop; | 
|  | bofLeaf->fVal       = 2;      // Reserved value for {bof}. | 
|  | fTree               = bofTop; | 
|  | } | 
|  |  | 
|  | // | 
|  | // Add a unique right-end marker to the expression. | 
|  | //   Appears as a cat-node, left child being the original tree, | 
|  | //   right child being the end marker. | 
|  | // | 
|  | RBBINode *cn = new RBBINode(RBBINode::opCat); | 
|  | // Exit if memory allocation failed. | 
|  | if (cn == NULL) { | 
|  | *fStatus = U_MEMORY_ALLOCATION_ERROR; | 
|  | return; | 
|  | } | 
|  | cn->fLeftChild = fTree; | 
|  | fTree->fParent = cn; | 
|  | cn->fRightChild = new RBBINode(RBBINode::endMark); | 
|  | // Delete and exit if memory allocation failed. | 
|  | if (cn->fRightChild == NULL) { | 
|  | *fStatus = U_MEMORY_ALLOCATION_ERROR; | 
|  | delete cn; | 
|  | return; | 
|  | } | 
|  | cn->fRightChild->fParent = cn; | 
|  | fTree = cn; | 
|  |  | 
|  | // | 
|  | //  Replace all references to UnicodeSets with the tree for the equivalent | 
|  | //      expression. | 
|  | // | 
|  | fTree->flattenSets(); | 
|  | #ifdef RBBI_DEBUG | 
|  | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "stree")) { | 
|  | RBBIDebugPuts("\nParse tree after flattening Unicode Set references."); | 
|  | RBBINode::printTree(fTree, TRUE); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | // | 
|  | // calculate the functions nullable, firstpos, lastpos and followpos on | 
|  | // nodes in the parse tree. | 
|  | //    See the alogrithm description in Aho. | 
|  | //    Understanding how this works by looking at the code alone will be | 
|  | //       nearly impossible. | 
|  | // | 
|  | calcNullable(fTree); | 
|  | calcFirstPos(fTree); | 
|  | calcLastPos(fTree); | 
|  | calcFollowPos(fTree); | 
|  | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "pos")) { | 
|  | RBBIDebugPuts("\n"); | 
|  | printPosSets(fTree); | 
|  | } | 
|  |  | 
|  | // | 
|  | //  For "chained" rules, modify the followPos sets | 
|  | // | 
|  | if (fRB->fChainRules) { | 
|  | calcChainedFollowPos(fTree); | 
|  | } | 
|  |  | 
|  | // | 
|  | //  BOF (start of input) test fixup. | 
|  | // | 
|  | if (fRB->fSetBuilder->sawBOF()) { | 
|  | bofFixup(); | 
|  | } | 
|  |  | 
|  | // | 
|  | // Build the DFA state transition tables. | 
|  | // | 
|  | buildStateTable(); | 
|  | flagAcceptingStates(); | 
|  | flagLookAheadStates(); | 
|  | flagTaggedStates(); | 
|  |  | 
|  | // | 
|  | // Update the global table of rule status {tag} values | 
|  | // The rule builder has a global vector of status values that are common | 
|  | //    for all tables.  Merge the ones from this table into the global set. | 
|  | // | 
|  | mergeRuleStatusVals(); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   calcNullable.    Impossible to explain succinctly.  See Aho, section 3.9 | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void RBBITableBuilder::calcNullable(RBBINode *n) { | 
|  | if (n == NULL) { | 
|  | return; | 
|  | } | 
|  | if (n->fType == RBBINode::setRef || | 
|  | n->fType == RBBINode::endMark ) { | 
|  | // These are non-empty leaf node types. | 
|  | n->fNullable = FALSE; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (n->fType == RBBINode::lookAhead || n->fType == RBBINode::tag) { | 
|  | // Lookahead marker node.  It's a leaf, so no recursion on children. | 
|  | // It's nullable because it does not match any literal text from the input stream. | 
|  | n->fNullable = TRUE; | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | // The node is not a leaf. | 
|  | //  Calculate nullable on its children. | 
|  | calcNullable(n->fLeftChild); | 
|  | calcNullable(n->fRightChild); | 
|  |  | 
|  | // Apply functions from table 3.40 in Aho | 
|  | if (n->fType == RBBINode::opOr) { | 
|  | n->fNullable = n->fLeftChild->fNullable || n->fRightChild->fNullable; | 
|  | } | 
|  | else if (n->fType == RBBINode::opCat) { | 
|  | n->fNullable = n->fLeftChild->fNullable && n->fRightChild->fNullable; | 
|  | } | 
|  | else if (n->fType == RBBINode::opStar || n->fType == RBBINode::opQuestion) { | 
|  | n->fNullable = TRUE; | 
|  | } | 
|  | else { | 
|  | n->fNullable = FALSE; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   calcFirstPos.    Impossible to explain succinctly.  See Aho, section 3.9 | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void RBBITableBuilder::calcFirstPos(RBBINode *n) { | 
|  | if (n == NULL) { | 
|  | return; | 
|  | } | 
|  | if (n->fType == RBBINode::leafChar  || | 
|  | n->fType == RBBINode::endMark   || | 
|  | n->fType == RBBINode::lookAhead || | 
|  | n->fType == RBBINode::tag) { | 
|  | // These are non-empty leaf node types. | 
|  | // Note: In order to maintain the sort invariant on the set, | 
|  | // this function should only be called on a node whose set is | 
|  | // empty to start with. | 
|  | n->fFirstPosSet->addElement(n, *fStatus); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The node is not a leaf. | 
|  | //  Calculate firstPos on its children. | 
|  | calcFirstPos(n->fLeftChild); | 
|  | calcFirstPos(n->fRightChild); | 
|  |  | 
|  | // Apply functions from table 3.40 in Aho | 
|  | if (n->fType == RBBINode::opOr) { | 
|  | setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); | 
|  | setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet); | 
|  | } | 
|  | else if (n->fType == RBBINode::opCat) { | 
|  | setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); | 
|  | if (n->fLeftChild->fNullable) { | 
|  | setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet); | 
|  | } | 
|  | } | 
|  | else if (n->fType == RBBINode::opStar || | 
|  | n->fType == RBBINode::opQuestion || | 
|  | n->fType == RBBINode::opPlus) { | 
|  | setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   calcLastPos.    Impossible to explain succinctly.  See Aho, section 3.9 | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void RBBITableBuilder::calcLastPos(RBBINode *n) { | 
|  | if (n == NULL) { | 
|  | return; | 
|  | } | 
|  | if (n->fType == RBBINode::leafChar  || | 
|  | n->fType == RBBINode::endMark   || | 
|  | n->fType == RBBINode::lookAhead || | 
|  | n->fType == RBBINode::tag) { | 
|  | // These are non-empty leaf node types. | 
|  | // Note: In order to maintain the sort invariant on the set, | 
|  | // this function should only be called on a node whose set is | 
|  | // empty to start with. | 
|  | n->fLastPosSet->addElement(n, *fStatus); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The node is not a leaf. | 
|  | //  Calculate lastPos on its children. | 
|  | calcLastPos(n->fLeftChild); | 
|  | calcLastPos(n->fRightChild); | 
|  |  | 
|  | // Apply functions from table 3.40 in Aho | 
|  | if (n->fType == RBBINode::opOr) { | 
|  | setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); | 
|  | setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet); | 
|  | } | 
|  | else if (n->fType == RBBINode::opCat) { | 
