| // © 2016 and later: Unicode, Inc. and others. | 
 | // License & terms of use: http://www.unicode.org/copyright.html | 
 | /* | 
 |  ********************************************************************** | 
 |  *   Copyright (C) 1999-2016, International Business Machines | 
 |  *   Corporation and others.  All Rights Reserved. | 
 |  ********************************************************************** | 
 |  *   Date        Name        Description | 
 |  *   11/17/99    aliu        Creation. | 
 |  ********************************************************************** | 
 |  */ | 
 |  | 
 | #include "unicode/utypes.h" | 
 |  | 
 | #if !UCONFIG_NO_TRANSLITERATION | 
 |  | 
 | #include "unicode/uobject.h" | 
 | #include "unicode/parseerr.h" | 
 | #include "unicode/parsepos.h" | 
 | #include "unicode/putil.h" | 
 | #include "unicode/uchar.h" | 
 | #include "unicode/ustring.h" | 
 | #include "unicode/uniset.h" | 
 | #include "unicode/utf16.h" | 
 | #include "cstring.h" | 
 | #include "funcrepl.h" | 
 | #include "hash.h" | 
 | #include "quant.h" | 
 | #include "rbt.h" | 
 | #include "rbt_data.h" | 
 | #include "rbt_pars.h" | 
 | #include "rbt_rule.h" | 
 | #include "strmatch.h" | 
 | #include "strrepl.h" | 
 | #include "unicode/symtable.h" | 
 | #include "tridpars.h" | 
 | #include "uvector.h" | 
 | #include "hash.h" | 
 | #include "patternprops.h" | 
 | #include "util.h" | 
 | #include "cmemory.h" | 
 | #include "uprops.h" | 
 | #include "putilimp.h" | 
 |  | 
 | // Operators | 
 | #define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/ | 
 | #define FORWARD_RULE_OP ((UChar)0x003E) /*>*/ | 
 | #define REVERSE_RULE_OP ((UChar)0x003C) /*<*/ | 
 | #define FWDREV_RULE_OP  ((UChar)0x007E) /*~*/ // internal rep of <> op | 
 |  | 
 | // Other special characters | 
 | #define QUOTE             ((UChar)0x0027) /*'*/ | 
 | #define ESCAPE            ((UChar)0x005C) /*\*/ | 
 | #define END_OF_RULE       ((UChar)0x003B) /*;*/ | 
 | #define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/ | 
 |  | 
 | #define SEGMENT_OPEN       ((UChar)0x0028) /*(*/ | 
 | #define SEGMENT_CLOSE      ((UChar)0x0029) /*)*/ | 
 | #define CONTEXT_ANTE       ((UChar)0x007B) /*{*/ | 
 | #define CONTEXT_POST       ((UChar)0x007D) /*}*/ | 
 | #define CURSOR_POS         ((UChar)0x007C) /*|*/ | 
 | #define CURSOR_OFFSET      ((UChar)0x0040) /*@*/ | 
 | #define ANCHOR_START       ((UChar)0x005E) /*^*/ | 
 | #define KLEENE_STAR        ((UChar)0x002A) /***/ | 
 | #define ONE_OR_MORE        ((UChar)0x002B) /*+*/ | 
 | #define ZERO_OR_ONE        ((UChar)0x003F) /*?*/ | 
 |  | 
 | #define DOT                ((UChar)46)     /*.*/ | 
 |  | 
 | static const UChar DOT_SET[] = { // "[^[:Zp:][:Zl:]\r\n$]"; | 
 |     91, 94, 91, 58, 90, 112, 58, 93, 91, 58, 90, | 
 |     108, 58, 93, 92, 114, 92, 110, 36, 93, 0 | 
 | }; | 
 |  | 
 | // A function is denoted &Source-Target/Variant(text) | 
 | #define FUNCTION           ((UChar)38)     /*&*/ | 
 |  | 
 | // Aliases for some of the syntax characters. These are provided so | 
 | // transliteration rules can be expressed in XML without clashing with | 
 | // XML syntax characters '<', '>', and '&'. | 
 | #define ALT_REVERSE_RULE_OP ((UChar)0x2190) // Left Arrow | 
 | #define ALT_FORWARD_RULE_OP ((UChar)0x2192) // Right Arrow | 
 | #define ALT_FWDREV_RULE_OP  ((UChar)0x2194) // Left Right Arrow | 
 | #define ALT_FUNCTION        ((UChar)0x2206) // Increment (~Greek Capital Delta) | 
 |  | 
 | // Special characters disallowed at the top level | 
 | static const UChar ILLEGAL_TOP[] = {41,0}; // ")" | 
 |  | 
 | // Special characters disallowed within a segment | 
 | static const UChar ILLEGAL_SEG[] = {123,125,124,64,0}; // "{}|@" | 
 |  | 
 | // Special characters disallowed within a function argument | 
 | static const UChar ILLEGAL_FUNC[] = {94,40,46,42,43,63,123,125,124,64,0}; // "^(.*+?{}|@" | 
 |  | 
 | // By definition, the ANCHOR_END special character is a | 
 | // trailing SymbolTable.SYMBOL_REF character. | 
 | // private static final char ANCHOR_END       = '$'; | 
 |  | 
 | static const UChar gOPERATORS[] = { // "=><" | 
 |     VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, | 
 |     ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, | 
 |     0 | 
 | }; | 
 |  | 
 | static const UChar HALF_ENDERS[] = { // "=><;" | 
 |     VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, | 
 |     ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, | 
 |     END_OF_RULE, | 
 |     0 | 
 | }; | 
 |  | 
 | // These are also used in Transliterator::toRules() | 
 | static const int32_t ID_TOKEN_LEN = 2; | 
 | static const UChar   ID_TOKEN[]   = { 0x3A, 0x3A }; // ':', ':' | 
 |  | 
 | /* | 
 | commented out until we do real ::BEGIN/::END functionality | 
 | static const int32_t BEGIN_TOKEN_LEN = 5; | 
 | static const UChar BEGIN_TOKEN[] = { 0x42, 0x45, 0x47, 0x49, 0x4e }; // 'BEGIN' | 
 |  | 
 | static const int32_t END_TOKEN_LEN = 3; | 
 | static const UChar END_TOKEN[] = { 0x45, 0x4e, 0x44 }; // 'END' | 
 | */ | 
 |  | 
 | U_NAMESPACE_BEGIN | 
 |  | 
 | //---------------------------------------------------------------------- | 
 | // BEGIN ParseData | 
 | //---------------------------------------------------------------------- | 
 |  | 
 | /** | 
 |  * This class implements the SymbolTable interface.  It is used | 
 |  * during parsing to give UnicodeSet access to variables that | 
 |  * have been defined so far.  Note that it uses variablesVector, | 
 |  * _not_ data.setVariables. | 
 |  */ | 
 | class ParseData : public UMemory, public SymbolTable { | 
 | public: | 
 |     const TransliterationRuleData* data; // alias | 
 |  | 
 |     const UVector* variablesVector; // alias | 
 |  | 
 |     const Hashtable* variableNames; // alias | 
 |  | 
 |     ParseData(const TransliterationRuleData* data = 0, | 
 |               const UVector* variablesVector = 0, | 
 |               const Hashtable* variableNames = 0); | 
 |  | 
 |     virtual ~ParseData(); | 
 |  | 
 |     virtual const UnicodeString* lookup(const UnicodeString& s) const; | 
 |  | 
 |     virtual const UnicodeFunctor* lookupMatcher(UChar32 ch) const; | 
 |  | 
 |     virtual UnicodeString parseReference(const UnicodeString& text, | 
 |                                          ParsePosition& pos, int32_t limit) const; | 
 |     /** | 
 |      * Return true if the given character is a matcher standin or a plain | 
 |      * character (non standin). | 
 |      */ | 
 |     UBool isMatcher(UChar32 ch); | 
 |  | 
 |     /** | 
 |      * Return true if the given character is a replacer standin or a plain | 
 |      * character (non standin). | 
 |      */ | 
 |     UBool isReplacer(UChar32 ch); | 
 |  | 
 | private: | 
 |     ParseData(const ParseData &other); // forbid copying of this class | 
 |     ParseData &operator=(const ParseData &other); // forbid copying of this class | 
 | }; | 
 |  | 
 | ParseData::ParseData(const TransliterationRuleData* d, | 
 |                      const UVector* sets, | 
 |                      const Hashtable* vNames) : | 
 |     data(d), variablesVector(sets), variableNames(vNames) {} | 
 |  | 
 | ParseData::~ParseData() {} | 
 |  | 
 | /** | 
 |  * Implement SymbolTable API. | 
 |  */ | 
 | const UnicodeString* ParseData::lookup(const UnicodeString& name) const { | 
 |     return (const UnicodeString*) variableNames->get(name); | 
 | } | 
 |  | 
 | /** | 
 |  * Implement SymbolTable API. | 
 |  */ | 
 | const UnicodeFunctor* ParseData::lookupMatcher(UChar32 ch) const { | 
 |     // Note that we cannot use data.lookupSet() because the | 
 |     // set array has not been constructed yet. | 
 |     const UnicodeFunctor* set = NULL; | 
 |     int32_t i = ch - data->variablesBase; | 
 |     if (i >= 0 && i < variablesVector->size()) { | 
 |         int32_t j = ch - data->variablesBase; | 
 |         set = (j < variablesVector->size()) ? | 
 |             (UnicodeFunctor*) variablesVector->elementAt(j) : 0; | 
 |     } | 
 |     return set; | 
 | } | 
 |  | 
 | /** | 
 |  * Implement SymbolTable API.  Parse out a symbol reference | 
 |  * name. | 
 |  */ | 
 | UnicodeString ParseData::parseReference(const UnicodeString& text, | 
 |                                         ParsePosition& pos, int32_t limit) const { | 
 |     int32_t start = pos.getIndex(); | 
 |     int32_t i = start; | 
 |     UnicodeString result; | 
 |     while (i < limit) { | 
 |         UChar c = text.charAt(i); | 
 |         if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) { | 
 |             break; | 
 |         } | 
 |         ++i; | 
 |     } | 
 |     if (i == start) { // No valid name chars | 
 |         return result; // Indicate failure with empty string | 
 |     } | 
 |     pos.setIndex(i); | 
 |     text.extractBetween(start, i, result); | 
 |     return result; | 
 | } | 
 |  | 
 | UBool ParseData::isMatcher(UChar32 ch) { | 
 |     // Note that we cannot use data.lookup() because the | 
 |     // set array has not been constructed yet. | 
 |     int32_t i = ch - data->variablesBase; | 
 |     if (i >= 0 && i < variablesVector->size()) { | 
 |         UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); | 
 |         return f != NULL && f->toMatcher() != NULL; | 
