| /* | 
 | ****************************************************************************** | 
 | *   Copyright (C) 1997-2011, International Business Machines | 
 | *   Corporation and others.  All Rights Reserved. | 
 | ****************************************************************************** | 
 | *   file name:  nfrule.cpp | 
 | *   encoding:   US-ASCII | 
 | *   tab size:   8 (not used) | 
 | *   indentation:4 | 
 | * | 
 | * Modification history | 
 | * Date        Name      Comments | 
 | * 10/11/2001  Doug      Ported from ICU4J | 
 | */ | 
 |  | 
 | #include "nfrule.h" | 
 |  | 
 | #if U_HAVE_RBNF | 
 |  | 
 | #include "unicode/rbnf.h" | 
 | #include "unicode/tblcoll.h" | 
 | #include "unicode/coleitr.h" | 
 | #include "unicode/uchar.h" | 
 | #include "nfrs.h" | 
 | #include "nfrlist.h" | 
 | #include "nfsubs.h" | 
 | #include "patternprops.h" | 
 |  | 
 | U_NAMESPACE_BEGIN | 
 |  | 
 | NFRule::NFRule(const RuleBasedNumberFormat* _rbnf) | 
 |   : baseValue((int32_t)0) | 
 |   , radix(0) | 
 |   , exponent(0) | 
 |   , ruleText() | 
 |   , sub1(NULL) | 
 |   , sub2(NULL) | 
 |   , formatter(_rbnf) | 
 | { | 
 | } | 
 |  | 
 | NFRule::~NFRule() | 
 | { | 
 |   delete sub1; | 
 |   delete sub2; | 
 | } | 
 |  | 
 | static const UChar gLeftBracket = 0x005b; | 
 | static const UChar gRightBracket = 0x005d; | 
 | static const UChar gColon = 0x003a; | 
 | static const UChar gZero = 0x0030; | 
 | static const UChar gNine = 0x0039; | 
 | static const UChar gSpace = 0x0020; | 
 | static const UChar gSlash = 0x002f; | 
 | static const UChar gGreaterThan = 0x003e; | 
 | static const UChar gLessThan = 0x003c; | 
 | static const UChar gComma = 0x002c; | 
 | static const UChar gDot = 0x002e; | 
 | static const UChar gTick = 0x0027; | 
 | //static const UChar gMinus = 0x002d; | 
 | static const UChar gSemicolon = 0x003b; | 
 |  | 
 | static const UChar gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */ | 
 | static const UChar gXDotX[] =                   {0x78, 0x2E, 0x78, 0}; /* "x.x" */ | 
 | static const UChar gXDotZero[] =                {0x78, 0x2E, 0x30, 0}; /* "x.0" */ | 
 | static const UChar gZeroDotX[] =                {0x30, 0x2E, 0x78, 0}; /* "0.x" */ | 
 |  | 
 | static const UChar gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */ | 
 | static const UChar gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */ | 
 | static const UChar gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */ | 
 | static const UChar gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */ | 
 | static const UChar gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */ | 
 | static const UChar gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */ | 
 | static const UChar gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */ | 
 | static const UChar gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */ | 
 | static const UChar gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */ | 
 | static const UChar gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */ | 
 | static const UChar gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */ | 
 | static const UChar gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */ | 
 |  | 
 | static const UChar * const tokenStrings[] = { | 
 |     gLessLess, gLessPercent, gLessHash, gLessZero, | 
 |     gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero, | 
 |     gEqualPercent, gEqualHash, gEqualZero, NULL | 
 | }; | 
 |  | 
 | void | 
 | NFRule::makeRules(UnicodeString& description, | 
 |                   const NFRuleSet *ruleSet, | 
 |                   const NFRule *predecessor, | 
 |                   const RuleBasedNumberFormat *rbnf, | 
 |                   NFRuleList& rules, | 
 |                   UErrorCode& status) | 
 | { | 
 |     // we know we're making at least one rule, so go ahead and | 
 |     // new it up and initialize its basevalue and divisor | 
 |     // (this also strips the rule descriptor, if any, off the | 
 |     // descripton string) | 
 |     NFRule* rule1 = new NFRule(rbnf); | 
 |     /* test for NULL */ | 
 |     if (rule1 == 0) { | 
 |         status = U_MEMORY_ALLOCATION_ERROR; | 
 |         return; | 
 |     } | 
 |     rule1->parseRuleDescriptor(description, status); | 
 |  | 
 |     // check the description to see whether there's text enclosed | 
 |     // in brackets | 
 |     int32_t brack1 = description.indexOf(gLeftBracket); | 
 |     int32_t brack2 = description.indexOf(gRightBracket); | 
 |  | 
 |     // if the description doesn't contain a matched pair of brackets, | 
 |     // or if it's of a type that doesn't recognize bracketed text, | 
 |     // then leave the description alone, initialize the rule's | 
 |     // rule text and substitutions, and return that rule | 
 |     if (brack1 == -1 || brack2 == -1 || brack1 > brack2 | 
 |         || rule1->getType() == kProperFractionRule | 
 |         || rule1->getType() == kNegativeNumberRule) { | 
 |         rule1->ruleText = description; | 
 |         rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status); | 
 |         rules.add(rule1); | 
 |     } else { | 
 |         // if the description does contain a matched pair of brackets, | 
 |         // then it's really shorthand for two rules (with one exception) | 
 |         NFRule* rule2 = NULL; | 
 |         UnicodeString sbuf; | 
 |  | 
 |         // we'll actually only split the rule into two rules if its | 
 |         // base value is an even multiple of its divisor (or it's one | 
 |         // of the special rules) | 
 |         if ((rule1->baseValue > 0 | 
 |             && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0) | 
 |             || rule1->getType() == kImproperFractionRule | 
 |             || rule1->getType() == kMasterRule) { | 
 |  | 
 |             // if it passes that test, new up the second rule.  If the | 
 |             // rule set both rules will belong to is a fraction rule | 
 |             // set, they both have the same base value; otherwise, | 
 |             // increment the original rule's base value ("rule1" actually | 
 |             // goes SECOND in the rule set's rule list) | 
 |             rule2 = new NFRule(rbnf); | 
 |             /* test for NULL */ | 
 |             if (rule2 == 0) { | 
 |                 status = U_MEMORY_ALLOCATION_ERROR; | 
 |                 return; | 
 |             } | 
 |             if (rule1->baseValue >= 0) { | 
 |                 rule2->baseValue = rule1->baseValue; | 
 |                 if (!ruleSet->isFractionRuleSet()) { | 
 |                     ++rule1->baseValue; | 
 |                 } | 
 |             } | 
 |  | 
 |             // if the description began with "x.x" and contains bracketed | 
 |             // text, it describes both the improper fraction rule and | 
 |             // the proper fraction rule | 
 |             else if (rule1->getType() == kImproperFractionRule) { | 
 |                 rule2->setType(kProperFractionRule); | 
 |             } | 
 |  | 
 |             // if the description began with "x.0" and contains bracketed | 
 |             // text, it describes both the master rule and the | 
 |             // improper fraction rule | 
 |             else if (rule1->getType() == kMasterRule) { | 
 |                 rule2->baseValue = rule1->baseValue; | 
 |                 rule1->setType(kImproperFractionRule); | 
 |             } | 
 |  | 
 |             // both rules have the same radix and exponent (i.e., the | 
 |             // same divisor) | 
 |             rule2->radix = rule1->radix; | 
 |             rule2->exponent = rule1->exponent; | 
 |  | 
 |             // rule2's rule text omits the stuff in brackets: initalize | 
 |             // its rule text and substitutions accordingly | 
 |             sbuf.append(description, 0, brack1); | 
 |             if (brack2 + 1 < description.length()) { | 
 |                 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); | 
 |             } | 
 |             rule2->ruleText.setTo(sbuf); | 
 |             rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status); | 
 |         } | 
 |  | 
 |         // rule1's text includes the text in the brackets but omits | 
 |         // the brackets themselves: initialize _its_ rule text and | 
 |         // substitutions accordingly | 
 |         sbuf.setTo(description, 0, brack1); | 
 |         sbuf.append(description, brack1 + 1, brack2 - brack1 - 1); | 
 |         if (brack2 + 1 < description.length()) { | 
 |             sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); | 
 |         } | 
 |         rule1->ruleText.setTo(sbuf); | 
 |         rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status); | 
 |  | 
 |         // if we only have one rule, return it; if we have two, return | 
 |         // a two-element array containing them (notice that rule2 goes | 
 |         // BEFORE rule1 in the list: in all cases, rule2 OMITS the | 
 |         // material in the brackets and rule1 INCLUDES the material | 
 |         // in the brackets) | 
 |         if (rule2 != NULL) { | 
 |             rules.add(rule2); | 
 |         } | 
 |         rules.add(rule1); | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 |  * This function parses the rule's rule descriptor (i.e., the base | 
 |  * value and/or other tokens that precede the rule's rule text | 
 |  * in the description) and sets the rule's base value, radix, and | 
 |  * exponent according to the descriptor.  (If the description doesn't | 
 |  * include a rule descriptor, then this function sets everything to | 
 |  * default values and the rule set sets the rule's real base value). | 
 |  * @param description The rule's description | 
 |  * @return If "description" included a rule descriptor, this is | 
 |  * "description" with the descriptor and any trailing whitespace | 
 |  * stripped off.  Otherwise; it's "descriptor" unchangd. | 
 |  */ | 
 | void | 
 | NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status) | 
 | { | 
 |     // the description consists of a rule descriptor and a rule body, | 
 |     // separated by a colon.  The rule descriptor is optional.  If | 
 |     // it's omitted, just set the base value to 0. | 
 |     int32_t p = description.indexOf(gColon); | 
 |     if (p == -1) { | 
 |         setBaseValue((int32_t)0, status); | 
 |     } else { | 
 |         // copy the descriptor out into its own string and strip it, | 
 |         // along with any trailing whitespace, out of the original | 
 |         // description | 
 |         UnicodeString descriptor; | 
 |         descriptor.setTo(description, 0, p); | 
 |  | 
 |         ++p; | 
 |         while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) { | 
 |             ++p; | 
 |         } | 
 |         description.removeBetween(0, p); | 
 |  | 
 |         // check first to see if the rule descriptor matches the token | 
 |         // for one of the special rules.  If it does, set the base | 
 |         // value to the correct identfier value | 
 |         if (0 == descriptor.compare(gMinusX, 2)) { | 
 |             setType(kNegativeNumberRule); | 
 |         } | 
 |         else if (0 == descriptor.compare(gXDotX, 3)) { | 
 |             setType(kImproperFractionRule); | 
 |         } | 
 |         else if (0 == descriptor.compare(gZeroDotX, 3)) { | 
 |             setType(kProperFractionRule); | 
 |         } | 
 |         else if (0 == descriptor.compare(gXDotZero, 3)) { | 
 |             setType(kMasterRule); | 
 |         } | 
 |  | 
 |         // if the rule descriptor begins with a digit, it's a descriptor | 
 |         // for a normal rule | 
 |         // since we don't have Long.parseLong, and this isn't much work anyway, | 
 |         // just build up the value as we encounter the digits. | 
 |         else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) { | 
 |             int64_t val = 0; | 
 |             p = 0; | 
 |             UChar c = gSpace; | 
 |  | 
 |             // begin parsing the descriptor: copy digits | 
 |             // into "tempValue", skip periods, commas, and spaces, | 
 |             // stop on a slash or > sign (or at the end of the string), | 
 |             // and throw an exception on any other character | 
 |             int64_t ll_10 = 10; | 
 |             while (p < descriptor.length()) { | 
 |                 c = descriptor.charAt(p); | 
 |                 if (c >= gZero && c <= gNine) { | 
 |                     val = val * ll_10 + (int32_t)(c - gZero); | 
 |                 } | 
 |                 else if (c == gSlash || c == gGreaterThan) { | 
 |                     break; | 
 |                 } | 
 |                 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) { | 
 |                 } | 
 |                 else { | 
 |                     // throw new IllegalArgumentException("Illegal character in rule descriptor"); | 
 |                     status = U_PARSE_ERROR; | 
 |                     return; | 
 |                 } | 
 |                 ++p; | 
 |             } | 
 |  | 
 |             // we have the base value, so set it | 
 |             setBaseValue(val, status); | 
 |  | 
 |             // if we stopped the previous loop on a slash, we're | 
 |             // now parsing the rule's radix.  Again, accumulate digits | 
 |             // in tempValue, skip punctuation, stop on a > mark, and | 
 |             // throw an exception on anything else | 
 |             if (c == gSlash) { | 
 |                 val = 0; | 
 |                 ++p; | 
 |                 int64_t ll_10 = 10; | 
 |                 while (p < descriptor.length()) { | 
 |                     c = descriptor.charAt(p); | 
 |                     if (c >= gZero && c <= gNine) { | 
 |                         val = val * ll_10 + (int32_t)(c - gZero); | 
 |                     } | 
 |                     else if (c == gGreaterThan) { | 
 |                         break; | 
 |                     } | 
 |                     else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) { | 
 |                     } | 
 |                     else { | 
 |                         // throw new IllegalArgumentException("Illegal character is rule descriptor"); | 
 |                         status = U_PARSE_ERROR; | 
 |                         return; | 
 |                     } | 
 |                     ++p; | 
 |                 } | 
 |  | 
 |                 // tempValue now contain's the rule's radix.  Set it | 
 |                 // accordingly, and recalculate the rule's exponent | 
 |                 radix = (int32_t)val; | 
 |                 if (radix == 0) { | 
 |                     // throw new IllegalArgumentException("Rule can't have radix of 0"); | 
 |                     status = U_PARSE_ERROR; | 
 |                 } | 
 |  | 
 |                 exponent = expectedExponent(); | 
 |             } | 
 |  | 
 |             // if we stopped the previous loop on a > sign, then continue | 
 |             // for as long as we still see > signs.  For each one, | 
 |             // decrement the exponent (unless the exponent is already 0). | 
 |             // If we see another character before reaching the end of | 
 |             // the descriptor, that's also a syntax error. | 
 |             if (c == gGreaterThan) { | 
 |                 while (p < descriptor.length()) { | 
 |                     c = descriptor.charAt(p); | 
 |                     if (c == gGreaterThan && exponent > 0) { | 
 |                         --exponent; | 
 |                     } else { | 
 |                         // throw new IllegalArgumentException("Illegal character in rule descriptor"); | 
 |                         status = U_PARSE_ERROR; | 
 |                         return; | 
 |                     } | 
 |                     ++p; | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     // finally, if the rule body begins with an apostrophe, strip it off | 
 |     // (this is generally used to put whitespace at the beginning of | 
 |     // a rule's rule text) | 
 |     if (description.length() > 0 && description.charAt(0) == gTick) { | 
 |         description.removeBetween(0, 1); | 
 |     } | 
 |  | 
 |     // return the description with all the stuff we've just waded through | 
 |     // stripped off the front.  It now contains just the rule body. | 
 |     // return description; | 
 | } | 
 |  | 
 | /** | 
 | * Searches the rule's rule text for the substitution tokens, | 
 | * creates the substitutions, and removes the substitution tokens | 
 | * from the rule's rule text. | 
 | * @param owner The rule set containing this rule | 
 | * @param predecessor The rule preseding this one in "owners" rule list | 
 | * @param ownersOwner The RuleBasedFormat that owns this rule | 
 | */ | 
 | void | 
 | NFRule::extractSubstitutions(const NFRuleSet* ruleSet, | 
 |                              const NFRule* predecessor, | 
 |                              const RuleBasedNumberFormat* rbnf, | 
 |                              UErrorCode& status) | 
 | { | 
 |     if (U_SUCCESS(status)) { | 
 |         sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status); | 
 |         sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status); | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 | * Searches the rule's rule text for the first substitution token, | 
 | * creates a substitution based on it, and removes the token from | 
 | * the rule's rule text. | 
 | * @param owner The rule set containing this rule | 
 | * @param predecessor The rule preceding this one in the rule set's | 
 | * rule list | 
 | * @param ownersOwner The RuleBasedNumberFormat that owns this rule | 
 | * @return The newly-created substitution.  This is never null; if | 
 | * the rule text doesn't contain any substitution tokens, this will | 
 | * be a NullSubstitution. | 
 | */ | 
 | NFSubstitution * | 
 | NFRule::extractSubstitution(const NFRuleSet* ruleSet, | 
 |                             const NFRule* predecessor, | 
 |                             const RuleBasedNumberFormat* rbnf, | 
 |                             UErrorCode& status) | 
 | { | 
 |     NFSubstitution* result = NULL; | 
 |  | 
 |     // search the rule's rule text for the first two characters of | 
 |     // a substitution token | 
 |     int32_t subStart = indexOfAny(tokenStrings); | 
 |     int32_t subEnd = subStart; | 
 |  | 
 |     // if we didn't find one, create a null substitution positioned | 
 |     // at the end of the rule text | 
 |     if (subStart == -1) { | 
 |         return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor, | 
 |             ruleSet, rbnf, UnicodeString(), status); | 
 |     } | 
 |  | 
 |     // special-case the ">>>" token, since searching for the > at the | 
 |     // end will actually find the > in the middle | 
 |     if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) { | 
 |         subEnd = subStart + 2; | 
 |  | 
 |         // otherwise the substitution token ends with the same character | 
 |         // it began with | 
 |     } else { | 
 |         UChar c = ruleText.charAt(subStart); | 
 |         subEnd = ruleText.indexOf(c, subStart + 1); | 
 |         // special case for '<%foo<<' | 
 |         if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) { | 
 |             // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle | 
 |             // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack | 
 |             // to get around this.  Having the duplicate at the front would cause problems with | 
 |             // rules like "<<%" to format, say, percents... | 
 |             ++subEnd; | 
 |         } | 
 |    } | 
 |  | 
 |     // if we don't find the end of the token (i.e., if we're on a single, | 
 |     // unmatched token character), create a null substitution positioned | 
 |     // at the end of the rule | 
 |     if (subEnd == -1) { | 
 |         return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor, | 
 |             ruleSet, rbnf, UnicodeString(), status); | 
 |     } | 
 |  | 
 |     // if we get here, we have a real substitution token (or at least | 
 |     // some text bounded by substitution token characters).  Use | 
 |     // makeSubstitution() to create the right kind of substitution | 
 |     UnicodeString subToken; | 
 |     subToken.setTo(ruleText, subStart, subEnd + 1 - subStart); | 
 |     result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet, | 
 |         rbnf, subToken, status); | 
 |  | 
 |     // remove the substitution from the rule text | 
 |     ruleText.removeBetween(subStart, subEnd+1); | 
 |  | 
 |     return result; | 
 | } | 
 |  | 
 | /** | 
 |  * Sets the rule's base value, and causes the radix and exponent | 
 |  * to be recalculated.  This is used during construction when we | 
 |  * don't know the rule's base value until after it's been | 
 |  * constructed.  It should be used at any other time. | 
 |  * @param The new base value for the rule. | 
 |  */ | 
 | void | 
 | NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status) | 
 | { | 
 |     // set the base value | 
 |     baseValue = newBaseValue; | 
 |  | 
 |     // if this isn't a special rule, recalculate the radix and exponent | 
 |     // (the radix always defaults to 10; if it's supposed to be something | 
 |     // else, it's cleaned up by the caller and the exponent is | 
 |     // recalculated again-- the only function that does this is | 
 |     // NFRule.parseRuleDescriptor() ) | 
 |     if (baseValue >= 1) { | 
 |         radix = 10; | 
 |         exponent = expectedExponent(); | 
 |  | 
 |         // this function gets called on a fully-constructed rule whose | 
 |         // description didn't specify a base value.  This means it | 
 |         // has substitutions, and some substitutions hold on to copies | 
 |         // of the rule's divisor.  Fix their copies of the divisor. | 
 |         if (sub1 != NULL) { | 
 |             sub1->setDivisor(radix, exponent, status); | 
 |         } | 
 |         if (sub2 != NULL) { | 
 |             sub2->setDivisor(radix, exponent, status); | 
 |         } | 
 |  | 
 |         // if this is a special rule, its radix and exponent are basically | 
 |         // ignored.  Set them to "safe" default values | 
 |     } else { | 
 |         radix = 10; | 
 |         exponent = 0; | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 | * This calculates the rule's exponent based on its radix and base | 
 | * value.  This will be the highest power the radix can be raised to | 
 | * and still produce a result less than or equal to the base value. | 
 | */ | 
 | int16_t | 
 | NFRule::expectedExponent() const | 
 | { | 
 |     // since the log of 0, or the log base 0 of something, causes an | 
 |     // error, declare the exponent in these cases to be 0 (we also | 
 |     // deal with the special-rule identifiers here) | 
 |     if (radix == 0 || baseValue < 1) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     // we get rounding error in some cases-- for example, log 1000 / log 10 | 
 |     // gives us 1.9999999996 instead of 2.  The extra logic here is to take | 
 |     // that into account | 
 |     int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix)); | 
 |     int64_t temp = util64_pow(radix, tempResult + 1); | 
 |     if (temp <= baseValue) { | 
 |         tempResult += 1; | 
 |     } | 
 |     return tempResult; | 
 | } | 
 |  | 
 | /** | 
 |  * Searches the rule's rule text for any of the specified strings. | 
 |  * @param strings An array of strings to search the rule's rule | 
 |  * text for | 
 |  * @return The index of the first match in the rule's rule text | 
 |  * (i.e., the first substring in the rule's rule text that matches | 
 |  * _any_ of the strings in "strings").  If none of the strings in | 
 |  * "strings" is found in the rule's rule text, returns -1. | 
 |  */ | 
 | int32_t | 
 | NFRule::indexOfAny(const UChar* const strings[]) const | 
 | { | 
 |     int result = -1; | 
 |     for (int i = 0; strings[i]; i++) { | 
 |         int32_t pos = ruleText.indexOf(*strings[i]); | 
 |         if (pos != -1 && (result == -1 || pos < result)) { | 
 |             result = pos; | 
 |         } | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 | //----------------------------------------------------------------------- | 
 | // boilerplate | 
 | //----------------------------------------------------------------------- | 
 |  | 
 | /** | 
 | * Tests two rules for equality. | 
 | * @param that The rule to compare this one against | 
 | * @return True is the two rules are functionally equivalent | 
 | */ | 
 | UBool | 
 | NFRule::operator==(const NFRule& rhs) const | 
 | { | 
 |     return baseValue == rhs.baseValue | 
 |         && radix == rhs.radix | 
 |         && exponent == rhs.exponent | 
 |         && ruleText == rhs.ruleText | 
 |         && *sub1 == *rhs.sub1 | 
 |         && *sub2 == *rhs.sub2; | 
 | } | 
 |  | 
 | /** | 
 | * Returns a textual representation of the rule.  This won't | 
 | * necessarily be the same as the description that this rule | 
 | * was created with, but it will produce the same result. | 
 | * @return A textual description of the rule | 
 | */ | 
 | static void util_append64(UnicodeString& result, int64_t n) | 
 | { | 
 |     UChar buffer[256]; | 
 |     int32_t len = util64_tou(n, buffer, sizeof(buffer)); | 
 |     UnicodeString temp(buffer, len); | 
 |     result.append(temp); | 
 | } | 
 |  | 
 | void | 
 | NFRule::_appendRuleText(UnicodeString& result) const | 
 | { | 
 |     switch (getType()) { | 
 |     case kNegativeNumberRule: result.append(gMinusX, 2); break; | 
 |     case kImproperFractionRule: result.append(gXDotX, 3); break; | 
 |     case kProperFractionRule: result.append(gZeroDotX, 3); break; | 
 |     case kMasterRule: result.append(gXDotZero, 3); break; | 
 |     default: | 
 |         // for a normal rule, write out its base value, and if the radix is | 
 |         // something other than 10, write out the radix (with the preceding | 
 |         // slash, of course).  Then calculate the expected exponent and if | 
 |         // if isn't the same as the actual exponent, write an appropriate | 
 |         // number of > signs.  Finally, terminate the whole thing with | 
 |         // a colon. | 
 |         util_append64(result, baseValue); | 
 |         if (radix != 10) { | 
 |             result.append(gSlash); | 
 |             util_append64(result, radix); | 
 |         } | 
 |         int numCarets = expectedExponent() - exponent; | 
 |         for (int i = 0; i < numCarets; i++) { | 
 |             result.append(gGreaterThan); | 
 |         } | 
 |         break; | 
 |     } | 
 |     result.append(gColon); | 
 |     result.append(gSpace); | 
 |  | 
 |     // if the rule text begins with a space, write an apostrophe | 
 |     // (whitespace after the rule descriptor is ignored; the | 
 |     // apostrophe is used to make the whitespace significant) | 
 |     if (ruleText.charAt(0) == gSpace && sub1->getPos() != 0) { | 
 |         result.append(gTick); | 
 |     } | 
 |  | 
 |     // now, write the rule's rule text, inserting appropriate | 
 |     // substitution tokens in the appropriate places | 
 |     UnicodeString ruleTextCopy; | 
 |     ruleTextCopy.setTo(ruleText); | 
 |  | 
 |     UnicodeString temp; | 
 |     sub2->toString(temp); | 
 |     ruleTextCopy.insert(sub2->getPos(), temp); | 
 |     sub1->toString(temp); | 
 |     ruleTextCopy.insert(sub1->getPos(), temp); | 
 |  | 
 |     result.append(ruleTextCopy); | 
 |  | 
 |     // and finally, top the whole thing off with a semicolon and | 
 |     // return the result | 
 |     result.append(gSemicolon); | 
 | } | 
 |  | 
 | //----------------------------------------------------------------------- | 
 | // formatting | 
 | //----------------------------------------------------------------------- | 
 |  | 
 | /** | 
 | * Formats the number, and inserts the resulting text into | 
 | * toInsertInto. | 
 | * @param number The number being formatted | 
 | * @param toInsertInto The string where the resultant text should | 
 | * be inserted | 
 | * @param pos The position in toInsertInto where the resultant text | 
 | * should be inserted | 
 | */ | 
 | void | 
 | NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const | 
 | { | 
 |     // first, insert the rule's rule text into toInsertInto at the | 
 |     // specified position, then insert the results of the substitutions | 
 |     // into the right places in toInsertInto (notice we do the | 
 |     // substitutions in reverse order so that the offsets don't get | 
 |     // messed up) | 
 |     toInsertInto.insert(pos, ruleText); | 
 |     sub2->doSubstitution(number, toInsertInto, pos); | 
 |     sub1->doSubstitution(number, toInsertInto, pos); | 
 | } | 
 |  | 
 | /** | 
 | * Formats the number, and inserts the resulting text into | 
 | * toInsertInto. | 
 | * @param number The number being formatted | 
 | * @param toInsertInto The string where the resultant text should | 
 | * be inserted | 
 | * @param pos The position in toInsertInto where the resultant text | 
 | * should be inserted | 
 | */ | 
 | void | 
 | NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const | 
 | { | 
 |     // first, insert the rule's rule text into toInsertInto at the | 
 |     // specified position, then insert the results of the substitutions | 
 |     // into the right places in toInsertInto | 
 |     // [again, we have two copies of this routine that do the same thing | 
 |     // so that we don't sacrifice precision in a long by casting it | 
 |     // to a double] | 
 |     toInsertInto.insert(pos, ruleText); | 
 |     sub2->doSubstitution(number, toInsertInto, pos); | 
 |     sub1->doSubstitution(number, toInsertInto, pos); | 
 | } | 
 |  | 
 | /** | 
 | * Used by the owning rule set to determine whether to invoke the | 
 | * rollback rule (i.e., whether this rule or the one that precedes | 
 | * it in the rule set's list should be used to format the number) | 
 | * @param The number being formatted | 
 | * @return True if the rule set should use the rule that precedes | 
 | * this one in its list; false if it should use this rule | 
 | */ | 
 | UBool | 
 | NFRule::shouldRollBack(double number) const | 
 | { | 
 |     // we roll back if the rule contains a modulus substitution, | 
 |     // the number being formatted is an even multiple of the rule's | 
 |     // divisor, and the rule's base value is NOT an even multiple | 
 |     // of its divisor | 
 |     // In other words, if the original description had | 
 |     //    100: << hundred[ >>]; | 
 |     // that expands into | 
 |     //    100: << hundred; | 
 |     //    101: << hundred >>; | 
 |     // internally.  But when we're formatting 200, if we use the rule | 
 |     // at 101, which would normally apply, we get "two hundred zero". | 
 |     // To prevent this, we roll back and use the rule at 100 instead. | 
 |     // This is the logic that makes this happen: the rule at 101 has | 
 |     // a modulus substitution, its base value isn't an even multiple | 
 |     // of 100, and the value we're trying to format _is_ an even | 
 |     // multiple of 100.  This is called the "rollback rule." | 
 |     if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) { | 
 |         int64_t re = util64_pow(radix, exponent); | 
 |         return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0; | 
 |     } | 
 |     return FALSE; | 
 | } | 
 |  | 
 | //----------------------------------------------------------------------- | 
 | // parsing | 
 | //----------------------------------------------------------------------- | 
 |  | 
 | /** | 
 | * Attempts to parse the string with this rule. | 
 | * @param text The string being parsed | 
 | * @param parsePosition On entry, the value is ignored and assumed to | 
 | * be 0. On exit, this has been updated with the position of the first | 
 | * character not consumed by matching the text against this rule | 
 | * (if this rule doesn't match the text at all, the parse position | 
 | * if left unchanged (presumably at 0) and the function returns | 
 | * new Long(0)). | 
 | * @param isFractionRule True if this rule is contained within a | 
 | * fraction rule set.  This is only used if the rule has no | 
 | * substitutions. | 
 | * @return If this rule matched the text, this is the rule's base value | 
 | * combined appropriately with the results of parsing the substitutions. | 
 | * If nothing matched, this is new Long(0) and the parse position is | 
 | * left unchanged.  The result will be an instance of Long if the | 
 | * result is an integer and Double otherwise.  The result is never null. | 
 | */ | 
 | #ifdef RBNF_DEBUG | 
 | #include <stdio.h> | 
 |  | 
 | static void dumpUS(FILE* f, const UnicodeString& us) { | 
 |   int len = us.length(); | 
 |   char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; | 
 |   if (buf != NULL) { | 
 | 	  us.extract(0, len, buf); | 
 | 	  buf[len] = 0; | 
 | 	  fprintf(f, "%s", buf); | 
 | 	  uprv_free(buf); //delete[] buf; | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | UBool | 
 | NFRule::doParse(const UnicodeString& text, | 
 |                 ParsePosition& parsePosition, | 
 |                 UBool isFractionRule, | 
 |                 double upperBound, | 
 |                 Formattable& resVal) const | 
 | { | 
 |     // internally we operate on a copy of the string being parsed | 
 |     // (because we're going to change it) and use our own ParsePosition | 
 |     ParsePosition pp; | 
 |     UnicodeString workText(text); | 
 |  | 
 |     // check to see whether the text before the first substitution | 
 |     // matches the text at the beginning of the string being | 
 |     // parsed.  If it does, strip that off the front of workText; | 
 |     // otherwise, dump out with a mismatch | 
 |     UnicodeString prefix; | 
 |     prefix.setTo(ruleText, 0, sub1->getPos()); | 
 |  | 
 | #ifdef RBNF_DEBUG | 
 |     fprintf(stderr, "doParse %x ", this); | 
 |     { | 
 |         UnicodeString rt; | 
 |         _appendRuleText(rt); | 
 |         dumpUS(stderr, rt); | 
 |     } | 
 |  | 
 |     fprintf(stderr, " text: '", this); | 
 |     dumpUS(stderr, text); | 
 |     fprintf(stderr, "' prefix: '"); | 
 |     dumpUS(stderr, prefix); | 
 | #endif | 
 |     stripPrefix(workText, prefix, pp); | 
 |     int32_t prefixLength = text.length() - workText.length(); | 
 |  | 
 | #ifdef RBNF_DEBUG | 
 |     fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos()); | 
 | #endif | 
 |  | 
 |     if (pp.getIndex() == 0 && sub1->getPos() != 0) { | 
 |         // commented out because ParsePosition doesn't have error index in 1.1.x | 
 |         // restored for ICU4C port | 
 |         parsePosition.setErrorIndex(pp.getErrorIndex()); | 
 |         resVal.setLong(0); | 
 |         return TRUE; | 
 |     } | 
 |  | 
 |     // this is the fun part.  The basic guts of the rule-matching | 
 |     // logic is matchToDelimiter(), which is called twice.  The first | 
 |     // time it searches the input string for the rule text BETWEEN | 
 |     // the substitutions and tries to match the intervening text | 
 |     // in the input string with the first substitution.  If that | 
 |     // succeeds, it then calls it again, this time to look for the | 
 |     // rule text after the second substitution and to match the | 
 |     // intervening input text against the second substitution. | 
 |     // | 
 |     // For example, say we have a rule that looks like this: | 
 |     //    first << middle >> last; | 
 |     // and input text that looks like this: | 
 |     //    first one middle two last | 
 |     // First we use stripPrefix() to match "first " in both places and | 
 |     // strip it off the front, leaving | 
 |     //    one middle two last | 
 |     // Then we use matchToDelimiter() to match " middle " and try to | 
 |     // match "one" against a substitution.  If it's successful, we now | 
 |     // have | 
 |     //    two last | 
 |     // We use matchToDelimiter() a second time to match " last" and | 
 |     // try to match "two" against a substitution.  If "two" matches | 
 |     // the substitution, we have a successful parse. | 
 |     // | 
 |     // Since it's possible in many cases to find multiple instances | 
 |     // of each of these pieces of rule text in the input string, | 
 |     // we need to try all the possible combinations of these | 
 |     // locations.  This prevents us from prematurely declaring a mismatch, | 
 |     // and makes sure we match as much input text as we can. | 
 |     int highWaterMark = 0; | 
 |     double result = 0; | 
 |     int start = 0; | 
 |     double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue); | 
 |  | 
 |     UnicodeString temp; | 
 |     do { | 
 |         // our partial parse result starts out as this rule's base | 
 |         // value.  If it finds a successful match, matchToDelimiter() | 
 |         // will compose this in some way with what it gets back from | 
 |         // the substitution, giving us a new partial parse result | 
 |         pp.setIndex(0); | 
 |  | 
 |         temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos()); | 
 |         double partialResult = matchToDelimiter(workText, start, tempBaseValue, | 
 |             temp, pp, sub1, | 
 |             upperBound); | 
 |  | 
 |         // if we got a successful match (or were trying to match a | 
 |         // null substitution), pp is now pointing at the first unmatched | 
 |         // character.  Take note of that, and try matchToDelimiter() | 
 |         // on the input text again | 
 |         if (pp.getIndex() != 0 || sub1->isNullSubstitution()) { | 
 |             start = pp.getIndex(); | 
 |  | 
 |             UnicodeString workText2; | 
 |             workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex()); | 
 |             ParsePosition pp2; | 
 |  | 
 |             // the second matchToDelimiter() will compose our previous | 
 |             // partial result with whatever it gets back from its | 
 |             // substitution if there's a successful match, giving us | 
 |             // a real result | 
 |             temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos()); | 
 |             partialResult = matchToDelimiter(workText2, 0, partialResult, | 
 |                 temp, pp2, sub2, | 
 |                 upperBound); | 
 |  | 
 |             // if we got a successful match on this second | 
 |             // matchToDelimiter() call, update the high-water mark | 
 |             // and result (if necessary) | 
 |             if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) { | 
 |                 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) { | 
 |                     highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex(); | 
 |                     result = partialResult; | 
 |                 } | 
 |             } | 
 |             // commented out because ParsePosition doesn't have error index in 1.1.x | 
 |             // restored for ICU4C port | 
 |             else { | 
 |                 int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex(); | 
 |                 if (temp> parsePosition.getErrorIndex()) { | 
 |                     parsePosition.setErrorIndex(temp); | 
 |                 } | 
 |             } | 
 |         } | 
 |         // commented out because ParsePosition doesn't have error index in 1.1.x | 
 |         // restored for ICU4C port | 
 |         else { | 
 |             int32_t temp = sub1->getPos() + pp.getErrorIndex(); | 
 |             if (temp > parsePosition.getErrorIndex()) { | 
 |                 parsePosition.setErrorIndex(temp); | 
 |             } | 
 |         } | 
 |         // keep trying to match things until the outer matchToDelimiter() | 
 |         // call fails to make a match (each time, it picks up where it | 
 |         // left off the previous time) | 
 |     } while (sub1->getPos() != sub2->getPos() | 
 |         && pp.getIndex() > 0 | 
 |         && pp.getIndex() < workText.length() | 
 |         && pp.getIndex() != start); | 
 |  | 
 |     // update the caller's ParsePosition with our high-water mark | 
 |     // (i.e., it now points at the first character this function | 
 |     // didn't match-- the ParsePosition is therefore unchanged if | 
 |     // we didn't match anything) | 
 |     parsePosition.setIndex(highWaterMark); | 
 |     // commented out because ParsePosition doesn't have error index in 1.1.x | 
 |     // restored for ICU4C port | 
 |     if (highWaterMark > 0) { | 
 |         parsePosition.setErrorIndex(0); | 
 |     } | 
 |  | 
 |     // this is a hack for one unusual condition: Normally, whether this | 
 |     // rule belong to a fraction rule set or not is handled by its | 
 |     // substitutions.  But if that rule HAS NO substitutions, then | 
 |     // we have to account for it here.  By definition, if the matching | 
 |     // rule in a fraction rule set has no substitutions, its numerator | 
 |     // is 1, and so the result is the reciprocal of its base value. | 
 |     if (isFractionRule && | 
 |         highWaterMark > 0 && | 
 |         sub1->isNullSubstitution()) { | 
 |         result = 1 / result; | 
 |     } | 
 |  | 
 |     resVal.setDouble(result); | 
 |     return TRUE; // ??? do we need to worry if it is a long or a double? | 
 | } | 
 |  | 
 | /** | 
 | * This function is used by parse() to match the text being parsed | 
 | * against a possible prefix string.  This function | 
 | * matches characters from the beginning of the string being parsed | 
 | * to characters from the prospective prefix.  If they match, pp is | 
 | * updated to the first character not matched, and the result is | 
 | * the unparsed part of the string.  If they don't match, the whole | 
 | * string is returned, and pp is left unchanged. | 
 | * @param text The string being parsed | 
 | * @param prefix The text to match against | 
 | * @param pp On entry, ignored and assumed to be 0.  On exit, points | 
 | * to the first unmatched character (assuming the whole prefix matched), | 
 | * or is unchanged (if the whole prefix didn't match). | 
 | * @return If things match, this is the unparsed part of "text"; | 
 | * if they didn't match, this is "text". | 
 | */ | 
 | void | 
 | NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const | 
 | { | 
 |     // if the prefix text is empty, dump out without doing anything | 
 |     if (prefix.length() != 0) { | 
 |     	UErrorCode status = U_ZERO_ERROR; | 
 |         // use prefixLength() to match the beginning of | 
 |         // "text" against "prefix".  This function returns the | 
 |         // number of characters from "text" that matched (or 0 if | 
 |         // we didn't match the whole prefix) | 
 |         int32_t pfl = prefixLength(text, prefix, status); | 
 |         if (U_FAILURE(status)) { // Memory allocation error. | 
 |         	return; | 
 |         } | 
 |         if (pfl != 0) { | 
 |             // if we got a successful match, update the parse position | 
 |             // and strip the prefix off of "text" | 
 |             pp.setIndex(pp.getIndex() + pfl); | 
 |             text.remove(0, pfl); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 | * Used by parse() to match a substitution and any following text. | 
 | * "text" is searched for instances of "delimiter".  For each instance | 
 | * of delimiter, the intervening text is tested to see whether it | 
 | * matches the substitution.  The longest match wins. | 
 | * @param text The string being parsed | 
 | * @param startPos The position in "text" where we should start looking | 
 | * for "delimiter". | 
 | * @param baseValue A partial parse result (often the rule's base value), | 
 | * which is combined with the result from matching the substitution | 
 | * @param delimiter The string to search "text" for. | 
 | * @param pp Ignored and presumed to be 0 on entry.  If there's a match, | 
 | * on exit this will point to the first unmatched character. | 
 | * @param sub If we find "delimiter" in "text", this substitution is used | 
 | * to match the text between the beginning of the string and the | 
 | * position of "delimiter."  (If "delimiter" is the empty string, then | 
 | * this function just matches against this substitution and updates | 
 | * everything accordingly.) | 
 | * @param upperBound When matching the substitution, it will only | 
 | * consider rules with base values lower than this value. | 
 | * @return If there's a match, this is the result of composing | 
 | * baseValue with the result of matching the substitution.  Otherwise, | 
 | * this is new Long(0).  It's never null.  If the result is an integer, | 
 | * this will be an instance of Long; otherwise, it's an instance of | 
 | * Double. | 
 | * | 
 | * !!! note {dlf} in point of fact, in the java code the caller always converts | 
 | * the result to a double, so we might as well return one. | 
 | */ | 
 | double | 
 | NFRule::matchToDelimiter(const UnicodeString& text, | 
 |                          int32_t startPos, | 
 |                          double _baseValue, | 
 |                          const UnicodeString& delimiter, | 
 |                          ParsePosition& pp, | 
 |                          const NFSubstitution* sub, | 
 |                          double upperBound) const | 
 | { | 
 | 	UErrorCode status = U_ZERO_ERROR; | 
 |     // if "delimiter" contains real (i.e., non-ignorable) text, search | 
 |     // it for "delimiter" beginning at "start".  If that succeeds, then | 
 |     // use "sub"'s doParse() method to match the text before the | 
 |     // instance of "delimiter" we just found. | 
 |     if (!allIgnorable(delimiter, status)) { | 
 |     	if (U_FAILURE(status)) { //Memory allocation error. | 
 |     		return 0; | 
 |     	} | 
 |         ParsePosition tempPP; | 
 |         Formattable result; | 
 |  | 
 |         // use findText() to search for "delimiter".  It returns a two- | 
 |         // element array: element 0 is the position of the match, and | 
 |         // element 1 is the number of characters that matched | 
 |         // "delimiter". | 
 |         int32_t dLen; | 
 |         int32_t dPos = findText(text, delimiter, startPos, &dLen); | 
 |  | 
 |         // if findText() succeeded, isolate the text preceding the | 
 |         // match, and use "sub" to match that text | 
 |         while (dPos >= 0) { | 
 |             UnicodeString subText; | 
 |             subText.setTo(text, 0, dPos); | 
 |             if (subText.length() > 0) { | 
 |                 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound, | 
 | #if UCONFIG_NO_COLLATION | 
 |                     FALSE, | 
 | #else | 
 |                     formatter->isLenient(), | 
 | #endif | 
 |                     result); | 
 |  | 
 |                 // if the substitution could match all the text up to | 
 |                 // where we found "delimiter", then this function has | 
 |                 // a successful match.  Bump the caller's parse position | 
 |                 // to point to the first character after the text | 
 |                 // that matches "delimiter", and return the result | 
 |                 // we got from parsing the substitution. | 
 |                 if (success && tempPP.getIndex() == dPos) { | 
 |                     pp.setIndex(dPos + dLen); | 
 |                     return result.getDouble(); | 
 |                 } | 
 |                 // commented out because ParsePosition doesn't have error index in 1.1.x | 
 |                 // restored for ICU4C port | 
 |                 else { | 
 |                     if (tempPP.getErrorIndex() > 0) { | 
 |                         pp.setErrorIndex(tempPP.getErrorIndex()); | 
 |                     } else { | 
 |                         pp.setErrorIndex(tempPP.getIndex()); | 
 |                     } | 
 |                 } | 
 |             } | 
 |  | 
 |             // if we didn't match the substitution, search for another | 
 |             // copy of "delimiter" in "text" and repeat the loop if | 
 |             // we find it | 
 |             tempPP.setIndex(0); | 
 |             dPos = findText(text, delimiter, dPos + dLen, &dLen); | 
 |         } | 
 |         // if we make it here, this was an unsuccessful match, and we | 
 |         // leave pp unchanged and return 0 | 
 |         pp.setIndex(0); | 
 |         return 0; | 
 |  | 
 |         // if "delimiter" is empty, or consists only of ignorable characters | 
 |         // (i.e., is semantically empty), thwe we obviously can't search | 
 |         // for "delimiter".  Instead, just use "sub" to parse as much of | 
 |         // "text" as possible. | 
 |     } else { | 
 |         ParsePosition tempPP; | 
 |         Formattable result; | 
 |  | 
 |         // try to match the whole string against the substitution | 
 |         UBool success = sub->doParse(text, tempPP, _baseValue, upperBound, | 
 | #if UCONFIG_NO_COLLATION | 
 |             FALSE, | 
 | #else | 
 |             formatter->isLenient(), | 
 | #endif | 
 |             result); | 
 |         if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) { | 
 |             // if there's a successful match (or it's a null | 
 |             // substitution), update pp to point to the first | 
 |             // character we didn't match, and pass the result from | 
 |             // sub.doParse() on through to the caller | 
 |             pp.setIndex(tempPP.getIndex()); | 
 |             return result.getDouble(); | 
 |         } | 
 |         // commented out because ParsePosition doesn't have error index in 1.1.x | 
 |         // restored for ICU4C port | 
 |         else { | 
 |             pp.setErrorIndex(tempPP.getErrorIndex()); | 
 |         } | 
 |  | 
 |         // and if we get to here, then nothing matched, so we return | 
 |         // 0 and leave pp alone | 
 |         return 0; | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 | * Used by stripPrefix() to match characters.  If lenient parse mode | 
 | * is off, this just calls startsWith().  If lenient parse mode is on, | 
 | * this function uses CollationElementIterators to match characters in | 
 | * the strings (only primary-order differences are significant in | 
 | * determining whether there's a match). | 
 | * @param str The string being tested | 
 | * @param prefix The text we're hoping to see at the beginning | 
 | * of "str" | 
 | * @return If "prefix" is found at the beginning of "str", this | 
 | * is the number of characters in "str" that were matched (this | 
 | * isn't necessarily the same as the length of "prefix" when matching | 
 | * text with a collator).  If there's no match, this is 0. | 
 | */ | 
 | int32_t | 
 | NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const | 
 | { | 
 |     // if we're looking for an empty prefix, it obviously matches | 
 |     // zero characters.  Just go ahead and return 0. | 
 |     if (prefix.length() == 0) { | 
 |         return 0; | 
 |     } | 
 |  | 
 | #if !UCONFIG_NO_COLLATION | 
 |     // go through all this grief if we're in lenient-parse mode | 
 |     if (formatter->isLenient()) { | 
 |         // get the formatter's collator and use it to create two | 
 |         // collation element iterators, one over the target string | 
 |         // and another over the prefix (right now, we'll throw an | 
 |         // exception if the collator we get back from the formatter | 
 |         // isn't a RuleBasedCollator, because RuleBasedCollator defines | 
 |         // the CollationElementIterator protocol.  Hopefully, this | 
 |         // will change someday.) | 
 |         RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator(); | 
 |         CollationElementIterator* strIter = collator->createCollationElementIterator(str); | 
 |         CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix); | 
 |         // Check for memory allocation error. | 
 |         if (collator == NULL || strIter == NULL || prefixIter == NULL) { | 
 |         	delete collator; | 
 |         	delete strIter; | 
 |         	delete prefixIter; | 
 |         	status = U_MEMORY_ALLOCATION_ERROR; | 
 |         	return 0; | 
 |         } | 
 |  | 
 |         UErrorCode err = U_ZERO_ERROR; | 
 |  | 
 |         // The original code was problematic.  Consider this match: | 
 |         // prefix = "fifty-" | 
 |         // string = " fifty-7" | 
 |         // The intent is to match string up to the '7', by matching 'fifty-' at position 1 | 
 |         // in the string.  Unfortunately, we were getting a match, and then computing where | 
 |         // the match terminated by rematching the string.  The rematch code was using as an | 
 |         // initial guess the substring of string between 0 and prefix.length.  Because of | 
 |         // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving | 
 |         // the position before the hyphen in the string.  Recursing down, we then parsed the | 
 |         // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7). | 
 |         // This was not pretty, especially since the string "fifty-7" parsed just fine. | 
 |         // | 
 |         // We have newer APIs now, so we can use calls on the iterator to determine what we | 
 |         // matched up to.  If we terminate because we hit the last element in the string, | 
 |         // our match terminates at this length.  If we terminate because we hit the last element | 
 |         // in the target, our match terminates at one before the element iterator position. | 
 |  | 
 |         // match collation elements between the strings | 
 |         int32_t oStr = strIter->next(err); | 
 |         int32_t oPrefix = prefixIter->next(err); | 
 |  | 
 |         while (oPrefix != CollationElementIterator::NULLORDER) { | 
 |             // skip over ignorable characters in the target string | 
 |             while (CollationElementIterator::primaryOrder(oStr) == 0 | 
 |                 && oStr != CollationElementIterator::NULLORDER) { | 
 |                 oStr = strIter->next(err); | 
 |             } | 
 |  | 
 |             // skip over ignorable characters in the prefix | 
 |             while (CollationElementIterator::primaryOrder(oPrefix) == 0 | 
 |                 && oPrefix != CollationElementIterator::NULLORDER) { | 
 |                 oPrefix = prefixIter->next(err); | 
 |             } | 
 |  | 
 |             // dlf: move this above following test, if we consume the | 
 |             // entire target, aren't we ok even if the source was also | 
 |             // entirely consumed? | 
 |  | 
 |             // if skipping over ignorables brought to the end of | 
 |             // the prefix, we DID match: drop out of the loop | 
 |             if (oPrefix == CollationElementIterator::NULLORDER) { | 
 |                 break; | 
 |             } | 
 |  | 
 |             // if skipping over ignorables brought us to the end | 
 |             // of the target string, we didn't match and return 0 | 
 |             if (oStr == CollationElementIterator::NULLORDER) { | 
 |                 delete prefixIter; | 
 |                 delete strIter; | 
 |                 return 0; | 
 |             } | 
 |  | 
 |             // match collation elements from the two strings | 
 |             // (considering only primary differences).  If we | 
 |             // get a mismatch, dump out and return 0 | 
 |             if (CollationElementIterator::primaryOrder(oStr) | 
 |                 != CollationElementIterator::primaryOrder(oPrefix)) { | 
 |                 delete prefixIter; | 
 |                 delete strIter; | 
 |                 return 0; | 
 |  | 
 |                 // otherwise, advance to the next character in each string | 
 |                 // and loop (we drop out of the loop when we exhaust | 
 |                 // collation elements in the prefix) | 
 |             } else { | 
 |                 oStr = strIter->next(err); | 
 |                 oPrefix = prefixIter->next(err); | 
 |             } | 
 |         } | 
 |  | 
 |         int32_t result = strIter->getOffset(); | 
 |         if (oStr != CollationElementIterator::NULLORDER) { | 
 |             --result; // back over character that we don't want to consume; | 
 |         } | 
 |  | 
 | #ifdef RBNF_DEBUG | 
 |         fprintf(stderr, "prefix length: %d\n", result); | 
 | #endif | 
 |         delete prefixIter; | 
 |         delete strIter; | 
 |  | 
 |         return result; | 
 | #if 0 | 
 |         //---------------------------------------------------------------- | 
 |         // JDK 1.2-specific API call | 
 |         // return strIter.getOffset(); | 
 |         //---------------------------------------------------------------- | 
 |         // JDK 1.1 HACK (take out for 1.2-specific code) | 
 |  | 
 |         // if we make it to here, we have a successful match.  Now we | 
 |         // have to find out HOW MANY characters from the target string | 
 |         // matched the prefix (there isn't necessarily a one-to-one | 
 |         // mapping between collation elements and characters). | 
 |         // In JDK 1.2, there's a simple getOffset() call we can use. | 
 |         // In JDK 1.1, on the other hand, we have to go through some | 
 |         // ugly contortions.  First, use the collator to compare the | 
 |         // same number of characters from the prefix and target string. | 
 |         // If they're equal, we're done. | 
 |         collator->setStrength(Collator::PRIMARY); | 
 |         if (str.length() >= prefix.length()) { | 
 |             UnicodeString temp; | 
 |             temp.setTo(str, 0, prefix.length()); | 
 |             if (collator->equals(temp, prefix)) { | 
 | #ifdef RBNF_DEBUG | 
 |                 fprintf(stderr, "returning: %d\n", prefix.length()); | 
 | #endif | 
 |                 return prefix.length(); | 
 |             } | 
 |         } | 
 |  | 
 |         // if they're not equal, then we have to compare successively | 
 |         // larger and larger substrings of the target string until we | 
 |         // get to one that matches the prefix.  At that point, we know | 
 |         // how many characters matched the prefix, and we can return. | 
 |         int32_t p = 1; | 
 |         while (p <= str.length()) { | 
 |             UnicodeString temp; | 
 |             temp.setTo(str, 0, p); | 
 |             if (collator->equals(temp, prefix)) { | 
 |                 return p; | 
 |             } else { | 
 |                 ++p; | 
 |             } | 
 |         } | 
 |  | 
 |         // SHOULD NEVER GET HERE!!! | 
 |         return 0; | 
 |         //---------------------------------------------------------------- | 
 | #endif | 
 |  | 
 |         // If lenient parsing is turned off, forget all that crap above. | 
 |         // Just use String.startsWith() and be done with it. | 
 |   } else | 
 | #endif | 
 |   { | 
 |       if (str.startsWith(prefix)) { | 
 |           return prefix.length(); | 
 |       } else { | 
 |           return 0; | 
 |       } | 
 |   } | 
 | } | 
 |  | 
 | /** | 
 | * Searches a string for another string.  If lenient parsing is off, | 
 | * this just calls indexOf().  If lenient parsing is on, this function | 
 | * uses CollationElementIterator to match characters, and only | 
 | * primary-order differences are significant in determining whether | 
 | * there's a match. | 
 | * @param str The string to search | 
 | * @param key The string to search "str" for | 
 | * @param startingAt The index into "str" where the search is to | 
 | * begin | 
 | * @return A two-element array of ints.  Element 0 is the position | 
 | * of the match, or -1 if there was no match.  Element 1 is the | 
 | * number of characters in "str" that matched (which isn't necessarily | 
 | * the same as the length of "key") | 
 | */ | 
 | int32_t | 
 | NFRule::findText(const UnicodeString& str, | 
 |                  const UnicodeString& key, | 
 |                  int32_t startingAt, | 
 |                  int32_t* length) const | 
 | { | 
 | #if !UCONFIG_NO_COLLATION | 
 |     // if lenient parsing is turned off, this is easy: just call | 
 |     // String.indexOf() and we're done | 
 |     if (!formatter->isLenient()) { | 
 |         *length = key.length(); | 
 |         return str.indexOf(key, startingAt); | 
 |  | 
 |         // but if lenient parsing is turned ON, we've got some work | 
 |         // ahead of us | 
 |     } else | 
 | #endif | 
 |     { | 
 |         //---------------------------------------------------------------- | 
 |         // JDK 1.1 HACK (take out of 1.2-specific code) | 
 |  | 
 |         // in JDK 1.2, CollationElementIterator provides us with an | 
 |         // API to map between character offsets and collation elements | 
 |         // and we can do this by marching through the string comparing | 
 |         // collation elements.  We can't do that in JDK 1.1.  Insted, | 
 |         // we have to go through this horrible slow mess: | 
 |         int32_t p = startingAt; | 
 |         int32_t keyLen = 0; | 
 |  | 
 |         // basically just isolate smaller and smaller substrings of | 
 |         // the target string (each running to the end of the string, | 
 |         // and with the first one running from startingAt to the end) | 
 |         // and then use prefixLength() to see if the search key is at | 
 |         // the beginning of each substring.  This is excruciatingly | 
 |         // slow, but it will locate the key and tell use how long the | 
 |         // matching text was. | 
 |         UnicodeString temp; | 
 |         UErrorCode status = U_ZERO_ERROR; | 
 |         while (p < str.length() && keyLen == 0) { | 
 |             temp.setTo(str, p, str.length() - p); | 
 |             keyLen = prefixLength(temp, key, status); | 
 |             if (U_FAILURE(status)) { | 
 |             	break; | 
 |             } | 
 |             if (keyLen != 0) { | 
 |                 *length = keyLen; | 
 |                 return p; | 
 |             } | 
 |             ++p; | 
 |         } | 
 |         // if we make it to here, we didn't find it.  Return -1 for the | 
 |         // location.  The length should be ignored, but set it to 0, | 
 |         // which should be "safe" | 
 |         *length = 0; | 
 |         return -1; | 
 |  | 
 |         //---------------------------------------------------------------- | 
 |         // JDK 1.2 version of this routine | 
 |         //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator(); | 
 |         // | 
 |         //CollationElementIterator strIter = collator.getCollationElementIterator(str); | 
 |         //CollationElementIterator keyIter = collator.getCollationElementIterator(key); | 
 |         // | 
 |         //int keyStart = -1; | 
 |         // | 
 |         //str.setOffset(startingAt); | 
 |         // | 
 |         //int oStr = strIter.next(); | 
 |         //int oKey = keyIter.next(); | 
 |         //while (oKey != CollationElementIterator.NULLORDER) { | 
 |         //    while (oStr != CollationElementIterator.NULLORDER && | 
 |         //                CollationElementIterator.primaryOrder(oStr) == 0) | 
 |         //        oStr = strIter.next(); | 
 |         // | 
 |         //    while (oKey != CollationElementIterator.NULLORDER && | 
 |         //                CollationElementIterator.primaryOrder(oKey) == 0) | 
 |         //        oKey = keyIter.next(); | 
 |         // | 
 |         //    if (oStr == CollationElementIterator.NULLORDER) { | 
 |         //        return new int[] { -1, 0 }; | 
 |         //    } | 
 |         // | 
 |         //    if (oKey == CollationElementIterator.NULLORDER) { | 
 |         //        break; | 
 |         //    } | 
 |         // | 
 |         //    if (CollationElementIterator.primaryOrder(oStr) == | 
 |         //            CollationElementIterator.primaryOrder(oKey)) { | 
 |         //        keyStart = strIter.getOffset(); | 
 |         //        oStr = strIter.next(); | 
 |         //        oKey = keyIter.next(); | 
 |         //    } else { | 
 |         //        if (keyStart != -1) { | 
 |         //            keyStart = -1; | 
 |         //            keyIter.reset(); | 
 |         //        } else { | 
 |         //            oStr = strIter.next(); | 
 |         //        } | 
 |         //    } | 
 |         //} | 
 |         // | 
 |         //if (oKey == CollationElementIterator.NULLORDER) { | 
 |         //    return new int[] { keyStart, strIter.getOffset() - keyStart }; | 
 |         //} else { | 
 |         //    return new int[] { -1, 0 }; | 
 |         //} | 
 |     } | 
 | } | 
 |  | 
 | /** | 
 | * Checks to see whether a string consists entirely of ignorable | 
 | * characters. | 
 | * @param str The string to test. | 
 | * @return true if the string is empty of consists entirely of | 
 | * characters that the number formatter's collator says are | 
 | * ignorable at the primary-order level.  false otherwise. | 
 | */ | 
 | UBool | 
 | NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const | 
 | { | 
 |     // if the string is empty, we can just return true | 
 |     if (str.length() == 0) { | 
 |         return TRUE; | 
 |     } | 
 |  | 
 | #if !UCONFIG_NO_COLLATION | 
 |     // if lenient parsing is turned on, walk through the string with | 
 |     // a collation element iterator and make sure each collation | 
 |     // element is 0 (ignorable) at the primary level | 
 |     if (formatter->isLenient()) { | 
 |         RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator()); | 
 |         CollationElementIterator* iter = collator->createCollationElementIterator(str); | 
 |          | 
 |         // Memory allocation error check. | 
 |         if (collator == NULL || iter == NULL) { | 
 |         	delete collator; | 
 |         	delete iter; | 
 |         	status = U_MEMORY_ALLOCATION_ERROR; | 
 |         	return FALSE; | 
 |         } | 
 |  | 
 |         UErrorCode err = U_ZERO_ERROR; | 
 |         int32_t o = iter->next(err); | 
 |         while (o != CollationElementIterator::NULLORDER | 
 |             && CollationElementIterator::primaryOrder(o) == 0) { | 
 |             o = iter->next(err); | 
 |         } | 
 |  | 
 |         delete iter; | 
 |         return o == CollationElementIterator::NULLORDER; | 
 |     } | 
 | #endif | 
 |  | 
 |     // if lenient parsing is turned off, there is no such thing as | 
 |     // an ignorable character: return true only if the string is empty | 
 |     return FALSE; | 
 | } | 
 |  | 
 | U_NAMESPACE_END | 
 |  | 
 | /* U_HAVE_RBNF */ | 
 | #endif | 
 |  | 
 |  |