|  | setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet); | 
|  | if (n->fRightChild->fNullable) { | 
|  | setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); | 
|  | } | 
|  | } | 
|  | else if (n->fType == RBBINode::opStar     || | 
|  | n->fType == RBBINode::opQuestion || | 
|  | n->fType == RBBINode::opPlus) { | 
|  | setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   calcFollowPos.    Impossible to explain succinctly.  See Aho, section 3.9 | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void RBBITableBuilder::calcFollowPos(RBBINode *n) { | 
|  | if (n == NULL || | 
|  | n->fType == RBBINode::leafChar || | 
|  | n->fType == RBBINode::endMark) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | calcFollowPos(n->fLeftChild); | 
|  | calcFollowPos(n->fRightChild); | 
|  |  | 
|  | // Aho rule #1 | 
|  | if (n->fType == RBBINode::opCat) { | 
|  | RBBINode *i;   // is 'i' in Aho's description | 
|  | uint32_t     ix; | 
|  |  | 
|  | UVector *LastPosOfLeftChild = n->fLeftChild->fLastPosSet; | 
|  |  | 
|  | for (ix=0; ix<(uint32_t)LastPosOfLeftChild->size(); ix++) { | 
|  | i = (RBBINode *)LastPosOfLeftChild->elementAt(ix); | 
|  | setAdd(i->fFollowPos, n->fRightChild->fFirstPosSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Aho rule #2 | 
|  | if (n->fType == RBBINode::opStar || | 
|  | n->fType == RBBINode::opPlus) { | 
|  | RBBINode   *i;  // again, n and i are the names from Aho's description. | 
|  | uint32_t    ix; | 
|  |  | 
|  | for (ix=0; ix<(uint32_t)n->fLastPosSet->size(); ix++) { | 
|  | i = (RBBINode *)n->fLastPosSet->elementAt(ix); | 
|  | setAdd(i->fFollowPos, n->fFirstPosSet); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | } | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //    addRuleRootNodes    Recursively walk a parse tree, adding all nodes flagged | 
|  | //                        as roots of a rule to a destination vector. | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void RBBITableBuilder::addRuleRootNodes(UVector *dest, RBBINode *node) { | 
|  | if (node == NULL || U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  | if (node->fRuleRoot) { | 
|  | dest->addElement(node, *fStatus); | 
|  | // Note: rules cannot nest. If we found a rule start node, | 
|  | //       no child node can also be a start node. | 
|  | return; | 
|  | } | 
|  | addRuleRootNodes(dest, node->fLeftChild); | 
|  | addRuleRootNodes(dest, node->fRightChild); | 
|  | } | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   calcChainedFollowPos.    Modify the previously calculated followPos sets | 
|  | //                            to implement rule chaining.  NOT described by Aho | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void RBBITableBuilder::calcChainedFollowPos(RBBINode *tree) { | 
|  |  | 
|  | UVector         endMarkerNodes(*fStatus); | 
|  | UVector         leafNodes(*fStatus); | 
|  | int32_t         i; | 
|  |  | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // get a list of all endmarker nodes. | 
|  | tree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus); | 
|  |  | 
|  | // get a list all leaf nodes | 
|  | tree->findNodes(&leafNodes, RBBINode::leafChar, *fStatus); | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Collect all leaf nodes that can start matches for rules | 
|  | // with inbound chaining enabled, which is the union of the | 
|  | // firstPosition sets from each of the rule root nodes. | 
|  |  | 
|  | UVector ruleRootNodes(*fStatus); | 
|  | addRuleRootNodes(&ruleRootNodes, tree); | 
|  |  | 
|  | UVector matchStartNodes(*fStatus); | 
|  | for (int j=0; j<ruleRootNodes.size(); ++j) { | 
|  | RBBINode *node = static_cast<RBBINode *>(ruleRootNodes.elementAt(j)); | 
|  | if (node->fChainIn) { | 
|  | setAdd(&matchStartNodes, node->fFirstPosSet); | 
|  | } | 
|  | } | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | int32_t  endNodeIx; | 
|  | int32_t  startNodeIx; | 
|  |  | 
|  | for (endNodeIx=0; endNodeIx<leafNodes.size(); endNodeIx++) { | 
|  | RBBINode *tNode   = (RBBINode *)leafNodes.elementAt(endNodeIx); | 
|  | RBBINode *endNode = NULL; | 
|  |  | 
|  | // Identify leaf nodes that correspond to overall rule match positions. | 
|  | //   These include an endMarkerNode in their followPos sets. | 
|  | for (i=0; i<endMarkerNodes.size(); i++) { | 
|  | if (tNode->fFollowPos->contains(endMarkerNodes.elementAt(i))) { | 
|  | endNode = tNode; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (endNode == NULL) { | 
|  | // node wasn't an end node.  Try again with the next. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We've got a node that can end a match. | 
|  |  | 
|  | // Line Break Specific hack:  If this node's val correspond to the $CM char class, | 
|  | //                            don't chain from it. | 
|  | // TODO:  Add rule syntax for this behavior, get specifics out of here and | 
|  | //        into the rule file. | 
|  | if (fRB->fLBCMNoChain) { | 
|  | UChar32 c = this->fRB->fSetBuilder->getFirstChar(endNode->fVal); | 
|  | if (c != -1) { | 
|  | // c == -1 occurs with sets containing only the {eof} marker string. | 
|  | ULineBreak cLBProp = (ULineBreak)u_getIntPropertyValue(c, UCHAR_LINE_BREAK); | 
|  | if (cLBProp == U_LB_COMBINING_MARK) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Now iterate over the nodes that can start a match, looking for ones | 
|  | //   with the same char class as our ending node. | 
|  | RBBINode *startNode; | 
|  | for (startNodeIx = 0; startNodeIx<matchStartNodes.size(); startNodeIx++) { | 
|  | startNode = (RBBINode *)matchStartNodes.elementAt(startNodeIx); | 
|  | if (startNode->fType != RBBINode::leafChar) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (endNode->fVal == startNode->fVal) { | 
|  | // The end val (character class) of one possible match is the | 
|  | //   same as the start of another. | 
|  |  | 
|  | // Add all nodes from the followPos of the start node to the | 
|  | //  followPos set of the end node, which will have the effect of | 
|  | //  letting matches transition from a match state at endNode | 
|  | //  to the second char of a match starting with startNode. | 
|  | setAdd(endNode->fFollowPos, startNode->fFollowPos); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   bofFixup.    Fixup for state tables that include {bof} beginning of input testing. | 
|  | //                Do an swizzle similar to chaining, modifying the followPos set of | 
|  | //                the bofNode to include the followPos nodes from other {bot} nodes | 
|  | //                scattered through the tree. | 
|  | // | 
|  | //                This function has much in common with calcChainedFollowPos(). | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void RBBITableBuilder::bofFixup() { | 
|  |  | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | //   The parse tree looks like this ... | 
|  | //         fTree root  --->       <cat> | 
|  | //                               /     \       . | 
|  | //                            <cat>   <#end node> | 
|  | //                           /     \  . | 
|  | //                     <bofNode>   rest | 
|  | //                               of tree | 
|  | // | 
|  | //    We will be adding things to the followPos set of the <bofNode> | 
|  | // | 
|  | RBBINode  *bofNode = fTree->fLeftChild->fLeftChild; | 
|  | U_ASSERT(bofNode->fType == RBBINode::leafChar); | 
|  | U_ASSERT(bofNode->fVal == 2); | 
|  |  | 
|  | // Get all nodes that can be the start a match of the user-written rules | 
|  | //  (excluding the fake bofNode) | 
|  | //  We want the nodes that can start a match in the | 
|  | //     part labeled "rest of tree" | 
|  | // | 
|  | UVector *matchStartNodes = fTree->fLeftChild->fRightChild->fFirstPosSet; | 
|  |  | 
|  | RBBINode *startNode; | 
|  | int       startNodeIx; | 
|  | for (startNodeIx = 0; startNodeIx<matchStartNodes->size(); startNodeIx++) { | 
|  | startNode = (RBBINode *)matchStartNodes->elementAt(startNodeIx); | 
|  | if (startNode->fType != RBBINode::leafChar) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (startNode->fVal == bofNode->fVal) { | 
|  | //  We found a leaf node corresponding to a {bof} that was | 
|  | //    explicitly written into a rule. | 
|  | //  Add everything from the followPos set of this node to the | 
|  | //    followPos set of the fake bofNode at the start of the tree. | 
|  | // | 
|  | setAdd(bofNode->fFollowPos, startNode->fFollowPos); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   buildStateTable()    Determine the set of runtime DFA states and the | 
|  | //                        transition tables for these states, by the algorithm | 
|  | //                        of fig. 3.44 in Aho. | 
|  | // | 
|  | //                        Most of the comments are quotes of Aho's psuedo-code. | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void RBBITableBuilder::buildStateTable() { | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  | RBBIStateDescriptor *failState; | 
|  | // Set it to NULL to avoid uninitialized warning | 
|  | RBBIStateDescriptor *initialState = NULL; | 
|  | // | 
|  | // Add a dummy state 0 - the stop state.  Not from Aho. | 
|  | int      lastInputSymbol = fRB->fSetBuilder->getNumCharCategories() - 1; | 
|  | failState = new RBBIStateDescriptor(lastInputSymbol, fStatus); | 
|  | if (failState == NULL) { | 
|  | *fStatus = U_MEMORY_ALLOCATION_ERROR; | 
|  | goto ExitBuildSTdeleteall; | 
|  | } | 
|  | failState->fPositions = new UVector(*fStatus); | 
|  | if (failState->fPositions == NULL) { | 
|  | *fStatus = U_MEMORY_ALLOCATION_ERROR; | 
|  | } | 
|  | if (failState->fPositions == NULL || U_FAILURE(*fStatus)) { | 
|  | goto ExitBuildSTdeleteall; | 
|  | } | 
|  | fDStates->addElement(failState, *fStatus); | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | goto ExitBuildSTdeleteall; | 
|  | } | 
|  |  | 
|  | // initially, the only unmarked state in Dstates is firstpos(root), | 
|  | //       where toot is the root of the syntax tree for (r)#; | 
|  | initialState = new RBBIStateDescriptor(lastInputSymbol, fStatus); | 
|  | if (initialState == NULL) { | 
|  | *fStatus = U_MEMORY_ALLOCATION_ERROR; | 
|  | } | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | goto ExitBuildSTdeleteall; | 
|  | } | 
|  | initialState->fPositions = new UVector(*fStatus); | 
|  | if (initialState->fPositions == NULL) { | 
|  | *fStatus = U_MEMORY_ALLOCATION_ERROR; | 
|  | } | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | goto ExitBuildSTdeleteall; | 
|  | } | 
|  | setAdd(initialState->fPositions, fTree->fFirstPosSet); | 
|  | fDStates->addElement(initialState, *fStatus); | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | goto ExitBuildSTdeleteall; | 
|  | } | 
|  |  | 
|  | // while there is an unmarked state T in Dstates do begin | 
|  | for (;;) { | 
|  | RBBIStateDescriptor *T = NULL; | 
|  | int32_t              tx; | 
|  | for (tx=1; tx<fDStates->size(); tx++) { | 
|  | RBBIStateDescriptor *temp; | 
|  | temp = (RBBIStateDescriptor *)fDStates->elementAt(tx); | 
|  | if (temp->fMarked == FALSE) { | 
|  | T = temp; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (T == NULL) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | // mark T; | 
|  | T->fMarked = TRUE; | 
|  |  | 
|  | // for each input symbol a do begin | 
|  | int32_t  a; | 
|  | for (a = 1; a<=lastInputSymbol; a++) { | 
|  | // let U be the set of positions that are in followpos(p) | 
|  | //    for some position p in T | 
|  | //    such that the symbol at position p is a; | 
|  | UVector    *U = NULL; | 
|  | RBBINode   *p; | 
|  | int32_t     px; | 
|  | for (px=0; px<T->fPositions->size(); px++) { | 
|  | p = (RBBINode *)T->fPositions->elementAt(px); | 
|  | if ((p->fType == RBBINode::leafChar) &&  (p->fVal == a)) { | 
|  | if (U == NULL) { | 
|  | U = new UVector(*fStatus); | 
|  | if (U == NULL) { | 
|  | *fStatus = U_MEMORY_ALLOCATION_ERROR; | 
|  | goto ExitBuildSTdeleteall; | 
|  | } | 
|  | } | 
|  | setAdd(U, p->fFollowPos); | 
|  | } | 
|  | } | 
|  |  | 
|  | // if U is not empty and not in DStates then | 
|  | int32_t  ux = 0; | 
|  | UBool    UinDstates = FALSE; | 
|  | if (U != NULL) { | 
|  | U_ASSERT(U->size() > 0); | 
|  | int  ix; | 
|  | for (ix=0; ix<fDStates->size(); ix++) { | 
|  | RBBIStateDescriptor *temp2; | 
|  | temp2 = (RBBIStateDescriptor *)fDStates->elementAt(ix); | 
|  | if (setEquals(U, temp2->fPositions)) { | 
|  | delete U; | 
|  | U  = temp2->fPositions; | 
|  | ux = ix; | 
|  | UinDstates = TRUE; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add U as an unmarked state to Dstates | 
|  | if (!UinDstates) | 
|  | { | 
|  | RBBIStateDescriptor *newState = new RBBIStateDescriptor(lastInputSymbol, fStatus); | 
|  | if (newState == NULL) { | 
|  | *fStatus = U_MEMORY_ALLOCATION_ERROR; | 
|  | } | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | goto ExitBuildSTdeleteall; | 
|  | } | 
|  | newState->fPositions = U; | 
|  | fDStates->addElement(newState, *fStatus); | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  | ux = fDStates->size()-1; | 
|  | } | 
|  |  | 
|  | // Dtran[T, a] := U; | 
|  | T->fDtran->setElementAt(ux, a); | 
|  | } | 
|  | } | 
|  | } | 
|  | return; | 
|  | // delete local pointers only if error occured. | 
|  | ExitBuildSTdeleteall: | 
|  | delete initialState; | 
|  | delete failState; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   flagAcceptingStates    Identify accepting states. | 
|  | //                          First get a list of all of the end marker nodes. | 
|  | //                          Then, for each state s, | 
|  | //                              if s contains one of the end marker nodes in its list of tree positions then | 
|  | //                                  s is an accepting state. | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void     RBBITableBuilder::flagAcceptingStates() { | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  | UVector     endMarkerNodes(*fStatus); | 
|  | RBBINode    *endMarker; | 
|  | int32_t     i; | 
|  | int32_t     n; | 
|  |  | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | fTree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus); | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i=0; i<endMarkerNodes.size(); i++) { | 
|  | endMarker = (RBBINode *)endMarkerNodes.elementAt(i); | 
|  | for (n=0; n<fDStates->size(); n++) { | 
|  | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); | 
|  | if (sd->fPositions->indexOf(endMarker) >= 0) { | 
|  | // Any non-zero value for fAccepting means this is an accepting node. | 
|  | // The value is what will be returned to the user as the break status. | 
|  | // If no other value was specified, force it to -1. | 
|  |  | 
|  | if (sd->fAccepting==0) { | 
|  | // State hasn't been marked as accepting yet.  Do it now. | 
|  | sd->fAccepting = endMarker->fVal; | 
|  | if (sd->fAccepting == 0) { | 
|  | sd->fAccepting = -1; | 
|  | } | 
|  | } | 
|  | if (sd->fAccepting==-1 && endMarker->fVal != 0) { | 
|  | // Both lookahead and non-lookahead accepting for this state. | 
|  | // Favor the look-ahead.  Expedient for line break. | 
|  | // TODO:  need a more elegant resolution for conflicting rules. | 
|  | sd->fAccepting = endMarker->fVal; | 
|  | } | 
|  | // implicit else: | 
|  | // if sd->fAccepting already had a value other than 0 or -1, leave it be. | 
|  |  | 
|  | // If the end marker node is from a look-ahead rule, set | 
|  | //   the fLookAhead field for this state also. | 
|  | if (endMarker->fLookAheadEnd) { | 
|  | // TODO:  don't change value if already set? | 
|  | // TODO:  allow for more than one active look-ahead rule in engine. | 
|  | //        Make value here an index to a side array in engine? | 
|  | sd->fLookAhead = sd->fAccepting; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //    flagLookAheadStates   Very similar to flagAcceptingStates, above. | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void     RBBITableBuilder::flagLookAheadStates() { | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  | UVector     lookAheadNodes(*fStatus); | 
|  | RBBINode    *lookAheadNode; | 
|  | int32_t     i; | 
|  | int32_t     n; | 
|  |  | 
|  | fTree->findNodes(&lookAheadNodes, RBBINode::lookAhead, *fStatus); | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  | for (i=0; i<lookAheadNodes.size(); i++) { | 
|  | lookAheadNode = (RBBINode *)lookAheadNodes.elementAt(i); | 
|  |  | 
|  | for (n=0; n<fDStates->size(); n++) { | 
|  | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); | 
|  | if (sd->fPositions->indexOf(lookAheadNode) >= 0) { | 
|  | sd->fLookAhead = lookAheadNode->fVal; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //    flagTaggedStates | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void     RBBITableBuilder::flagTaggedStates() { | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  | UVector     tagNodes(*fStatus); | 
|  | RBBINode    *tagNode; | 
|  | int32_t     i; | 
|  | int32_t     n; | 
|  |  | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  | fTree->findNodes(&tagNodes, RBBINode::tag, *fStatus); | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  | for (i=0; i<tagNodes.size(); i++) {                   // For each tag node t (all of 'em) | 
|  | tagNode = (RBBINode *)tagNodes.elementAt(i); | 
|  |  | 
|  | for (n=0; n<fDStates->size(); n++) {              //    For each state  s (row in the state table) | 
|  | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); | 
|  | if (sd->fPositions->indexOf(tagNode) >= 0) {  //       if  s include the tag node t | 
|  | sortedAdd(&sd->fTagVals, tagNode->fVal); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //  mergeRuleStatusVals | 
|  | // | 
|  | //      Update the global table of rule status {tag} values | 
|  | //      The rule builder has a global vector of status values that are common | 
|  | //      for all tables.  Merge the ones from this table into the global set. | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void  RBBITableBuilder::mergeRuleStatusVals() { | 
|  | // | 
|  | //  The basic outline of what happens here is this... | 
|  | // | 
|  | //    for each state in this state table | 
|  | //       if the status tag list for this state is in the global statuses list | 
|  | //           record where and | 
|  | //           continue with the next state | 
|  | //       else | 
|  | //           add the tag list for this state to the global list. | 
|  | // | 
|  | int i; | 
|  | int n; | 
|  |  | 
|  | // Pre-set a single tag of {0} into the table. | 
|  | //   We will need this as a default, for rule sets with no explicit tagging. | 
|  | if (fRB->fRuleStatusVals->size() == 0) { | 
|  | fRB->fRuleStatusVals->addElement(1, *fStatus);  // Num of statuses in group | 
|  | fRB->fRuleStatusVals->addElement((int32_t)0, *fStatus);  //   and our single status of zero | 
|  | } | 
|  |  | 
|  | //    For each state | 
|  | for (n=0; n<fDStates->size(); n++) { | 
|  | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); | 
|  | UVector *thisStatesTagValues = sd->fTagVals; | 
|  | if (thisStatesTagValues == NULL) { | 
|  | // No tag values are explicitly associated with this state. | 
|  | //   Set the default tag value. | 
|  | sd->fTagsIdx = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // There are tag(s) associated with this state. | 
|  | //   fTagsIdx will be the index into the global tag list for this state's tag values. | 
|  | //   Initial value of -1 flags that we haven't got it set yet. | 
|  | sd->fTagsIdx = -1; | 
|  | int32_t  thisTagGroupStart = 0;   // indexes into the global rule status vals list | 
|  | int32_t  nextTagGroupStart = 0; | 
|  |  | 
|  | // Loop runs once per group of tags in the global list | 
|  | while (nextTagGroupStart < fRB->fRuleStatusVals->size()) { | 
|  | thisTagGroupStart = nextTagGroupStart; | 
|  | nextTagGroupStart += fRB->fRuleStatusVals->elementAti(thisTagGroupStart) + 1; | 
|  | if (thisStatesTagValues->size() != fRB->fRuleStatusVals->elementAti(thisTagGroupStart)) { | 
|  | // The number of tags for this state is different from | 
|  | //    the number of tags in this group from the global list. | 
|  | //    Continue with the next group from the global list. | 
|  | continue; | 
|  | } | 
|  | // The lengths match, go ahead and compare the actual tag values | 
|  | //    between this state and the group from the global list. | 
|  | for (i=0; i<thisStatesTagValues->size(); i++) { | 
|  | if (thisStatesTagValues->elementAti(i) != | 
|  | fRB->fRuleStatusVals->elementAti(thisTagGroupStart + 1 + i) ) { | 
|  | // Mismatch. | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i == thisStatesTagValues->size()) { | 
|  | // We found a set of tag values in the global list that match | 
|  | //   those for this state.  Use them. | 
|  | sd->fTagsIdx = thisTagGroupStart; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sd->fTagsIdx == -1) { | 
|  | // No suitable entry in the global tag list already.  Add one | 
|  | sd->fTagsIdx = fRB->fRuleStatusVals->size(); | 
|  | fRB->fRuleStatusVals->addElement(thisStatesTagValues->size(), *fStatus); | 
|  | for (i=0; i<thisStatesTagValues->size(); i++) { | 
|  | fRB->fRuleStatusVals->addElement(thisStatesTagValues->elementAti(i), *fStatus); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //  sortedAdd  Add a value to a vector of sorted values (ints). | 
|  | //             Do not replicate entries; if the value is already there, do not | 
|  | //                add a second one. | 
|  | //             Lazily create the vector if it does not already exist. | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void RBBITableBuilder::sortedAdd(UVector **vector, int32_t val) { | 
|  | int32_t i; | 
|  |  | 
|  | if (*vector == NULL) { | 
|  | *vector = new UVector(*fStatus); | 
|  | } | 
|  | if (*vector == NULL || U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  | UVector *vec = *vector; | 
|  | int32_t  vSize = vec->size(); | 
|  | for (i=0; i<vSize; i++) { | 
|  | int32_t valAtI = vec->elementAti(i); | 
|  | if (valAtI == val) { | 
|  | // The value is already in the vector.  Don't add it again. | 
|  | return; | 
|  | } | 
|  | if (valAtI > val) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | vec->insertElementAt(val, i, *fStatus); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //  setAdd     Set operation on UVector | 
|  | //             dest = dest union source | 
|  | //             Elements may only appear once and must be sorted. | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void RBBITableBuilder::setAdd(UVector *dest, UVector *source) { | 
|  | int32_t destOriginalSize = dest->size(); | 
|  | int32_t sourceSize       = source->size(); | 
|  | int32_t di           = 0; | 
|  | MaybeStackArray<void *, 16> destArray, sourceArray;  // Handle small cases without malloc | 
|  | void **destPtr, **sourcePtr; | 
|  | void **destLim, **sourceLim; | 
|  |  | 
|  | if (destOriginalSize > destArray.getCapacity()) { | 
|  | if (destArray.resize(destOriginalSize) == NULL) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | destPtr = destArray.getAlias(); | 
|  | destLim = destPtr + destOriginalSize;  // destArray.getArrayLimit()? | 
|  |  | 
|  | if (sourceSize > sourceArray.getCapacity()) { | 
|  | if (sourceArray.resize(sourceSize) == NULL) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | sourcePtr = sourceArray.getAlias(); | 
|  | sourceLim = sourcePtr + sourceSize;  // sourceArray.getArrayLimit()? | 
|  |  | 
|  | // Avoid multiple "get element" calls by getting the contents into arrays | 
|  | (void) dest->toArray(destPtr); | 
|  | (void) source->toArray(sourcePtr); | 
|  |  | 
|  | dest->setSize(sourceSize+destOriginalSize, *fStatus); | 
|  |  | 
|  | while (sourcePtr < sourceLim && destPtr < destLim) { | 
|  | if (*destPtr == *sourcePtr) { | 
|  | dest->setElementAt(*sourcePtr++, di++); | 
|  | destPtr++; | 
|  | } | 
|  | // This check is required for machines with segmented memory, like i5/OS. | 
|  | // Direct pointer comparison is not recommended. | 
|  | else if (uprv_memcmp(destPtr, sourcePtr, sizeof(void *)) < 0) { | 
|  | dest->setElementAt(*destPtr++, di++); | 
|  | } | 
|  | else { /* *sourcePtr < *destPtr */ | 
|  | dest->setElementAt(*sourcePtr++, di++); | 
|  | } | 
|  | } | 
|  |  | 
|  | // At most one of these two cleanup loops will execute | 
|  | while (destPtr < destLim) { | 
|  | dest->setElementAt(*destPtr++, di++); | 
|  | } | 
|  | while (sourcePtr < sourceLim) { | 
|  | dest->setElementAt(*sourcePtr++, di++); | 
|  | } | 
|  |  | 
|  | dest->setSize(di, *fStatus); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //  setEqual    Set operation on UVector. | 
|  | //              Compare for equality. | 
|  | //              Elements must be sorted. | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | UBool RBBITableBuilder::setEquals(UVector *a, UVector *b) { | 
|  | return a->equals(*b); | 
|  | } | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //  printPosSets   Debug function.  Dump Nullable, firstpos, lastpos and followpos | 
|  | //                 for each node in the tree. | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | #ifdef RBBI_DEBUG | 
|  | void RBBITableBuilder::printPosSets(RBBINode *n) { | 
|  | if (n==NULL) { | 
|  | return; | 
|  | } | 
|  | printf("\n"); | 
|  | RBBINode::printNodeHeader(); | 
|  | RBBINode::printNode(n); | 
|  | RBBIDebugPrintf("         Nullable:  %s\n", n->fNullable?"TRUE":"FALSE"); | 
|  |  | 
|  | RBBIDebugPrintf("         firstpos:  "); | 
|  | printSet(n->fFirstPosSet); | 
|  |  | 
|  | RBBIDebugPrintf("         lastpos:   "); | 
|  | printSet(n->fLastPosSet); | 
|  |  | 
|  | RBBIDebugPrintf("         followpos: "); | 
|  | printSet(n->fFollowPos); | 
|  |  | 
|  | printPosSets(n->fLeftChild); | 
|  | printPosSets(n->fRightChild); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // | 
|  | //    findDuplCharClassFrom() | 
|  | // | 
|  | bool RBBITableBuilder::findDuplCharClassFrom(IntPair *categories) { | 
|  | int32_t numStates = fDStates->size(); | 
|  | int32_t numCols = fRB->fSetBuilder->getNumCharCategories(); | 
|  |  | 
|  | for (; categories->first < numCols-1; categories->first++) { | 
|  | for (categories->second=categories->first+1; categories->second < numCols; categories->second++) { | 
|  | // Initialized to different values to prevent returning true if numStates = 0 (implies no duplicates). | 
|  | uint16_t table_base = 0; | 
|  | uint16_t table_dupl = 1; | 
|  | for (int32_t state=0; state<numStates; state++) { | 
|  | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); | 
|  | table_base = (uint16_t)sd->fDtran->elementAti(categories->first); | 
|  | table_dupl = (uint16_t)sd->fDtran->elementAti(categories->second); | 
|  | if (table_base != table_dupl) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (table_base == table_dupl) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // | 
|  | //    removeColumn() | 
|  | // | 
|  | void RBBITableBuilder::removeColumn(int32_t column) { | 
|  | int32_t numStates = fDStates->size(); | 
|  | for (int32_t state=0; state<numStates; state++) { | 
|  | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); | 
|  | U_ASSERT(column < sd->fDtran->size()); | 
|  | sd->fDtran->removeElementAt(column); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * findDuplicateState | 
|  | */ | 
|  | bool RBBITableBuilder::findDuplicateState(IntPair *states) { | 
|  | int32_t numStates = fDStates->size(); | 
|  | int32_t numCols = fRB->fSetBuilder->getNumCharCategories(); | 
|  |  | 
|  | for (; states->first<numStates-1; states->first++) { | 
|  | RBBIStateDescriptor *firstSD = (RBBIStateDescriptor *)fDStates->elementAt(states->first); | 