 |     } | 
 |     return TRUE; | 
 | } | 
 |  | 
 | /** | 
 |  * Return true if the given character is a replacer standin or a plain | 
 |  * character (non standin). | 
 |  */ | 
 | UBool ParseData::isReplacer(UChar32 ch) { | 
 |     // Note that we cannot use data.lookup() because the | 
 |     // set array has not been constructed yet. | 
 |     int i = ch - data->variablesBase; | 
 |     if (i >= 0 && i < variablesVector->size()) { | 
 |         UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); | 
 |         return f != NULL && f->toReplacer() != NULL; | 
 |     } | 
 |     return TRUE; | 
 | } | 
 |  | 
 | //---------------------------------------------------------------------- | 
 | // BEGIN RuleHalf | 
 | //---------------------------------------------------------------------- | 
 |  | 
 | /** | 
 |  * A class representing one side of a rule.  This class knows how to | 
 |  * parse half of a rule.  It is tightly coupled to the method | 
 |  * RuleBasedTransliterator.Parser.parseRule(). | 
 |  */ | 
 | class RuleHalf : public UMemory { | 
 |  | 
 | public: | 
 |  | 
 |     UnicodeString text; | 
 |  | 
 |     int32_t cursor; // position of cursor in text | 
 |     int32_t ante;   // position of ante context marker '{' in text | 
 |     int32_t post;   // position of post context marker '}' in text | 
 |  | 
 |     // Record the offset to the cursor either to the left or to the | 
 |     // right of the key.  This is indicated by characters on the output | 
 |     // side that allow the cursor to be positioned arbitrarily within | 
 |     // the matching text.  For example, abc{def} > | @@@ xyz; changes | 
 |     // def to xyz and moves the cursor to before abc.  Offset characters | 
 |     // must be at the start or end, and they cannot move the cursor past | 
 |     // the ante- or postcontext text.  Placeholders are only valid in | 
 |     // output text.  The length of the ante and post context is | 
 |     // determined at runtime, because of supplementals and quantifiers. | 
 |     int32_t cursorOffset; // only nonzero on output side | 
 |  | 
 |     // Position of first CURSOR_OFFSET on _right_.  This will be -1 | 
 |     // for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc. | 
 |     int32_t cursorOffsetPos; | 
 |  | 
 |     UBool anchorStart; | 
 |     UBool anchorEnd; | 
 |  | 
 |     /** | 
 |      * The segment number from 1..n of the next '(' we see | 
 |      * during parsing; 1-based. | 
 |      */ | 
 |     int32_t nextSegmentNumber; | 
 |  | 
 |     TransliteratorParser& parser; | 
 |  | 
 |     //-------------------------------------------------- | 
 |     // Methods | 
 |  | 
 |     RuleHalf(TransliteratorParser& parser); | 
 |     ~RuleHalf(); | 
 |  | 
 |     int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status); | 
 |  | 
 |     int32_t parseSection(const UnicodeString& rule, int32_t pos, int32_t limit, | 
 |                          UnicodeString& buf, | 
 |                          const UnicodeString& illegal, | 
 |                          UBool isSegment, | 
 |                          UErrorCode& status); | 
 |  | 
 |     /** | 
 |      * Remove context. | 
 |      */ | 
 |     void removeContext(); | 
 |  | 
 |     /** | 
 |      * Return true if this half looks like valid output, that is, does not | 
 |      * contain quantifiers or other special input-only elements. | 
 |      */ | 
 |     UBool isValidOutput(TransliteratorParser& parser); | 
 |  | 
 |     /** | 
 |      * Return true if this half looks like valid input, that is, does not | 
 |      * contain functions or other special output-only elements. | 
 |      */ | 
 |     UBool isValidInput(TransliteratorParser& parser); | 
 |  | 
 |     int syntaxError(UErrorCode code, | 
 |                     const UnicodeString& rule, | 
 |                     int32_t start, | 
 |                     UErrorCode& status) { | 
 |         return parser.syntaxError(code, rule, start, status); | 
 |     } | 
 |  | 
 | private: | 
 |     // Disallowed methods; no impl. | 
 |     RuleHalf(const RuleHalf&); | 
 |     RuleHalf& operator=(const RuleHalf&); | 
 | }; | 
 |  | 
 | RuleHalf::RuleHalf(TransliteratorParser& p) : | 
 |     parser(p) | 
 | { | 
 |     cursor = -1; | 
 |     ante = -1; | 
 |     post = -1; | 
 |     cursorOffset = 0; | 
 |     cursorOffsetPos = 0; | 
 |     anchorStart = anchorEnd = FALSE; | 
 |     nextSegmentNumber = 1; | 
 | } | 
 |  | 
 | RuleHalf::~RuleHalf() { | 
 | } | 
 |  | 
 | /** | 
 |  * Parse one side of a rule, stopping at either the limit, | 
 |  * the END_OF_RULE character, or an operator. | 
 |  * @return the index after the terminating character, or | 
 |  * if limit was reached, limit | 
 |  */ | 
 | int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { | 
 |     int32_t start = pos; | 
 |     text.truncate(0); | 
 |     pos = parseSection(rule, pos, limit, text, UnicodeString(TRUE, ILLEGAL_TOP, -1), FALSE, status); | 
 |  | 
 |     if (cursorOffset > 0 && cursor != cursorOffsetPos) { | 
 |         return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); | 
 |     } | 
 |      | 
 |     return pos; | 
 | } | 
 |   | 
 | /** | 
 |  * Parse a section of one side of a rule, stopping at either | 
 |  * the limit, the END_OF_RULE character, an operator, or a | 
 |  * segment close character.  This method parses both a | 
 |  * top-level rule half and a segment within such a rule half. | 
 |  * It calls itself recursively to parse segments and nested | 
 |  * segments. | 
 |  * @param buf buffer into which to accumulate the rule pattern | 
 |  * characters, either literal characters from the rule or | 
 |  * standins for UnicodeMatcher objects including segments. | 
 |  * @param illegal the set of special characters that is illegal during | 
 |  * this parse. | 
 |  * @param isSegment if true, then we've already seen a '(' and | 
 |  * pos on entry points right after it.  Accumulate everything | 
 |  * up to the closing ')', put it in a segment matcher object, | 
 |  * generate a standin for it, and add the standin to buf.  As | 
 |  * a side effect, update the segments vector with a reference | 
 |  * to the segment matcher.  This works recursively for nested | 
 |  * segments.  If isSegment is false, just accumulate | 
 |  * characters into buf. | 
 |  * @return the index after the terminating character, or | 
 |  * if limit was reached, limit | 
 |  */ | 
 | int32_t RuleHalf::parseSection(const UnicodeString& rule, int32_t pos, int32_t limit, | 
 |                                UnicodeString& buf, | 
 |                                const UnicodeString& illegal, | 
 |                                UBool isSegment, UErrorCode& status) { | 
 |     int32_t start = pos; | 
 |     ParsePosition pp; | 
 |     UnicodeString scratch; | 
 |     UBool done = FALSE; | 
 |     int32_t quoteStart = -1; // Most recent 'single quoted string' | 
 |     int32_t quoteLimit = -1; | 
 |     int32_t varStart = -1; // Most recent $variableReference | 
 |     int32_t varLimit = -1; | 
 |     int32_t bufStart = buf.length(); | 
 |      | 
 |     while (pos < limit && !done) { | 
 |         // Since all syntax characters are in the BMP, fetching | 
 |         // 16-bit code units suffices here. | 
 |         UChar c = rule.charAt(pos++); | 
 |         if (PatternProps::isWhiteSpace(c)) { | 
 |             // Ignore whitespace.  Note that this is not Unicode | 
 |             // spaces, but Java spaces -- a subset, representing | 
 |             // whitespace likely to be seen in code. | 
 |             continue; | 
 |         } | 
 |         if (u_strchr(HALF_ENDERS, c) != NULL) { | 
 |             if (isSegment) { | 
 |                 // Unclosed segment | 
 |                 return syntaxError(U_UNCLOSED_SEGMENT, rule, start, status); | 
 |             } | 
 |             break; | 
 |         } | 
 |         if (anchorEnd) { | 
 |             // Text after a presumed end anchor is a syntax err | 
 |             return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start, status); | 
 |         } | 
 |         if (UnicodeSet::resemblesPattern(rule, pos-1)) { | 
 |             pp.setIndex(pos-1); // Backup to opening '[' | 
 |             buf.append(parser.parseSet(rule, pp, status)); | 
 |             if (U_FAILURE(status)) { | 
 |                 return syntaxError(U_MALFORMED_SET, rule, start, status); | 
 |             } | 
 |             pos = pp.getIndex();                     | 
 |             continue; | 
 |         } | 
 |         // Handle escapes | 
 |         if (c == ESCAPE) { | 
 |             if (pos == limit) { | 
 |                 return syntaxError(U_TRAILING_BACKSLASH, rule, start, status); | 
 |             } | 
 |             UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\' | 
 |             if (escaped == (UChar32) -1) { | 
 |                 return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start, status); | 
 |             } | 
 |             if (!parser.checkVariableRange(escaped)) { | 
 |                 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); | 
 |             } | 
 |             buf.append(escaped); | 
 |             continue; | 
 |         } | 
 |         // Handle quoted matter | 
 |         if (c == QUOTE) { | 
 |             int32_t iq = rule.indexOf(QUOTE, pos); | 
 |             if (iq == pos) { | 
 |                 buf.append(c); // Parse [''] outside quotes as ['] | 
 |                 ++pos; | 
 |             } else { | 
 |                 /* This loop picks up a run of quoted text of the | 
 |                  * form 'aaaa' each time through.  If this run | 
 |                  * hasn't really ended ('aaaa''bbbb') then it keeps | 
 |                  * looping, each time adding on a new run.  When it | 
 |                  * reaches the final quote it breaks. | 
 |                  */ | 
 |                 quoteStart = buf.length(); | 
 |                 for (;;) { | 
 |                     if (iq < 0) { | 
 |                         return syntaxError(U_UNTERMINATED_QUOTE, rule, start, status); | 
 |                     } | 
 |                     scratch.truncate(0); | 
 |                     rule.extractBetween(pos, iq, scratch); | 
 |                     buf.append(scratch); | 
 |                     pos = iq+1; | 
 |                     if (pos < limit && rule.charAt(pos) == QUOTE) { | 
 |                         // Parse [''] inside quotes as ['] | 
 |                         iq = rule.indexOf(QUOTE, pos+1); | 
 |                         // Continue looping | 
 |                     } else { | 
 |                         break; | 
 |                     } | 
 |                 } | 
 |                 quoteLimit = buf.length(); | 
 |  | 
 |                 for (iq=quoteStart; iq<quoteLimit; ++iq) { | 
 |                     if (!parser.checkVariableRange(buf.charAt(iq))) { | 
 |                         return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); | 
 |                     } | 
 |                 } | 
 |             } | 
 |             continue; | 
 |         } | 
 |  | 
 |         if (!parser.checkVariableRange(c)) { | 
 |             return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); | 
 |         } | 
 |  | 
 |         if (illegal.indexOf(c) >= 0) { | 
 |             syntaxError(U_ILLEGAL_CHARACTER, rule, start, status); | 
 |         } | 
 |  | 
 |         switch (c) { | 
 |                      | 
 |         //------------------------------------------------------ | 
 |         // Elements allowed within and out of segments | 
 |         //------------------------------------------------------ | 
 |         case ANCHOR_START: | 
 |             if (buf.length() == 0 && !anchorStart) { | 
 |                 anchorStart = TRUE; | 
 |             } else { | 
 |               return syntaxError(U_MISPLACED_ANCHOR_START, | 
 |                                  rule, start, status); | 
 |             } | 
 |           break; | 
 |         case SEGMENT_OPEN: | 
 |             { | 
 |                 // bufSegStart is the offset in buf to the first | 
 |                 // character of the segment we are parsing. | 
 |                 int32_t bufSegStart = buf.length(); | 
 |                  | 
 |                 // Record segment number now, since nextSegmentNumber | 
 |                 // will be incremented during the call to parseSection | 
 |                 // if there are nested segments. | 
 |                 int32_t segmentNumber = nextSegmentNumber++; // 1-based | 
 |                  | 
 |                 // Parse the segment | 
 |                 pos = parseSection(rule, pos, limit, buf, UnicodeString(TRUE, ILLEGAL_SEG, -1), TRUE, status); | 
 |                  | 
 |                 // After parsing a segment, the relevant characters are | 
 |                 // in buf, starting at offset bufSegStart.  Extract them | 
 |                 // into a string matcher, and replace them with a | 
 |                 // standin for that matcher. | 
 |                 StringMatcher* m = | 
 |                     new StringMatcher(buf, bufSegStart, buf.length(), | 
 |                                       segmentNumber, *parser.curData); | 
 |                 if (m == NULL) { | 
 |                     return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); | 
 |                 } | 
 |                  | 
 |                 // Record and associate object and segment number | 
 |                 parser.setSegmentObject(segmentNumber, m, status); | 
 |                 buf.truncate(bufSegStart); | 
 |                 buf.append(parser.getSegmentStandin(segmentNumber, status)); | 
 |             } | 
 |             break; | 
 |         case FUNCTION: | 
 |         case ALT_FUNCTION: | 
 |             { | 
 |                 int32_t iref = pos; | 
 |                 TransliteratorIDParser::SingleID* single = | 
 |                     TransliteratorIDParser::parseFilterID(rule, iref); | 
 |                 // The next character MUST be a segment open | 
 |                 if (single == NULL || | 
 |                     !ICU_Utility::parseChar(rule, iref, SEGMENT_OPEN)) { | 
 |                     return syntaxError(U_INVALID_FUNCTION, rule, start, status); | 
 |                 } | 
 |                  | 
 |                 Transliterator *t = single->createInstance(); | 
 |                 delete single; | 
 |                 if (t == NULL) { | 
 |                     return syntaxError(U_INVALID_FUNCTION, rule, start, status); | 
 |                 } | 
 |                  | 
 |                 // bufSegStart is the offset in buf to the first | 
 |                 // character of the segment we are parsing. | 
 |                 int32_t bufSegStart = buf.length(); | 
 |                  | 
 |                 // Parse the segment | 
 |                 pos = parseSection(rule, iref, limit, buf, UnicodeString(TRUE, ILLEGAL_FUNC, -1), TRUE, status); | 
 |                  | 
 |                 // After parsing a segment, the relevant characters are | 
 |                 // in buf, starting at offset bufSegStart. | 
 |                 UnicodeString output; | 
 |                 buf.extractBetween(bufSegStart, buf.length(), output); | 
 |                 FunctionReplacer *r = | 
 |                     new FunctionReplacer(t, new StringReplacer(output, parser.curData)); | 
 |                 if (r == NULL) { | 
 |                     return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); | 
 |                 } | 
 |                  | 
 |                 // Replace the buffer contents with a stand-in | 
 |                 buf.truncate(bufSegStart); | 
 |                 buf.append(parser.generateStandInFor(r, status)); | 
 |             } | 
 |             break; | 
 |         case SymbolTable::SYMBOL_REF: | 
 |             // Handle variable references and segment references "$1" .. "$9" | 
 |             { | 
 |                 // A variable reference must be followed immediately | 
 |                 // by a Unicode identifier start and zero or more | 
 |                 // Unicode identifier part characters, or by a digit | 
 |                 // 1..9 if it is a segment reference. | 
 |                 if (pos == limit) { | 
 |                     // A variable ref character at the end acts as | 
 |                     // an anchor to the context limit, as in perl. | 
 |                     anchorEnd = TRUE; | 
 |                     break; | 
 |                 } | 
 |                 // Parse "$1" "$2" .. "$9" .. (no upper limit) | 
 |                 c = rule.charAt(pos); | 
 |                 int32_t r = u_digit(c, 10); | 
 |                 if (r >= 1 && r <= 9) { | 
 |                     r = ICU_Utility::parseNumber(rule, pos, 10); | 
 |                     if (r < 0) { | 
 |                         return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, | 
 |                                            rule, start, status); | 
 |                     } | 
 |                     buf.append(parser.getSegmentStandin(r, status)); | 
 |                 } else { | 
 |                     pp.setIndex(pos); | 
 |                     UnicodeString name = parser.parseData-> | 
 |                                     parseReference(rule, pp, limit); | 
 |                     if (name.length() == 0) { | 
 |                         // This means the '$' was not followed by a | 
 |                         // valid name.  Try to interpret it as an | 
 |                         // end anchor then.  If this also doesn't work | 
 |                         // (if we see a following character) then signal | 
 |                         // an error. | 
 |                         anchorEnd = TRUE; | 
 |                         break; | 
 |                     } | 
 |                     pos = pp.getIndex(); | 
 |                     // If this is a variable definition statement, | 
 |                     // then the LHS variable will be undefined.  In | 
 |                     // that case appendVariableDef() will append the | 
 |                     // special placeholder char variableLimit-1. | 
 |                     varStart = buf.length(); | 
 |                     parser.appendVariableDef(name, buf, status); | 
 |                     varLimit = buf.length(); | 
 |                 } | 
 |             } | 
 |             break; | 
 |         case DOT: | 
 |             buf.append(parser.getDotStandIn(status)); | 
 |             break; | 
 |         case KLEENE_STAR: | 
 |         case ONE_OR_MORE: | 
 |         case ZERO_OR_ONE: | 
 |             // Quantifiers.  We handle single characters, quoted strings, | 
 |             // variable references, and segments. | 
 |             //  a+      matches  aaa | 
 |             //  'foo'+  matches  foofoofoo | 
 |             //  $v+     matches  xyxyxy if $v == xy | 
 |             //  (seg)+  matches  segsegseg | 
 |             { | 
 |                 if (isSegment && buf.length() == bufStart) { | 
 |                     // The */+ immediately follows '(' | 
 |                     return syntaxError(U_MISPLACED_QUANTIFIER, rule, start, status); | 
 |                 } | 
 |  | 
 |                 int32_t qstart, qlimit; | 
 |                 // The */+ follows an isolated character or quote | 
 |                 // or variable reference | 
 |                 if (buf.length() == quoteLimit) { | 
 |                     // The */+ follows a 'quoted string' | 
 |                     qstart = quoteStart; | 
 |                     qlimit = quoteLimit; | 
 |                 } else if (buf.length() == varLimit) { | 
 |                     // The */+ follows a $variableReference | 
 |                     qstart = varStart; | 
 |                     qlimit = varLimit; | 
 |                 } else { | 
 |                     // The */+ follows a single character, possibly | 
 |                     // a segment standin | 
 |                     qstart = buf.length() - 1; | 
 |                     qlimit = qstart + 1; | 
 |                 } | 
 |  | 
 |                 UnicodeFunctor *m = | 
 |                     new StringMatcher(buf, qstart, qlimit, 0, *parser.curData); | 
 |                 if (m == NULL) { | 
 |                     return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); | 
 |                 } | 
 |                 int32_t min = 0; | 
 |                 int32_t max = Quantifier::MAX; | 
 |                 switch (c) { | 
 |                 case ONE_OR_MORE: | 
 |                     min = 1; | 
 |                     break; | 
 |                 case ZERO_OR_ONE: | 
 |                     min = 0; | 
 |                     max = 1; | 
 |                     break; | 
 |                 // case KLEENE_STAR: | 
 |                 //    do nothing -- min, max already set | 
 |                 } | 
 |                 m = new Quantifier(m, min, max); | 
 |                 if (m == NULL) { | 
 |                     return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); | 
 |                 } | 
 |                 buf.truncate(qstart); | 
 |                 buf.append(parser.generateStandInFor(m, status)); | 
 |             } | 
 |             break; | 
 |  | 
 |         //------------------------------------------------------ | 
 |         // Elements allowed ONLY WITHIN segments | 
 |         //------------------------------------------------------ | 
 |         case SEGMENT_CLOSE: | 
 |             // assert(isSegment); | 
 |             // We're done parsing a segment. | 
 |             done = TRUE; | 
 |             break; | 
 |  | 
 |         //------------------------------------------------------ | 
 |         // Elements allowed ONLY OUTSIDE segments | 
 |         //------------------------------------------------------ | 
 |         case CONTEXT_ANTE: | 
 |             if (ante >= 0) { | 
 |                 return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start, status); | 
 |             } | 
 |             ante = buf.length(); | 
 |             break; | 
 |         case CONTEXT_POST: | 
 |             if (post >= 0) { | 
 |                 return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start, status); | 
 |             } | 
 |             post = buf.length(); | 
 |             break; | 
 |         case CURSOR_POS: | 
 |             if (cursor >= 0) { | 
 |                 return syntaxError(U_MULTIPLE_CURSORS, rule, start, status); | 
 |             } | 
 |             cursor = buf.length(); | 
 |             break; | 
 |         case CURSOR_OFFSET: | 
 |             if (cursorOffset < 0) { | 
 |                 if (buf.length() > 0) { | 
 |                     return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); | 
 |                 } | 
 |                 --cursorOffset; | 
 |             } else if (cursorOffset > 0) { | 
 |                 if (buf.length() != cursorOffsetPos || cursor >= 0) { | 
 |                     return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); | 
 |                 } | 
 |                 ++cursorOffset; | 
 |             } else { | 
 |                 if (cursor == 0 && buf.length() == 0) { | 
 |                     cursorOffset = -1; | 
 |                 } else if (cursor < 0) { | 
 |                     cursorOffsetPos = buf.length(); | 
 |                     cursorOffset = 1; | 
 |                 } else { | 
 |                     return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); | 
 |                 } | 
 |             } | 
 |             break; | 
 |  | 
 |  | 
 |         //------------------------------------------------------ | 
 |         // Non-special characters | 
 |         //------------------------------------------------------ | 
 |         default: | 
 |             // Disallow unquoted characters other than [0-9A-Za-z] | 
 |             // in the printable ASCII range.  These characters are | 
 |             // reserved for possible future use. | 
 |             if (c >= 0x0021 && c <= 0x007E && | 
 |                 !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) || | 
 |                   (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) || | 
 |                   (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) { | 
 |                 return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status); | 
 |             } | 
 |             buf.append(c); | 
 |             break; | 
 |         } | 
 |     } | 
 |  | 
 |     return pos; | 
 | } | 
 |  | 
 | /** | 
 |  * Remove context. | 
 |  */ | 
 | void RuleHalf::removeContext() { | 
 |     //text = text.substring(ante < 0 ? 0 : ante, | 
 |     //                      post < 0 ? text.length() : post); | 
 |     if (post >= 0) { | 
 |         text.remove(post); | 
 |     } | 
 |     if (ante >= 0) { | 
 |         text.removeBetween(0, ante); | 
 |     } | 
 |     ante = post = -1; | 
 |     anchorStart = anchorEnd = FALSE; | 
 | } | 
 |  | 
 | /** | 
 |  * Return true if this half looks like valid output, that is, does not | 
 |  * contain quantifiers or other special input-only elements. | 
 |  */ | 
 | UBool RuleHalf::isValidOutput(TransliteratorParser& transParser) { | 
 |     for (int32_t i=0; i<text.length(); ) { | 
 |         UChar32 c = text.char32At(i); | 
 |         i += U16_LENGTH(c); | 
 |         if (!transParser.parseData->isReplacer(c)) { | 
 |             return FALSE; | 
 |         } | 
 |     } | 
 |     return TRUE; | 
 | } | 
 |  | 
 | /** | 
 |  * Return true if this half looks like valid input, that is, does not | 
 |  * contain functions or other special output-only elements. | 
 |  */ | 
 | UBool RuleHalf::isValidInput(TransliteratorParser& transParser) { | 
 |     for (int32_t i=0; i<text.length(); ) { | 
 |         UChar32 c = text.char32At(i); | 
 |         i += U16_LENGTH(c); | 
 |         if (!transParser.parseData->isMatcher(c)) { | 
 |             return FALSE; | 
 |         } | 
 |     } | 
 |     return TRUE; | 
 | } | 
 |  | 
 | //---------------------------------------------------------------------- | 
 | // PUBLIC API | 
 | //---------------------------------------------------------------------- | 
 |  | 
 | /** | 
 |  * Constructor. | 
 |  */ | 
 | TransliteratorParser::TransliteratorParser(UErrorCode &statusReturn) : | 
 | dataVector(statusReturn), | 
 | idBlockVector(statusReturn), | 
 | variablesVector(statusReturn), | 
 | segmentObjects(statusReturn) | 
 | { | 
 |     idBlockVector.setDeleter(uprv_deleteUObject); | 
 |     curData = NULL; | 
 |     compoundFilter = NULL; | 
 |     parseData = NULL; | 
 |     variableNames.setValueDeleter(uprv_deleteUObject); | 
 | } | 
 |  | 
 | /** | 
 |  * Destructor. | 
 |  */ | 
 | TransliteratorParser::~TransliteratorParser() { | 
 |     while (!dataVector.isEmpty()) | 
 |         delete (TransliterationRuleData*)(dataVector.orphanElementAt(0)); | 
 |     delete compoundFilter; | 
 |     delete parseData; | 
 |     while (!variablesVector.isEmpty()) | 
 |         delete (UnicodeFunctor*)variablesVector.orphanElementAt(0); | 
 | } | 
 |  | 
 | void | 
 | TransliteratorParser::parse(const UnicodeString& rules, | 
 |                             UTransDirection transDirection, | 
 |                             UParseError& pe, | 
 |                             UErrorCode& ec) { | 
 |     if (U_SUCCESS(ec)) { | 
 |         parseRules(rules, transDirection, ec); | 
 |         pe = parseError; | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 |  * Return the compound filter parsed by parse().  Caller owns result. | 
 |  */  | 
 | UnicodeSet* TransliteratorParser::orphanCompoundFilter() { | 
 |     UnicodeSet* f = compoundFilter; | 
 |     compoundFilter = NULL; | 
 |     return f; | 
 | } | 
 |  | 
 | //---------------------------------------------------------------------- | 
 | // Private implementation | 
 | //---------------------------------------------------------------------- | 
 |  | 
 | /** | 
 |  * Parse the given string as a sequence of rules, separated by newline | 
 |  * characters ('\n'), and cause this object to implement those rules.  Any | 
 |  * previous rules are discarded.  Typically this method is called exactly | 
 |  * once, during construction. | 
 |  * @exception IllegalArgumentException if there is a syntax error in the | 
 |  * rules | 
 |  */ | 
 | void TransliteratorParser::parseRules(const UnicodeString& rule, | 
 |                                       UTransDirection theDirection, | 
 |                                       UErrorCode& status) | 
 | { | 
 |     // Clear error struct | 
 |     uprv_memset(&parseError, 0, sizeof(parseError)); | 
 |     parseError.line = parseError.offset = -1; | 
 |  | 
 |     UBool parsingIDs = TRUE; | 
 |     int32_t ruleCount = 0; | 
 |      | 
 |     while (!dataVector.isEmpty()) { | 
 |         delete (TransliterationRuleData*)(dataVector.orphanElementAt(0)); | 
 |     } | 
 |     if (U_FAILURE(status)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     idBlockVector.removeAllElements(); | 
 |     curData = NULL; | 
 |     direction = theDirection; | 
 |     ruleCount = 0; | 
 |  | 
 |     delete compoundFilter; | 
 |     compoundFilter = NULL; | 
 |  | 
 |     while (!variablesVector.isEmpty()) { | 
 |         delete (UnicodeFunctor*)variablesVector.orphanElementAt(0); | 
 |     } | 
 |     variableNames.removeAll(); | 
 |     parseData = new ParseData(0, &variablesVector, &variableNames); | 
 |     if (parseData == NULL) { | 
 |         status = U_MEMORY_ALLOCATION_ERROR; | 
 |         return; | 
 |     } | 
 |  | 
 |     dotStandIn = (UChar) -1; | 
 |  | 
 |     UnicodeString *tempstr = NULL; // used for memory allocation error checking | 
 |     UnicodeString str; // scratch | 
 |     UnicodeString idBlockResult; | 
 |     int32_t pos = 0; | 
 |     int32_t limit = rule.length(); | 
 |  | 
 |     // The compound filter offset is an index into idBlockResult. | 
 |     // If it is 0, then the compound filter occurred at the start, | 
 |     // and it is the offset to the _start_ of the compound filter | 
 |     // pattern.  Otherwise it is the offset to the _limit_ of the | 
 |     // compound filter pattern within idBlockResult. | 
 |     compoundFilter = NULL; | 
 |     int32_t compoundFilterOffset = -1; | 
 |  | 
 |     while (pos < limit && U_SUCCESS(status)) { | 
 |         UChar c = rule.charAt(pos++); | 
 |         if (PatternProps::isWhiteSpace(c)) { | 
 |             // Ignore leading whitespace. | 
 |             continue; | 
 |         } | 
 |         // Skip lines starting with the comment character | 
 |         if (c == RULE_COMMENT_CHAR) { | 
 |             pos = rule.indexOf((UChar)0x000A /*\n*/, pos) + 1; | 
 |             if (pos == 0) { | 
 |                 break; // No "\n" found; rest of rule is a commnet | 
 |             } | 
 |             continue; // Either fall out or restart with next line | 
 |         } | 
 |  | 
 |         // skip empty rules | 
 |         if (c == END_OF_RULE) | 
 |             continue; | 
 |  | 
 |         // keep track of how many rules we've seen | 
 |         ++ruleCount; | 
 |          | 
 |         // We've found the start of a rule or ID.  c is its first | 
 |         // character, and pos points past c. | 
 |         --pos; | 
 |         // Look for an ID token.  Must have at least ID_TOKEN_LEN + 1 | 
 |         // chars left. | 
 |         if ((pos + ID_TOKEN_LEN + 1) <= limit && | 
 |                 rule.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) { | 
 |             pos += ID_TOKEN_LEN; | 
 |             c = rule.charAt(pos); | 
 |             while (PatternProps::isWhiteSpace(c) && pos < limit) { | 
 |                 ++pos; | 
 |                 c = rule.charAt(pos); | 
 |             } | 
 |  | 
 |             int32_t p = pos; | 
 |              | 
 |             if (!parsingIDs) { | 
 |                 if (curData != NULL) { | 
 |                     if (direction == UTRANS_FORWARD) | 
 |                         dataVector.addElement(curData, status); | 
 |                     else | 
 |                         dataVector.insertElementAt(curData, 0, status); | 
 |                     curData = NULL; | 
 |                 } | 
 |                 parsingIDs = TRUE; | 
 |             } | 
 |  | 
 |             TransliteratorIDParser::SingleID* id = | 
 |                 TransliteratorIDParser::parseSingleID(rule, p, direction, status); | 
 |             if (p != pos && ICU_Utility::parseChar(rule, p, END_OF_RULE)) { | 
 |                 // Successful ::ID parse. | 
 |  | 
 |                 if (direction == UTRANS_FORWARD) { | 
 |                     idBlockResult.append(id->canonID).append(END_OF_RULE); | 
 |                 } else { | 
 |                     idBlockResult.insert(0, END_OF_RULE); | 
 |                     idBlockResult.insert(0, id->canonID); | 
 |                 } | 
 |  | 
 |             } else { | 
 |                 // Couldn't parse an ID.  Try to parse a global filter | 
 |                 int32_t withParens = -1; | 
 |                 UnicodeSet* f = TransliteratorIDParser::parseGlobalFilter(rule, p, direction, withParens, NULL); | 
 |                 if (f != NULL) { | 
 |                     if (ICU_Utility::parseChar(rule, p, END_OF_RULE) | 
 |                         && (direction == UTRANS_FORWARD) == (withParens == 0)) | 
 |                     { | 
 |                         if (compoundFilter != NULL) { | 
 |                             // Multiple compound filters | 
 |                             syntaxError(U_MULTIPLE_COMPOUND_FILTERS, rule, pos, status); | 
 |                             delete f; | 
 |                         } else { | 
 |                             compoundFilter = f; | 
 |                             compoundFilterOffset = ruleCount; | 
 |                         } | 
 |                     } else { | 
 |                         delete f; | 
 |                     } | 
 |                 } else { | 
 |                     // Invalid ::id | 
 |                     // Can be parsed as neither an ID nor a global filter | 
 |                     syntaxError(U_INVALID_ID, rule, pos, status); | 
 |                 } | 
 |             } | 
 |             delete id; | 
 |             pos = p; | 
 |         } else { | 
 |             if (parsingIDs) { | 
 |                 tempstr = new UnicodeString(idBlockResult); | 
 |                 // NULL pointer check | 
 |                 if (tempstr == NULL) { | 
 |                     status = U_MEMORY_ALLOCATION_ERROR; | 
 |                     return; | 
 |                 } | 
 |                 if (direction == UTRANS_FORWARD) | 
 |                     idBlockVector.addElement(tempstr, status); | 
 |                 else | 
 |                     idBlockVector.insertElementAt(tempstr, 0, status); | 
 |                 idBlockResult.remove(); | 
 |                 parsingIDs = FALSE; | 
 |                 curData = new TransliterationRuleData(status); | 
 |                 // NULL pointer check | 
 |                 if (curData == NULL) { | 
 |                     status = U_MEMORY_ALLOCATION_ERROR; | 
 |                     return; | 
 |                 } | 
 |                 parseData->data = curData; | 
 |  | 
 |                 // By default, rules use part of the private use area | 
 |                 // E000..F8FF for variables and other stand-ins.  Currently | 
 |                 // the range F000..F8FF is typically sufficient.  The 'use | 
 |                 // variable range' pragma allows rule sets to modify this. | 
 |                 setVariableRange(0xF000, 0xF8FF, status); | 
 |             } | 
 |  | 
 |             if (resemblesPragma(rule, pos, limit)) { | 
 |                 int32_t ppp = parsePragma(rule, pos, limit, status); | 
 |                 if (ppp < 0) { | 
 |                     syntaxError(U_MALFORMED_PRAGMA, rule, pos, status); | 
 |                 } | 
 |                 pos = ppp; | 
 |             // Parse a rule | 
 |             } else { | 
 |                 pos = parseRule(rule, pos, limit, status); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     if (parsingIDs && idBlockResult.length() > 0) { | 
 |         tempstr = new UnicodeString(idBlockResult); | 
 |         // NULL pointer check | 
 |         if (tempstr == NULL) { | 
 |             status = U_MEMORY_ALLOCATION_ERROR; | 
 |             return; | 
 |         } | 
 |         if (direction == UTRANS_FORWARD) | 
 |             idBlockVector.addElement(tempstr, status); | 
 |         else | 
 |             idBlockVector.insertElementAt(tempstr, 0, status); | 
 |     } | 
 |     else if (!parsingIDs && curData != NULL) { | 
 |         if (direction == UTRANS_FORWARD) | 
 |             dataVector.addElement(curData, status); | 
 |         else | 
 |             dataVector.insertElementAt(curData, 0, status); | 
 |     } | 
 |      | 
 |     if (U_SUCCESS(status)) { | 
 |         // Convert the set vector to an array | 
 |         int32_t i, dataVectorSize = dataVector.size(); | 
 |         for (i = 0; i < dataVectorSize; i++) { | 
 |             TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i); | 
 |             data->variablesLength = variablesVector.size(); | 
 |             if (data->variablesLength == 0) { | 
 |                 data->variables = 0; | 
 |             } else { | 
 |                 data->variables = (UnicodeFunctor**)uprv_malloc(data->variablesLength * sizeof(UnicodeFunctor*)); | 
 |                 // NULL pointer check | 
 |                 if (data->variables == NULL) { | 
 |                     status = U_MEMORY_ALLOCATION_ERROR; | 
 |                     return; | 
 |                 } | 
 |                 data->variablesAreOwned = (i == 0); | 
 |             } | 
 |  | 
 |             for (int32_t j = 0; j < data->variablesLength; j++) { | 
 |                 data->variables[j] = | 
 |                     static_cast<UnicodeFunctor *>(variablesVector.elementAt(j)); | 
 |             } | 
 |              | 
 |             data->variableNames.removeAll(); | 
 |             int32_t p = UHASH_FIRST; | 
 |             const UHashElement* he = variableNames.nextElement(p); | 
 |             while (he != NULL) { | 
 |                 UnicodeString* tempus = (UnicodeString*)(((UnicodeString*)(he->value.pointer))->clone()); | 
 |                 if (tempus == NULL) { | 
 |                     status = U_MEMORY_ALLOCATION_ERROR; | 
 |                     return; | 
 |                 } | 
 |                 data->variableNames.put(*((UnicodeString*)(he->key.pointer)), | 
 |                     tempus, status); | 
 |                 he = variableNames.nextElement(p); | 
 |             } | 
 |         } | 
 |         variablesVector.removeAllElements();   // keeps them from getting deleted when we succeed | 
 |  | 
 |         // Index the rules | 
 |         if (compoundFilter != NULL) { | 
 |             if ((direction == UTRANS_FORWARD && compoundFilterOffset != 1) || | 
 |                 (direction == UTRANS_REVERSE && compoundFilterOffset != ruleCount)) { | 
 |                 status = U_MISPLACED_COMPOUND_FILTER; | 
 |             } | 
 |         }         | 
 |  | 
 |         for (i = 0; i < dataVectorSize; i++) { | 
 |             TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i); | 
 |             data->ruleSet.freeze(parseError, status); | 
 |         } | 
 |         if (idBlockVector.size() == 1 && ((UnicodeString*)idBlockVector.elementAt(0))->isEmpty()) { | 
 |             idBlockVector.removeElementAt(0); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 |  * Set the variable range to [start, end] (inclusive). | 
 |  */ | 
 | void TransliteratorParser::setVariableRange(int32_t start, int32_t end, UErrorCode& status) { | 
 |     if (start > end || start < 0 || end > 0xFFFF) { | 
 |         status = U_MALFORMED_PRAGMA; | 
 |         return; | 
 |     } | 
 |      | 
 |     curData->variablesBase = (UChar) start; | 
 |     if (dataVector.size() == 0) { | 
 |         variableNext = (UChar) start; | 
 |         variableLimit = (UChar) (end + 1); | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 |  * Assert that the given character is NOT within the variable range. | 
 |  * If it is, return FALSE.  This is neccesary to ensure that the | 
 |  * variable range does not overlap characters used in a rule. | 
 |  */ | 
 | UBool TransliteratorParser::checkVariableRange(UChar32 ch) const { | 
 |     return !(ch >= curData->variablesBase && ch < variableLimit); | 
 | } | 
 |  | 
 | /** | 
 |  * Set the maximum backup to 'backup', in response to a pragma | 
 |  * statement. | 
 |  */ | 
 | void TransliteratorParser::pragmaMaximumBackup(int32_t /*backup*/) { | 
 |     //TODO Finish | 
 | } | 
 |  | 
 | /** | 
 |  * Begin normalizing all rules using the given mode, in response | 
 |  * to a pragma statement. | 
 |  */ | 
 | void TransliteratorParser::pragmaNormalizeRules(UNormalizationMode /*mode*/) { | 
 |     //TODO Finish | 
 | } | 
 |  | 
 | static const UChar PRAGMA_USE[] = {0x75,0x73,0x65,0x20,0}; // "use " | 
 |  | 
 | static const UChar PRAGMA_VARIABLE_RANGE[] = {0x7E,0x76,0x61,0x72,0x69,0x61,0x62,0x6C,0x65,0x20,0x72,0x61,0x6E,0x67,0x65,0x20,0x23,0x20,0x23,0x7E,0x3B,0}; // "~variable range # #~;" | 
 |  | 
 | static const UChar PRAGMA_MAXIMUM_BACKUP[] = {0x7E,0x6D,0x61,0x78,0x69,0x6D,0x75,0x6D,0x20,0x62,0x61,0x63,0x6B,0x75,0x70,0x20,0x23,0x7E,0x3B,0}; // "~maximum backup #~;" | 
 |  | 
 | static const UChar PRAGMA_NFD_RULES[] = {0x7E,0x6E,0x66,0x64,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfd rules~;" | 
 |  | 
 | static const UChar PRAGMA_NFC_RULES[] = {0x7E,0x6E,0x66,0x63,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfc rules~;" | 
 |  | 
 | /** | 
 |  * Return true if the given rule looks like a pragma. | 
 |  * @param pos offset to the first non-whitespace character | 
 |  * of the rule. | 
 |  * @param limit pointer past the last character of the rule. | 
 |  */ | 
 | UBool TransliteratorParser::resemblesPragma(const UnicodeString& rule, int32_t pos, int32_t limit) { | 
 |     // Must start with /use\s/i | 
 |     return ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_USE, 4), NULL) >= 0; | 
 | } | 
 |  | 
 | /** | 
 |  * Parse a pragma.  This method assumes resemblesPragma() has | 
 |  * already returned true. | 
 |  * @param pos offset to the first non-whitespace character | 
 |  * of the rule. | 
 |  * @param limit pointer past the last character of the rule. | 
 |  * @return the position index after the final ';' of the pragma, | 
 |  * or -1 on failure. | 
 |  */ | 
 | int32_t TransliteratorParser::parsePragma(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { | 
 |     int32_t array[2]; | 
 |      | 
 |     // resemblesPragma() has already returned true, so we | 
 |     // know that pos points to /use\s/i; we can skip 4 characters | 
 |     // immediately | 
 |     pos += 4; | 
 |      | 
 |     // Here are the pragmas we recognize: | 
 |     // use variable range 0xE000 0xEFFF; | 
 |     // use maximum backup 16; | 
 |     // use nfd rules; | 
 |     // use nfc rules; | 
 |     int p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_VARIABLE_RANGE, -1), array); | 
 |     if (p >= 0) { | 
 |         setVariableRange(array[0], array[1], status); | 
 |         return p; | 
 |     } | 
 |      | 
 |     p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_MAXIMUM_BACKUP, -1), array); | 
 |     if (p >= 0) { | 
 |         pragmaMaximumBackup(array[0]); | 
 |         return p; | 
 |     } | 
 |      | 
 |     p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_NFD_RULES, -1), NULL); | 
 |     if (p >= 0) { | 
 |         pragmaNormalizeRules(UNORM_NFD); | 
 |         return p; | 
 |     } | 
 |      | 
 |     p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_NFC_RULES, -1), NULL); | 
 |     if (p >= 0) { | 
 |         pragmaNormalizeRules(UNORM_NFC); | 
 |         return p; | 
 |     } | 
 |      | 
 |     // Syntax error: unable to parse pragma | 
 |     return -1; | 
 | } | 
 |  | 
 | /** | 
 |  * MAIN PARSER.  Parse the next rule in the given rule string, starting | 
 |  * at pos.  Return the index after the last character parsed.  Do not | 
 |  * parse characters at or after limit. | 
 |  * | 
 |  * Important:  The character at pos must be a non-whitespace character | 
 |  * that is not the comment character. | 
 |  * | 
 |  * This method handles quoting, escaping, and whitespace removal.  It | 
 |  * parses the end-of-rule character.  It recognizes context and cursor | 
 |  * indicators.  Once it does a lexical breakdown of the rule at pos, it | 
 |  * creates a rule object and adds it to our rule list. | 
 |  */ | 
 | int32_t TransliteratorParser::parseRule(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { | 
 |     // Locate the left side, operator, and right side | 
 |     int32_t start = pos; | 
 |     UChar op = 0; | 
 |     int32_t i; | 
 |  | 
 |     // Set up segments data | 
 |     segmentStandins.truncate(0); | 
 |     segmentObjects.removeAllElements(); | 
 |  | 
 |     // Use pointers to automatics to make swapping possible. | 
 |     RuleHalf _left(*this), _right(*this); | 
 |     RuleHalf* left = &_left; | 
 |     RuleHalf* right = &_right; | 
 |  | 
 |     undefinedVariableName.remove(); | 
 |     pos = left->parse(rule, pos, limit, status); | 
 |     if (U_FAILURE(status)) { | 
 |         return start; | 
 |     } | 
 |  | 
 |     if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(--pos))) == NULL) { | 
 |         return syntaxError(U_MISSING_OPERATOR, rule, start, status); | 
 |     } | 
 |     ++pos; | 
 |  | 
 |     // Found an operator char.  Check for forward-reverse operator. | 
 |     if (op == REVERSE_RULE_OP && | 
 |         (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) { | 
 |         ++pos; | 
 |         op = FWDREV_RULE_OP; | 
 |     } | 
 |  | 
 |     // Translate alternate op characters. | 
 |     switch (op) { | 
 |     case ALT_FORWARD_RULE_OP: | 
 |         op = FORWARD_RULE_OP; | 
 |         break; | 
 |     case ALT_REVERSE_RULE_OP: | 
 |         op = REVERSE_RULE_OP; | 
 |         break; | 
 |     case ALT_FWDREV_RULE_OP: | 
 |         op = FWDREV_RULE_OP; | 
 |         break; | 
 |     } | 
 |  | 
 |     pos = right->parse(rule, pos, limit, status); | 
 |     if (U_FAILURE(status)) { | 
 |         return start; | 
 |     } | 
 |  | 
 |     if (pos < limit) { | 
 |         if (rule.charAt(--pos) == END_OF_RULE) { | 
 |             ++pos; | 
 |         } else { | 
 |             // RuleHalf parser must have terminated at an operator | 
 |             return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status); | 
 |         } | 
 |     } | 
 |  | 
 |     if (op == VARIABLE_DEF_OP) { | 
 |         // LHS is the name.  RHS is a single character, either a literal | 
 |         // or a set (already parsed).  If RHS is longer than one | 
 |         // character, it is either a multi-character string, or multiple | 
 |         // sets, or a mixture of chars and sets -- syntax error. | 
 |  | 
 |         // We expect to see a single undefined variable (the one being | 
 |         // defined). | 
 |         if (undefinedVariableName.length() == 0) { | 
 |             // "Missing '$' or duplicate definition" | 
 |             return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start, status); | 
 |         } | 
 |         if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) { | 
 |             // "Malformed LHS" | 
 |             return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status); | 
 |         } | 
 |         if (left->anchorStart || left->anchorEnd || | 
 |             right->anchorStart || right->anchorEnd) { | 
 |             return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status); | 
 |         }  | 
 |         // We allow anything on the right, including an empty string. | 
 |         UnicodeString* value = new UnicodeString(right->text); | 
 |         // NULL pointer check | 
 |         if (value == NULL) { | 
 |             return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); | 
 |         } | 
 |         variableNames.put(undefinedVariableName, value, status); | 
 |         ++variableLimit; | 
 |         return pos; | 
 |     } | 
 |  | 
 |     // If this is not a variable definition rule, we shouldn't have | 
 |     // any undefined variable names. | 
 |     if (undefinedVariableName.length() != 0) { | 
 |         return syntaxError(// "Undefined variable $" + undefinedVariableName, | 
 |                     U_UNDEFINED_VARIABLE, | 
 |                     rule, start, status); | 
 |     } | 
 |  | 
 |     // Verify segments | 
 |     if (segmentStandins.length() > segmentObjects.size()) { | 
 |         syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start, status); | 
 |     } | 
 |     for (i=0; i<segmentStandins.length(); ++i) { | 
 |         if (segmentStandins.charAt(i) == 0) { | 
 |             syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen | 
 |         } | 
 |     } | 
 |     for (i=0; i<segmentObjects.size(); ++i) { | 
 |         if (segmentObjects.elementAt(i) == NULL) { | 
 |             syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen | 
 |         } | 
 |     } | 
 |      | 
 |     // If the direction we want doesn't match the rule | 
 |     // direction, do nothing. | 
 |     if (op != FWDREV_RULE_OP && | 
 |         ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) { | 
 |         return pos; | 
 |     } | 
 |  | 
 |     // Transform the rule into a forward rule by swapping the | 
 |     // sides if necessary. | 
 |     if (direction == UTRANS_REVERSE) { | 
 |         left = &_right; | 
 |         right = &_left; | 
 |     } | 
 |  | 
 |     // Remove non-applicable elements in forward-reverse | 
 |     // rules.  Bidirectional rules ignore elements that do not | 
 |     // apply. | 
 |     if (op == FWDREV_RULE_OP) { | 
 |         right->removeContext(); | 
 |         left->cursor = -1; | 
 |         left->cursorOffset = 0; | 
 |     } | 
 |  | 
 |     // Normalize context | 
 |     if (left->ante < 0) { | 
 |         left->ante = 0; | 
 |     } | 
 |     if (left->post < 0) { | 
 |         left->post = left->text.length(); | 
 |     } | 
 |  | 
 |     // Context is only allowed on the input side.  Cursors are only | 
 |     // allowed on the output side.  Segment delimiters can only appear | 
 |     // on the left, and references on the right.  Cursor offset | 
 |     // cannot appear without an explicit cursor.  Cursor offset | 
 |     // cannot place the cursor outside the limits of the context. | 
 |     // Anchors are only allowed on the input side. | 
 |     if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 || | 
 |         (right->cursorOffset != 0 && right->cursor < 0) || | 
 |         // - The following two checks were used to ensure that the | 
 |         // - the cursor offset stayed within the ante- or postcontext. | 
 |         // - However, with the addition of quantifiers, we have to | 
 |         // - allow arbitrary cursor offsets and do runtime checking. | 
 |         //(right->cursorOffset > (left->text.length() - left->post)) || | 
 |         //(-right->cursorOffset > left->ante) || | 
 |         right->anchorStart || right->anchorEnd || | 
 |         !left->isValidInput(*this) || !right->isValidOutput(*this) || | 
 |         left->ante > left->post) { | 
 |  | 
 |         return syntaxError(U_MALFORMED_RULE, rule, start, status); | 
 |     } | 
 |  | 
 |     // Flatten segment objects vector to an array | 
 |     UnicodeFunctor** segmentsArray = NULL; | 
 |     if (segmentObjects.size() > 0) { | 
 |         segmentsArray = (UnicodeFunctor **)uprv_malloc(segmentObjects.size() * sizeof(UnicodeFunctor *)); | 
 |         // Null pointer check | 
 |         if (segmentsArray == NULL) { | 
 |             return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); | 
 |         } | 
 |         segmentObjects.toArray((void**) segmentsArray); | 
 |     } | 
 |     TransliterationRule* temptr = new TransliterationRule( | 
 |             left->text, left->ante, left->post, | 
 |             right->text, right->cursor, right->cursorOffset, | 
 |             segmentsArray, | 
 |             segmentObjects.size(), | 
 |             left->anchorStart, left->anchorEnd, | 
 |             curData, | 
 |             status); | 
 |     //Null pointer check | 
 |     if (temptr == NULL) { | 
 |         uprv_free(segmentsArray); | 
 |         return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); | 
 |     } | 
 |  | 
 |     curData->ruleSet.addRule(temptr, status); | 
 |  | 
 |     return pos; | 
 | } | 
 |  | 
 | /** | 
 |  * Called by main parser upon syntax error.  Search the rule string | 
 |  * for the probable end of the rule.  Of course, if the error is that | 
 |  * the end of rule marker is missing, then the rule end will not be found. | 
 |  * In any case the rule start will be correctly reported. | 
 |  * @param msg error description | 
 |  * @param rule pattern string | 
 |  * @param start position of first character of current rule | 
 |  */ | 
 | int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode, | 
 |                                           const UnicodeString& rule, | 
 |                                           int32_t pos, | 
 |                                           UErrorCode& status) | 
 | { | 
 |     parseError.offset = pos; | 
 |     parseError.line = 0 ; /* we are not using line numbers */ | 
 |      | 
 |     // for pre-context | 
 |     const int32_t LEN = U_PARSE_CONTEXT_LEN - 1; | 
 |     int32_t start = uprv_max(pos - LEN, 0); | 
 |     int32_t stop  = pos; | 
 |      | 
 |     rule.extract(start,stop-start,parseError.preContext); | 
 |     //null terminate the buffer | 
 |     parseError.preContext[stop-start] = 0; | 
 |      | 
 |     //for post-context | 
 |     start = pos; | 
 |     stop  = uprv_min(pos + LEN, rule.length()); | 
 |      | 
 |     rule.extract(start,stop-start,parseError.postContext); | 
 |     //null terminate the buffer | 
 |     parseError.postContext[stop-start]= 0; | 
 |  | 
 |     status = (UErrorCode)parseErrorCode; | 
 |     return pos; | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  * Parse a UnicodeSet out, store it, and return the stand-in character | 
 |  * used to represent it. | 
 |  */ | 
 | UChar TransliteratorParser::parseSet(const UnicodeString& rule, | 
 |                                           ParsePosition& pos, | 
 |                                           UErrorCode& status) { | 
 |     UnicodeSet* set = new UnicodeSet(rule, pos, USET_IGNORE_SPACE, parseData, status); | 
 |     // Null pointer check | 
 |     if (set == NULL) { | 
 |         status = U_MEMORY_ALLOCATION_ERROR; | 
 |         return (UChar)0x0000; // Return empty character with error. | 
 |     } | 
 |     set->compact(); | 
 |     return generateStandInFor(set, status); | 
 | } | 
 |  | 
 | /** | 
 |  * Generate and return a stand-in for a new UnicodeFunctor.  Store | 
 |  * the matcher (adopt it). | 
 |  */ | 
 | UChar TransliteratorParser::generateStandInFor(UnicodeFunctor* adopted, UErrorCode& status) { | 
 |     // assert(obj != null); | 
 |      | 
 |     // Look up previous stand-in, if any.  This is a short list | 
 |     // (typical n is 0, 1, or 2); linear search is optimal. | 
 |     for (int32_t i=0; i<variablesVector.size(); ++i) { | 
 |         if (variablesVector.elementAt(i) == adopted) { // [sic] pointer comparison | 
 |             return (UChar) (curData->variablesBase + i); | 
 |         } | 
 |     } | 
 |      | 
 |     if (variableNext >= variableLimit) { | 
 |         delete adopted; | 
 |         status = U_VARIABLE_RANGE_EXHAUSTED; | 
 |         return 0; | 
 |     } | 
 |     variablesVector.addElement(adopted, status); | 
 |     return variableNext++; | 
 | } | 
 |  | 
 | /** | 
 |  * Return the standin for segment seg (1-based). | 
 |  */ | 
 | UChar TransliteratorParser::getSegmentStandin(int32_t seg, UErrorCode& status) { | 
 |     // Special character used to indicate an empty spot | 
 |     UChar empty = curData->variablesBase - 1; | 
 |     while (segmentStandins.length() < seg) { | 
 |         segmentStandins.append(empty); | 
 |     } | 
 |     UChar c = segmentStandins.charAt(seg-1); | 
 |     if (c == empty) { | 
 |         if (variableNext >= variableLimit) { | 
 |             status = U_VARIABLE_RANGE_EXHAUSTED; | 
 |             return 0; | 
 |         } | 
 |         c = variableNext++; | 
 |         // Set a placeholder in the master variables vector that will be | 
 |         // filled in later by setSegmentObject().  We know that we will get | 
 |         // called first because setSegmentObject() will call us. | 
 |         variablesVector.addElement((void*) NULL, status); | 
 |         segmentStandins.setCharAt(seg-1, c); | 
 |     } | 
 |     return c; | 
 | } | 
 |  | 
 | /** | 
 |  * Set the object for segment seg (1-based). | 
 |  */ | 
 | void TransliteratorParser::setSegmentObject(int32_t seg, StringMatcher* adopted, UErrorCode& status) { | 
 |     // Since we call parseSection() recursively, nested | 
 |     // segments will result in segment i+1 getting parsed | 
 |     // and stored before segment i; be careful with the | 
 |     // vector handling here. | 
 |     if (segmentObjects.size() < seg) { | 
 |         segmentObjects.setSize(seg, status); | 
 |     } | 
 |     int32_t index = getSegmentStandin(seg, status) - curData->variablesBase; | 
 |     if (segmentObjects.elementAt(seg-1) != NULL || | 
 |         variablesVector.elementAt(index) != NULL) { | 
 |         // should never happen | 
 |         status = U_INTERNAL_TRANSLITERATOR_ERROR; | 
 |         return; | 
 |     } | 
 |     segmentObjects.setElementAt(adopted, seg-1); | 
 |     variablesVector.setElementAt(adopted, index); | 
 | } | 
 |  | 
 | /** | 
 |  * Return the stand-in for the dot set.  It is allocated the first | 
 |  * time and reused thereafter. | 
 |  */ | 
 | UChar TransliteratorParser::getDotStandIn(UErrorCode& status) { | 
 |     if (dotStandIn == (UChar) -1) { | 
 |         UnicodeSet* tempus = new UnicodeSet(UnicodeString(TRUE, DOT_SET, -1), status); | 
 |         // Null pointer check. | 
 |         if (tempus == NULL) { | 
 |             status = U_MEMORY_ALLOCATION_ERROR; | 
 |             return (UChar)0x0000; | 
 |         } | 
 |         dotStandIn = generateStandInFor(tempus, status); | 
 |     } | 
 |     return dotStandIn; | 
 | } | 
 |  | 
 | /** | 
 |  * Append the value of the given variable name to the given | 
 |  * UnicodeString. | 
 |  */ | 
 | void TransliteratorParser::appendVariableDef(const UnicodeString& name, | 
 |                                                   UnicodeString& buf, | 
 |                                                   UErrorCode& status) { | 
 |     const UnicodeString* s = (const UnicodeString*) variableNames.get(name); | 
 |     if (s == NULL) { | 
 |         // We allow one undefined variable so that variable definition | 
 |         // statements work.  For the first undefined variable we return | 
 |         // the special placeholder variableLimit-1, and save the variable | 
 |         // name. | 
 |         if (undefinedVariableName.length() == 0) { | 
 |             undefinedVariableName = name; | 
 |             if (variableNext >= variableLimit) { | 
 |                 // throw new RuntimeException("Private use variables exhausted"); | 
 |                 status = U_ILLEGAL_ARGUMENT_ERROR; | 
 |                 return; | 
 |             } | 
 |             buf.append((UChar) --variableLimit); | 
 |         } else { | 
 |             //throw new IllegalArgumentException("Undefined variable $" | 
 |             //                                   + name); | 
 |             status = U_ILLEGAL_ARGUMENT_ERROR; | 
 |             return; | 
 |         } | 
 |     } else { | 
 |         buf.append(*s); | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 |  * Glue method to get around access restrictions in C++. | 
 |  */ | 
 | /*Transliterator* TransliteratorParser::createBasicInstance(const UnicodeString& id, const UnicodeString* canonID) { | 
 |     return Transliterator::createBasicInstance(id, canonID); | 
 | }*/ | 
 |  | 
 | U_NAMESPACE_END | 
 |  | 
 | U_CAPI int32_t | 
 | utrans_stripRules(const UChar *source, int32_t sourceLen, UChar *target, UErrorCode *status) { | 
 |     U_NAMESPACE_USE | 
 |  | 
 |     //const UChar *sourceStart = source; | 
 |     const UChar *targetStart = target; | 
 |     const UChar *sourceLimit = source+sourceLen; | 
 |     UChar *targetLimit = target+sourceLen; | 
 |     UChar32 c = 0; | 
 |     UBool quoted = FALSE; | 
 |     int32_t index; | 
 |  | 
 |     uprv_memset(target, 0, sourceLen*U_SIZEOF_UCHAR); | 
 |  | 
 |     /* read the rules into the buffer */ | 
 |     while (source < sourceLimit) | 
 |     { | 
 |         index=0; | 
 |         U16_NEXT_UNSAFE(source, index, c); | 
 |         source+=index; | 
 |         if(c == QUOTE) { | 
 |             quoted = (UBool)!quoted; | 
 |         } | 
 |         else if (!quoted) { | 
 |             if (c == RULE_COMMENT_CHAR) { | 
 |                 /* skip comments and all preceding spaces */ | 
 |                 while (targetStart < target && *(target - 1) == 0x0020) { | 
 |                     target--; | 
 |                 } | 
 |                 do { | 
 |                     if (source == sourceLimit) { | 
 |                         c = U_SENTINEL; | 
 |                         break; | 
 |                     } | 
 |                     c = *(source++); | 
 |                 } | 
 |                 while (c != CR && c != LF); | 
 |                 if (c < 0) { | 
 |                     break; | 
 |                 } | 
 |             } | 
 |             else if (c == ESCAPE && source < sourceLimit) { | 
 |                 UChar32   c2 = *source; | 
 |                 if (c2 == CR || c2 == LF) { | 
 |                     /* A backslash at the end of a line. */ | 
 |                     /* Since we're stripping lines, ignore the backslash. */ | 
 |                     source++; | 
 |                     continue; | 
 |                 } | 
 |                 if (c2 == 0x0075 && source+5 < sourceLimit) { /* \u seen. \U isn't unescaped. */ | 
 |                     int32_t escapeOffset = 0; | 
 |                     UnicodeString escapedStr(source, 5); | 
 |                     c2 = escapedStr.unescapeAt(escapeOffset); | 
 |  | 
 |                     if (c2 == (UChar32)0xFFFFFFFF || escapeOffset == 0) | 
 |                     { | 
 |                         *status = U_PARSE_ERROR; | 
 |                         return 0; | 
 |                     } | 
 |                     if (!PatternProps::isWhiteSpace(c2) && !u_iscntrl(c2) && !u_ispunct(c2)) { | 
 |                         /* It was escaped for a reason. Write what it was suppose to be. */ | 
 |                         source+=5; | 
 |                         c = c2; | 
 |                     } | 
 |                 } | 
 |                 else if (c2 == QUOTE) { | 
 |                     /* \' seen. Make sure we don't do anything when we see it again. */ | 
 |                     quoted = (UBool)!quoted; | 
 |                 } | 
 |             } | 
 |         } | 
 |         if (c == CR || c == LF) | 
 |         { | 
 |             /* ignore spaces carriage returns, and all leading spaces on the next line. | 
 |             * and line feed unless in the form \uXXXX | 
 |             */ | 
 |             quoted = FALSE; | 
 |             while (source < sourceLimit) { | 
 |                 c = *(source); | 
 |                 if (c != CR && c != LF && c != 0x0020) { | 
 |                     break; | 
 |                 } | 
 |                 source++; | 
 |             } | 
 |             continue; | 
 |         } | 
 |  | 
 |         /* Append UChar * after dissembling if c > 0xffff*/ | 
 |         index=0; | 
 |         U16_APPEND_UNSAFE(target, index, c); | 
 |         target+=index; | 
 |     } | 
 |     if (target < targetLimit) { | 
 |         *target = 0; | 
 |     } | 
 |     return (int32_t)(target-targetStart); | 
 | } | 
 |  | 
 | #endif /* #if !UCONFIG_NO_TRANSLITERATION */ |