skia / external / github.com / unicode-org / icu / 3dd1ca10df1f4b5015c034f57b0f9ce34aa5c0ce / . / icu4c / source / common / unormcmp.cpp

// © 2016 and later: Unicode, Inc. and others. | |

// License & terms of use: http://www.unicode.org/copyright.html | |

/* | |

******************************************************************************* | |

* | |

* Copyright (C) 2001-2014, International Business Machines | |

* Corporation and others. All Rights Reserved. | |

* | |

******************************************************************************* | |

* file name: unormcmp.cpp | |

* encoding: UTF-8 | |

* tab size: 8 (not used) | |

* indentation:4 | |

* | |

* created on: 2004sep13 | |

* created by: Markus W. Scherer | |

* | |

* unorm_compare() function moved here from unorm.cpp for better modularization. | |

* Depends on both normalization and case folding. | |

* Allows unorm.cpp to not depend on any character properties code. | |

*/ | |

#include "unicode/utypes.h" | |

#if !UCONFIG_NO_NORMALIZATION | |

#include "unicode/unorm.h" | |

#include "unicode/ustring.h" | |

#include "cmemory.h" | |

#include "normalizer2impl.h" | |

#include "ucase.h" | |

#include "uprops.h" | |

#include "ustr_imp.h" | |

U_NAMESPACE_USE | |

/* compare canonically equivalent ------------------------------------------- */ | |

/* | |

* Compare two strings for canonical equivalence. | |

* Further options include case-insensitive comparison and | |

* code point order (as opposed to code unit order). | |

* | |

* In this function, canonical equivalence is optional as well. | |

* If canonical equivalence is tested, then both strings must fulfill | |

* the FCD check. | |

* | |

* Semantically, this is equivalent to | |

* strcmp[CodePointOrder](NFD(foldCase(s1)), NFD(foldCase(s2))) | |

* where code point order, NFD and foldCase are all optional. | |

* | |

* String comparisons almost always yield results before processing both strings | |

* completely. | |

* They are generally more efficient working incrementally instead of | |

* performing the sub-processing (strlen, normalization, case-folding) | |

* on the entire strings first. | |

* | |

* It is also unnecessary to not normalize identical characters. | |

* | |

* This function works in principle as follows: | |

* | |

* loop { | |

* get one code unit c1 from s1 (-1 if end of source) | |

* get one code unit c2 from s2 (-1 if end of source) | |

* | |

* if(either string finished) { | |

* return result; | |

* } | |

* if(c1==c2) { | |

* continue; | |

* } | |

* | |

* // c1!=c2 | |

* try to decompose/case-fold c1/c2, and continue if one does; | |

* | |

* // still c1!=c2 and neither decomposes/case-folds, return result | |

* return c1-c2; | |

* } | |

* | |

* When a character decomposes, then the pointer for that source changes to | |

* the decomposition, pushing the previous pointer onto a stack. | |

* When the end of the decomposition is reached, then the code unit reader | |

* pops the previous source from the stack. | |

* (Same for case-folding.) | |

* | |

* This is complicated further by operating on variable-width UTF-16. | |

* The top part of the loop works on code units, while lookups for decomposition | |

* and case-folding need code points. | |

* Code points are assembled after the equality/end-of-source part. | |

* The source pointer is only advanced beyond all code units when the code point | |

* actually decomposes/case-folds. | |

* | |

* If we were on a trail surrogate unit when assembling a code point, | |

* and the code point decomposes/case-folds, then the decomposition/folding | |

* result must be compared with the part of the other string that corresponds to | |

* this string's lead surrogate. | |

* Since we only assemble a code point when hitting a trail unit when the | |

* preceding lead units were identical, we back up the other string by one unit | |

* in such a case. | |

* | |

* The optional code point order comparison at the end works with | |

* the same fix-up as the other code point order comparison functions. | |

* See ustring.c and the comment near the end of this function. | |

* | |

* Assumption: A decomposition or case-folding result string never contains | |

* a single surrogate. This is a safe assumption in the Unicode Standard. | |

* Therefore, we do not need to check for surrogate pairs across | |

* decomposition/case-folding boundaries. | |

* | |

* Further assumptions (see verifications tstnorm.cpp): | |

* The API function checks for FCD first, while the core function | |

* first case-folds and then decomposes. This requires that case-folding does not | |

* un-FCD any strings. | |

* | |

* The API function may also NFD the input and turn off decomposition. | |

* This requires that case-folding does not un-NFD strings either. | |

* | |

* TODO If any of the above two assumptions is violated, | |

* then this entire code must be re-thought. | |

* If this happens, then a simple solution is to case-fold both strings up front | |

* and to turn off UNORM_INPUT_IS_FCD. | |

* We already do this when not both strings are in FCD because makeFCD | |

* would be a partial NFD before the case folding, which does not work. | |

* Note that all of this is only a problem when case-folding _and_ | |

* canonical equivalence come together. | |

* (Comments in unorm_compare() are more up to date than this TODO.) | |

*/ | |

/* stack element for previous-level source/decomposition pointers */ | |

struct CmpEquivLevel { | |

const UChar *start, *s, *limit; | |

}; | |

typedef struct CmpEquivLevel CmpEquivLevel; | |

/** | |

* Internal option for unorm_cmpEquivFold() for decomposing. | |

* If not set, just do strcasecmp(). | |

*/ | |

#define _COMPARE_EQUIV 0x80000 | |

/* internal function */ | |

static int32_t | |

unorm_cmpEquivFold(const UChar *s1, int32_t length1, | |

const UChar *s2, int32_t length2, | |

uint32_t options, | |

UErrorCode *pErrorCode) { | |

const Normalizer2Impl *nfcImpl; | |

/* current-level start/limit - s1/s2 as current */ | |

const UChar *start1, *start2, *limit1, *limit2; | |

/* decomposition and case folding variables */ | |

const UChar *p; | |

int32_t length; | |

/* stacks of previous-level start/current/limit */ | |

CmpEquivLevel stack1[2], stack2[2]; | |

/* buffers for algorithmic decompositions */ | |

UChar decomp1[4], decomp2[4]; | |

/* case folding buffers, only use current-level start/limit */ | |

UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1]; | |

/* track which is the current level per string */ | |

int32_t level1, level2; | |

/* current code units, and code points for lookups */ | |

UChar32 c1, c2, cp1, cp2; | |

/* no argument error checking because this itself is not an API */ | |

/* | |

* assume that at least one of the options _COMPARE_EQUIV and U_COMPARE_IGNORE_CASE is set | |

* otherwise this function must behave exactly as uprv_strCompare() | |

* not checking for that here makes testing this function easier | |

*/ | |

/* normalization/properties data loaded? */ | |

if((options&_COMPARE_EQUIV)!=0) { | |

nfcImpl=Normalizer2Factory::getNFCImpl(*pErrorCode); | |

} else { | |

nfcImpl=NULL; | |

} | |

if(U_FAILURE(*pErrorCode)) { | |

return 0; | |

} | |

/* initialize */ | |

start1=s1; | |

if(length1==-1) { | |

limit1=NULL; | |

} else { | |

limit1=s1+length1; | |

} | |

start2=s2; | |

if(length2==-1) { | |

limit2=NULL; | |

} else { | |

limit2=s2+length2; | |

} | |

level1=level2=0; | |

c1=c2=-1; | |

/* comparison loop */ | |

for(;;) { | |

/* | |

* here a code unit value of -1 means "get another code unit" | |

* below it will mean "this source is finished" | |

*/ | |

if(c1<0) { | |

/* get next code unit from string 1, post-increment */ | |

for(;;) { | |

if(s1==limit1 || ((c1=*s1)==0 && (limit1==NULL || (options&_STRNCMP_STYLE)))) { | |

if(level1==0) { | |

c1=-1; | |

break; | |

} | |

} else { | |

++s1; | |

break; | |

} | |

/* reached end of level buffer, pop one level */ | |

do { | |

--level1; | |

start1=stack1[level1].start; /*Not uninitialized*/ | |

} while(start1==NULL); | |

s1=stack1[level1].s; /*Not uninitialized*/ | |

limit1=stack1[level1].limit; /*Not uninitialized*/ | |

} | |

} | |

if(c2<0) { | |

/* get next code unit from string 2, post-increment */ | |

for(;;) { | |

if(s2==limit2 || ((c2=*s2)==0 && (limit2==NULL || (options&_STRNCMP_STYLE)))) { | |

if(level2==0) { | |

c2=-1; | |

break; | |

} | |

} else { | |

++s2; | |

break; | |

} | |

/* reached end of level buffer, pop one level */ | |

do { | |

--level2; | |

start2=stack2[level2].start; /*Not uninitialized*/ | |

} while(start2==NULL); | |

s2=stack2[level2].s; /*Not uninitialized*/ | |

limit2=stack2[level2].limit; /*Not uninitialized*/ | |

} | |

} | |

/* | |

* compare c1 and c2 | |

* either variable c1, c2 is -1 only if the corresponding string is finished | |

*/ | |

if(c1==c2) { | |

if(c1<0) { | |

return 0; /* c1==c2==-1 indicating end of strings */ | |

} | |

c1=c2=-1; /* make us fetch new code units */ | |

continue; | |

} else if(c1<0) { | |

return -1; /* string 1 ends before string 2 */ | |

} else if(c2<0) { | |

return 1; /* string 2 ends before string 1 */ | |

} | |

/* c1!=c2 && c1>=0 && c2>=0 */ | |

/* get complete code points for c1, c2 for lookups if either is a surrogate */ | |

cp1=c1; | |

if(U_IS_SURROGATE(c1)) { | |

UChar c; | |

if(U_IS_SURROGATE_LEAD(c1)) { | |

if(s1!=limit1 && U16_IS_TRAIL(c=*s1)) { | |

/* advance ++s1; only below if cp1 decomposes/case-folds */ | |

cp1=U16_GET_SUPPLEMENTARY(c1, c); | |

} | |

} else /* isTrail(c1) */ { | |

if(start1<=(s1-2) && U16_IS_LEAD(c=*(s1-2))) { | |

cp1=U16_GET_SUPPLEMENTARY(c, c1); | |

} | |

} | |

} | |

cp2=c2; | |

if(U_IS_SURROGATE(c2)) { | |

UChar c; | |

if(U_IS_SURROGATE_LEAD(c2)) { | |

if(s2!=limit2 && U16_IS_TRAIL(c=*s2)) { | |

/* advance ++s2; only below if cp2 decomposes/case-folds */ | |

cp2=U16_GET_SUPPLEMENTARY(c2, c); | |

} | |

} else /* isTrail(c2) */ { | |

if(start2<=(s2-2) && U16_IS_LEAD(c=*(s2-2))) { | |

cp2=U16_GET_SUPPLEMENTARY(c, c2); | |

} | |

} | |

} | |

/* | |

* go down one level for each string | |

* continue with the main loop as soon as there is a real change | |

*/ | |

if( level1==0 && (options&U_COMPARE_IGNORE_CASE) && | |

(length=ucase_toFullFolding((UChar32)cp1, &p, options))>=0 | |

) { | |

/* cp1 case-folds to the code point "length" or to p[length] */ | |

if(U_IS_SURROGATE(c1)) { | |

if(U_IS_SURROGATE_LEAD(c1)) { | |

/* advance beyond source surrogate pair if it case-folds */ | |

++s1; | |

} else /* isTrail(c1) */ { | |

/* | |

* we got a supplementary code point when hitting its trail surrogate, | |

* therefore the lead surrogate must have been the same as in the other string; | |

* compare this decomposition with the lead surrogate in the other string | |

* remember that this simulates bulk text replacement: | |

* the decomposition would replace the entire code point | |

*/ | |

--s2; | |

c2=*(s2-1); | |

} | |

} | |

/* push current level pointers */ | |

stack1[0].start=start1; | |

stack1[0].s=s1; | |

stack1[0].limit=limit1; | |

++level1; | |

/* copy the folding result to fold1[] */ | |

if(length<=UCASE_MAX_STRING_LENGTH) { | |

u_memcpy(fold1, p, length); | |

} else { | |

int32_t i=0; | |

U16_APPEND_UNSAFE(fold1, i, length); | |

length=i; | |

} | |

/* set next level pointers to case folding */ | |

start1=s1=fold1; | |

limit1=fold1+length; | |

/* get ready to read from decomposition, continue with loop */ | |

c1=-1; | |

continue; | |

} | |

if( level2==0 && (options&U_COMPARE_IGNORE_CASE) && | |

(length=ucase_toFullFolding((UChar32)cp2, &p, options))>=0 | |

) { | |

/* cp2 case-folds to the code point "length" or to p[length] */ | |

if(U_IS_SURROGATE(c2)) { | |

if(U_IS_SURROGATE_LEAD(c2)) { | |

/* advance beyond source surrogate pair if it case-folds */ | |

++s2; | |

} else /* isTrail(c2) */ { | |

/* | |

* we got a supplementary code point when hitting its trail surrogate, | |

* therefore the lead surrogate must have been the same as in the other string; | |

* compare this decomposition with the lead surrogate in the other string | |

* remember that this simulates bulk text replacement: | |

* the decomposition would replace the entire code point | |

*/ | |

--s1; | |

c1=*(s1-1); | |

} | |

} | |

/* push current level pointers */ | |

stack2[0].start=start2; | |

stack2[0].s=s2; | |

stack2[0].limit=limit2; | |

++level2; | |

/* copy the folding result to fold2[] */ | |

if(length<=UCASE_MAX_STRING_LENGTH) { | |

u_memcpy(fold2, p, length); | |

} else { | |

int32_t i=0; | |

U16_APPEND_UNSAFE(fold2, i, length); | |

length=i; | |

} | |

/* set next level pointers to case folding */ | |

start2=s2=fold2; | |

limit2=fold2+length; | |

/* get ready to read from decomposition, continue with loop */ | |

c2=-1; | |

continue; | |

} | |

if( level1<2 && (options&_COMPARE_EQUIV) && | |

0!=(p=nfcImpl->getDecomposition((UChar32)cp1, decomp1, length)) | |

) { | |

/* cp1 decomposes into p[length] */ | |

if(U_IS_SURROGATE(c1)) { | |

if(U_IS_SURROGATE_LEAD(c1)) { | |

/* advance beyond source surrogate pair if it decomposes */ | |

++s1; | |

} else /* isTrail(c1) */ { | |

/* | |

* we got a supplementary code point when hitting its trail surrogate, | |

* therefore the lead surrogate must have been the same as in the other string; | |

* compare this decomposition with the lead surrogate in the other string | |

* remember that this simulates bulk text replacement: | |

* the decomposition would replace the entire code point | |

*/ | |

--s2; | |

c2=*(s2-1); | |

} | |

} | |

/* push current level pointers */ | |

stack1[level1].start=start1; | |

stack1[level1].s=s1; | |

stack1[level1].limit=limit1; | |

++level1; | |

/* set empty intermediate level if skipped */ | |

if(level1<2) { | |

stack1[level1++].start=NULL; | |

} | |

/* set next level pointers to decomposition */ | |

start1=s1=p; | |

limit1=p+length; | |

/* get ready to read from decomposition, continue with loop */ | |

c1=-1; | |

continue; | |

} | |

if( level2<2 && (options&_COMPARE_EQUIV) && | |

0!=(p=nfcImpl->getDecomposition((UChar32)cp2, decomp2, length)) | |

) { | |

/* cp2 decomposes into p[length] */ | |

if(U_IS_SURROGATE(c2)) { | |

if(U_IS_SURROGATE_LEAD(c2)) { | |

/* advance beyond source surrogate pair if it decomposes */ | |

++s2; | |

} else /* isTrail(c2) */ { | |

/* | |

* we got a supplementary code point when hitting its trail surrogate, | |

* therefore the lead surrogate must have been the same as in the other string; | |

* compare this decomposition with the lead surrogate in the other string | |

* remember that this simulates bulk text replacement: | |

* the decomposition would replace the entire code point | |

*/ | |

--s1; | |

c1=*(s1-1); | |

} | |

} | |

/* push current level pointers */ | |

stack2[level2].start=start2; | |

stack2[level2].s=s2; | |

stack2[level2].limit=limit2; | |

++level2; | |

/* set empty intermediate level if skipped */ | |

if(level2<2) { | |

stack2[level2++].start=NULL; | |

} | |

/* set next level pointers to decomposition */ | |

start2=s2=p; | |

limit2=p+length; | |

/* get ready to read from decomposition, continue with loop */ | |

c2=-1; | |

continue; | |

} | |

/* | |

* no decomposition/case folding, max level for both sides: | |

* return difference result | |

* | |

* code point order comparison must not just return cp1-cp2 | |

* because when single surrogates are present then the surrogate pairs | |

* that formed cp1 and cp2 may be from different string indexes | |

* | |

* example: { d800 d800 dc01 } vs. { d800 dc00 }, compare at second code units | |

* c1=d800 cp1=10001 c2=dc00 cp2=10000 | |

* cp1-cp2>0 but c1-c2<0 and in fact in UTF-32 it is { d800 10001 } < { 10000 } | |

* | |

* therefore, use same fix-up as in ustring.c/uprv_strCompare() | |

* except: uprv_strCompare() fetches c=*s while this functions fetches c=*s++ | |

* so we have slightly different pointer/start/limit comparisons here | |

*/ | |

if(c1>=0xd800 && c2>=0xd800 && (options&U_COMPARE_CODE_POINT_ORDER)) { | |

/* subtract 0x2800 from BMP code points to make them smaller than supplementary ones */ | |

if( | |

(c1<=0xdbff && s1!=limit1 && U16_IS_TRAIL(*s1)) || | |

(U16_IS_TRAIL(c1) && start1!=(s1-1) && U16_IS_LEAD(*(s1-2))) | |

) { | |

/* part of a surrogate pair, leave >=d800 */ | |

} else { | |

/* BMP code point - may be surrogate code point - make <d800 */ | |

c1-=0x2800; | |

} | |

if( | |

(c2<=0xdbff && s2!=limit2 && U16_IS_TRAIL(*s2)) || | |

(U16_IS_TRAIL(c2) && start2!=(s2-1) && U16_IS_LEAD(*(s2-2))) | |

) { | |

/* part of a surrogate pair, leave >=d800 */ | |

} else { | |

/* BMP code point - may be surrogate code point - make <d800 */ | |

c2-=0x2800; | |

} | |

} | |

return c1-c2; | |

} | |

} | |

static | |

UBool _normalize(const Normalizer2 *n2, const UChar *s, int32_t length, | |

UnicodeString &normalized, UErrorCode *pErrorCode) { | |

UnicodeString str(length<0, s, length); | |

// check if s fulfill the conditions | |

int32_t spanQCYes=n2->spanQuickCheckYes(str, *pErrorCode); | |

if (U_FAILURE(*pErrorCode)) { | |

return FALSE; | |

} | |

/* | |

* ICU 2.4 had a further optimization: | |

* If both strings were not in FCD, then they were both NFD'ed, | |

* and the _COMPARE_EQUIV option was turned off. | |

* It is not entirely clear that this is valid with the current | |

* definition of the canonical caseless match. | |

* Therefore, ICU 2.6 removes that optimization. | |

*/ | |

if(spanQCYes<str.length()) { | |

UnicodeString unnormalized=str.tempSubString(spanQCYes); | |

normalized.setTo(FALSE, str.getBuffer(), spanQCYes); | |

n2->normalizeSecondAndAppend(normalized, unnormalized, *pErrorCode); | |

if (U_SUCCESS(*pErrorCode)) { | |

return TRUE; | |

} | |

} | |

return FALSE; | |

} | |

U_CAPI int32_t U_EXPORT2 | |

unorm_compare(const UChar *s1, int32_t length1, | |

const UChar *s2, int32_t length2, | |

uint32_t options, | |

UErrorCode *pErrorCode) { | |

/* argument checking */ | |

if(U_FAILURE(*pErrorCode)) { | |

return 0; | |

} | |

if(s1==0 || length1<-1 || s2==0 || length2<-1) { | |

*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |

return 0; | |

} | |

UnicodeString fcd1, fcd2; | |

int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT); | |

options|=_COMPARE_EQUIV; | |

/* | |

* UAX #21 Case Mappings, as fixed for Unicode version 4 | |

* (see Jitterbug 2021), defines a canonical caseless match as | |

* | |

* A string X is a canonical caseless match | |

* for a string Y if and only if | |

* NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y))) | |

* | |

* For better performance, we check for FCD (or let the caller tell us that | |

* both strings are in FCD) for the inner normalization. | |

* BasicNormalizerTest::FindFoldFCDExceptions() makes sure that | |

* case-folding preserves the FCD-ness of a string. | |

* The outer normalization is then only performed by unorm_cmpEquivFold() | |

* when there is a difference. | |

* | |

* Exception: When using the Turkic case-folding option, we do perform | |

* full NFD first. This is because in the Turkic case precomposed characters | |

* with 0049 capital I or 0069 small i fold differently whether they | |

* are first decomposed or not, so an FCD check - a check only for | |

* canonical order - is not sufficient. | |

*/ | |

if(!(options&UNORM_INPUT_IS_FCD) || (options&U_FOLD_CASE_EXCLUDE_SPECIAL_I)) { | |

const Normalizer2 *n2; | |

if(options&U_FOLD_CASE_EXCLUDE_SPECIAL_I) { | |

n2=Normalizer2::getNFDInstance(*pErrorCode); | |

} else { | |

n2=Normalizer2Factory::getFCDInstance(*pErrorCode); | |

} | |

if (U_FAILURE(*pErrorCode)) { | |

return 0; | |

} | |

if(normOptions&UNORM_UNICODE_3_2) { | |

const UnicodeSet *uni32=uniset_getUnicode32Instance(*pErrorCode); | |

FilteredNormalizer2 fn2(*n2, *uni32); | |

if(_normalize(&fn2, s1, length1, fcd1, pErrorCode)) { | |

s1=fcd1.getBuffer(); | |

length1=fcd1.length(); | |

} | |

if(_normalize(&fn2, s2, length2, fcd2, pErrorCode)) { | |

s2=fcd2.getBuffer(); | |

length2=fcd2.length(); | |

} | |

} else { | |

if(_normalize(n2, s1, length1, fcd1, pErrorCode)) { | |

s1=fcd1.getBuffer(); | |

length1=fcd1.length(); | |

} | |

if(_normalize(n2, s2, length2, fcd2, pErrorCode)) { | |

s2=fcd2.getBuffer(); | |

length2=fcd2.length(); | |

} | |

} | |

} | |

if(U_SUCCESS(*pErrorCode)) { | |

return unorm_cmpEquivFold(s1, length1, s2, length2, options, pErrorCode); | |

} else { | |

return 0; | |

} | |

} | |

#endif /* #if !UCONFIG_NO_NORMALIZATION */ |