|  | for (states->second=states->first+1; states->second<numStates; states->second++) { | 
|  | RBBIStateDescriptor *duplSD = (RBBIStateDescriptor *)fDStates->elementAt(states->second); | 
|  | if (firstSD->fAccepting != duplSD->fAccepting || | 
|  | firstSD->fLookAhead != duplSD->fLookAhead || | 
|  | firstSD->fTagsIdx   != duplSD->fTagsIdx) { | 
|  | continue; | 
|  | } | 
|  | bool rowsMatch = true; | 
|  | for (int32_t col=0; col < numCols; ++col) { | 
|  | int32_t firstVal = firstSD->fDtran->elementAti(col); | 
|  | int32_t duplVal = duplSD->fDtran->elementAti(col); | 
|  | if (!((firstVal == duplVal) || | 
|  | ((firstVal == states->first || firstVal == states->second) && | 
|  | (duplVal  == states->first || duplVal  == states->second)))) { | 
|  | rowsMatch = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (rowsMatch) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool RBBITableBuilder::findDuplicateSafeState(IntPair *states) { | 
|  | int32_t numStates = fSafeTable->size(); | 
|  |  | 
|  | for (; states->first<numStates-1; states->first++) { | 
|  | UnicodeString *firstRow = static_cast<UnicodeString *>(fSafeTable->elementAt(states->first)); | 
|  | for (states->second=states->first+1; states->second<numStates; states->second++) { | 
|  | UnicodeString *duplRow = static_cast<UnicodeString *>(fSafeTable->elementAt(states->second)); | 
|  | bool rowsMatch = true; | 
|  | int32_t numCols = firstRow->length(); | 
|  | for (int32_t col=0; col < numCols; ++col) { | 
|  | int32_t firstVal = firstRow->charAt(col); | 
|  | int32_t duplVal = duplRow->charAt(col); | 
|  | if (!((firstVal == duplVal) || | 
|  | ((firstVal == states->first || firstVal == states->second) && | 
|  | (duplVal  == states->first || duplVal  == states->second)))) { | 
|  | rowsMatch = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (rowsMatch) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | void RBBITableBuilder::removeState(IntPair duplStates) { | 
|  | const int32_t keepState = duplStates.first; | 
|  | const int32_t duplState = duplStates.second; | 
|  | U_ASSERT(keepState < duplState); | 
|  | U_ASSERT(duplState < fDStates->size()); | 
|  |  | 
|  | RBBIStateDescriptor *duplSD = (RBBIStateDescriptor *)fDStates->elementAt(duplState); | 
|  | fDStates->removeElementAt(duplState); | 
|  | delete duplSD; | 
|  |  | 
|  | int32_t numStates = fDStates->size(); | 
|  | int32_t numCols = fRB->fSetBuilder->getNumCharCategories(); | 
|  | for (int32_t state=0; state<numStates; ++state) { | 
|  | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); | 
|  | for (int32_t col=0; col<numCols; col++) { | 
|  | int32_t existingVal = sd->fDtran->elementAti(col); | 
|  | int32_t newVal = existingVal; | 
|  | if (existingVal == duplState) { | 
|  | newVal = keepState; | 
|  | } else if (existingVal > duplState) { | 
|  | newVal = existingVal - 1; | 
|  | } | 
|  | sd->fDtran->setElementAt(newVal, col); | 
|  | } | 
|  | if (sd->fAccepting == duplState) { | 
|  | sd->fAccepting = keepState; | 
|  | } else if (sd->fAccepting > duplState) { | 
|  | sd->fAccepting--; | 
|  | } | 
|  | if (sd->fLookAhead == duplState) { | 
|  | sd->fLookAhead = keepState; | 
|  | } else if (sd->fLookAhead > duplState) { | 
|  | sd->fLookAhead--; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void RBBITableBuilder::removeSafeState(IntPair duplStates) { | 
|  | const int32_t keepState = duplStates.first; | 
|  | const int32_t duplState = duplStates.second; | 
|  | U_ASSERT(keepState < duplState); | 
|  | U_ASSERT(duplState < fSafeTable->size()); | 
|  |  | 
|  | fSafeTable->removeElementAt(duplState);   // Note that fSafeTable has a deleter function | 
|  | // and will auto-delete the removed element. | 
|  | int32_t numStates = fSafeTable->size(); | 
|  | for (int32_t state=0; state<numStates; ++state) { | 
|  | UnicodeString *sd = (UnicodeString *)fSafeTable->elementAt(state); | 
|  | int32_t numCols = sd->length(); | 
|  | for (int32_t col=0; col<numCols; col++) { | 
|  | int32_t existingVal = sd->charAt(col); | 
|  | int32_t newVal = existingVal; | 
|  | if (existingVal == duplState) { | 
|  | newVal = keepState; | 
|  | } else if (existingVal > duplState) { | 
|  | newVal = existingVal - 1; | 
|  | } | 
|  | sd->setCharAt(col, static_cast<char16_t>(newVal)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * RemoveDuplicateStates | 
|  | */ | 
|  | int32_t RBBITableBuilder::removeDuplicateStates() { | 
|  | IntPair dupls = {3, 0}; | 
|  | int32_t numStatesRemoved = 0; | 
|  |  | 
|  | while (findDuplicateState(&dupls)) { | 
|  | // printf("Removing duplicate states (%d, %d)\n", dupls.first, dupls.second); | 
|  | removeState(dupls); | 
|  | ++numStatesRemoved; | 
|  | } | 
|  | return numStatesRemoved; | 
|  | } | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   getTableSize()    Calculate the size of the runtime form of this | 
|  | //                     state transition table. | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | int32_t  RBBITableBuilder::getTableSize() const { | 
|  | int32_t    size = 0; | 
|  | int32_t    numRows; | 
|  | int32_t    numCols; | 
|  | int32_t    rowSize; | 
|  |  | 
|  | if (fTree == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size    = offsetof(RBBIStateTable, fTableData);    // The header, with no rows to the table. | 
|  |  | 
|  | numRows = fDStates->size(); | 
|  | numCols = fRB->fSetBuilder->getNumCharCategories(); | 
|  |  | 
|  | rowSize = offsetof(RBBIStateTableRow, fNextState) + sizeof(uint16_t)*numCols; | 
|  | size   += numRows * rowSize; | 
|  | return size; | 
|  | } | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   exportTable()    export the state transition table in the format required | 
|  | //                    by the runtime engine.  getTableSize() bytes of memory | 
|  | //                    must be available at the output address "where". | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void RBBITableBuilder::exportTable(void *where) { | 
|  | RBBIStateTable    *table = (RBBIStateTable *)where; | 
|  | uint32_t           state; | 
|  | int                col; | 
|  |  | 
|  | if (U_FAILURE(*fStatus) || fTree == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | int32_t catCount = fRB->fSetBuilder->getNumCharCategories(); | 
|  | if (catCount > 0x7fff || | 
|  | fDStates->size() > 0x7fff) { | 
|  | *fStatus = U_BRK_INTERNAL_ERROR; | 
|  | return; | 
|  | } | 
|  |  | 
|  | table->fRowLen    = offsetof(RBBIStateTableRow, fNextState) + sizeof(uint16_t) * catCount; | 
|  | table->fNumStates = fDStates->size(); | 
|  | table->fFlags     = 0; | 
|  | if (fRB->fLookAheadHardBreak) { | 
|  | table->fFlags  |= RBBI_LOOKAHEAD_HARD_BREAK; | 
|  | } | 
|  | if (fRB->fSetBuilder->sawBOF()) { | 
|  | table->fFlags  |= RBBI_BOF_REQUIRED; | 
|  | } | 
|  | table->fReserved  = 0; | 
|  |  | 
|  | for (state=0; state<table->fNumStates; state++) { | 
|  | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state); | 
|  | RBBIStateTableRow   *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen); | 
|  | U_ASSERT (-32768 < sd->fAccepting && sd->fAccepting <= 32767); | 
|  | U_ASSERT (-32768 < sd->fLookAhead && sd->fLookAhead <= 32767); | 
|  | row->fAccepting = (int16_t)sd->fAccepting; | 
|  | row->fLookAhead = (int16_t)sd->fLookAhead; | 
|  | row->fTagIdx    = (int16_t)sd->fTagsIdx; | 
|  | for (col=0; col<catCount; col++) { | 
|  | row->fNextState[col] = (uint16_t)sd->fDtran->elementAti(col); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *   Synthesize a safe state table from the main state table. | 
|  | */ | 
|  | void RBBITableBuilder::buildSafeReverseTable(UErrorCode &status) { | 
|  | // The safe table creation has three steps: | 
|  |  | 
|  | // 1. Identifiy pairs of character classes that are "safe." Safe means that boundaries | 
|  | // following the pair do not depend on context or state before the pair. To test | 
|  | // whether a pair is safe, run it through the main forward state table, starting | 
|  | // from each state. If the the final state is the same, no matter what the starting state, | 
|  | // the pair is safe. | 
|  | // | 
|  | // 2. Build a state table that recognizes the safe pairs. It's similar to their | 
|  | // forward table, with a column for each input character [class], and a row for | 
|  | // each state. Row 1 is the start state, and row 0 is the stop state. Initially | 
|  | // create an additional state for each input character category; being in | 
|  | // one of these states means that the character has been seen, and is potentially | 
|  | // the first of a pair. In each of these rows, the entry for the second character | 
|  | // of a safe pair is set to the stop state (0), indicating that a match was found. | 
|  | // All other table entries are set to the state corresponding the current input | 
|  | // character, allowing that charcter to be the of a start following pair. | 
|  | // | 
|  | // Because the safe rules are to be run in reverse, moving backwards in the text, | 
|  | // the first and second pair categories are swapped when building the table. | 
|  | // | 
|  | // 3. Compress the table. There are typically many rows (states) that are | 
|  | // equivalent - that have zeroes (match completed) in the same columns - | 
|  | // and can be folded together. | 
|  |  | 
|  | // Each safe pair is stored as two UChars in the safePair string. | 
|  | UnicodeString safePairs; | 
|  |  | 
|  | int32_t numCharClasses = fRB->fSetBuilder->getNumCharCategories(); | 
|  | int32_t numStates = fDStates->size(); | 
|  |  | 
|  | for (int32_t c1=0; c1<numCharClasses; ++c1) { | 
|  | for (int32_t c2=0; c2 < numCharClasses; ++c2) { | 
|  | int32_t wantedEndState = -1; | 
|  | int32_t endState = 0; | 
|  | for (int32_t startState = 1; startState < numStates; ++startState) { | 
|  | RBBIStateDescriptor *startStateD = static_cast<RBBIStateDescriptor *>(fDStates->elementAt(startState)); | 
|  | int32_t s2 = startStateD->fDtran->elementAti(c1); | 
|  | RBBIStateDescriptor *s2StateD = static_cast<RBBIStateDescriptor *>(fDStates->elementAt(s2)); | 
|  | endState = s2StateD->fDtran->elementAti(c2); | 
|  | if (wantedEndState < 0) { | 
|  | wantedEndState = endState; | 
|  | } else { | 
|  | if (wantedEndState != endState) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (wantedEndState == endState) { | 
|  | safePairs.append((char16_t)c1); | 
|  | safePairs.append((char16_t)c2); | 
|  | // printf("(%d, %d) ", c1, c2); | 
|  | } | 
|  | } | 
|  | // printf("\n"); | 
|  | } | 
|  |  | 
|  | // Populate the initial safe table. | 
|  | // The table as a whole is UVector<UnicodeString> | 
|  | // Each row is represented by a UnicodeString, being used as a Vector<int16>. | 
|  | // Row 0 is the stop state. | 
|  | // Row 1 is the start sate. | 
|  | // Row 2 and beyond are other states, initially one per char class, but | 
|  | //   after initial construction, many of the states will be combined, compacting the table. | 
|  | // The String holds the nextState data only. The four leading fields of a row, fAccepting, | 
|  | // fLookAhead, etc. are not needed for the safe table, and are omitted at this stage of building. | 
|  |  | 
|  | U_ASSERT(fSafeTable == nullptr); | 
|  | fSafeTable = new UVector(uprv_deleteUObject, uhash_compareUnicodeString, numCharClasses + 2, status); | 
|  | for (int32_t row=0; row<numCharClasses + 2; ++row) { | 
|  | fSafeTable->addElement(new UnicodeString(numCharClasses, 0, numCharClasses+4), status); | 
|  | } | 
|  |  | 
|  | // From the start state, each input char class transitions to the state for that input. | 
|  | UnicodeString &startState = *static_cast<UnicodeString *>(fSafeTable->elementAt(1)); | 
|  | for (int32_t charClass=0; charClass < numCharClasses; ++charClass) { | 
|  | // Note: +2 for the start & stop state. | 
|  | startState.setCharAt(charClass, static_cast<char16_t>(charClass+2)); | 
|  | } | 
|  |  | 
|  | // Initially make every other state table row look like the start state row, | 
|  | for (int32_t row=2; row<numCharClasses+2; ++row) { | 
|  | UnicodeString &rowState = *static_cast<UnicodeString *>(fSafeTable->elementAt(row)); | 
|  | rowState = startState;   // UnicodeString assignment, copies contents. | 
|  | } | 
|  |  | 
|  | // Run through the safe pairs, set the next state to zero when pair has been seen. | 
|  | // Zero being the stop state, meaning we found a safe point. | 
|  | for (int32_t pairIdx=0; pairIdx<safePairs.length(); pairIdx+=2) { | 
|  | int32_t c1 = safePairs.charAt(pairIdx); | 
|  | int32_t c2 = safePairs.charAt(pairIdx + 1); | 
|  |  | 
|  | UnicodeString &rowState = *static_cast<UnicodeString *>(fSafeTable->elementAt(c2 + 2)); | 
|  | rowState.setCharAt(c1, 0); | 
|  | } | 
|  |  | 
|  | // Remove duplicate or redundant rows from the table. | 
|  | IntPair states = {1, 0}; | 
|  | while (findDuplicateSafeState(&states)) { | 
|  | // printf("Removing duplicate safe states (%d, %d)\n", states.first, states.second); | 
|  | removeSafeState(states); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   getSafeTableSize()    Calculate the size of the runtime form of this | 
|  | //                         safe state table. | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | int32_t  RBBITableBuilder::getSafeTableSize() const { | 
|  | int32_t    size = 0; | 
|  | int32_t    numRows; | 
|  | int32_t    numCols; | 
|  | int32_t    rowSize; | 
|  |  | 
|  | if (fSafeTable == nullptr) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size    = offsetof(RBBIStateTable, fTableData);    // The header, with no rows to the table. | 
|  |  | 
|  | numRows = fSafeTable->size(); | 
|  | numCols = fRB->fSetBuilder->getNumCharCategories(); | 
|  |  | 
|  | rowSize = offsetof(RBBIStateTableRow, fNextState) + sizeof(uint16_t)*numCols; | 
|  | size   += numRows * rowSize; | 
|  | return size; | 
|  | } | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   exportSafeTable()   export the state transition table in the format required | 
|  | //                       by the runtime engine.  getTableSize() bytes of memory | 
|  | //                       must be available at the output address "where". | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | void RBBITableBuilder::exportSafeTable(void *where) { | 
|  | RBBIStateTable    *table = (RBBIStateTable *)where; | 
|  | uint32_t           state; | 
|  | int                col; | 
|  |  | 
|  | if (U_FAILURE(*fStatus) || fSafeTable == nullptr) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | int32_t catCount = fRB->fSetBuilder->getNumCharCategories(); | 
|  | if (catCount > 0x7fff || | 
|  | fSafeTable->size() > 0x7fff) { | 
|  | *fStatus = U_BRK_INTERNAL_ERROR; | 
|  | return; | 
|  | } | 
|  |  | 
|  | table->fRowLen    = offsetof(RBBIStateTableRow, fNextState) + sizeof(uint16_t) * catCount; | 
|  | table->fNumStates = fSafeTable->size(); | 
|  | table->fFlags     = 0; | 
|  | table->fReserved  = 0; | 
|  |  | 
|  | for (state=0; state<table->fNumStates; state++) { | 
|  | UnicodeString *rowString = (UnicodeString *)fSafeTable->elementAt(state); | 
|  | RBBIStateTableRow   *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen); | 
|  | row->fAccepting = 0; | 
|  | row->fLookAhead = 0; | 
|  | row->fTagIdx    = 0; | 
|  | row->fReserved  = 0; | 
|  | for (col=0; col<catCount; col++) { | 
|  | row->fNextState[col] = rowString->charAt(col); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   printSet    Debug function.   Print the contents of a UVector | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | #ifdef RBBI_DEBUG | 
|  | void RBBITableBuilder::printSet(UVector *s) { | 
|  | int32_t  i; | 
|  | for (i=0; i<s->size(); i++) { | 
|  | const RBBINode *v = static_cast<const RBBINode *>(s->elementAt(i)); | 
|  | RBBIDebugPrintf("%5d", v==NULL? -1 : v->fSerialNum); | 
|  | } | 
|  | RBBIDebugPrintf("\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   printStates    Debug Function.  Dump the fully constructed state transition table. | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | #ifdef RBBI_DEBUG | 
|  | void RBBITableBuilder::printStates() { | 
|  | int     c;    // input "character" | 
|  | int     n;    // state number | 
|  |  | 
|  | RBBIDebugPrintf("state |           i n p u t     s y m b o l s \n"); | 
|  | RBBIDebugPrintf("      | Acc  LA    Tag"); | 
|  | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { | 
|  | RBBIDebugPrintf(" %2d", c); | 
|  | } | 
|  | RBBIDebugPrintf("\n"); | 
|  | RBBIDebugPrintf("      |---------------"); | 
|  | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { | 
|  | RBBIDebugPrintf("---"); | 
|  | } | 
|  | RBBIDebugPrintf("\n"); | 
|  |  | 
|  | for (n=0; n<fDStates->size(); n++) { | 
|  | RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n); | 
|  | RBBIDebugPrintf("  %3d | " , n); | 
|  | RBBIDebugPrintf("%3d %3d %5d ", sd->fAccepting, sd->fLookAhead, sd->fTagsIdx); | 
|  | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { | 
|  | RBBIDebugPrintf(" %2d", sd->fDtran->elementAti(c)); | 
|  | } | 
|  | RBBIDebugPrintf("\n"); | 
|  | } | 
|  | RBBIDebugPrintf("\n\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   printSafeTable    Debug Function.  Dump the fully constructed safe table. | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | #ifdef RBBI_DEBUG | 
|  | void RBBITableBuilder::printReverseTable() { | 
|  | int     c;    // input "character" | 
|  | int     n;    // state number | 
|  |  | 
|  | RBBIDebugPrintf("    Safe Reverse Table \n"); | 
|  | if (fSafeTable == nullptr) { | 
|  | RBBIDebugPrintf("   --- nullptr ---\n"); | 
|  | return; | 
|  | } | 
|  | RBBIDebugPrintf("state |           i n p u t     s y m b o l s \n"); | 
|  | RBBIDebugPrintf("      | Acc  LA    Tag"); | 
|  | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { | 
|  | RBBIDebugPrintf(" %2d", c); | 
|  | } | 
|  | RBBIDebugPrintf("\n"); | 
|  | RBBIDebugPrintf("      |---------------"); | 
|  | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { | 
|  | RBBIDebugPrintf("---"); | 
|  | } | 
|  | RBBIDebugPrintf("\n"); | 
|  |  | 
|  | for (n=0; n<fSafeTable->size(); n++) { | 
|  | UnicodeString *rowString = (UnicodeString *)fSafeTable->elementAt(n); | 
|  | RBBIDebugPrintf("  %3d | " , n); | 
|  | RBBIDebugPrintf("%3d %3d %5d ", 0, 0, 0);  // Accepting, LookAhead, Tags | 
|  | for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) { | 
|  | RBBIDebugPrintf(" %2d", rowString->charAt(c)); | 
|  | } | 
|  | RBBIDebugPrintf("\n"); | 
|  | } | 
|  | RBBIDebugPrintf("\n\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   printRuleStatusTable    Debug Function.  Dump the common rule status table | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  | #ifdef RBBI_DEBUG | 
|  | void RBBITableBuilder::printRuleStatusTable() { | 
|  | int32_t  thisRecord = 0; | 
|  | int32_t  nextRecord = 0; | 
|  | int      i; | 
|  | UVector  *tbl = fRB->fRuleStatusVals; | 
|  |  | 
|  | RBBIDebugPrintf("index |  tags \n"); | 
|  | RBBIDebugPrintf("-------------------\n"); | 
|  |  | 
|  | while (nextRecord < tbl->size()) { | 
|  | thisRecord = nextRecord; | 
|  | nextRecord = thisRecord + tbl->elementAti(thisRecord) + 1; | 
|  | RBBIDebugPrintf("%4d   ", thisRecord); | 
|  | for (i=thisRecord+1; i<nextRecord; i++) { | 
|  | RBBIDebugPrintf("  %5d", tbl->elementAti(i)); | 
|  | } | 
|  | RBBIDebugPrintf("\n"); | 
|  | } | 
|  | RBBIDebugPrintf("\n\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // | 
|  | //   RBBIStateDescriptor     Methods.  This is a very struct-like class | 
|  | //                           Most access is directly to the fields. | 
|  | // | 
|  | //----------------------------------------------------------------------------- | 
|  |  | 
|  | RBBIStateDescriptor::RBBIStateDescriptor(int lastInputSymbol, UErrorCode *fStatus) { | 
|  | fMarked    = FALSE; | 
|  | fAccepting = 0; | 
|  | fLookAhead = 0; | 
|  | fTagsIdx   = 0; | 
|  | fTagVals   = NULL; | 
|  | fPositions = NULL; | 
|  | fDtran     = NULL; | 
|  |  | 
|  | fDtran     = new UVector32(lastInputSymbol+1, *fStatus); | 
|  | if (U_FAILURE(*fStatus)) { | 
|  | return; | 
|  | } | 
|  | if (fDtran == NULL) { | 
|  | *fStatus = U_MEMORY_ALLOCATION_ERROR; | 
|  | return; | 
|  | } | 
|  | fDtran->setSize(lastInputSymbol+1);    // fDtran needs to be pre-sized. | 
|  | //   It is indexed by input symbols, and will | 
|  | //   hold  the next state number for each | 
|  | //   symbol. | 
|  | } | 
|  |  | 
|  |  | 
|  | RBBIStateDescriptor::~RBBIStateDescriptor() { | 
|  | delete       fPositions; | 
|  | delete       fDtran; | 
|  | delete       fTagVals; | 
|  | fPositions = NULL; | 
|  | fDtran     = NULL; | 
|  | fTagVals   = NULL; | 
|  | } | 
|  |  | 
|  | U_NAMESPACE_END | 
|  |  | 
|  | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |