|  | /* | 
|  | ****************************************************************************** | 
|  | * | 
|  | *   Copyright (C) 2001-2006, International Business Machines | 
|  | *   Corporation and others.  All Rights Reserved. | 
|  | * | 
|  | ****************************************************************************** | 
|  | *   file name:  utrie.c | 
|  | *   encoding:   US-ASCII | 
|  | *   tab size:   8 (not used) | 
|  | *   indentation:4 | 
|  | * | 
|  | *   created on: 2001oct20 | 
|  | *   created by: Markus W. Scherer | 
|  | * | 
|  | *   This is a common implementation of a "folded" trie. | 
|  | *   It is a kind of compressed, serializable table of 16- or 32-bit values associated with | 
|  | *   Unicode code points (0..0x10ffff). | 
|  | */ | 
|  |  | 
|  | #ifdef UTRIE_DEBUG | 
|  | #   include <stdio.h> | 
|  | #endif | 
|  |  | 
|  | #include "unicode/utypes.h" | 
|  | #include "cmemory.h" | 
|  | #include "utrie.h" | 
|  |  | 
|  | /* miscellaneous ------------------------------------------------------------ */ | 
|  |  | 
|  | #undef ABS | 
|  | #define ABS(x) ((x)>=0 ? (x) : -(x)) | 
|  |  | 
|  | static U_INLINE UBool | 
|  | equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) { | 
|  | while(length>0 && *s==*t) { | 
|  | ++s; | 
|  | ++t; | 
|  | --length; | 
|  | } | 
|  | return (UBool)(length==0); | 
|  | } | 
|  |  | 
|  | /* Building a trie ----------------------------------------------------------*/ | 
|  |  | 
|  | U_CAPI UNewTrie * U_EXPORT2 | 
|  | utrie_open(UNewTrie *fillIn, | 
|  | uint32_t *aliasData, int32_t maxDataLength, | 
|  | uint32_t initialValue, uint32_t leadUnitValue, | 
|  | UBool latin1Linear) { | 
|  | UNewTrie *trie; | 
|  | int32_t i, j; | 
|  |  | 
|  | if( maxDataLength<UTRIE_DATA_BLOCK_LENGTH || | 
|  | (latin1Linear && maxDataLength<1024) | 
|  | ) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if(fillIn!=NULL) { | 
|  | trie=fillIn; | 
|  | } else { | 
|  | trie=(UNewTrie *)uprv_malloc(sizeof(UNewTrie)); | 
|  | if(trie==NULL) { | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | uprv_memset(trie, 0, sizeof(UNewTrie)); | 
|  | trie->isAllocated= (UBool)(fillIn==NULL); | 
|  |  | 
|  | if(aliasData!=NULL) { | 
|  | trie->data=aliasData; | 
|  | trie->isDataAllocated=FALSE; | 
|  | } else { | 
|  | trie->data=(uint32_t *)uprv_malloc(maxDataLength*4); | 
|  | if(trie->data==NULL) { | 
|  | uprv_free(trie); | 
|  | return NULL; | 
|  | } | 
|  | trie->isDataAllocated=TRUE; | 
|  | } | 
|  |  | 
|  | /* preallocate and reset the first data block (block index 0) */ | 
|  | j=UTRIE_DATA_BLOCK_LENGTH; | 
|  |  | 
|  | if(latin1Linear) { | 
|  | /* preallocate and reset the first block (number 0) and Latin-1 (U+0000..U+00ff) after that */ | 
|  | /* made sure above that maxDataLength>=1024 */ | 
|  |  | 
|  | /* set indexes to point to consecutive data blocks */ | 
|  | i=0; | 
|  | do { | 
|  | /* do this at least for trie->index[0] even if that block is only partly used for Latin-1 */ | 
|  | trie->index[i++]=j; | 
|  | j+=UTRIE_DATA_BLOCK_LENGTH; | 
|  | } while(i<(256>>UTRIE_SHIFT)); | 
|  | } | 
|  |  | 
|  | /* reset the initially allocated blocks to the initial value */ | 
|  | trie->dataLength=j; | 
|  | while(j>0) { | 
|  | trie->data[--j]=initialValue; | 
|  | } | 
|  |  | 
|  | trie->leadUnitValue=leadUnitValue; | 
|  | trie->indexLength=UTRIE_MAX_INDEX_LENGTH; | 
|  | trie->dataCapacity=maxDataLength; | 
|  | trie->isLatin1Linear=latin1Linear; | 
|  | trie->isCompacted=FALSE; | 
|  | return trie; | 
|  | } | 
|  |  | 
|  | U_CAPI UNewTrie * U_EXPORT2 | 
|  | utrie_clone(UNewTrie *fillIn, const UNewTrie *other, uint32_t *aliasData, int32_t aliasDataCapacity) { | 
|  | UNewTrie *trie; | 
|  | UBool isDataAllocated; | 
|  |  | 
|  | /* do not clone if other is not valid or already compacted */ | 
|  | if(other==NULL || other->data==NULL || other->isCompacted) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* clone data */ | 
|  | if(aliasData!=NULL && aliasDataCapacity>=other->dataCapacity) { | 
|  | isDataAllocated=FALSE; | 
|  | } else { | 
|  | aliasDataCapacity=other->dataCapacity; | 
|  | aliasData=(uint32_t *)uprv_malloc(other->dataCapacity*4); | 
|  | if(aliasData==NULL) { | 
|  | return NULL; | 
|  | } | 
|  | isDataAllocated=TRUE; | 
|  | } | 
|  |  | 
|  | trie=utrie_open(fillIn, aliasData, aliasDataCapacity, | 
|  | other->data[0], other->leadUnitValue, | 
|  | other->isLatin1Linear); | 
|  | if(trie==NULL) { | 
|  | uprv_free(aliasData); | 
|  | } else { | 
|  | uprv_memcpy(trie->index, other->index, sizeof(trie->index)); | 
|  | uprv_memcpy(trie->data, other->data, other->dataLength*4); | 
|  | trie->dataLength=other->dataLength; | 
|  | trie->isDataAllocated=isDataAllocated; | 
|  | } | 
|  |  | 
|  | return trie; | 
|  | } | 
|  |  | 
|  | U_CAPI void U_EXPORT2 | 
|  | utrie_close(UNewTrie *trie) { | 
|  | if(trie!=NULL) { | 
|  | if(trie->isDataAllocated) { | 
|  | uprv_free(trie->data); | 
|  | trie->data=NULL; | 
|  | } | 
|  | if(trie->isAllocated) { | 
|  | uprv_free(trie); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | U_CAPI uint32_t * U_EXPORT2 | 
|  | utrie_getData(UNewTrie *trie, int32_t *pLength) { | 
|  | if(trie==NULL || pLength==NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | *pLength=trie->dataLength; | 
|  | return trie->data; | 
|  | } | 
|  |  | 
|  | static int32_t | 
|  | utrie_allocDataBlock(UNewTrie *trie) { | 
|  | int32_t newBlock, newTop; | 
|  |  | 
|  | newBlock=trie->dataLength; | 
|  | newTop=newBlock+UTRIE_DATA_BLOCK_LENGTH; | 
|  | if(newTop>trie->dataCapacity) { | 
|  | /* out of memory in the data array */ | 
|  | return -1; | 
|  | } | 
|  | trie->dataLength=newTop; | 
|  | return newBlock; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * No error checking for illegal arguments. | 
|  | * | 
|  | * @return -1 if no new data block available (out of memory in data array) | 
|  | * @internal | 
|  | */ | 
|  | static int32_t | 
|  | utrie_getDataBlock(UNewTrie *trie, UChar32 c) { | 
|  | int32_t indexValue, newBlock; | 
|  |  | 
|  | c>>=UTRIE_SHIFT; | 
|  | indexValue=trie->index[c]; | 
|  | if(indexValue>0) { | 
|  | return indexValue; | 
|  | } | 
|  |  | 
|  | /* allocate a new data block */ | 
|  | newBlock=utrie_allocDataBlock(trie); | 
|  | if(newBlock<0) { | 
|  | /* out of memory in the data array */ | 
|  | return -1; | 
|  | } | 
|  | trie->index[c]=newBlock; | 
|  |  | 
|  | /* copy-on-write for a block from a setRange() */ | 
|  | uprv_memcpy(trie->data+newBlock, trie->data-indexValue, 4*UTRIE_DATA_BLOCK_LENGTH); | 
|  | return newBlock; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @return TRUE if the value was successfully set | 
|  | */ | 
|  | U_CAPI UBool U_EXPORT2 | 
|  | utrie_set32(UNewTrie *trie, UChar32 c, uint32_t value) { | 
|  | int32_t block; | 
|  |  | 
|  | /* valid, uncompacted trie and valid c? */ | 
|  | if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | block=utrie_getDataBlock(trie, c); | 
|  | if(block<0) { | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | trie->data[block+(c&UTRIE_MASK)]=value; | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | U_CAPI uint32_t U_EXPORT2 | 
|  | utrie_get32(UNewTrie *trie, UChar32 c, UBool *pInBlockZero) { | 
|  | int32_t block; | 
|  |  | 
|  | /* valid, uncompacted trie and valid c? */ | 
|  | if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { | 
|  | if(pInBlockZero!=NULL) { | 
|  | *pInBlockZero=TRUE; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | block=trie->index[c>>UTRIE_SHIFT]; | 
|  | if(pInBlockZero!=NULL) { | 
|  | *pInBlockZero= (UBool)(block==0); | 
|  | } | 
|  |  | 
|  | return trie->data[ABS(block)+(c&UTRIE_MASK)]; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @internal | 
|  | */ | 
|  | static void | 
|  | utrie_fillBlock(uint32_t *block, UChar32 start, UChar32 limit, | 
|  | uint32_t value, uint32_t initialValue, UBool overwrite) { | 
|  | uint32_t *pLimit; | 
|  |  | 
|  | pLimit=block+limit; | 
|  | block+=start; | 
|  | if(overwrite) { | 
|  | while(block<pLimit) { | 
|  | *block++=value; | 
|  | } | 
|  | } else { | 
|  | while(block<pLimit) { | 
|  | if(*block==initialValue) { | 
|  | *block=value; | 
|  | } | 
|  | ++block; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | U_CAPI UBool U_EXPORT2 | 
|  | utrie_setRange32(UNewTrie *trie, UChar32 start, UChar32 limit, uint32_t value, UBool overwrite) { | 
|  | /* | 
|  | * repeat value in [start..limit[ | 
|  | * mark index values for repeat-data blocks by setting bit 31 of the index values | 
|  | * fill around existing values if any, if(overwrite) | 
|  | */ | 
|  | uint32_t initialValue; | 
|  | int32_t block, rest, repeatBlock; | 
|  |  | 
|  | /* valid, uncompacted trie and valid indexes? */ | 
|  | if( trie==NULL || trie->isCompacted || | 
|  | (uint32_t)start>0x10ffff || (uint32_t)limit>0x110000 || start>limit | 
|  | ) { | 
|  | return FALSE; | 
|  | } | 
|  | if(start==limit) { | 
|  | return TRUE; /* nothing to do */ | 
|  | } | 
|  |  | 
|  | initialValue=trie->data[0]; | 
|  | if(start&UTRIE_MASK) { | 
|  | UChar32 nextStart; | 
|  |  | 
|  | /* set partial block at [start..following block boundary[ */ | 
|  | block=utrie_getDataBlock(trie, start); | 
|  | if(block<0) { | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | nextStart=(start+UTRIE_DATA_BLOCK_LENGTH)&~UTRIE_MASK; | 
|  | if(nextStart<=limit) { | 
|  | utrie_fillBlock(trie->data+block, start&UTRIE_MASK, UTRIE_DATA_BLOCK_LENGTH, | 
|  | value, initialValue, overwrite); | 
|  | start=nextStart; | 
|  | } else { | 
|  | utrie_fillBlock(trie->data+block, start&UTRIE_MASK, limit&UTRIE_MASK, | 
|  | value, initialValue, overwrite); | 
|  | return TRUE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* number of positions in the last, partial block */ | 
|  | rest=limit&UTRIE_MASK; | 
|  |  | 
|  | /* round down limit to a block boundary */ | 
|  | limit&=~UTRIE_MASK; | 
|  |  | 
|  | /* iterate over all-value blocks */ | 
|  | if(value==initialValue) { | 
|  | repeatBlock=0; | 
|  | } else { | 
|  | repeatBlock=-1; | 
|  | } | 
|  | while(start<limit) { | 
|  | /* get index value */ | 
|  | block=trie->index[start>>UTRIE_SHIFT]; | 
|  | if(block>0) { | 
|  | /* already allocated, fill in value */ | 
|  | utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, overwrite); | 
|  | } else if(trie->data[-block]!=value && (block==0 || overwrite)) { | 
|  | /* set the repeatBlock instead of the current block 0 or range block */ | 
|  | if(repeatBlock>=0) { | 
|  | trie->index[start>>UTRIE_SHIFT]=-repeatBlock; | 
|  | } else { | 
|  | /* create and set and fill the repeatBlock */ | 
|  | repeatBlock=utrie_getDataBlock(trie, start); | 
|  | if(repeatBlock<0) { | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | /* set the negative block number to indicate that it is a repeat block */ | 
|  | trie->index[start>>UTRIE_SHIFT]=-repeatBlock; | 
|  | utrie_fillBlock(trie->data+repeatBlock, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, TRUE); | 
|  | } | 
|  | } | 
|  |  | 
|  | start+=UTRIE_DATA_BLOCK_LENGTH; | 
|  | } | 
|  |  | 
|  | if(rest>0) { | 
|  | /* set partial block at [last block boundary..limit[ */ | 
|  | block=utrie_getDataBlock(trie, start); | 
|  | if(block<0) { | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | utrie_fillBlock(trie->data+block, 0, rest, value, initialValue, overwrite); | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | static int32_t | 
|  | _findSameIndexBlock(const int32_t *index, int32_t indexLength, | 
|  | int32_t otherBlock) { | 
|  | int32_t block, i; | 
|  |  | 
|  | for(block=UTRIE_BMP_INDEX_LENGTH; block<indexLength; block+=UTRIE_SURROGATE_BLOCK_COUNT) { | 
|  | for(i=0; i<UTRIE_SURROGATE_BLOCK_COUNT; ++i) { | 
|  | if(index[block+i]!=index[otherBlock+i]) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if(i==UTRIE_SURROGATE_BLOCK_COUNT) { | 
|  | return block; | 
|  | } | 
|  | } | 
|  | return indexLength; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fold the normalization data for supplementary code points into | 
|  | * a compact area on top of the BMP-part of the trie index, | 
|  | * with the lead surrogates indexing this compact area. | 
|  | * | 
|  | * Duplicate the index values for lead surrogates: | 
|  | * From inside the BMP area, where some may be overridden with folded values, | 
|  | * to just after the BMP area, where they can be retrieved for | 
|  | * code point lookups. | 
|  | */ | 
|  | static void | 
|  | utrie_fold(UNewTrie *trie, UNewTrieGetFoldedValue *getFoldedValue, UErrorCode *pErrorCode) { | 
|  | int32_t leadIndexes[UTRIE_SURROGATE_BLOCK_COUNT]; | 
|  | int32_t *index; | 
|  | uint32_t value; | 
|  | UChar32 c; | 
|  | int32_t indexLength, block; | 
|  |  | 
|  | index=trie->index; | 
|  |  | 
|  | /* copy the lead surrogate indexes into a temporary array */ | 
|  | uprv_memcpy(leadIndexes, index+(0xd800>>UTRIE_SHIFT), 4*UTRIE_SURROGATE_BLOCK_COUNT); | 
|  |  | 
|  | /* | 
|  | * set all values for lead surrogate code *units* to leadUnitValue | 
|  | * so that, by default, runtime lookups will find no data for associated | 
|  | * supplementary code points, unless there is data for such code points | 
|  | * which will result in a non-zero folding value below that is set for | 
|  | * the respective lead units | 
|  | * | 
|  | * the above saved the indexes for surrogate code *points* | 
|  | * fill the indexes with simplified code from utrie_setRange32() | 
|  | */ | 
|  | if(trie->leadUnitValue==trie->data[0]) { | 
|  | block=0; /* leadUnitValue==initialValue, use all-initial-value block */ | 
|  | } else { | 
|  | /* create and fill the repeatBlock */ | 
|  | block=utrie_allocDataBlock(trie); | 
|  | if(block<0) { | 
|  | /* data table overflow */ | 
|  | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | 
|  | return; | 
|  | } | 
|  | utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, trie->leadUnitValue, trie->data[0], TRUE); | 
|  | block=-block; /* negative block number to indicate that it is a repeat block */ | 
|  | } | 
|  | for(c=(0xd800>>UTRIE_SHIFT); c<(0xdc00>>UTRIE_SHIFT); ++c) { | 
|  | trie->index[c]=block; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fold significant index values into the area just after the BMP indexes. | 
|  | * In case the first lead surrogate has significant data, | 
|  | * its index block must be used first (in which case the folding is a no-op). | 
|  | * Later all folded index blocks are moved up one to insert the copied | 
|  | * lead surrogate indexes. | 
|  | */ | 
|  | indexLength=UTRIE_BMP_INDEX_LENGTH; | 
|  |  | 
|  | /* search for any index (stage 1) entries for supplementary code points */ | 
|  | for(c=0x10000; c<0x110000;) { | 
|  | if(index[c>>UTRIE_SHIFT]!=0) { | 
|  | /* there is data, treat the full block for a lead surrogate */ | 
|  | c&=~0x3ff; | 
|  |  | 
|  | #ifdef UTRIE_DEBUG | 
|  | printf("supplementary data for lead surrogate U+%04lx\n", (long)(0xd7c0+(c>>10))); | 
|  | #endif | 
|  |  | 
|  | /* is there an identical index block? */ | 
|  | block=_findSameIndexBlock(index, indexLength, c>>UTRIE_SHIFT); | 
|  |  | 
|  | /* | 
|  | * get a folded value for [c..c+0x400[ and, | 
|  | * if different from the value for the lead surrogate code point, | 
|  | * set it for the lead surrogate code unit | 
|  | */ | 
|  | value=getFoldedValue(trie, c, block+UTRIE_SURROGATE_BLOCK_COUNT); | 
|  | if(value!=utrie_get32(trie, U16_LEAD(c), NULL)) { | 
|  | if(!utrie_set32(trie, U16_LEAD(c), value)) { | 
|  | /* data table overflow */ | 
|  | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* if we did not find an identical index block... */ | 
|  | if(block==indexLength) { | 
|  | /* move the actual index (stage 1) entries from the supplementary position to the new one */ | 
|  | uprv_memmove(index+indexLength, | 
|  | index+(c>>UTRIE_SHIFT), | 
|  | 4*UTRIE_SURROGATE_BLOCK_COUNT); | 
|  | indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; | 
|  | } | 
|  | } | 
|  | c+=0x400; | 
|  | } else { | 
|  | c+=UTRIE_DATA_BLOCK_LENGTH; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * index array overflow? | 
|  | * This is to guarantee that a folding offset is of the form | 
|  | * UTRIE_BMP_INDEX_LENGTH+n*UTRIE_SURROGATE_BLOCK_COUNT with n=0..1023. | 
|  | * If the index is too large, then n>=1024 and more than 10 bits are necessary. | 
|  | * | 
|  | * In fact, it can only ever become n==1024 with completely unfoldable data and | 
|  | * the additional block of duplicated values for lead surrogates. | 
|  | */ | 
|  | if(indexLength>=UTRIE_MAX_INDEX_LENGTH) { | 
|  | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * make space for the lead surrogate index block and | 
|  | * insert it between the BMP indexes and the folded ones | 
|  | */ | 
|  | uprv_memmove(index+UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT, | 
|  | index+UTRIE_BMP_INDEX_LENGTH, | 
|  | 4*(indexLength-UTRIE_BMP_INDEX_LENGTH)); | 
|  | uprv_memcpy(index+UTRIE_BMP_INDEX_LENGTH, | 
|  | leadIndexes, | 
|  | 4*UTRIE_SURROGATE_BLOCK_COUNT); | 
|  | indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; | 
|  |  | 
|  | #ifdef UTRIE_DEBUG | 
|  | printf("trie index count: BMP %ld  all Unicode %ld  folded %ld\n", | 
|  | UTRIE_BMP_INDEX_LENGTH, (long)UTRIE_MAX_INDEX_LENGTH, indexLength); | 
|  | #endif | 
|  |  | 
|  | trie->indexLength=indexLength; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set a value in the trie index map to indicate which data block | 
|  | * is referenced and which one is not. | 
|  | * utrie_compact() will remove data blocks that are not used at all. | 
|  | * Set | 
|  | * - 0 if it is used | 
|  | * - -1 if it is not used | 
|  | */ | 
|  | static void | 
|  | _findUnusedBlocks(UNewTrie *trie) { | 
|  | int32_t i; | 
|  |  | 
|  | /* fill the entire map with "not used" */ | 
|  | uprv_memset(trie->map, 0xff, (UTRIE_MAX_BUILD_TIME_DATA_LENGTH>>UTRIE_SHIFT)*4); | 
|  |  | 
|  | /* mark each block that _is_ used with 0 */ | 
|  | for(i=0; i<trie->indexLength; ++i) { | 
|  | trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]=0; | 
|  | } | 
|  |  | 
|  | /* never move the all-initial-value block 0 */ | 
|  | trie->map[0]=0; | 
|  | } | 
|  |  | 
|  | static int32_t | 
|  | _findSameDataBlock(const uint32_t *data, int32_t dataLength, | 
|  | int32_t otherBlock, int32_t step) { | 
|  | int32_t block; | 
|  |  | 
|  | /* ensure that we do not even partially get past dataLength */ | 
|  | dataLength-=UTRIE_DATA_BLOCK_LENGTH; | 
|  |  | 
|  | for(block=0; block<=dataLength; block+=step) { | 
|  | if(equal_uint32(data+block, data+otherBlock, UTRIE_DATA_BLOCK_LENGTH)) { | 
|  | return block; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compact a folded build-time trie. | 
|  | * | 
|  | * The compaction | 
|  | * - removes blocks that are identical with earlier ones | 
|  | * - overlaps adjacent blocks as much as possible (if overlap==TRUE) | 
|  | * - moves blocks in steps of the data granularity | 
|  | * - moves and overlaps blocks that overlap with multiple values in the overlap region | 
|  | * | 
|  | * It does not | 
|  | * - try to move and overlap blocks that are not already adjacent | 
|  | */ | 
|  | static void | 
|  | utrie_compact(UNewTrie *trie, UBool overlap, UErrorCode *pErrorCode) { | 
|  | int32_t i, start, newStart, overlapStart; | 
|  |  | 
|  | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* valid, uncompacted trie? */ | 
|  | if(trie==NULL) { | 
|  | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | 
|  | return; | 
|  | } | 
|  | if(trie->isCompacted) { | 
|  | return; /* nothing left to do */ | 
|  | } | 
|  |  | 
|  | /* compaction */ | 
|  |  | 
|  | /* initialize the index map with "block is used/unused" flags */ | 
|  | _findUnusedBlocks(trie); | 
|  |  | 
|  | /* if Latin-1 is preallocated and linear, then do not compact Latin-1 data */ | 
|  | if(trie->isLatin1Linear && UTRIE_SHIFT<=8) { | 
|  | overlapStart=UTRIE_DATA_BLOCK_LENGTH+256; | 
|  | } else { | 
|  | overlapStart=UTRIE_DATA_BLOCK_LENGTH; | 
|  | } | 
|  |  | 
|  | newStart=UTRIE_DATA_BLOCK_LENGTH; | 
|  | for(start=newStart; start<trie->dataLength;) { | 
|  | /* | 
|  | * start: index of first entry of current block | 
|  | * newStart: index where the current block is to be moved | 
|  | *           (right after current end of already-compacted data) | 
|  | */ | 
|  |  | 
|  | /* skip blocks that are not used */ | 
|  | if(trie->map[start>>UTRIE_SHIFT]<0) { | 
|  | /* advance start to the next block */ | 
|  | start+=UTRIE_DATA_BLOCK_LENGTH; | 
|  |  | 
|  | /* leave newStart with the previous block! */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* search for an identical block */ | 
|  | if( start>=overlapStart && | 
|  | (i=_findSameDataBlock(trie->data, newStart, start, | 
|  | overlap ? UTRIE_DATA_GRANULARITY : UTRIE_DATA_BLOCK_LENGTH)) | 
|  | >=0 | 
|  | ) { | 
|  | /* found an identical block, set the other block's index value for the current block */ | 
|  | trie->map[start>>UTRIE_SHIFT]=i; | 
|  |  | 
|  | /* advance start to the next block */ | 
|  | start+=UTRIE_DATA_BLOCK_LENGTH; | 
|  |  | 
|  | /* leave newStart with the previous block! */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* see if the beginning of this block can be overlapped with the end of the previous block */ | 
|  | if(overlap && start>=overlapStart) { | 
|  | /* look for maximum overlap (modulo granularity) with the previous, adjacent block */ | 
|  | for(i=UTRIE_DATA_BLOCK_LENGTH-UTRIE_DATA_GRANULARITY; | 
|  | i>0 && !equal_uint32(trie->data+(newStart-i), trie->data+start, i); | 
|  | i-=UTRIE_DATA_GRANULARITY) {} | 
|  | } else { | 
|  | i=0; | 
|  | } | 
|  |  | 
|  | if(i>0) { | 
|  | /* some overlap */ | 
|  | trie->map[start>>UTRIE_SHIFT]=newStart-i; | 
|  |  | 
|  | /* move the non-overlapping indexes to their new positions */ | 
|  | start+=i; | 
|  | for(i=UTRIE_DATA_BLOCK_LENGTH-i; i>0; --i) { | 
|  | trie->data[newStart++]=trie->data[start++]; | 
|  | } | 
|  | } else if(newStart<start) { | 
|  | /* no overlap, just move the indexes to their new positions */ | 
|  | trie->map[start>>UTRIE_SHIFT]=newStart; | 
|  | for(i=UTRIE_DATA_BLOCK_LENGTH; i>0; --i) { | 
|  | trie->data[newStart++]=trie->data[start++]; | 
|  | } | 
|  | } else /* no overlap && newStart==start */ { | 
|  | trie->map[start>>UTRIE_SHIFT]=start; | 
|  | newStart+=UTRIE_DATA_BLOCK_LENGTH; | 
|  | start=newStart; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* now adjust the index (stage 1) table */ | 
|  | for(i=0; i<trie->indexLength; ++i) { | 
|  | trie->index[i]=trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]; | 
|  | } | 
|  |  | 
|  | #ifdef UTRIE_DEBUG | 
|  | /* we saved some space */ | 
|  | printf("compacting trie: count of 32-bit words %lu->%lu\n", | 
|  | (long)trie->dataLength, (long)newStart); | 
|  | #endif | 
|  |  | 
|  | trie->dataLength=newStart; | 
|  | } | 
|  |  | 
|  | /* serialization ------------------------------------------------------------ */ | 
|  |  | 
|  | /* | 
|  | * Default function for the folding value: | 
|  | * Just store the offset (16 bits) if there is any non-initial-value entry. | 
|  | * | 
|  | * The offset parameter is never 0. | 
|  | * Returning the offset itself is safe for UTRIE_SHIFT>=5 because | 
|  | * for UTRIE_SHIFT==5 the maximum index length is UTRIE_MAX_INDEX_LENGTH==0x8800 | 
|  | * which fits into 16-bit trie values; | 
|  | * for higher UTRIE_SHIFT, UTRIE_MAX_INDEX_LENGTH decreases. | 
|  | * | 
|  | * Theoretically, it would be safer for all possible UTRIE_SHIFT including | 
|  | * those of 4 and lower to return offset>>UTRIE_SURROGATE_BLOCK_BITS | 
|  | * which would always result in a value of 0x40..0x43f | 
|  | * (start/end 1k blocks of supplementary Unicode code points). | 
|  | * However, this would be uglier, and would not work for some existing | 
|  | * binary data file formats. | 
|  | * | 
|  | * Also, we do not plan to change UTRIE_SHIFT because it would change binary | 
|  | * data file formats, and we would probably not make it smaller because of | 
|  | * the then even larger BMP index length even for empty tries. | 
|  | */ | 
|  | static uint32_t U_CALLCONV | 
|  | defaultGetFoldedValue(UNewTrie *trie, UChar32 start, int32_t offset) { | 
|  | uint32_t value, initialValue; | 
|  | UChar32 limit; | 
|  | UBool inBlockZero; | 
|  |  | 
|  | initialValue=trie->data[0]; | 
|  | limit=start+0x400; | 
|  | while(start<limit) { | 
|  | value=utrie_get32(trie, start, &inBlockZero); | 
|  | if(inBlockZero) { | 
|  | start+=UTRIE_DATA_BLOCK_LENGTH; | 
|  | } else if(value!=initialValue) { | 
|  | return (uint32_t)offset; | 
|  | } else { | 
|  | ++start; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | U_CAPI int32_t U_EXPORT2 | 
|  | utrie_serialize(UNewTrie *trie, void *dt, int32_t capacity, | 
|  | UNewTrieGetFoldedValue *getFoldedValue, | 
|  | UBool reduceTo16Bits, | 
|  | UErrorCode *pErrorCode) { | 
|  | UTrieHeader *header; | 
|  | uint32_t *p; | 
|  | uint16_t *dest16; | 
|  | int32_t i, length; | 
|  | uint8_t* data = NULL; | 
|  |  | 
|  | /* argument check */ | 
|  | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if(trie==NULL || capacity<0 || (capacity>0 && dt==NULL)) { | 
|  | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | 
|  | return 0; | 
|  | } | 
|  | if(getFoldedValue==NULL) { | 
|  | getFoldedValue=defaultGetFoldedValue; | 
|  | } | 
|  |  | 
|  | data = (uint8_t*)dt; | 
|  | /* fold and compact if necessary, also checks that indexLength is within limits */ | 
|  | if(!trie->isCompacted) { | 
|  | /* compact once without overlap to improve folding */ | 
|  | utrie_compact(trie, FALSE, pErrorCode); | 
|  |  | 
|  | /* fold the supplementary part of the index array */ | 
|  | utrie_fold(trie, getFoldedValue, pErrorCode); | 
|  |  | 
|  | /* compact again with overlap for minimum data array length */ | 
|  | utrie_compact(trie, TRUE, pErrorCode); | 
|  |  | 
|  | trie->isCompacted=TRUE; | 
|  | if(U_FAILURE(*pErrorCode)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* is dataLength within limits? */ | 
|  | if( (reduceTo16Bits ? (trie->dataLength+trie->indexLength) : trie->dataLength) >= UTRIE_MAX_DATA_LENGTH) { | 
|  | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | 
|  | } | 
|  |  | 
|  | length=sizeof(UTrieHeader)+2*trie->indexLength; | 
|  | if(reduceTo16Bits) { | 
|  | length+=2*trie->dataLength; | 
|  | } else { | 
|  | length+=4*trie->dataLength; | 
|  | } | 
|  |  | 
|  | if(length>capacity) { | 
|  | return length; /* preflighting */ | 
|  | } | 
|  |  | 
|  | /* set the header fields */ | 
|  | header=(UTrieHeader *)data; | 
|  | data+=sizeof(UTrieHeader); | 
|  |  | 
|  | header->signature=0x54726965; /* "Trie" */ | 
|  | header->options=UTRIE_SHIFT | (UTRIE_INDEX_SHIFT<<UTRIE_OPTIONS_INDEX_SHIFT); | 
|  |  | 
|  | if(!reduceTo16Bits) { | 
|  | header->options|=UTRIE_OPTIONS_DATA_IS_32_BIT; | 
|  | } | 
|  | if(trie->isLatin1Linear) { | 
|  | header->options|=UTRIE_OPTIONS_LATIN1_IS_LINEAR; | 
|  | } | 
|  |  | 
|  | header->indexLength=trie->indexLength; | 
|  | header->dataLength=trie->dataLength; | 
|  |  | 
|  | /* write the index (stage 1) array and the 16/32-bit data (stage 2) array */ | 
|  | if(reduceTo16Bits) { | 
|  | /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT, after adding indexLength */ | 
|  | p=(uint32_t *)trie->index; | 
|  | dest16=(uint16_t *)data; | 
|  | for(i=trie->indexLength; i>0; --i) { | 
|  | *dest16++=(uint16_t)((*p++ + trie->indexLength)>>UTRIE_INDEX_SHIFT); | 
|  | } | 
|  |  | 
|  | /* write 16-bit data values */ | 
|  | p=trie->data; | 
|  | for(i=trie->dataLength; i>0; --i) { | 
|  | *dest16++=(uint16_t)*p++; | 
|  | } | 
|  | } else { | 
|  | /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT */ | 
|  | p=(uint32_t *)trie->index; | 
|  | dest16=(uint16_t *)data; | 
|  | for(i=trie->indexLength; i>0; --i) { | 
|  | *dest16++=(uint16_t)(*p++ >> UTRIE_INDEX_SHIFT); | 
|  | } | 
|  |  | 
|  | /* write 32-bit data values */ | 
|  | uprv_memcpy(dest16, trie->data, 4*trie->dataLength); | 
|  | } | 
|  |  | 
|  | return length; | 
|  | } | 
|  |  | 
|  | /* inverse to defaultGetFoldedValue() */ | 
|  | U_CAPI int32_t U_EXPORT2 | 
|  | utrie_defaultGetFoldingOffset(uint32_t data) { | 
|  | return (int32_t)data; | 
|  | } | 
|  |  | 
|  | U_CAPI int32_t U_EXPORT2 | 
|  | utrie_unserialize(UTrie *trie, const void *data, int32_t length, UErrorCode *pErrorCode) { | 
|  | const UTrieHeader *header; | 
|  | const uint16_t *p16; | 
|  | uint32_t options; | 
|  |  | 
|  | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* enough data for a trie header? */ | 
|  | if(length<sizeof(UTrieHeader)) { | 
|  | *pErrorCode=U_INVALID_FORMAT_ERROR; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* check the signature */ | 
|  | header=(const UTrieHeader *)data; | 
|  | if(header->signature!=0x54726965) { | 
|  | *pErrorCode=U_INVALID_FORMAT_ERROR; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* get the options and check the shift values */ | 
|  | options=header->options; | 
|  | if( (options&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_SHIFT || | 
|  | ((options>>UTRIE_OPTIONS_INDEX_SHIFT)&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_INDEX_SHIFT | 
|  | ) { | 
|  | *pErrorCode=U_INVALID_FORMAT_ERROR; | 
|  | return -1; | 
|  | } | 
|  | trie->isLatin1Linear= (UBool)((options&UTRIE_OPTIONS_LATIN1_IS_LINEAR)!=0); | 
|  |  | 
|  | /* get the length values */ | 
|  | trie->indexLength=header->indexLength; | 
|  | trie->dataLength=header->dataLength; | 
|  |  | 
|  | length-=(int32_t)sizeof(UTrieHeader); | 
|  |  | 
|  | /* enough data for the index? */ | 
|  | if(length<2*trie->indexLength) { | 
|  | *pErrorCode=U_INVALID_FORMAT_ERROR; | 
|  | return -1; | 
|  | } | 
|  | p16=(const uint16_t *)(header+1); | 
|  | trie->index=p16; | 
|  | p16+=trie->indexLength; | 
|  | length-=2*trie->indexLength; | 
|  |  | 
|  | /* get the data */ | 
|  | if(options&UTRIE_OPTIONS_DATA_IS_32_BIT) { | 
|  | if(length<4*trie->dataLength) { | 
|  | *pErrorCode=U_INVALID_FORMAT_ERROR; | 
|  | return -1; | 
|  | } | 
|  | trie->data32=(const uint32_t *)p16; | 
|  | trie->initialValue=trie->data32[0]; | 
|  | length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+4*trie->dataLength; | 
|  | } else { | 
|  | if(length<2*trie->dataLength) { | 
|  | *pErrorCode=U_INVALID_FORMAT_ERROR; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* the "data16" data is used via the index pointer */ | 
|  | trie->data32=NULL; | 
|  | trie->initialValue=trie->index[trie->indexLength]; | 
|  | length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+2*trie->dataLength; | 
|  | } | 
|  |  | 
|  | trie->getFoldingOffset=utrie_defaultGetFoldingOffset; | 
|  |  | 
|  | return length; | 
|  | } | 
|  |  | 
|  | U_CAPI int32_t U_EXPORT2 | 
|  | utrie_unserializeDummy(UTrie *trie, | 
|  | void *data, int32_t length, | 
|  | uint32_t initialValue, uint32_t leadUnitValue, | 
|  | UBool make16BitTrie, | 
|  | UErrorCode *pErrorCode) { | 
|  | uint16_t *p16; | 
|  | int32_t actualLength, latin1Length, i, limit; | 
|  | uint16_t block; | 
|  |  | 
|  | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* calculate the actual size of the dummy trie data */ | 
|  |  | 
|  | /* max(Latin-1, block 0) */ | 
|  | latin1Length= UTRIE_SHIFT<=8 ? 256 : UTRIE_DATA_BLOCK_LENGTH; | 
|  |  | 
|  | trie->indexLength=UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT; | 
|  | trie->dataLength=latin1Length; | 
|  | if(leadUnitValue!=initialValue) { | 
|  | trie->dataLength+=UTRIE_DATA_BLOCK_LENGTH; | 
|  | } | 
|  |  | 
|  | actualLength=trie->indexLength*2; | 
|  | if(make16BitTrie) { | 
|  | actualLength+=trie->dataLength*2; | 
|  | } else { | 
|  | actualLength+=trie->dataLength*4; | 
|  | } | 
|  |  | 
|  | /* enough space for the dummy trie? */ | 
|  | if(length<actualLength) { | 
|  | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | 
|  | return actualLength; | 
|  | } | 
|  |  | 
|  | trie->isLatin1Linear=TRUE; | 
|  | trie->initialValue=initialValue; | 
|  |  | 
|  | /* fill the index and data arrays */ | 
|  | p16=(uint16_t *)data; | 
|  | trie->index=p16; | 
|  |  | 
|  | if(make16BitTrie) { | 
|  | /* indexes to block 0 */ | 
|  | block=(uint16_t)(trie->indexLength>>UTRIE_INDEX_SHIFT); | 
|  | limit=trie->indexLength; | 
|  | for(i=0; i<limit; ++i) { | 
|  | p16[i]=block; | 
|  | } | 
|  |  | 
|  | if(leadUnitValue!=initialValue) { | 
|  | /* indexes for lead surrogate code units to the block after Latin-1 */ | 
|  | block+=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); | 
|  | i=0xd800>>UTRIE_SHIFT; | 
|  | limit=0xdc00>>UTRIE_SHIFT; | 
|  | for(; i<limit; ++i) { | 
|  | p16[i]=block; | 
|  | } | 
|  | } | 
|  |  | 
|  | trie->data32=NULL; | 
|  |  | 
|  | /* Latin-1 data */ | 
|  | p16+=trie->indexLength; | 
|  | for(i=0; i<latin1Length; ++i) { | 
|  | p16[i]=(uint16_t)initialValue; | 
|  | } | 
|  |  | 
|  | /* data for lead surrogate code units */ | 
|  | if(leadUnitValue!=initialValue) { | 
|  | limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; | 
|  | for(/* i=latin1Length */; i<limit; ++i) { | 
|  | p16[i]=(uint16_t)leadUnitValue; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | uint32_t *p32; | 
|  |  | 
|  | /* indexes to block 0 */ | 
|  | uprv_memset(p16, 0, trie->indexLength*2); | 
|  |  | 
|  | if(leadUnitValue!=initialValue) { | 
|  | /* indexes for lead surrogate code units to the block after Latin-1 */ | 
|  | block=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); | 
|  | i=0xd800>>UTRIE_SHIFT; | 
|  | limit=0xdc00>>UTRIE_SHIFT; | 
|  | for(; i<limit; ++i) { | 
|  | p16[i]=block; | 
|  | } | 
|  | } | 
|  |  | 
|  | trie->data32=p32=(uint32_t *)(p16+trie->indexLength); | 
|  |  | 
|  | /* Latin-1 data */ | 
|  | for(i=0; i<latin1Length; ++i) { | 
|  | p32[i]=initialValue; | 
|  | } | 
|  |  | 
|  | /* data for lead surrogate code units */ | 
|  | if(leadUnitValue!=initialValue) { | 
|  | limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; | 
|  | for(/* i=latin1Length */; i<limit; ++i) { | 
|  | p32[i]=leadUnitValue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | trie->getFoldingOffset=utrie_defaultGetFoldingOffset; | 
|  |  | 
|  | return actualLength; | 
|  | } | 
|  |  | 
|  | /* enumeration -------------------------------------------------------------- */ | 
|  |  | 
|  | /* default UTrieEnumValue() returns the input value itself */ | 
|  | static uint32_t U_CALLCONV | 
|  | enumSameValue(const void *context, uint32_t value) { | 
|  | return value; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Enumerate all ranges of code points with the same relevant values. | 
|  | * The values are transformed from the raw trie entries by the enumValue function. | 
|  | */ | 
|  | U_CAPI void U_EXPORT2 | 
|  | utrie_enum(const UTrie *trie, | 
|  | UTrieEnumValue *enumValue, UTrieEnumRange *enumRange, const void *context) { | 
|  | const uint32_t *data32; | 
|  | const uint16_t *index; | 
|  |  | 
|  | uint32_t value, prevValue, initialValue; | 
|  | UChar32 c, prev; | 
|  | int32_t l, i, j, block, prevBlock, offset; | 
|  |  | 
|  | /* check arguments */ | 
|  | if(trie==NULL || trie->index==NULL || enumRange==NULL) { | 
|  | return; | 
|  | } | 
|  | if(enumValue==NULL) { | 
|  | enumValue=enumSameValue; | 
|  | } | 
|  |  | 
|  | index=trie->index; | 
|  | data32=trie->data32; | 
|  |  | 
|  | /* get the enumeration value that corresponds to an initial-value trie data entry */ | 
|  | initialValue=enumValue(context, trie->initialValue); | 
|  |  | 
|  | /* set variables for previous range */ | 
|  | prevBlock=0; | 
|  | prev=0; | 
|  | prevValue=initialValue; | 
|  |  | 
|  | /* enumerate BMP - the main loop enumerates data blocks */ | 
|  | for(i=0, c=0; c<=0xffff; ++i) { | 
|  | if(c==0xd800) { | 
|  | /* skip lead surrogate code _units_, go to lead surr. code _points_ */ | 
|  | i=UTRIE_BMP_INDEX_LENGTH; | 
|  | } else if(c==0xdc00) { | 
|  | /* go back to regular BMP code points */ | 
|  | i=c>>UTRIE_SHIFT; | 
|  | } | 
|  |  | 
|  | block=index[i]<<UTRIE_INDEX_SHIFT; | 
|  | if(block==prevBlock) { | 
|  | /* the block is the same as the previous one, and filled with value */ | 
|  | c+=UTRIE_DATA_BLOCK_LENGTH; | 
|  | } else if(block==0) { | 
|  | /* this is the all-initial-value block */ | 
|  | if(prevValue!=initialValue) { | 
|  | if(prev<c) { | 
|  | if(!enumRange(context, prev, c, prevValue)) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | prevBlock=0; | 
|  | prev=c; | 
|  | prevValue=initialValue; | 
|  | } | 
|  | c+=UTRIE_DATA_BLOCK_LENGTH; | 
|  | } else { | 
|  | prevBlock=block; | 
|  | for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { | 
|  | value=enumValue(context, data32!=NULL ? data32[block+j] : index[block+j]); | 
|  | if(value!=prevValue) { | 
|  | if(prev<c) { | 
|  | if(!enumRange(context, prev, c, prevValue)) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | if(j>0) { | 
|  | prevBlock=-1; | 
|  | } | 
|  | prev=c; | 
|  | prevValue=value; | 
|  | } | 
|  | ++c; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* enumerate supplementary code points */ | 
|  | for(l=0xd800; l<0xdc00;) { | 
|  | /* lead surrogate access */ | 
|  | offset=index[l>>UTRIE_SHIFT]<<UTRIE_INDEX_SHIFT; | 
|  | if(offset==(data32!=NULL ? 0 : trie->indexLength)) { | 
|  | /* no entries for a whole block of lead surrogates */ | 
|  | if(prevValue!=initialValue) { | 
|  | if(prev<c) { | 
|  | if(!enumRange(context, prev, c, prevValue)) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | prevBlock=0; | 
|  | prev=c; | 
|  | prevValue=initialValue; | 
|  | } | 
|  |  | 
|  | l+=UTRIE_DATA_BLOCK_LENGTH; | 
|  | c+=UTRIE_DATA_BLOCK_LENGTH<<10; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | value= data32!=NULL ? data32[offset+(l&UTRIE_MASK)] : index[offset+(l&UTRIE_MASK)]; | 
|  |  | 
|  | /* enumerate trail surrogates for this lead surrogate */ | 
|  | offset=trie->getFoldingOffset(value); | 
|  | if(offset<=0) { | 
|  | /* no data for this lead surrogate */ | 
|  | if(prevValue!=initialValue) { | 
|  | if(prev<c) { | 
|  | if(!enumRange(context, prev, c, prevValue)) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | prevBlock=0; | 
|  | prev=c; | 
|  | prevValue=initialValue; | 
|  | } | 
|  |  | 
|  | /* nothing else to do for the supplementary code points for this lead surrogate */ | 
|  | c+=0x400; | 
|  | } else { | 
|  | /* enumerate code points for this lead surrogate */ | 
|  | i=offset; | 
|  | offset+=UTRIE_SURROGATE_BLOCK_COUNT; | 
|  | do { | 
|  | /* copy of most of the body of the BMP loop */ | 
|  | block=index[i]<<UTRIE_INDEX_SHIFT; | 
|  | if(block==prevBlock) { | 
|  | /* the block is the same as the previous one, and filled with value */ | 
|  | c+=UTRIE_DATA_BLOCK_LENGTH; | 
|  | } else if(block==0) { | 
|  | /* this is the all-initial-value block */ | 
|  | if(prevValue!=initialValue) { | 
|  | if(prev<c) { | 
|  | if(!enumRange(context, prev, c, prevValue)) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | prevBlock=0; | 
|  | prev=c; | 
|  | prevValue=initialValue; | 
|  | } | 
|  | c+=UTRIE_DATA_BLOCK_LENGTH; | 
|  | } else { | 
|  | prevBlock=block; | 
|  | for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { | 
|  | value=enumValue(context, data32!=NULL ? data32[block+j] : index[block+j]); | 
|  | if(value!=prevValue) { | 
|  | if(prev<c) { | 
|  | if(!enumRange(context, prev, c, prevValue)) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | if(j>0) { | 
|  | prevBlock=-1; | 
|  | } | 
|  | prev=c; | 
|  | prevValue=value; | 
|  | } | 
|  | ++c; | 
|  | } | 
|  | } | 
|  | } while(++i<offset); | 
|  | } | 
|  |  | 
|  | ++l; | 
|  | } | 
|  |  | 
|  | /* deliver last range */ | 
|  | enumRange(context, prev, c, prevValue); | 
|  | } |