| // © 2018 and later: Unicode, Inc. and others. | 
 | // License & terms of use: http://www.unicode.org/copyright.html | 
 | // | 
 | // From the double-conversion library. Original license: | 
 | // | 
 | // Copyright 2012 the V8 project authors. All rights reserved. | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | //       notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | //       copyright notice, this list of conditions and the following | 
 | //       disclaimer in the documentation and/or other materials provided | 
 | //       with the distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | //       contributors may be used to endorse or promote products derived | 
 | //       from this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING | 
 | #include "unicode/utypes.h" | 
 | #if !UCONFIG_NO_FORMATTING | 
 |  | 
 | #ifndef DOUBLE_CONVERSION_DOUBLE_H_ | 
 | #define DOUBLE_CONVERSION_DOUBLE_H_ | 
 |  | 
 | // ICU PATCH: Customize header file paths for ICU. | 
 |  | 
 | #include "double-conversion-diy-fp.h" | 
 |  | 
 | // ICU PATCH: Wrap in ICU namespace | 
 | U_NAMESPACE_BEGIN | 
 |  | 
 | namespace double_conversion { | 
 |  | 
 | // We assume that doubles and uint64_t have the same endianness. | 
 | static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); } | 
 | static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); } | 
 | static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); } | 
 | static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); } | 
 |  | 
 | // Helper functions for doubles. | 
 | class Double { | 
 |  public: | 
 |   static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000); | 
 |   static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000); | 
 |   static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF); | 
 |   static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000); | 
 |   static const int kPhysicalSignificandSize = 52;  // Excludes the hidden bit. | 
 |   static const int kSignificandSize = 53; | 
 |  | 
 |   Double() : d64_(0) {} | 
 |   explicit Double(double d) : d64_(double_to_uint64(d)) {} | 
 |   explicit Double(uint64_t d64) : d64_(d64) {} | 
 |   explicit Double(DiyFp diy_fp) | 
 |     : d64_(DiyFpToUint64(diy_fp)) {} | 
 |  | 
 |   // The value encoded by this Double must be greater or equal to +0.0. | 
 |   // It must not be special (infinity, or NaN). | 
 |   DiyFp AsDiyFp() const { | 
 |     ASSERT(Sign() > 0); | 
 |     ASSERT(!IsSpecial()); | 
 |     return DiyFp(Significand(), Exponent()); | 
 |   } | 
 |  | 
 |   // The value encoded by this Double must be strictly greater than 0. | 
 |   DiyFp AsNormalizedDiyFp() const { | 
 |     ASSERT(value() > 0.0); | 
 |     uint64_t f = Significand(); | 
 |     int e = Exponent(); | 
 |  | 
 |     // The current double could be a denormal. | 
 |     while ((f & kHiddenBit) == 0) { | 
 |       f <<= 1; | 
 |       e--; | 
 |     } | 
 |     // Do the final shifts in one go. | 
 |     f <<= DiyFp::kSignificandSize - kSignificandSize; | 
 |     e -= DiyFp::kSignificandSize - kSignificandSize; | 
 |     return DiyFp(f, e); | 
 |   } | 
 |  | 
 |   // Returns the double's bit as uint64. | 
 |   uint64_t AsUint64() const { | 
 |     return d64_; | 
 |   } | 
 |  | 
 |   // Returns the next greater double. Returns +infinity on input +infinity. | 
 |   double NextDouble() const { | 
 |     if (d64_ == kInfinity) return Double(kInfinity).value(); | 
 |     if (Sign() < 0 && Significand() == 0) { | 
 |       // -0.0 | 
 |       return 0.0; | 
 |     } | 
 |     if (Sign() < 0) { | 
 |       return Double(d64_ - 1).value(); | 
 |     } else { | 
 |       return Double(d64_ + 1).value(); | 
 |     } | 
 |   } | 
 |  | 
 |   double PreviousDouble() const { | 
 |     if (d64_ == (kInfinity | kSignMask)) return -Infinity(); | 
 |     if (Sign() < 0) { | 
 |       return Double(d64_ + 1).value(); | 
 |     } else { | 
 |       if (Significand() == 0) return -0.0; | 
 |       return Double(d64_ - 1).value(); | 
 |     } | 
 |   } | 
 |  | 
 |   int Exponent() const { | 
 |     if (IsDenormal()) return kDenormalExponent; | 
 |  | 
 |     uint64_t d64 = AsUint64(); | 
 |     int biased_e = | 
 |         static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize); | 
 |     return biased_e - kExponentBias; | 
 |   } | 
 |  | 
 |   uint64_t Significand() const { | 
 |     uint64_t d64 = AsUint64(); | 
 |     uint64_t significand = d64 & kSignificandMask; | 
 |     if (!IsDenormal()) { | 
 |       return significand + kHiddenBit; | 
 |     } else { | 
 |       return significand; | 
 |     } | 
 |   } | 
 |  | 
 |   // Returns true if the double is a denormal. | 
 |   bool IsDenormal() const { | 
 |     uint64_t d64 = AsUint64(); | 
 |     return (d64 & kExponentMask) == 0; | 
 |   } | 
 |  | 
 |   // We consider denormals not to be special. | 
 |   // Hence only Infinity and NaN are special. | 
 |   bool IsSpecial() const { | 
 |     uint64_t d64 = AsUint64(); | 
 |     return (d64 & kExponentMask) == kExponentMask; | 
 |   } | 
 |  | 
 |   bool IsNan() const { | 
 |     uint64_t d64 = AsUint64(); | 
 |     return ((d64 & kExponentMask) == kExponentMask) && | 
 |         ((d64 & kSignificandMask) != 0); | 
 |   } | 
 |  | 
 |   bool IsInfinite() const { | 
 |     uint64_t d64 = AsUint64(); | 
 |     return ((d64 & kExponentMask) == kExponentMask) && | 
 |         ((d64 & kSignificandMask) == 0); | 
 |   } | 
 |  | 
 |   int Sign() const { | 
 |     uint64_t d64 = AsUint64(); | 
 |     return (d64 & kSignMask) == 0? 1: -1; | 
 |   } | 
 |  | 
 |   // Precondition: the value encoded by this Double must be greater or equal | 
 |   // than +0.0. | 
 |   DiyFp UpperBoundary() const { | 
 |     ASSERT(Sign() > 0); | 
 |     return DiyFp(Significand() * 2 + 1, Exponent() - 1); | 
 |   } | 
 |  | 
 |   // Computes the two boundaries of this. | 
 |   // The bigger boundary (m_plus) is normalized. The lower boundary has the same | 
 |   // exponent as m_plus. | 
 |   // Precondition: the value encoded by this Double must be greater than 0. | 
 |   void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { | 
 |     ASSERT(value() > 0.0); | 
 |     DiyFp v = this->AsDiyFp(); | 
 |     DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); | 
 |     DiyFp m_minus; | 
 |     if (LowerBoundaryIsCloser()) { | 
 |       m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); | 
 |     } else { | 
 |       m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); | 
 |     } | 
 |     m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); | 
 |     m_minus.set_e(m_plus.e()); | 
 |     *out_m_plus = m_plus; | 
 |     *out_m_minus = m_minus; | 
 |   } | 
 |  | 
 |   bool LowerBoundaryIsCloser() const { | 
 |     // The boundary is closer if the significand is of the form f == 2^p-1 then | 
 |     // the lower boundary is closer. | 
 |     // Think of v = 1000e10 and v- = 9999e9. | 
 |     // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but | 
 |     // at a distance of 1e8. | 
 |     // The only exception is for the smallest normal: the largest denormal is | 
 |     // at the same distance as its successor. | 
 |     // Note: denormals have the same exponent as the smallest normals. | 
 |     bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0); | 
 |     return physical_significand_is_zero && (Exponent() != kDenormalExponent); | 
 |   } | 
 |  | 
 |   double value() const { return uint64_to_double(d64_); } | 
 |  | 
 |   // Returns the significand size for a given order of magnitude. | 
 |   // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude. | 
 |   // This function returns the number of significant binary digits v will have | 
 |   // once it's encoded into a double. In almost all cases this is equal to | 
 |   // kSignificandSize. The only exceptions are denormals. They start with | 
 |   // leading zeroes and their effective significand-size is hence smaller. | 
 |   static int SignificandSizeForOrderOfMagnitude(int order) { | 
 |     if (order >= (kDenormalExponent + kSignificandSize)) { | 
 |       return kSignificandSize; | 
 |     } | 
 |     if (order <= kDenormalExponent) return 0; | 
 |     return order - kDenormalExponent; | 
 |   } | 
 |  | 
 |   static double Infinity() { | 
 |     return Double(kInfinity).value(); | 
 |   } | 
 |  | 
 |   static double NaN() { | 
 |     return Double(kNaN).value(); | 
 |   } | 
 |  | 
 |  private: | 
 |   static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; | 
 |   static const int kDenormalExponent = -kExponentBias + 1; | 
 |   static const int kMaxExponent = 0x7FF - kExponentBias; | 
 |   static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000); | 
 |   static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000); | 
 |  | 
 |   const uint64_t d64_; | 
 |  | 
 |   static uint64_t DiyFpToUint64(DiyFp diy_fp) { | 
 |     uint64_t significand = diy_fp.f(); | 
 |     int exponent = diy_fp.e(); | 
 |     while (significand > kHiddenBit + kSignificandMask) { | 
 |       significand >>= 1; | 
 |       exponent++; | 
 |     } | 
 |     if (exponent >= kMaxExponent) { | 
 |       return kInfinity; | 
 |     } | 
 |     if (exponent < kDenormalExponent) { | 
 |       return 0; | 
 |     } | 
 |     while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { | 
 |       significand <<= 1; | 
 |       exponent--; | 
 |     } | 
 |     uint64_t biased_exponent; | 
 |     if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { | 
 |       biased_exponent = 0; | 
 |     } else { | 
 |       biased_exponent = static_cast<uint64_t>(exponent + kExponentBias); | 
 |     } | 
 |     return (significand & kSignificandMask) | | 
 |         (biased_exponent << kPhysicalSignificandSize); | 
 |   } | 
 |  | 
 |   DC_DISALLOW_COPY_AND_ASSIGN(Double); | 
 | }; | 
 |  | 
 | class Single { | 
 |  public: | 
 |   static const uint32_t kSignMask = 0x80000000; | 
 |   static const uint32_t kExponentMask = 0x7F800000; | 
 |   static const uint32_t kSignificandMask = 0x007FFFFF; | 
 |   static const uint32_t kHiddenBit = 0x00800000; | 
 |   static const int kPhysicalSignificandSize = 23;  // Excludes the hidden bit. | 
 |   static const int kSignificandSize = 24; | 
 |  | 
 |   Single() : d32_(0) {} | 
 |   explicit Single(float f) : d32_(float_to_uint32(f)) {} | 
 |   explicit Single(uint32_t d32) : d32_(d32) {} | 
 |  | 
 |   // The value encoded by this Single must be greater or equal to +0.0. | 
 |   // It must not be special (infinity, or NaN). | 
 |   DiyFp AsDiyFp() const { | 
 |     ASSERT(Sign() > 0); | 
 |     ASSERT(!IsSpecial()); | 
 |     return DiyFp(Significand(), Exponent()); | 
 |   } | 
 |  | 
 |   // Returns the single's bit as uint64. | 
 |   uint32_t AsUint32() const { | 
 |     return d32_; | 
 |   } | 
 |  | 
 |   int Exponent() const { | 
 |     if (IsDenormal()) return kDenormalExponent; | 
 |  | 
 |     uint32_t d32 = AsUint32(); | 
 |     int biased_e = | 
 |         static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize); | 
 |     return biased_e - kExponentBias; | 
 |   } | 
 |  | 
 |   uint32_t Significand() const { | 
 |     uint32_t d32 = AsUint32(); | 
 |     uint32_t significand = d32 & kSignificandMask; | 
 |     if (!IsDenormal()) { | 
 |       return significand + kHiddenBit; | 
 |     } else { | 
 |       return significand; | 
 |     } | 
 |   } | 
 |  | 
 |   // Returns true if the single is a denormal. | 
 |   bool IsDenormal() const { | 
 |     uint32_t d32 = AsUint32(); | 
 |     return (d32 & kExponentMask) == 0; | 
 |   } | 
 |  | 
 |   // We consider denormals not to be special. | 
 |   // Hence only Infinity and NaN are special. | 
 |   bool IsSpecial() const { | 
 |     uint32_t d32 = AsUint32(); | 
 |     return (d32 & kExponentMask) == kExponentMask; | 
 |   } | 
 |  | 
 |   bool IsNan() const { | 
 |     uint32_t d32 = AsUint32(); | 
 |     return ((d32 & kExponentMask) == kExponentMask) && | 
 |         ((d32 & kSignificandMask) != 0); | 
 |   } | 
 |  | 
 |   bool IsInfinite() const { | 
 |     uint32_t d32 = AsUint32(); | 
 |     return ((d32 & kExponentMask) == kExponentMask) && | 
 |         ((d32 & kSignificandMask) == 0); | 
 |   } | 
 |  | 
 |   int Sign() const { | 
 |     uint32_t d32 = AsUint32(); | 
 |     return (d32 & kSignMask) == 0? 1: -1; | 
 |   } | 
 |  | 
 |   // Computes the two boundaries of this. | 
 |   // The bigger boundary (m_plus) is normalized. The lower boundary has the same | 
 |   // exponent as m_plus. | 
 |   // Precondition: the value encoded by this Single must be greater than 0. | 
 |   void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { | 
 |     ASSERT(value() > 0.0); | 
 |     DiyFp v = this->AsDiyFp(); | 
 |     DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); | 
 |     DiyFp m_minus; | 
 |     if (LowerBoundaryIsCloser()) { | 
 |       m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); | 
 |     } else { | 
 |       m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); | 
 |     } | 
 |     m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); | 
 |     m_minus.set_e(m_plus.e()); | 
 |     *out_m_plus = m_plus; | 
 |     *out_m_minus = m_minus; | 
 |   } | 
 |  | 
 |   // Precondition: the value encoded by this Single must be greater or equal | 
 |   // than +0.0. | 
 |   DiyFp UpperBoundary() const { | 
 |     ASSERT(Sign() > 0); | 
 |     return DiyFp(Significand() * 2 + 1, Exponent() - 1); | 
 |   } | 
 |  | 
 |   bool LowerBoundaryIsCloser() const { | 
 |     // The boundary is closer if the significand is of the form f == 2^p-1 then | 
 |     // the lower boundary is closer. | 
 |     // Think of v = 1000e10 and v- = 9999e9. | 
 |     // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but | 
 |     // at a distance of 1e8. | 
 |     // The only exception is for the smallest normal: the largest denormal is | 
 |     // at the same distance as its successor. | 
 |     // Note: denormals have the same exponent as the smallest normals. | 
 |     bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0); | 
 |     return physical_significand_is_zero && (Exponent() != kDenormalExponent); | 
 |   } | 
 |  | 
 |   float value() const { return uint32_to_float(d32_); } | 
 |  | 
 |   static float Infinity() { | 
 |     return Single(kInfinity).value(); | 
 |   } | 
 |  | 
 |   static float NaN() { | 
 |     return Single(kNaN).value(); | 
 |   } | 
 |  | 
 |  private: | 
 |   static const int kExponentBias = 0x7F + kPhysicalSignificandSize; | 
 |   static const int kDenormalExponent = -kExponentBias + 1; | 
 |   static const int kMaxExponent = 0xFF - kExponentBias; | 
 |   static const uint32_t kInfinity = 0x7F800000; | 
 |   static const uint32_t kNaN = 0x7FC00000; | 
 |  | 
 |   const uint32_t d32_; | 
 |  | 
 |   DC_DISALLOW_COPY_AND_ASSIGN(Single); | 
 | }; | 
 |  | 
 | }  // namespace double_conversion | 
 |  | 
 | // ICU PATCH: Close ICU namespace | 
 | U_NAMESPACE_END | 
 |  | 
 | #endif  // DOUBLE_CONVERSION_DOUBLE_H_ | 
 | #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING |