blob: 92b9a875478fca8e5bd58d26ba3514015c2b37c8 [file] [log] [blame]
// stb_truetype.h - v1.14 - public domain
// authored from 2009-2016 by Sean Barrett / RAD Game Tools
//
// This library processes TrueType files:
// parse files
// extract glyph metrics
// extract glyph shapes
// render glyphs to one-channel bitmaps with antialiasing (box filter)
//
// Todo:
// non-MS cmaps
// crashproof on bad data
// hinting? (no longer patented)
// cleartype-style AA?
// optimize: use simple memory allocator for intermediates
// optimize: build edge-list directly from curves
// optimize: rasterize directly from curves?
//
// ADDITIONAL CONTRIBUTORS
//
// Mikko Mononen: compound shape support, more cmap formats
// Tor Andersson: kerning, subpixel rendering
// Dougall Johnson: OpenType / Type 2 font handling
//
// Misc other:
// Ryan Gordon
// Simon Glass
// github:IntellectualKitty
//
// Bug/warning reports/fixes:
// "Zer" on mollyrocket (with fix)
// Cass Everitt
// stoiko (Haemimont Games)
// Brian Hook
// Walter van Niftrik
// David Gow
// David Given
// Ivan-Assen Ivanov
// Anthony Pesch
// Johan Duparc
// Hou Qiming
// Fabian "ryg" Giesen
// Martins Mozeiko
// Cap Petschulat
// Omar Cornut
// github:aloucks
// Peter LaValle
// Sergey Popov
// Giumo X. Clanjor
// Higor Euripedes
// Thomas Fields
// Derek Vinyard
//
// VERSION HISTORY
//
// 1.13 (2017-01-02) support OpenType fonts, certain Apple fonts, num-fonts-in-TTC function
// 1.12 (2016-10-25) suppress warnings about casting away const with -Wcast-qual
// 1.11 (2016-04-02) fix unused-variable warning
// 1.10 (2016-04-02) user-defined fabs(); rare memory leak; remove duplicate typedef
// 1.09 (2016-01-16) warning fix; avoid crash on outofmem; use allocation userdata properly
// 1.08 (2015-09-13) document stbtt_Rasterize(); fixes for vertical & horizontal edges
// 1.07 (2015-08-01) allow PackFontRanges to accept arrays of sparse codepoints;
// variant PackFontRanges to pack and render in separate phases;
// fix stbtt_GetFontOFfsetForIndex (never worked for non-0 input?);
// fixed an assert() bug in the new rasterizer
// replace assert() with STBTT_assert() in new rasterizer
//
// Full history can be found at the end of this file.
//
// LICENSE
//
// This software is dual-licensed to the public domain and under the following
// license: you are granted a perpetual, irrevocable license to copy, modify,
// publish, and distribute this file as you see fit.
//
// USAGE
//
// Include this file in whatever places neeed to refer to it. In ONE C/C++
// file, write:
// #define STB_TRUETYPE_IMPLEMENTATION
// before the #include of this file. This expands out the actual
// implementation into that C/C++ file.
//
// To make the implementation private to the file that generates the implementation,
// #define STBTT_STATIC
//
// Simple 3D API (don't ship this, but it's fine for tools and quick start)
// stbtt_BakeFontBitmap() -- bake a font to a bitmap for use as texture
// stbtt_GetBakedQuad() -- compute quad to draw for a given char
//
// Improved 3D API (more shippable):
// #include "stb_rect_pack.h" -- optional, but you really want it
// stbtt_PackBegin()
// stbtt_PackSetOversample() -- for improved quality on small fonts
// stbtt_PackFontRanges() -- pack and renders
// stbtt_PackEnd()
// stbtt_GetPackedQuad()
//
// "Load" a font file from a memory buffer (you have to keep the buffer loaded)
// stbtt_InitFont()
// stbtt_GetFontOffsetForIndex() -- indexing for TTC font collections
// stbtt_GetNumberOfFonts() -- number of fonts for TTC font collections
//
// Render a unicode codepoint to a bitmap
// stbtt_GetCodepointBitmap() -- allocates and returns a bitmap
// stbtt_MakeCodepointBitmap() -- renders into bitmap you provide
// stbtt_GetCodepointBitmapBox() -- how big the bitmap must be
//
// Character advance/positioning
// stbtt_GetCodepointHMetrics()
// stbtt_GetFontVMetrics()
// stbtt_GetCodepointKernAdvance()
//
// Starting with version 1.06, the rasterizer was replaced with a new,
// faster and generally-more-precise rasterizer. The new rasterizer more
// accurately measures pixel coverage for anti-aliasing, except in the case
// where multiple shapes overlap, in which case it overestimates the AA pixel
// coverage. Thus, anti-aliasing of intersecting shapes may look wrong. If
// this turns out to be a problem, you can re-enable the old rasterizer with
// #define STBTT_RASTERIZER_VERSION 1
// which will incur about a 15% speed hit.
//
// ADDITIONAL DOCUMENTATION
//
// Immediately after this block comment are a series of sample programs.
//
// After the sample programs is the "header file" section. This section
// includes documentation for each API function.
//
// Some important concepts to understand to use this library:
//
// Codepoint
// Characters are defined by unicode codepoints, e.g. 65 is
// uppercase A, 231 is lowercase c with a cedilla, 0x7e30 is
// the hiragana for "ma".
//
// Glyph
// A visual character shape (every codepoint is rendered as
// some glyph)
//
// Glyph index
// A font-specific integer ID representing a glyph
//
// Baseline
// Glyph shapes are defined relative to a baseline, which is the
// bottom of uppercase characters. Characters extend both above
// and below the baseline.
//
// Current Point
// As you draw text to the screen, you keep track of a "current point"
// which is the origin of each character. The current point's vertical
// position is the baseline. Even "baked fonts" use this model.
//
// Vertical Font Metrics
// The vertical qualities of the font, used to vertically position
// and space the characters. See docs for stbtt_GetFontVMetrics.
//
// Font Size in Pixels or Points
// The preferred interface for specifying font sizes in stb_truetype
// is to specify how tall the font's vertical extent should be in pixels.
// If that sounds good enough, skip the next paragraph.
//
// Most font APIs instead use "points", which are a common typographic
// measurement for describing font size, defined as 72 points per inch.
// stb_truetype provides a point API for compatibility. However, true
// "per inch" conventions don't make much sense on computer displays
// since they different monitors have different number of pixels per
// inch. For example, Windows traditionally uses a convention that
// there are 96 pixels per inch, thus making 'inch' measurements have
// nothing to do with inches, and thus effectively defining a point to
// be 1.333 pixels. Additionally, the TrueType font data provides
// an explicit scale factor to scale a given font's glyphs to points,
// but the author has observed that this scale factor is often wrong
// for non-commercial fonts, thus making fonts scaled in points
// according to the TrueType spec incoherently sized in practice.
//
// ADVANCED USAGE
//
// Quality:
//
// - Use the functions with Subpixel at the end to allow your characters
// to have subpixel positioning. Since the font is anti-aliased, not
// hinted, this is very import for quality. (This is not possible with
// baked fonts.)
//
// - Kerning is now supported, and if you're supporting subpixel rendering
// then kerning is worth using to give your text a polished look.
//
// Performance:
//
// - Convert Unicode codepoints to glyph indexes and operate on the glyphs;
// if you don't do this, stb_truetype is forced to do the conversion on
// every call.
//
// - There are a lot of memory allocations. We should modify it to take
// a temp buffer and allocate from the temp buffer (without freeing),
// should help performance a lot.
//
// NOTES
//
// The system uses the raw data found in the .ttf file without changing it
// and without building auxiliary data structures. This is a bit inefficient
// on little-endian systems (the data is big-endian), but assuming you're
// caching the bitmaps or glyph shapes this shouldn't be a big deal.
//
// It appears to be very hard to programmatically determine what font a
// given file is in a general way. I provide an API for this, but I don't
// recommend it.
//
//
// SOURCE STATISTICS (based on v0.6c, 2050 LOC)
//
// Documentation & header file 520 LOC \___ 660 LOC documentation
// Sample code 140 LOC /
// Truetype parsing 620 LOC ---- 620 LOC TrueType
// Software rasterization 240 LOC \ .
// Curve tesselation 120 LOC \__ 550 LOC Bitmap creation
// Bitmap management 100 LOC /
// Baked bitmap interface 70 LOC /
// Font name matching & access 150 LOC ---- 150
// C runtime library abstraction 60 LOC ---- 60
//
//
// PERFORMANCE MEASUREMENTS FOR 1.06:
//
// 32-bit 64-bit
// Previous release: 8.83 s 7.68 s
// Pool allocations: 7.72 s 6.34 s
// Inline sort : 6.54 s 5.65 s
// New rasterizer : 5.63 s 5.00 s
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
////
//// SAMPLE PROGRAMS
////
//
// Incomplete text-in-3d-api example, which draws quads properly aligned to be lossless
//
#if 0
#define STB_TRUETYPE_IMPLEMENTATION // force following include to generate implementation
#include "stb_truetype.h"
unsigned char ttf_buffer[1<<20];
unsigned char temp_bitmap[512*512];
stbtt_bakedchar cdata[96]; // ASCII 32..126 is 95 glyphs
GLuint ftex;
void my_stbtt_initfont(void)
{
fread(ttf_buffer, 1, 1<<20, fopen("c:/windows/fonts/times.ttf", "rb"));
stbtt_BakeFontBitmap(ttf_buffer,0, 32.0, temp_bitmap,512,512, 32,96, cdata); // no guarantee this fits!
// can free ttf_buffer at this point
glGenTextures(1, &ftex);
glBindTexture(GL_TEXTURE_2D, ftex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA, 512,512, 0, GL_ALPHA, GL_UNSIGNED_BYTE, temp_bitmap);
// can free temp_bitmap at this point
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
void my_stbtt_print(float x, float y, char *text)
{
// assume orthographic projection with units = screen pixels, origin at top left
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, ftex);
glBegin(GL_QUADS);
while (*text) {
if (*text >= 32 && *text < 128) {
stbtt_aligned_quad q;
stbtt_GetBakedQuad(cdata, 512,512, *text-32, &x,&y,&q,1);//1=opengl & d3d10+,0=d3d9
glTexCoord2f(q.s0,q.t1); glVertex2f(q.x0,q.y0);
glTexCoord2f(q.s1,q.t1); glVertex2f(q.x1,q.y0);
glTexCoord2f(q.s1,q.t0); glVertex2f(q.x1,q.y1);
glTexCoord2f(q.s0,q.t0); glVertex2f(q.x0,q.y1);
}
++text;
}
glEnd();
}
#endif
//
//
//////////////////////////////////////////////////////////////////////////////
//
// Complete program (this compiles): get a single bitmap, print as ASCII art
//
#if 0
#include <stdio.h>
#define STB_TRUETYPE_IMPLEMENTATION // force following include to generate implementation
#include "stb_truetype.h"
char ttf_buffer[1<<25];
int main(int argc, char **argv)
{
stbtt_fontinfo font;
unsigned char *bitmap;
int w,h,i,j,c = (argc > 1 ? atoi(argv[1]) : 'a'), s = (argc > 2 ? atoi(argv[2]) : 20);
fread(ttf_buffer, 1, 1<<25, fopen(argc > 3 ? argv[3] : "c:/windows/fonts/arialbd.ttf", "rb"));
stbtt_InitFont(&font, ttf_buffer, stbtt_GetFontOffsetForIndex(ttf_buffer,0));
bitmap = stbtt_GetCodepointBitmap(&font, 0,stbtt_ScaleForPixelHeight(&font, s), c, &w, &h, 0,0);
for (j=0; j < h; ++j) {
for (i=0; i < w; ++i)
putchar(" .:ioVM@"[bitmap[j*w+i]>>5]);
putchar('\n');
}
return 0;
}
#endif
//
// Output:
//
// .ii.
// @@@@@@.
// V@Mio@@o
// :i. V@V
// :oM@@M
// :@@@MM@M
// @@o o@M
// :@@. M@M
// @@@o@@@@
// :M@@V:@@.
//
//////////////////////////////////////////////////////////////////////////////
//
// Complete program: print "Hello World!" banner, with bugs
//
#if 0
char buffer[24<<20];
unsigned char screen[20][79];
int main(int arg, char **argv)
{
stbtt_fontinfo font;
int i,j,ascent,baseline,ch=0;
float scale, xpos=2; // leave a little padding in case the character extends left
char *text = "Heljo World!"; // intentionally misspelled to show 'lj' brokenness
fread(buffer, 1, 1000000, fopen("c:/windows/fonts/arialbd.ttf", "rb"));
stbtt_InitFont(&font, buffer, 0);
scale = stbtt_ScaleForPixelHeight(&font, 15);
stbtt_GetFontVMetrics(&font, &ascent,0,0);
baseline = (int) (ascent*scale);
while (text[ch]) {
int advance,lsb,x0,y0,x1,y1;
float x_shift = xpos - (float) floor(xpos);
stbtt_GetCodepointHMetrics(&font, text[ch], &advance, &lsb);
stbtt_GetCodepointBitmapBoxSubpixel(&font, text[ch], scale,scale,x_shift,0, &x0,&y0,&x1,&y1);
stbtt_MakeCodepointBitmapSubpixel(&font, &screen[baseline + y0][(int) xpos + x0], x1-x0,y1-y0, 79, scale,scale,x_shift,0, text[ch]);
// note that this stomps the old data, so where character boxes overlap (e.g. 'lj') it's wrong
// because this API is really for baking character bitmaps into textures. if you want to render
// a sequence of characters, you really need to render each bitmap to a temp buffer, then
// "alpha blend" that into the working buffer
xpos += (advance * scale);
if (text[ch+1])
xpos += scale*stbtt_GetCodepointKernAdvance(&font, text[ch],text[ch+1]);
++ch;
}
for (j=0; j < 20; ++j) {
for (i=0; i < 78; ++i)
putchar(" .:ioVM@"[screen[j][i]>>5]);
putchar('\n');
}
return 0;
}
#endif
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
////
//// INTEGRATION WITH YOUR CODEBASE
////
//// The following sections allow you to supply alternate definitions
//// of C library functions used by stb_truetype.
#ifdef STB_TRUETYPE_IMPLEMENTATION
// #define your own (u)stbtt_int8/16/32 before including to override this
#ifndef stbtt_uint8
typedef unsigned char stbtt_uint8;
typedef signed char stbtt_int8;
typedef unsigned short stbtt_uint16;
typedef signed short stbtt_int16;
typedef unsigned int stbtt_uint32;
typedef signed int stbtt_int32;
#endif
typedef char stbtt__check_size32[sizeof(stbtt_int32)==4 ? 1 : -1];
typedef char stbtt__check_size16[sizeof(stbtt_int16)==2 ? 1 : -1];
// #define your own STBTT_ifloor/STBTT_iceil() to avoid math.h
#ifndef STBTT_ifloor
#include <math.h>
#define STBTT_ifloor(x) ((int) floor(x))
#define STBTT_iceil(x) ((int) ceil(x))
#endif
#ifndef STBTT_sqrt
#include <math.h>
#define STBTT_sqrt(x) sqrt(x)
#endif
#ifndef STBTT_fabs
#include <math.h>
#define STBTT_fabs(x) fabs(x)
#endif
// #define your own functions "STBTT_malloc" / "STBTT_free" to avoid malloc.h
#ifndef STBTT_malloc
#include <stdlib.h>
#define STBTT_malloc(x,u) ((void)(u),malloc(x))
#define STBTT_free(x,u) ((void)(u),free(x))
#endif
#ifndef STBTT_assert
#include <assert.h>
#define STBTT_assert(x) assert(x)
#endif
#ifndef STBTT_strlen
#include <string.h>
#define STBTT_strlen(x) strlen(x)
#endif
#ifndef STBTT_memcpy
#include <memory.h>
#define STBTT_memcpy memcpy
#define STBTT_memset memset
#endif
#endif
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
////
//// INTERFACE
////
////
#ifndef __STB_INCLUDE_STB_TRUETYPE_H__
#define __STB_INCLUDE_STB_TRUETYPE_H__
#ifdef STBTT_STATIC
#define STBTT_DEF static
#else
#define STBTT_DEF extern
#endif
#ifdef __cplusplus
extern "C" {
#endif
// private structure
typedef struct
{
unsigned char *data;
int cursor;
int size;
} stbtt__buf;
//////////////////////////////////////////////////////////////////////////////
//
// TEXTURE BAKING API
//
// If you use this API, you only have to call two functions ever.
//
typedef struct
{
unsigned short x0,y0,x1,y1; // coordinates of bbox in bitmap
float xoff,yoff,xadvance;
} stbtt_bakedchar;
STBTT_DEF int stbtt_BakeFontBitmap(const unsigned char *data, int offset, // font location (use offset=0 for plain .ttf)
float pixel_height, // height of font in pixels
unsigned char *pixels, int pw, int ph, // bitmap to be filled in
int first_char, int num_chars, // characters to bake
stbtt_bakedchar *chardata); // you allocate this, it's num_chars long
// if return is positive, the first unused row of the bitmap
// if return is negative, returns the negative of the number of characters that fit
// if return is 0, no characters fit and no rows were used
// This uses a very crappy packing.
typedef struct
{
float x0,y0,s0,t0; // top-left
float x1,y1,s1,t1; // bottom-right
} stbtt_aligned_quad;
STBTT_DEF void stbtt_GetBakedQuad(stbtt_bakedchar *chardata, int pw, int ph, // same data as above
int char_index, // character to display
float *xpos, float *ypos, // pointers to current position in screen pixel space
stbtt_aligned_quad *q, // output: quad to draw
int opengl_fillrule); // true if opengl fill rule; false if DX9 or earlier
// Call GetBakedQuad with char_index = 'character - first_char', and it
// creates the quad you need to draw and advances the current position.
//
// The coordinate system used assumes y increases downwards.
//
// Characters will extend both above and below the current position;
// see discussion of "BASELINE" above.
//
// It's inefficient; you might want to c&p it and optimize it.
//////////////////////////////////////////////////////////////////////////////
//
// NEW TEXTURE BAKING API
//
// This provides options for packing multiple fonts into one atlas, not
// perfectly but better than nothing.
typedef struct
{
unsigned short x0,y0,x1,y1; // coordinates of bbox in bitmap
float xoff,yoff,xadvance;
float xoff2,yoff2;
} stbtt_packedchar;
typedef struct stbtt_pack_context stbtt_pack_context;
typedef struct stbtt_fontinfo stbtt_fontinfo;
#ifndef STB_RECT_PACK_VERSION
typedef struct stbrp_rect stbrp_rect;
#endif
STBTT_DEF int stbtt_PackBegin(stbtt_pack_context *spc, unsigned char *pixels, int width, int height, int stride_in_bytes, int padding, void *alloc_context);
// Initializes a packing context stored in the passed-in stbtt_pack_context.
// Future calls using this context will pack characters into the bitmap passed
// in here: a 1-channel bitmap that is width * height. stride_in_bytes is
// the distance from one row to the next (or 0 to mean they are packed tightly
// together). "padding" is the amount of padding to leave between each
// character (normally you want '1' for bitmaps you'll use as textures with
// bilinear filtering).
//
// Returns 0 on failure, 1 on success.
STBTT_DEF void stbtt_PackEnd (stbtt_pack_context *spc);
// Cleans up the packing context and frees all memory.
#define STBTT_POINT_SIZE(x) (-(x))
STBTT_DEF int stbtt_PackFontRange(stbtt_pack_context *spc, unsigned char *fontdata, int font_index, float font_size,
int first_unicode_char_in_range, int num_chars_in_range, stbtt_packedchar *chardata_for_range);
// Creates character bitmaps from the font_index'th font found in fontdata (use
// font_index=0 if you don't know what that is). It creates num_chars_in_range
// bitmaps for characters with unicode values starting at first_unicode_char_in_range
// and increasing. Data for how to render them is stored in chardata_for_range;
// pass these to stbtt_GetPackedQuad to get back renderable quads.
//
// font_size is the full height of the character from ascender to descender,
// as computed by stbtt_ScaleForPixelHeight. To use a point size as computed
// by stbtt_ScaleForMappingEmToPixels, wrap the point size in STBTT_POINT_SIZE()
// and pass that result as 'font_size':
// ..., 20 , ... // font max minus min y is 20 pixels tall
// ..., STBTT_POINT_SIZE(20), ... // 'M' is 20 pixels tall
typedef struct
{
float font_size;
int first_unicode_codepoint_in_range; // if non-zero, then the chars are continuous, and this is the first codepoint
int *array_of_unicode_codepoints; // if non-zero, then this is an array of unicode codepoints
int num_chars;
stbtt_packedchar *chardata_for_range; // output
unsigned char h_oversample, v_oversample; // don't set these, they're used internally
} stbtt_pack_range;
STBTT_DEF int stbtt_PackFontRanges(stbtt_pack_context *spc, unsigned char *fontdata, int font_index, stbtt_pack_range *ranges, int num_ranges);
// Creates character bitmaps from multiple ranges of characters stored in
// ranges. This will usually create a better-packed bitmap than multiple
// calls to stbtt_PackFontRange. Note that you can call this multiple
// times within a single PackBegin/PackEnd.
STBTT_DEF void stbtt_PackSetOversampling(stbtt_pack_context *spc, unsigned int h_oversample, unsigned int v_oversample);
// Oversampling a font increases the quality by allowing higher-quality subpixel
// positioning, and is especially valuable at smaller text sizes.
//
// This function sets the amount of oversampling for all following calls to
// stbtt_PackFontRange(s) or stbtt_PackFontRangesGatherRects for a given
// pack context. The default (no oversampling) is achieved by h_oversample=1
// and v_oversample=1. The total number of pixels required is
// h_oversample*v_oversample larger than the default; for example, 2x2
// oversampling requires 4x the storage of 1x1. For best results, render
// oversampled textures with bilinear filtering. Look at the readme in
// stb/tests/oversample for information about oversampled fonts
//
// To use with PackFontRangesGather etc., you must set it before calls
// call to PackFontRangesGatherRects.
STBTT_DEF void stbtt_GetPackedQuad(stbtt_packedchar *chardata, int pw, int ph, // same data as above
int char_index, // character to display
float *xpos, float *ypos, // pointers to current position in screen pixel space
stbtt_aligned_quad *q, // output: quad to draw
int align_to_integer);
STBTT_DEF int stbtt_PackFontRangesGatherRects(stbtt_pack_context *spc, const stbtt_fontinfo *info, stbtt_pack_range *ranges, int num_ranges, stbrp_rect *rects);
STBTT_DEF void stbtt_PackFontRangesPackRects(stbtt_pack_context *spc, stbrp_rect *rects, int num_rects);
STBTT_DEF int stbtt_PackFontRangesRenderIntoRects(stbtt_pack_context *spc, const stbtt_fontinfo *info, stbtt_pack_range *ranges, int num_ranges, stbrp_rect *rects);
// Calling these functions in sequence is roughly equivalent to calling
// stbtt_PackFontRanges(). If you more control over the packing of multiple
// fonts, or if you want to pack custom data into a font texture, take a look
// at the source to of stbtt_PackFontRanges() and create a custom version
// using these functions, e.g. call GatherRects multiple times,
// building up a single array of rects, then call PackRects once,
// then call RenderIntoRects repeatedly. This may result in a
// better packing than calling PackFontRanges multiple times
// (or it may not).
// this is an opaque structure that you shouldn't mess with which holds
// all the context needed from PackBegin to PackEnd.
struct stbtt_pack_context {
void *user_allocator_context;
void *pack_info;
int width;
int height;
int stride_in_bytes;
int padding;
unsigned int h_oversample, v_oversample;
unsigned char *pixels;
void *nodes;
};
//////////////////////////////////////////////////////////////////////////////
//
// FONT LOADING
//
//
STBTT_DEF int stbtt_GetNumberOfFonts(const unsigned char *data);
// This function will determine the number of fonts in a font file. TrueType
// collection (.ttc) files may contain multiple fonts, while TrueType font
// (.ttf) files only contain one font. The number of fonts can be used for
// indexing with the previous function where the index is between zero and one
// less than the total fonts. If an error occurs, -1 is returned.
STBTT_DEF int stbtt_GetFontOffsetForIndex(const unsigned char *data, int index);
// Each .ttf/.ttc file may have more than one font. Each font has a sequential
// index number starting from 0. Call this function to get the font offset for
// a given index; it returns -1 if the index is out of range. A regular .ttf
// file will only define one font and it always be at offset 0, so it will
// return '0' for index 0, and -1 for all other indices.
// The following structure is defined publically so you can declare one on
// the stack or as a global or etc, but you should treat it as opaque.
struct stbtt_fontinfo
{
void * userdata;
unsigned char * data; // pointer to .ttf file
int fontstart; // offset of start of font
int numGlyphs; // number of glyphs, needed for range checking
int loca,head,glyf,hhea,hmtx,kern; // table locations as offset from start of .ttf
int index_map; // a cmap mapping for our chosen character encoding
int indexToLocFormat; // format needed to map from glyph index to glyph
stbtt__buf cff; // cff font data
stbtt__buf charstrings; // the charstring index
stbtt__buf gsubrs; // global charstring subroutines index
stbtt__buf subrs; // private charstring subroutines index
stbtt__buf fontdicts; // array of font dicts
stbtt__buf fdselect; // map from glyph to fontdict
};
STBTT_DEF int stbtt_InitFont(stbtt_fontinfo *info, const unsigned char *data, int offset);
// Given an offset into the file that defines a font, this function builds
// the necessary cached info for the rest of the system. You must allocate
// the stbtt_fontinfo yourself, and stbtt_InitFont will fill it out. You don't
// need to do anything special to free it, because the contents are pure
// value data with no additional data structures. Returns 0 on failure.
//////////////////////////////////////////////////////////////////////////////
//
// CHARACTER TO GLYPH-INDEX CONVERSIOn
STBTT_DEF int stbtt_FindGlyphIndex(const stbtt_fontinfo *info, int unicode_codepoint);
// If you're going to perform multiple operations on the same character
// and you want a speed-up, call this function with the character you're
// going to process, then use glyph-based functions instead of the
// codepoint-based functions.
//////////////////////////////////////////////////////////////////////////////
//
// CHARACTER PROPERTIES
//
STBTT_DEF float stbtt_ScaleForPixelHeight(const stbtt_fontinfo *info, float pixels);
// computes a scale factor to produce a font whose "height" is 'pixels' tall.
// Height is measured as the distance from the highest ascender to the lowest
// descender; in other words, it's equivalent to calling stbtt_GetFontVMetrics
// and computing:
// scale = pixels / (ascent - descent)
// so if you prefer to measure height by the ascent only, use a similar calculation.
STBTT_DEF float stbtt_ScaleForMappingEmToPixels(const stbtt_fontinfo *info, float pixels);
// computes a scale factor to produce a font whose EM size is mapped to
// 'pixels' tall. This is probably what traditional APIs compute, but
// I'm not positive.
STBTT_DEF void stbtt_GetFontVMetrics(const stbtt_fontinfo *info, int *ascent, int *descent, int *lineGap);
// ascent is the coordinate above the baseline the font extends; descent
// is the coordinate below the baseline the font extends (i.e. it is typically negative)
// lineGap is the spacing between one row's descent and the next row's ascent...
// so you should advance the vertical position by "*ascent - *descent + *lineGap"
// these are expressed in unscaled coordinates, so you must multiply by
// the scale factor for a given size
STBTT_DEF void stbtt_GetFontBoundingBox(const stbtt_fontinfo *info, int *x0, int *y0, int *x1, int *y1);
// the bounding box around all possible characters
STBTT_DEF void stbtt_GetCodepointHMetrics(const stbtt_fontinfo *info, int codepoint, int *advanceWidth, int *leftSideBearing);
// leftSideBearing is the offset from the current horizontal position to the left edge of the character
// advanceWidth is the offset from the current horizontal position to the next horizontal position
// these are expressed in unscaled coordinates
STBTT_DEF int stbtt_GetCodepointKernAdvance(const stbtt_fontinfo *info, int ch1, int ch2);
// an additional amount to add to the 'advance' value between ch1 and ch2
STBTT_DEF int stbtt_GetCodepointBox(const stbtt_fontinfo *info, int codepoint, int *x0, int *y0, int *x1, int *y1);
// Gets the bounding box of the visible part of the glyph, in unscaled coordinates
STBTT_DEF void stbtt_GetGlyphHMetrics(const stbtt_fontinfo *info, int glyph_index, int *advanceWidth, int *leftSideBearing);
STBTT_DEF int stbtt_GetGlyphKernAdvance(const stbtt_fontinfo *info, int glyph1, int glyph2);
STBTT_DEF int stbtt_GetGlyphBox(const stbtt_fontinfo *info, int glyph_index, int *x0, int *y0, int *x1, int *y1);
// as above, but takes one or more glyph indices for greater efficiency
//////////////////////////////////////////////////////////////////////////////
//
// GLYPH SHAPES (you probably don't need these, but they have to go before
// the bitmaps for C declaration-order reasons)
//
#ifndef STBTT_vmove // you can predefine these to use different values (but why?)
enum {
STBTT_vmove=1,
STBTT_vline,
STBTT_vcurve,
STBTT_vcubic
};
#endif
#ifndef stbtt_vertex // you can predefine this to use different values
// (we share this with other code at RAD)
#define stbtt_vertex_type short // can't use stbtt_int16 because that's not visible in the header file
typedef struct
{
stbtt_vertex_type x,y,cx,cy,cx1,cy1;
unsigned char type,padding;
} stbtt_vertex;
#endif
STBTT_DEF int stbtt_IsGlyphEmpty(const stbtt_fontinfo *info, int glyph_index);
// returns non-zero if nothing is drawn for this glyph
STBTT_DEF int stbtt_GetCodepointShape(const stbtt_fontinfo *info, int unicode_codepoint, stbtt_vertex **vertices);
STBTT_DEF int stbtt_GetGlyphShape(const stbtt_fontinfo *info, int glyph_index, stbtt_vertex **vertices);
// returns # of vertices and fills *vertices with the pointer to them
// these are expressed in "unscaled" coordinates
//
// The shape is a series of countours. Each one starts with
// a STBTT_moveto, then consists of a series of mixed
// STBTT_lineto and STBTT_curveto segments. A lineto
// draws a line from previous endpoint to its x,y; a curveto
// draws a quadratic bezier from previous endpoint to
// its x,y, using cx,cy as the bezier control point.
STBTT_DEF void stbtt_FreeShape(const stbtt_fontinfo *info, stbtt_vertex *vertices);
// frees the data allocated above
//////////////////////////////////////////////////////////////////////////////
//
// BITMAP RENDERING
//
STBTT_DEF void stbtt_FreeBitmap(unsigned char *bitmap, void *userdata);
// frees the bitmap allocated below
STBTT_DEF unsigned char *stbtt_GetCodepointBitmap(const stbtt_fontinfo *info, float scale_x, float scale_y, int codepoint, int *width, int *height, int *xoff, int *yoff);
// allocates a large-enough single-channel 8bpp bitmap and renders the
// specified character/glyph at the specified scale into it, with
// antialiasing. 0 is no coverage (transparent), 255 is fully covered (opaque).
// *width & *height are filled out with the width & height of the bitmap,
// which is stored left-to-right, top-to-bottom.
//
// xoff/yoff are the offset it pixel space from the glyph origin to the top-left of the bitmap
STBTT_DEF unsigned char *stbtt_GetCodepointBitmapSubpixel(const stbtt_fontinfo *info, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint, int *width, int *height, int *xoff, int *yoff);
// the same as stbtt_GetCodepoitnBitmap, but you can specify a subpixel
// shift for the character
STBTT_DEF void stbtt_MakeCodepointBitmap(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int codepoint);
// the same as stbtt_GetCodepointBitmap, but you pass in storage for the bitmap
// in the form of 'output', with row spacing of 'out_stride' bytes. the bitmap
// is clipped to out_w/out_h bytes. Call stbtt_GetCodepointBitmapBox to get the
// width and height and positioning info for it first.
STBTT_DEF void stbtt_MakeCodepointBitmapSubpixel(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int codepoint);
// same as stbtt_MakeCodepointBitmap, but you can specify a subpixel
// shift for the character
STBTT_DEF void stbtt_GetCodepointBitmapBox(const stbtt_fontinfo *font, int codepoint, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1);
// get the bbox of the bitmap centered around the glyph origin; so the
// bitmap width is ix1-ix0, height is iy1-iy0, and location to place
// the bitmap top left is (leftSideBearing*scale,iy0).
// (Note that the bitmap uses y-increases-down, but the shape uses
// y-increases-up, so CodepointBitmapBox and CodepointBox are inverted.)
STBTT_DEF void stbtt_GetCodepointBitmapBoxSubpixel(const stbtt_fontinfo *font, int codepoint, float scale_x, float scale_y, float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1);
// same as stbtt_GetCodepointBitmapBox, but you can specify a subpixel
// shift for the character
// the following functions are equivalent to the above functions, but operate
// on glyph indices instead of Unicode codepoints (for efficiency)
STBTT_DEF unsigned char *stbtt_GetGlyphBitmap(const stbtt_fontinfo *info, float scale_x, float scale_y, int glyph, int *width, int *height, int *xoff, int *yoff);
STBTT_DEF unsigned char *stbtt_GetGlyphBitmapSubpixel(const stbtt_fontinfo *info, float scale_x, float scale_y, float shift_x, float shift_y, int glyph, int *width, int *height, int *xoff, int *yoff);
STBTT_DEF void stbtt_MakeGlyphBitmap(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, int glyph);
STBTT_DEF void stbtt_MakeGlyphBitmapSubpixel(const stbtt_fontinfo *info, unsigned char *output, int out_w, int out_h, int out_stride, float scale_x, float scale_y, float shift_x, float shift_y, int glyph);
STBTT_DEF void stbtt_GetGlyphBitmapBox(const stbtt_fontinfo *font, int glyph, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1);
STBTT_DEF void stbtt_GetGlyphBitmapBoxSubpixel(const stbtt_fontinfo *font, int glyph, float scale_x, float scale_y,float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1);
// @TODO: don't expose this structure
typedef struct
{
int w,h,stride;
unsigned char *pixels;
} stbtt__bitmap;
// rasterize a shape with quadratic beziers into a bitmap
STBTT_DEF void stbtt_Rasterize(stbtt__bitmap *result, // 1-channel bitmap to draw into
float flatness_in_pixels, // allowable error of curve in pixels
stbtt_vertex *vertices, // array of vertices defining shape
int num_verts, // number of vertices in above array
float scale_x, float scale_y, // scale applied to input vertices
float shift_x, float shift_y, // translation applied to input vertices
int x_off, int y_off, // another translation applied to input
int invert, // if non-zero, vertically flip shape
void *userdata); // context for to STBTT_MALLOC
//////////////////////////////////////////////////////////////////////////////
//
// Finding the right font...
//
// You should really just solve this offline, keep your own tables
// of what font is what, and don't try to get it out of the .ttf file.
// That's because getting it out of the .ttf file is really hard, because
// the names in the file can appear in many possible encodings, in many
// possible languages, and e.g. if you need a case-insensitive comparison,
// the details of that depend on the encoding & language in a complex way
// (actually underspecified in truetype, but also gigantic).
//
// But you can use the provided functions in two possible ways:
// stbtt_FindMatchingFont() will use *case-sensitive* comparisons on
// unicode-encoded names to try to find the font you want;
// you can run this before calling stbtt_InitFont()
//
// stbtt_GetFontNameString() lets you get any of the various strings
// from the file yourself and do your own comparisons on them.
// You have to have called stbtt_InitFont() first.
STBTT_DEF int stbtt_FindMatchingFont(const unsigned char *fontdata, const char *name, int flags);
// returns the offset (not index) of the font that matches, or -1 if none
// if you use STBTT_MACSTYLE_DONTCARE, use a font name like "Arial Bold".
// if you use any other flag, use a font name like "Arial"; this checks
// the 'macStyle' header field; i don't know if fonts set this consistently
#define STBTT_MACSTYLE_DONTCARE 0
#define STBTT_MACSTYLE_BOLD 1
#define STBTT_MACSTYLE_ITALIC 2
#define STBTT_MACSTYLE_UNDERSCORE 4
#define STBTT_MACSTYLE_NONE 8 // <= not same as 0, this makes us check the bitfield is 0
STBTT_DEF int stbtt_CompareUTF8toUTF16_bigendian(const char *s1, int len1, const char *s2, int len2);
// returns 1/0 whether the first string interpreted as utf8 is identical to
// the second string interpreted as big-endian utf16... useful for strings from next func
STBTT_DEF const char *stbtt_GetFontNameString(const stbtt_fontinfo *font, int *length, int platformID, int encodingID, int languageID, int nameID);
// returns the string (which may be big-endian double byte, e.g. for unicode)
// and puts the length in bytes in *length.
//
// some of the values for the IDs are below; for more see the truetype spec:
// http://developer.apple.com/textfonts/TTRefMan/RM06/Chap6name.html
// http://www.microsoft.com/typography/otspec/name.htm
enum { // platformID
STBTT_PLATFORM_ID_UNICODE =0,
STBTT_PLATFORM_ID_MAC =1,
STBTT_PLATFORM_ID_ISO =2,
STBTT_PLATFORM_ID_MICROSOFT =3
};
enum { // encodingID for STBTT_PLATFORM_ID_UNICODE
STBTT_UNICODE_EID_UNICODE_1_0 =0,
STBTT_UNICODE_EID_UNICODE_1_1 =1,
STBTT_UNICODE_EID_ISO_10646 =2,
STBTT_UNICODE_EID_UNICODE_2_0_BMP=3,
STBTT_UNICODE_EID_UNICODE_2_0_FULL=4
};
enum { // encodingID for STBTT_PLATFORM_ID_MICROSOFT
STBTT_MS_EID_SYMBOL =0,
STBTT_MS_EID_UNICODE_BMP =1,
STBTT_MS_EID_SHIFTJIS =2,
STBTT_MS_EID_UNICODE_FULL =10
};
enum { // encodingID for STBTT_PLATFORM_ID_MAC; same as Script Manager codes
STBTT_MAC_EID_ROMAN =0, STBTT_MAC_EID_ARABIC =4,
STBTT_MAC_EID_JAPANESE =1, STBTT_MAC_EID_HEBREW =5,
STBTT_MAC_EID_CHINESE_TRAD =2, STBTT_MAC_EID_GREEK =6,
STBTT_MAC_EID_KOREAN =3, STBTT_MAC_EID_RUSSIAN =7
};
enum { // languageID for STBTT_PLATFORM_ID_MICROSOFT; same as LCID...
// problematic because there are e.g. 16 english LCIDs and 16 arabic LCIDs
STBTT_MS_LANG_ENGLISH =0x0409, STBTT_MS_LANG_ITALIAN =0x0410,
STBTT_MS_LANG_CHINESE =0x0804, STBTT_MS_LANG_JAPANESE =0x0411,
STBTT_MS_LANG_DUTCH =0x0413, STBTT_MS_LANG_KOREAN =0x0412,
STBTT_MS_LANG_FRENCH =0x040c, STBTT_MS_LANG_RUSSIAN =0x0419,
STBTT_MS_LANG_GERMAN =0x0407, STBTT_MS_LANG_SPANISH =0x0409,
STBTT_MS_LANG_HEBREW =0x040d, STBTT_MS_LANG_SWEDISH =0x041D
};
enum { // languageID for STBTT_PLATFORM_ID_MAC
STBTT_MAC_LANG_ENGLISH =0 , STBTT_MAC_LANG_JAPANESE =11,
STBTT_MAC_LANG_ARABIC =12, STBTT_MAC_LANG_KOREAN =23,
STBTT_MAC_LANG_DUTCH =4 , STBTT_MAC_LANG_RUSSIAN =32,
STBTT_MAC_LANG_FRENCH =1 , STBTT_MAC_LANG_SPANISH =6 ,
STBTT_MAC_LANG_GERMAN =2 , STBTT_MAC_LANG_SWEDISH =5 ,
STBTT_MAC_LANG_HEBREW =10, STBTT_MAC_LANG_CHINESE_SIMPLIFIED =33,
STBTT_MAC_LANG_ITALIAN =3 , STBTT_MAC_LANG_CHINESE_TRAD =19
};
#ifdef __cplusplus
}
#endif
#endif // __STB_INCLUDE_STB_TRUETYPE_H__
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
////
//// IMPLEMENTATION
////
////
#ifdef STB_TRUETYPE_IMPLEMENTATION
#ifndef STBTT_MAX_OVERSAMPLE
#define STBTT_MAX_OVERSAMPLE 8
#endif
#if STBTT_MAX_OVERSAMPLE > 255
#error "STBTT_MAX_OVERSAMPLE cannot be > 255"
#endif
typedef int stbtt__test_oversample_pow2[(STBTT_MAX_OVERSAMPLE & (STBTT_MAX_OVERSAMPLE-1)) == 0 ? 1 : -1];
#ifndef STBTT_RASTERIZER_VERSION
#define STBTT_RASTERIZER_VERSION 2
#endif
#ifdef _MSC_VER
#define STBTT__NOTUSED(v) (void)(v)
#else
#define STBTT__NOTUSED(v) (void)sizeof(v)
#endif
//////////////////////////////////////////////////////////////////////////
//
// stbtt__buf helpers to parse data from file
//
static stbtt_uint8 stbtt__buf_get8(stbtt__buf *b)
{
if (b->cursor >= b->size)
return 0;
return b->data[b->cursor++];
}
static stbtt_uint8 stbtt__buf_peek8(stbtt__buf *b)
{
if (b->cursor >= b->size)
return 0;
return b->data[b->cursor];
}
static void stbtt__buf_seek(stbtt__buf *b, int o)
{
STBTT_assert(!(o > b->size || o < 0));
b->cursor = (o > b->size || o < 0) ? b->size : o;
}
static void stbtt__buf_skip(stbtt__buf *b, int o)
{
stbtt__buf_seek(b, b->cursor + o);
}
static stbtt_uint32 stbtt__buf_get(stbtt__buf *b, int n)
{
stbtt_uint32 v = 0;
int i;
STBTT_assert(n >= 1 && n <= 4);
for (i = 0; i < n; i++)
v = (v << 8) | stbtt__buf_get8(b);
return v;
}
static stbtt__buf stbtt__new_buf(const void *p, size_t size)
{
stbtt__buf r;
STBTT_assert(size < 0x40000000);
r.data = (stbtt_uint8*) p;
r.size = (int) size;
r.cursor = 0;
return r;
}
#define stbtt__buf_get16(b) stbtt__buf_get((b), 2)
#define stbtt__buf_get32(b) stbtt__buf_get((b), 4)
static stbtt__buf stbtt__buf_range(const stbtt__buf *b, int o, int s)
{
stbtt__buf r = stbtt__new_buf(NULL, 0);
if (o < 0 || s < 0 || o > b->size || s > b->size - o) return r;
r.data = b->data + o;
r.size = s;
return r;
}
static stbtt__buf stbtt__cff_get_index(stbtt__buf *b)
{
int count, start, offsize;
start = b->cursor;
count = stbtt__buf_get16(b);
if (count) {
offsize = stbtt__buf_get8(b);
STBTT_assert(offsize >= 1 && offsize <= 4);
stbtt__buf_skip(b, offsize * count);
stbtt__buf_skip(b, stbtt__buf_get(b, offsize) - 1);
}
return stbtt__buf_range(b, start, b->cursor - start);
}
static stbtt_uint32 stbtt__cff_int(stbtt__buf *b)
{
int b0 = stbtt__buf_get8(b);
if (b0 >= 32 && b0 <= 246) return b0 - 139;
else if (b0 >= 247 && b0 <= 250) return (b0 - 247)*256 + stbtt__buf_get8(b) + 108;
else if (b0 >= 251 && b0 <= 254) return -(b0 - 251)*256 - stbtt__buf_get8(b) - 108;
else if (b0 == 28) return stbtt__buf_get16(b);
else if (b0 == 29) return stbtt__buf_get32(b);
STBTT_assert(0);
return 0;
}
static void stbtt__cff_skip_operand(stbtt__buf *b) {
int v, b0 = stbtt__buf_peek8(b);
STBTT_assert(b0 >= 28);
if (b0 == 30) {
stbtt__buf_skip(b, 1);
while (b->cursor < b->size) {
v = stbtt__buf_get8(b);
if ((v & 0xF) == 0xF || (v >> 4) == 0xF)
break;
}
} else {
stbtt__cff_int(b);
}
}
static stbtt__buf stbtt__dict_get(stbtt__buf *b, int key)
{
stbtt__buf_seek(b, 0);
while (b->cursor < b->size) {
int start = b->cursor, end, op;
while (stbtt__buf_peek8(b) >= 28)
stbtt__cff_skip_operand(b);
end = b->cursor;
op = stbtt__buf_get8(b);
if (op == 12) op = stbtt__buf_get8(b) | 0x100;
if (op == key) return stbtt__buf_range(b, start, end-start);
}
return stbtt__buf_range(b, 0, 0);
}
static void stbtt__dict_get_ints(stbtt__buf *b, int key, int outcount, stbtt_uint32 *out)
{
int i;
stbtt__buf operands = stbtt__dict_get(b, key);
for (i = 0; i < outcount && operands.cursor < operands.size; i++)
out[i] = stbtt__cff_int(&operands);
}
static int stbtt__cff_index_count(stbtt__buf *b)
{
stbtt__buf_seek(b, 0);
return stbtt__buf_get16(b);
}
static stbtt__buf stbtt__cff_index_get(stbtt__buf b, int i)
{
int count, offsize, start, end;
stbtt__buf_seek(&b, 0);
count = stbtt__buf_get16(&b);
offsize = stbtt__buf_get8(&b);
STBTT_assert(i >= 0 && i < count);
STBTT_assert(offsize >= 1 && offsize <= 4);
stbtt__buf_skip(&b, i*offsize);
start = stbtt__buf_get(&b, offsize);
end = stbtt__buf_get(&b, offsize);
return stbtt__buf_range(&b, 2+(count+1)*offsize+start, end - start);
}
//////////////////////////////////////////////////////////////////////////
//
// accessors to parse data from file
//
// on platforms that don't allow misaligned reads, if we want to allow
// truetype fonts that aren't padded to alignment, define ALLOW_UNALIGNED_TRUETYPE
#define ttBYTE(p) (* (stbtt_uint8 *) (p))
#define ttCHAR(p) (* (stbtt_int8 *) (p))
#define ttFixed(p) ttLONG(p)
static stbtt_uint16 ttUSHORT(stbtt_uint8 *p) { return p[0]*256 + p[1]; }
static stbtt_int16 ttSHORT(stbtt_uint8 *p) { return p[0]*256 + p[1]; }
static stbtt_uint32 ttULONG(stbtt_uint8 *p) { return (p[0]<<24) + (p[1]<<16) + (p[2]<<8) + p[3]; }
static stbtt_int32 ttLONG(stbtt_uint8 *p) { return (p[0]<<24) + (p[1]<<16) + (p[2]<<8) + p[3]; }
#define stbtt_tag4(p,c0,c1,c2,c3) ((p)[0] == (c0) && (p)[1] == (c1) && (p)[2] == (c2) && (p)[3] == (c3))
#define stbtt_tag(p,str) stbtt_tag4(p,str[0],str[1],str[2],str[3])
static int stbtt__isfont(stbtt_uint8 *font)
{
// check the version number
if (stbtt_tag4(font, '1',0,0,0)) return 1; // TrueType 1
if (stbtt_tag(font, "typ1")) return 1; // TrueType with type 1 font -- we don't support this!
if (stbtt_tag(font, "OTTO")) return 1; // OpenType with CFF
if (stbtt_tag4(font, 0,1,0,0)) return 1; // OpenType 1.0
if (stbtt_tag(font, "true")) return 1; // Apple specification for TrueType fonts
return 0;
}
// @OPTIMIZE: binary search
static stbtt_uint32 stbtt__find_table(stbtt_uint8 *data, stbtt_uint32 fontstart, const char *tag)
{
stbtt_int32 num_tables = ttUSHORT(data+fontstart+4);
stbtt_uint32 tabledir = fontstart + 12;
stbtt_int32 i;
for (i=0; i < num_tables; ++i) {
stbtt_uint32 loc = tabledir + 16*i;
if (stbtt_tag(data+loc+0, tag))
return ttULONG(data+loc+8);
}
return 0;
}
static int stbtt_GetFontOffsetForIndex_internal(unsigned char *font_collection, int index)
{
// if it's just a font, there's only one valid index
if (stbtt__isfont(font_collection))
return index == 0 ? 0 : -1;
// check if it's a TTC
if (stbtt_tag(font_collection, "ttcf")) {
// version 1?
if (ttULONG(font_collection+4) == 0x00010000 || ttULONG(font_collection+4) == 0x00020000) {
stbtt_int32 n = ttLONG(font_collection+8);
if (index >= n)
return -1;
return ttULONG(font_collection+12+index*4);
}
}
return -1;
}
static int stbtt_GetNumberOfFonts_internal(unsigned char *font_collection)
{
// if it's just a font, there's only one valid font
if (stbtt__isfont(font_collection))
return 1;
// check if it's a TTC
if (stbtt_tag(font_collection, "ttcf")) {
// version 1?
if (ttULONG(font_collection+4) == 0x00010000 || ttULONG(font_collection+4) == 0x00020000) {
return ttLONG(font_collection+8);
}
}
return 0;
}
static stbtt__buf stbtt__get_subrs(stbtt__buf cff, stbtt__buf fontdict)
{
stbtt_uint32 subrsoff = 0, private_loc[2] = { 0, 0 };
stbtt__buf pdict;
stbtt__dict_get_ints(&fontdict, 18, 2, private_loc);
if (!private_loc[1] || !private_loc[0]) return stbtt__new_buf(NULL, 0);
pdict = stbtt__buf_range(&cff, private_loc[1], private_loc[0]);
stbtt__dict_get_ints(&pdict, 19, 1, &subrsoff);
if (!subrsoff) return stbtt__new_buf(NULL, 0);
stbtt__buf_seek(&cff, private_loc[1]+subrsoff);
return stbtt__cff_get_index(&cff);
}
static int stbtt_InitFont_internal(stbtt_fontinfo *info, unsigned char *data, int fontstart)
{
stbtt_uint32 cmap, t;
stbtt_int32 i,numTables;
info->data = data;
info->fontstart = fontstart;
info->cff = stbtt__new_buf(NULL, 0);
cmap = stbtt__find_table(data, fontstart, "cmap"); // required
info->loca = stbtt__find_table(data, fontstart, "loca"); // required
info->head = stbtt__find_table(data, fontstart, "head"); // required
info->glyf = stbtt__find_table(data, fontstart, "glyf"); // required
info->hhea = stbtt__find_table(data, fontstart, "hhea"); // required
info->hmtx = stbtt__find_table(data, fontstart, "hmtx"); // required
info->kern = stbtt__find_table(data, fontstart, "kern"); // not required
if (!cmap || !info->head || !info->hhea || !info->hmtx)
return 0;
if (info->glyf) {
// required for truetype
if (!info->loca) return 0;
} else {
// initialization for CFF / Type2 fonts (OTF)
stbtt__buf b, topdict, topdictidx;
stbtt_uint32 cstype = 2, charstrings = 0, fdarrayoff = 0, fdselectoff = 0;
stbtt_uint32 cff;
cff = stbtt__find_table(data, fontstart, "CFF ");
if (!cff) return 0;
info->fontdicts = stbtt__new_buf(NULL, 0);
info->fdselect = stbtt__new_buf(NULL, 0);
// @TODO this should use size from table (not 512MB)
info->cff = stbtt__new_buf(data+cff, 512*1024*1024);
b = info->cff;
// read the header
stbtt__buf_skip(&b, 2);
stbtt__buf_seek(&b, stbtt__buf_get8(&b)); // hdrsize
// @TODO the name INDEX could list multiple fonts,
// but we just use the first one.
stbtt__cff_get_index(&b); // name INDEX
topdictidx = stbtt__cff_get_index(&b);
topdict = stbtt__cff_index_get(topdictidx, 0);
stbtt__cff_get_index(&b); // string INDEX
info->gsubrs = stbtt__cff_get_index(&b);
stbtt__dict_get_ints(&topdict, 17, 1, &charstrings);
stbtt__dict_get_ints(&topdict, 0x100 | 6, 1, &cstype);
stbtt__dict_get_ints(&topdict, 0x100 | 36, 1, &fdarrayoff);
stbtt__dict_get_ints(&topdict, 0x100 | 37, 1, &fdselectoff);
info->subrs = stbtt__get_subrs(b, topdict);
// we only support Type 2 charstrings
if (cstype != 2) return 0;
if (charstrings == 0) return 0;
if (fdarrayoff) {
// looks like a CID font
if (!fdselectoff) return 0;
stbtt__buf_seek(&b, fdarrayoff);
info->fontdicts = stbtt__cff_get_index(&b);
info->fdselect = stbtt__buf_range(&b, fdselectoff, b.size-fdselectoff);
}
stbtt__buf_seek(&b, charstrings);
info->charstrings = stbtt__cff_get_index(&b);
}
t = stbtt__find_table(data, fontstart, "maxp");
if (t)
info->numGlyphs = ttUSHORT(data+t+4);
else
info->numGlyphs = 0xffff;
// find a cmap encoding table we understand *now* to avoid searching
// later. (todo: could make this installable)
// the same regardless of glyph.
numTables = ttUSHORT(data + cmap + 2);
info->index_map = 0;
for (i=0; i < numTables; ++i) {
stbtt_uint32 encoding_record = cmap + 4 + 8 * i;
// find an encoding we understand:
switch(ttUSHORT(data+encoding_record)) {
case STBTT_PLATFORM_ID_MICROSOFT:
switch (ttUSHORT(data+encoding_record+2)) {
case STBTT_MS_EID_UNICODE_BMP:
case STBTT_MS_EID_UNICODE_FULL:
// MS/Unicode
info->index_map = cmap + ttULONG(data+encoding_record+4);
break;
}
break;
case STBTT_PLATFORM_ID_UNICODE:
// Mac/iOS has these
// all the encodingIDs are unicode, so we don't bother to check it
info->index_map = cmap + ttULONG(data+encoding_record+4);
break;
}
}
if (info->index_map == 0)
return 0;
info->indexToLocFormat = ttUSHORT(data+info->head + 50);
return 1;
}
STBTT_DEF int stbtt_FindGlyphIndex(const stbtt_fontinfo *info, int unicode_codepoint)
{
stbtt_uint8 *data = info->data;
stbtt_uint32 index_map = info->index_map;
stbtt_uint16 format = ttUSHORT(data + index_map + 0);
if (format == 0) { // apple byte encoding
stbtt_int32 bytes = ttUSHORT(data + index_map + 2);
if (unicode_codepoint < bytes-6)
return ttBYTE(data + index_map + 6 + unicode_codepoint);
return 0;
} else if (format == 6) {
stbtt_uint32 first = ttUSHORT(data + index_map + 6);
stbtt_uint32 count = ttUSHORT(data + index_map + 8);
if ((stbtt_uint32) unicode_codepoint >= first && (stbtt_uint32) unicode_codepoint < first+count)
return ttUSHORT(data + index_map + 10 + (unicode_codepoint - first)*2);
return 0;
} else if (format == 2) {
STBTT_assert(0); // @TODO: high-byte mapping for japanese/chinese/korean
return 0;
} else if (format == 4) { // standard mapping for windows fonts: binary search collection of ranges
stbtt_uint16 segcount = ttUSHORT(data+index_map+6) >> 1;
stbtt_uint16 searchRange = ttUSHORT(data+index_map+8) >> 1;
stbtt_uint16 entrySelector = ttUSHORT(data+index_map+10);
stbtt_uint16 rangeShift = ttUSHORT(data+index_map+12) >> 1;
// do a binary search of the segments
stbtt_uint32 endCount = index_map + 14;
stbtt_uint32 search = endCount;
if (unicode_codepoint > 0xffff)
return 0;
// they lie from endCount .. endCount + segCount
// but searchRange is the nearest power of two, so...
if (unicode_codepoint >= ttUSHORT(data + search + rangeShift*2))
search += rangeShift*2;
// now decrement to bias correctly to find smallest
search -= 2;
while (entrySelector) {
stbtt_uint16 end;
searchRange >>= 1;
end = ttUSHORT(data + search + searchRange*2);
if (unicode_codepoint > end)
search += searchRange*2;
--entrySelector;
}
search += 2;
{
stbtt_uint16 offset, start;
stbtt_uint16 item = (stbtt_uint16) ((search - endCount) >> 1);
STBTT_assert(unicode_codepoint <= ttUSHORT(data + endCount + 2*item));
start = ttUSHORT(data + index_map + 14 + segcount*2 + 2 + 2*item);
if (unicode_codepoint < start)
return 0;
offset = ttUSHORT(data + index_map + 14 + segcount*6 + 2 + 2*item);
if (offset == 0)
return (stbtt_uint16) (unicode_codepoint + ttSHORT(data + index_map + 14 + segcount*4 + 2 + 2*item));
return ttUSHORT(data + offset + (unicode_codepoint-start)*2 + index_map + 14 + segcount*6 + 2 + 2*item);
}
} else if (format == 12 || format == 13) {
stbtt_uint32 ngroups = ttULONG(data+index_map+12);
stbtt_int32 low,high;
low = 0; high = (stbtt_int32)ngroups;
// Binary search the right group.
while (low < high) {
stbtt_int32 mid = low + ((high-low) >> 1); // rounds down, so low <= mid < high
stbtt_uint32 start_char = ttULONG(data+index_map+16+mid*12);
stbtt_uint32 end_char = ttULONG(data+index_map+16+mid*12+4);
if ((stbtt_uint32) unicode_codepoint < start_char)
high = mid;
else if ((stbtt_uint32) unicode_codepoint > end_char)
low = mid+1;
else {
stbtt_uint32 start_glyph = ttULONG(data+index_map+16+mid*12+8);
if (format == 12)
return start_glyph + unicode_codepoint-start_char;
else // format == 13
return start_glyph;
}
}
return 0; // not found
}
// @TODO
STBTT_assert(0);
return 0;
}
STBTT_DEF int stbtt_GetCodepointShape(const stbtt_fontinfo *info, int unicode_codepoint, stbtt_vertex **vertices)
{
return stbtt_GetGlyphShape(info, stbtt_FindGlyphIndex(info, unicode_codepoint), vertices);
}
static void stbtt_setvertex(stbtt_vertex *v, stbtt_uint8 type, stbtt_int32 x, stbtt_int32 y, stbtt_int32 cx, stbtt_int32 cy)
{
v->type = type;
v->x = (stbtt_int16) x;
v->y = (stbtt_int16) y;
v->cx = (stbtt_int16) cx;
v->cy = (stbtt_int16) cy;
}
static int stbtt__GetGlyfOffset(const stbtt_fontinfo *info, int glyph_index)
{
int g1,g2;
STBTT_assert(!info->cff.size);
if (glyph_index >= info->numGlyphs) return -1; // glyph index out of range
if (info->indexToLocFormat >= 2) return -1; // unknown index->glyph map format
if (info->indexToLocFormat == 0) {
g1 = info->glyf + ttUSHORT(info->data + info->loca + glyph_index * 2) * 2;
g2 = info->glyf + ttUSHORT(info->data + info->loca + glyph_index * 2 + 2) * 2;
} else {
g1 = info->glyf + ttULONG (info->data + info->loca + glyph_index * 4);
g2 = info->glyf + ttULONG (info->data + info->loca + glyph_index * 4 + 4);
}
return g1==g2 ? -1 : g1; // if length is 0, return -1
}
static int stbtt__GetGlyphInfoT2(const stbtt_fontinfo *info, int glyph_index, int *x0, int *y0, int *x1, int *y1);
STBTT_DEF int stbtt_GetGlyphBox(const stbtt_fontinfo *info, int glyph_index, int *x0, int *y0, int *x1, int *y1)
{
if (info->cff.size) {
stbtt__GetGlyphInfoT2(info, glyph_index, x0, y0, x1, y1);
} else {
int g = stbtt__GetGlyfOffset(info, glyph_index);
if (g < 0) return 0;
if (x0) *x0 = ttSHORT(info->data + g + 2);
if (y0) *y0 = ttSHORT(info->data + g + 4);
if (x1) *x1 = ttSHORT(info->data + g + 6);
if (y1) *y1 = ttSHORT(info->data + g + 8);
}
return 1;
}
STBTT_DEF int stbtt_GetCodepointBox(const stbtt_fontinfo *info, int codepoint, int *x0, int *y0, int *x1, int *y1)
{
return stbtt_GetGlyphBox(info, stbtt_FindGlyphIndex(info,codepoint), x0,y0,x1,y1);
}
STBTT_DEF int stbtt_IsGlyphEmpty(const stbtt_fontinfo *info, int glyph_index)
{
stbtt_int16 numberOfContours;
int g;
if (info->cff.size)
return stbtt__GetGlyphInfoT2(info, glyph_index, NULL, NULL, NULL, NULL) == 0;
g = stbtt__GetGlyfOffset(info, glyph_index);
if (g < 0) return 1;
numberOfContours = ttSHORT(info->data + g);
return numberOfContours == 0;
}
static int stbtt__close_shape(stbtt_vertex *vertices, int num_vertices, int was_off, int start_off,
stbtt_int32 sx, stbtt_int32 sy, stbtt_int32 scx, stbtt_int32 scy, stbtt_int32 cx, stbtt_int32 cy)
{
if (start_off) {
if (was_off)
stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, (cx+scx)>>1, (cy+scy)>>1, cx,cy);
stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, sx,sy,scx,scy);
} else {
if (was_off)
stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve,sx,sy,cx,cy);
else
stbtt_setvertex(&vertices[num_vertices++], STBTT_vline,sx,sy,0,0);
}
return num_vertices;
}
static int stbtt__GetGlyphShapeTT(const stbtt_fontinfo *info, int glyph_index, stbtt_vertex **pvertices)
{
stbtt_int16 numberOfContours;
stbtt_uint8 *endPtsOfContours;
stbtt_uint8 *data = info->data;
stbtt_vertex *vertices=0;
int num_vertices=0;
int g = stbtt__GetGlyfOffset(info, glyph_index);
*pvertices = NULL;
if (g < 0) return 0;
numberOfContours = ttSHORT(data + g);
if (numberOfContours > 0) {
stbtt_uint8 flags=0,flagcount;
stbtt_int32 ins, i,j=0,m,n, next_move, was_off=0, off, start_off=0;
stbtt_int32 x,y,cx,cy,sx,sy, scx,scy;
stbtt_uint8 *points;
endPtsOfContours = (data + g + 10);
ins = ttUSHORT(data + g + 10 + numberOfContours * 2);
points = data + g + 10 + numberOfContours * 2 + 2 + ins;
n = 1+ttUSHORT(endPtsOfContours + numberOfContours*2-2);
m = n + 2*numberOfContours; // a loose bound on how many vertices we might need
vertices = (stbtt_vertex *) STBTT_malloc(m * sizeof(vertices[0]), info->userdata);
if (vertices == 0)
return 0;
next_move = 0;
flagcount=0;
// in first pass, we load uninterpreted data into the allocated array
// above, shifted to the end of the array so we won't overwrite it when
// we create our final data starting from the front
off = m - n; // starting offset for uninterpreted data, regardless of how m ends up being calculated
// first load flags
for (i=0; i < n; ++i) {
if (flagcount == 0) {
flags = *points++;
if (flags & 8)
flagcount = *points++;
} else
--flagcount;
vertices[off+i].type = flags;
}
// now load x coordinates
x=0;
for (i=0; i < n; ++i) {
flags = vertices[off+i].type;
if (flags & 2) {
stbtt_int16 dx = *points++;
x += (flags & 16) ? dx : -dx; // ???
} else {
if (!(flags & 16)) {
x = x + (stbtt_int16) (points[0]*256 + points[1]);
points += 2;
}
}
vertices[off+i].x = (stbtt_int16) x;
}
// now load y coordinates
y=0;
for (i=0; i < n; ++i) {
flags = vertices[off+i].type;
if (flags & 4) {
stbtt_int16 dy = *points++;
y += (flags & 32) ? dy : -dy; // ???
} else {
if (!(flags & 32)) {
y = y + (stbtt_int16) (points[0]*256 + points[1]);
points += 2;
}
}
vertices[off+i].y = (stbtt_int16) y;
}
// now convert them to our format
num_vertices=0;
sx = sy = cx = cy = scx = scy = 0;
for (i=0; i < n; ++i) {
flags = vertices[off+i].type;
x = (stbtt_int16) vertices[off+i].x;
y = (stbtt_int16) vertices[off+i].y;
if (next_move == i) {
if (i != 0)
num_vertices = stbtt__close_shape(vertices, num_vertices, was_off, start_off, sx,sy,scx,scy,cx,cy);
// now start the new one
start_off = !(flags & 1);
if (start_off) {
// if we start off with an off-curve point, then when we need to find a point on the curve
// where we can start, and we need to save some state for when we wraparound.
scx = x;
scy = y;
if (!(vertices[off+i+1].type & 1)) {
// next point is also a curve point, so interpolate an on-point curve
sx = (x + (stbtt_int32) vertices[off+i+1].x) >> 1;
sy = (y + (stbtt_int32) vertices[off+i+1].y) >> 1;
} else {
// otherwise just use the next point as our start point
sx = (stbtt_int32) vertices[off+i+1].x;
sy = (stbtt_int32) vertices[off+i+1].y;
++i; // we're using point i+1 as the starting point, so skip it
}
} else {
sx = x;
sy = y;
}
stbtt_setvertex(&vertices[num_vertices++], STBTT_vmove,sx,sy,0,0);
was_off = 0;
next_move = 1 + ttUSHORT(endPtsOfContours+j*2);
++j;
} else {
if (!(flags & 1)) { // if it's a curve
if (was_off) // two off-curve control points in a row means interpolate an on-curve midpoint
stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, (cx+x)>>1, (cy+y)>>1, cx, cy);
cx = x;
cy = y;
was_off = 1;
} else {
if (was_off)
stbtt_setvertex(&vertices[num_vertices++], STBTT_vcurve, x,y, cx, cy);
else
stbtt_setvertex(&vertices[num_vertices++], STBTT_vline, x,y,0,0);
was_off = 0;
}
}
}
num_vertices = stbtt__close_shape(vertices, num_vertices, was_off, start_off, sx,sy,scx,scy,cx,cy);
} else if (numberOfContours == -1) {
// Compound shapes.
int more = 1;
stbtt_uint8 *comp = data + g + 10;
num_vertices = 0;
vertices = 0;
while (more) {
stbtt_uint16 flags, gidx;
int comp_num_verts = 0, i;
stbtt_vertex *comp_verts = 0, *tmp = 0;
float mtx[6] = {1,0,0,1,0,0}, m, n;
flags = ttSHORT(comp); comp+=2;
gidx = ttSHORT(comp); comp+=2;
if (flags & 2) { // XY values
if (flags & 1) { // shorts
mtx[4] = ttSHORT(comp); comp+=2;
mtx[5] = ttSHORT(comp); comp+=2;
} else {
mtx[4] = ttCHAR(comp); comp+=1;
mtx[5] = ttCHAR(comp); comp+=1;
}
}
else {
// @TODO handle matching point
STBTT_assert(0);
}
if (flags & (1<<3)) { // WE_HAVE_A_SCALE
mtx[0] = mtx[3] = ttSHORT(comp)/16384.0f; comp+=2;
mtx[1] = mtx[2] = 0;
} else if (flags & (1<<6)) { // WE_HAVE_AN_X_AND_YSCALE
mtx[0] = ttSHORT(comp)/16384.0f; comp+=2;
mtx[1] = mtx[2] = 0;
mtx[3] = ttSHORT(comp)/16384.0f; comp+=2;
} else if (flags & (1<<7)) { // WE_HAVE_A_TWO_BY_TWO
mtx[0] = ttSHORT(comp)/16384.0f; comp+=2;
mtx[1] = ttSHORT(comp)/16384.0f; comp+=2;
mtx[2] = ttSHORT(comp)/16384.0f; comp+=2;
mtx[3] = ttSHORT(comp)/16384.0f; comp+=2;
}
// Find transformation scales.
m = (float) STBTT_sqrt(mtx[0]*mtx[0] + mtx[1]*mtx[1]);
n = (float) STBTT_sqrt(mtx[2]*mtx[2] + mtx[3]*mtx[3]);
// Get indexed glyph.
comp_num_verts = stbtt_GetGlyphShape(info, gidx, &comp_verts);
if (comp_num_verts > 0) {
// Transform vertices.
for (i = 0; i < comp_num_verts; ++i) {
stbtt_vertex* v = &comp_verts[i];
stbtt_vertex_type x,y;
x=v->x; y=v->y;
v->x = (stbtt_vertex_type)(m * (mtx[0]*x + mtx[2]*y + mtx[4]));
v->y = (stbtt_vertex_type)(n * (mtx[1]*x + mtx[3]*y + mtx[5]));
x=v->cx; y=v->cy;
v->cx = (stbtt_vertex_type)(m * (mtx[0]*x + mtx[2]*y + mtx[4]));
v->cy = (stbtt_vertex_type)(n * (mtx[1]*x + mtx[3]*y + mtx[5]));
}
// Append vertices.
tmp = (stbtt_vertex*)STBTT_malloc((num_vertices+comp_num_verts)*sizeof(stbtt_vertex), info->userdata);
if (!tmp) {
if (vertices) STBTT_free(vertices, info->userdata);
if (comp_verts) STBTT_free(comp_verts, info->userdata);
return 0;
}
if (num_vertices > 0) STBTT_memcpy(tmp, vertices, num_vertices*sizeof(stbtt_vertex));
STBTT_memcpy(tmp+num_vertices, comp_verts, comp_num_verts*sizeof(stbtt_vertex));
if (vertices) STBTT_free(vertices, info->userdata);
vertices = tmp;
STBTT_free(comp_verts, info->userdata);
num_vertices += comp_num_verts;
}
// More components ?
more = flags & (1<<5);
}
} else if (numberOfContours < 0) {
// @TODO other compound variations?
STBTT_assert(0);
} else {
// numberOfCounters == 0, do nothing
}
*pvertices = vertices;
return num_vertices;
}
typedef struct
{
int bounds;
int started;
float first_x, first_y;
float x, y;
stbtt_int32 min_x, max_x, min_y, max_y;
stbtt_vertex *pvertices;
int num_vertices;
} stbtt__csctx;
#define STBTT__CSCTX_INIT(bounds) {bounds,0, 0,0, 0,0, 0,0,0,0, NULL, 0}
static void stbtt__track_vertex(stbtt__csctx *c, stbtt_int32 x, stbtt_int32 y)
{
if (x > c->max_x || !c->started) c->max_x = x;
if (y > c->max_y || !c->started) c->max_y = y;
if (x < c->min_x || !c->started) c->min_x = x;
if (y < c->min_y || !c->started) c->min_y = y;
c->started = 1;
}
static void stbtt__csctx_v(stbtt__csctx *c, stbtt_uint8 type, stbtt_int32 x, stbtt_int32 y, stbtt_int32 cx, stbtt_int32 cy, stbtt_int32 cx1, stbtt_int32 cy1)
{
if (c->bounds) {
stbtt__track_vertex(c, x, y);
if (type == STBTT_vcubic) {
stbtt__track_vertex(c, cx, cy);
stbtt__track_vertex(c, cx1, cy1);
}
} else {
stbtt_setvertex(&c->pvertices[c->num_vertices], type, x, y, cx, cy);
c->pvertices[c->num_vertices].cx1 = (stbtt_int16) cx1;
c->pvertices[c->num_vertices].cy1 = (stbtt_int16) cy1;
}
c->num_vertices++;
}
static void stbtt__csctx_close_shape(stbtt__csctx *ctx)
{
if (ctx->first_x != ctx->x || ctx->first_y != ctx->y)
stbtt__csctx_v(ctx, STBTT_vline, (int)ctx->first_x, (int)ctx->first_y, 0, 0, 0, 0);
}
static void stbtt__csctx_rmove_to(stbtt__csctx *ctx, float dx, float dy)
{
stbtt__csctx_close_shape(ctx);
ctx->first_x = ctx->x = ctx->x + dx;
ctx->first_y = ctx->y = ctx->y + dy;
stbtt__csctx_v(ctx, STBTT_vmove, (int)ctx->x, (int)ctx->y, 0, 0, 0, 0);
}
static void stbtt__csctx_rline_to(stbtt__csctx *ctx, float dx, float dy)
{
ctx->x += dx;
ctx->y += dy;
stbtt__csctx_v(ctx, STBTT_vline, (int)ctx->x, (int)ctx->y, 0, 0, 0, 0);
}
static void stbtt__csctx_rccurve_to(stbtt__csctx *ctx, float dx1, float dy1, float dx2, float dy2, float dx3, float dy3)
{
float cx1 = ctx->x + dx1;
float cy1 = ctx->y + dy1;
float cx2 = cx1 + dx2;
float cy2 = cy1 + dy2;
ctx->x = cx2 + dx3;
ctx->y = cy2 + dy3;
stbtt__csctx_v(ctx, STBTT_vcubic, (int)ctx->x, (int)ctx->y, (int)cx1, (int)cy1, (int)cx2, (int)cy2);
}
static stbtt__buf stbtt__get_subr(stbtt__buf idx, int n)
{
int count = stbtt__cff_index_count(&idx);
int bias = 107;
if (count >= 33900)
bias = 32768;
else if (count >= 1240)
bias = 1131;
n += bias;
if (n < 0 || n >= count)
return stbtt__new_buf(NULL, 0);
return stbtt__cff_index_get(idx, n);
}
static stbtt__buf stbtt__cid_get_glyph_subrs(const stbtt_fontinfo *info, int glyph_index)
{
stbtt__buf fdselect = info->fdselect;
int nranges, start, end, v, fmt, fdselector = -1, i;
stbtt__buf_seek(&fdselect, 0);
fmt = stbtt__buf_get8(&fdselect);
if (fmt == 0) {
// untested
stbtt__buf_skip(&fdselect, glyph_index);
fdselector = stbtt__buf_get8(&fdselect);
} else if (fmt == 3) {
nranges = stbtt__buf_get16(&fdselect);
start = stbtt__buf_get16(&fdselect);
for (i = 0; i < nranges; i++) {
v = stbtt__buf_get8(&fdselect);
end = stbtt__buf_get16(&fdselect);
if (glyph_index >= start && glyph_index < end) {
fdselector = v;
break;
}
start = end;
}
}
if (fdselector == -1) stbtt__new_buf(NULL, 0);
return stbtt__get_subrs(info->cff, stbtt__cff_index_get(info->fontdicts, fdselector));
}
static int stbtt__run_charstring(const stbtt_fontinfo *info, int glyph_index, stbtt__csctx *c)
{
int in_header = 1, maskbits = 0, subr_stack_height = 0, sp = 0, v, i, b0;
int has_subrs = 0, clear_stack;
float s[48];
stbtt__buf subr_stack[10], subrs = info->subrs, b;
float f;
#define STBTT__CSERR(s) (0)
// this currently ignores the initial width value, which isn't needed if we have hmtx
b = stbtt__cff_index_get(info->charstrings, glyph_index);
while (b.cursor < b.size) {
i = 0;
clear_stack = 1;
b0 = stbtt__buf_get8(&b);
switch (b0) {
// @TODO implement hinting
case 0x13: // hintmask
case 0x14: // cntrmask
if (in_header)
maskbits += (sp / 2); // implicit "vstem"
in_header = 0;
stbtt__buf_skip(&b, (maskbits + 7) / 8);
break;
case 0x01: // hstem
case 0x03: // vstem
case 0x12: // hstemhm
case 0x17: // vstemhm
maskbits += (sp / 2);
break;
case 0x15: // rmoveto
in_header = 0;
if (sp < 2) return STBTT__CSERR("rmoveto stack");
stbtt__csctx_rmove_to(c, s[sp-2], s[sp-1]);
break;
case 0x04: // vmoveto
in_header = 0;
if (sp < 1) return STBTT__CSERR("vmoveto stack");
stbtt__csctx_rmove_to(c, 0, s[sp-1]);
break;
case 0x16: // hmoveto
in_header = 0;
if (sp < 1) return STBTT__CSERR("hmoveto stack");
stbtt__csctx_rmove_to(c, s[sp-1], 0);
break;
case 0x05: // rlineto
if (sp < 2) return STBTT__CSERR("rlineto stack");
for (; i + 1 < sp; i += 2)
stbtt__csctx_rline_to(c, s[i], s[i+1]);
break;
// hlineto/vlineto and vhcurveto/hvcurveto alternate horizontal and vertical
// starting from a different place.
case 0x07: // vlineto
if (sp < 1) return STBTT__CSERR("vlineto stack");
goto vlineto;
case 0x06: // hlineto
if (sp < 1) return STBTT__CSERR("hlineto stack");
for (;;) {
if (i >= sp) break;
stbtt__csctx_rline_to(c, s[i], 0);
i++;
vlineto:
if (i >= sp) break;
stbtt__csctx_rline_to(c, 0, s[i]);
i++;
}
break;
case 0x1F: // hvcurveto
if (sp < 4) return STBTT__CSERR("hvcurveto stack");
goto hvcurveto;
case 0x1E: // vhcurveto
if (sp < 4) return STBTT__CSERR("vhcurveto stack");
for (;;) {
if (i + 3 >= sp) break;
stbtt__csctx_rccurve_to(c, 0, s[i], s[i+1], s[i+2], s[i+3], (sp - i == 5) ? s[i + 4] : 0.0f);
i += 4;
hvcurveto:
if (i + 3 >= sp) break;
stbtt__csctx_rccurve_to(c, s[i], 0, s[i+1], s[i+2], (sp - i == 5) ? s[i+4] : 0.0f, s[i+3]);
i += 4;
}
break;
case 0x08: // rrcurveto
if (sp < 6) return STBTT__CSERR("rcurveline stack");
for (; i + 5 < sp; i += 6)
stbtt__csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]);
break;
case 0x18: // rcurveline
if (sp < 8) return STBTT__CSERR("rcurveline stack");
for (; i + 5 < sp - 2; i += 6)
stbtt__csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]);
if (i + 1 >= sp) return STBTT__CSERR("rcurveline stack");
stbtt__csctx_rline_to(c, s[i], s[i+1]);
break;
case 0x19: // rlinecurve
if (sp < 8) return STBTT__CSERR("rlinecurve stack");
for (; i + 1 < sp - 6; i += 2)
stbtt__csctx_rline_to(c, s[i], s[i+1]);
if (i + 5 >= sp) return STBTT__CSERR("rlinecurve stack");
stbtt__csctx_rccurve_to(c, s[i], s[i+1], s[i+2], s[i+3], s[i+4], s[i+5]);
break;
case 0x1A: // vvcurveto
case 0x1B: // hhcurveto
if (sp < 4) return STBTT__CSERR("(vv|hh)curveto stack");
f = 0.0;
if (sp & 1) { f = s[i]; i++; }
for (; i + 3 < sp; i += 4) {
if (b0 == 0x1B)
stbtt__csctx_rccurve_to(c, s[i], f, s[i+1], s[i+2], s[i+3], 0.0);
else
stbtt__csctx_rccurve_to(c, f, s[i], s[i+1], s[i+2], 0.0, s[i+3]);
f = 0.0;
}
break;
case 0x0A: // callsubr
if (!has_subrs) {
if (info->fdselect.size)
subrs = stbtt__cid_get_glyph_subrs(info, glyph_index);
has_subrs = 1;
}
// fallthrough
case 0x1D: // callgsubr
if (sp < 1) return STBTT__CSERR("call(g|)subr stack");
v = (int) s[--sp];
if (subr_stack_height >= 10) return STBTT__CSERR("recursion limit");
subr_stack[subr_stack_height++] = b;
b = stbtt__get_subr(b0 == 0x0A ? subrs : info->gsubrs, v);
if (b.size == 0) return STBTT__CSERR("subr not found");
b.cursor = 0;
clear_stack = 0;
break;
case 0x0B: // return
if (subr_stack_height <= 0) return STBTT__CSERR("return outside subr");
b = subr_stack[--subr_stack_height];
clear_stack = 0;
break;
case 0x0E: // endchar
stbtt__csctx_close_shape(c);
return 1;
case 0x0C: { // two-byte escape
float dx1, dx2, dx3, dx4, dx5, dx6, dy1, dy2, dy3, dy4, dy5, dy6;
float dx, dy;
int b1 = stbtt__buf_get8(&b);
switch (b1) {
// @TODO These "flex" implementations ignore the flex-depth and resolution,
// and always draw beziers.
case 0x22: // hflex
if (sp < 7) return STBTT__CSERR("hflex stack");
dx1 = s[0];
dx2 = s[1];
dy2 = s[2];
dx3 = s[3];
dx4 = s[4];
dx5 = s[5];
dx6 = s[6];
stbtt__csctx_rccurve_to(c, dx1, 0, dx2, dy2, dx3, 0);
stbtt__csctx_rccurve_to(c, dx4, 0, dx5, -dy2, dx6, 0);
break;
case 0x23: // flex
if (sp < 13) return STBTT__CSERR("flex stack");
dx1 = s[0];
dy1 = s[1];
dx2 = s[2];
dy2 = s[3];
dx3 = s[4];
dy3 = s[5];
dx4 = s[6];
dy4 = s[7];
dx5 = s[8];
dy5 = s[9];
dx6 = s[10];
dy6 = s[11];
//fd is s[12]
stbtt__csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, dy3);
stbtt__csctx_rccurve_to(c, dx4, dy4, dx5, dy5, dx6, dy6);
break;
case 0x24: // hflex1
if (sp < 9) return STBTT__CSERR("hflex1 stack");
dx1 = s[0];
dy1 = s[1];
dx2 = s[2];
dy2 = s[3];
dx3 = s[4];
dx4 = s[5];
dx5 = s[6];
dy5 = s[7];
dx6 = s[8];
stbtt__csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, 0);
stbtt__csctx_rccurve_to(c, dx4, 0, dx5, dy5, dx6, -(dy1+dy2+dy5));
break;
case 0x25: // flex1
if (sp < 11) return STBTT__CSERR("flex1 stack");
dx1 = s[0];
dy1 = s[1];
dx2 = s[2];
dy2 = s[3];
dx3 = s[4];
dy3 = s[5];
dx4 = s[6];
dy4 = s[7];
dx5 = s[8];
dy5 = s[9];
dx6 = dy6 = s[10];
dx = dx1+dx2+dx3+dx4+dx5;
dy = dy1+dy2+dy3+dy4+dy5;
if (STBTT_fabs(dx) > STBTT_fabs(dy))
dy6 = -dy;
else
dx6 = -dx;
stbtt__csctx_rccurve_to(c, dx1, dy1, dx2, dy2, dx3, dy3);
stbtt__csctx_rccurve_to(c, dx4, dy4, dx5, dy5, dx6, dy6);
break;
default:
return STBTT__CSERR("unimplemented");
}
} break;
default:
if (b0 != 255 && b0 != 28 && (b0 < 32 || b0 > 254))
return STBTT__CSERR("reserved operator");
// push immediate
if (b0 == 255) {
f = (float)stbtt__buf_get32(&b) / 0x10000;
} else {
stbtt__buf_skip(&b, -1);
f = (float)(stbtt_int16)stbtt__cff_int(&b);
}
if (sp >= 48) return STBTT__CSERR("push stack overflow");
s[sp++] = f;
clear_stack = 0;
break;
}
if (clear_stack) sp = 0;
}
return STBTT__CSERR("no endchar");
#undef STBTT__CSERR
}
static int stbtt__GetGlyphShapeT2(const stbtt_fontinfo *info, int glyph_index, stbtt_vertex **pvertices)
{
// runs the charstring twice, once to count and once to output (to avoid realloc)
stbtt__csctx count_ctx = STBTT__CSCTX_INIT(1);
stbtt__csctx output_ctx = STBTT__CSCTX_INIT(0);
if (stbtt__run_charstring(info, glyph_index, &count_ctx)) {
*pvertices = (stbtt_vertex*)STBTT_malloc(count_ctx.num_vertices*sizeof(stbtt_vertex), info->userdata);
output_ctx.pvertices = *pvertices;
if (stbtt__run_charstring(info, glyph_index, &output_ctx)) {
STBTT_assert(output_ctx.num_vertices == count_ctx.num_vertices);
return output_ctx.num_vertices;
}
}
*pvertices = NULL;
return 0;
}
static int stbtt__GetGlyphInfoT2(const stbtt_fontinfo *info, int glyph_index, int *x0, int *y0, int *x1, int *y1)
{
stbtt__csctx c = STBTT__CSCTX_INIT(1);
int r = stbtt__run_charstring(info, glyph_index, &c);
if (x0) {
*x0 = r ? c.min_x : 0;
*y0 = r ? c.min_y : 0;
*x1 = r ? c.max_x : 0;
*y1 = r ? c.max_y : 0;
}
return r ? c.num_vertices : 0;
}
STBTT_DEF int stbtt_GetGlyphShape(const stbtt_fontinfo *info, int glyph_index, stbtt_vertex **pvertices)
{
if (!info->cff.size)
return stbtt__GetGlyphShapeTT(info, glyph_index, pvertices);
else
return stbtt__GetGlyphShapeT2(info, glyph_index, pvertices);
}
STBTT_DEF void stbtt_GetGlyphHMetrics(const stbtt_fontinfo *info, int glyph_index, int *advanceWidth, int *leftSideBearing)
{
stbtt_uint16 numOfLongHorMetrics = ttUSHORT(info->data+info->hhea + 34);
if (glyph_index < numOfLongHorMetrics) {
if (advanceWidth) *advanceWidth = ttSHORT(info->data + info->hmtx + 4*glyph_index);
if (leftSideBearing) *leftSideBearing = ttSHORT(info->data + info->hmtx + 4*glyph_index + 2);
} else {
if (advanceWidth) *advanceWidth = ttSHORT(info->data + info->hmtx + 4*(numOfLongHorMetrics-1));
if (leftSideBearing) *leftSideBearing = ttSHORT(info->data + info->hmtx + 4*numOfLongHorMetrics + 2*(glyph_index - numOfLongHorMetrics));
}
}
STBTT_DEF int stbtt_GetGlyphKernAdvance(const stbtt_fontinfo *info, int glyph1, int glyph2)
{
stbtt_uint8 *data = info->data + info->kern;
stbtt_uint32 needle, straw;
int l, r, m;
// we only look at the first table. it must be 'horizontal' and format 0.
if (!info->kern)
return 0;
if (ttUSHORT(data+2) < 1) // number of tables, need at least 1
return 0;
if (ttUSHORT(data+8) != 1) // horizontal flag must be set in format
return 0;
l = 0;
r = ttUSHORT(data+10) - 1;
needle = glyph1 << 16 | glyph2;
while (l <= r) {
m = (l + r) >> 1;
straw = ttULONG(data+18+(m*6)); // note: unaligned read
if (needle < straw)
r = m - 1;
else if (needle > straw)
l = m + 1;
else
return ttSHORT(data+22+(m*6));
}
return 0;
}
STBTT_DEF int stbtt_GetCodepointKernAdvance(const stbtt_fontinfo *info, int ch1, int ch2)
{
if (!info->kern) // if no kerning table, don't waste time looking up both codepoint->glyphs
return 0;
return stbtt_GetGlyphKernAdvance(info, stbtt_FindGlyphIndex(info,ch1), stbtt_FindGlyphIndex(info,ch2));
}
STBTT_DEF void stbtt_GetCodepointHMetrics(const stbtt_fontinfo *info, int codepoint, int *advanceWidth, int *leftSideBearing)
{
stbtt_GetGlyphHMetrics(info, stbtt_FindGlyphIndex(info,codepoint), advanceWidth, leftSideBearing);
}
STBTT_DEF void stbtt_GetFontVMetrics(const stbtt_fontinfo *info, int *ascent, int *descent, int *lineGap)
{
if (ascent ) *ascent = ttSHORT(info->data+info->hhea + 4);
if (descent) *descent = ttSHORT(info->data+info->hhea + 6);
if (lineGap) *lineGap = ttSHORT(info->data+info->hhea + 8);
}
STBTT_DEF void stbtt_GetFontBoundingBox(const stbtt_fontinfo *info, int *x0, int *y0, int *x1, int *y1)
{
*x0 = ttSHORT(info->data + info->head + 36);
*y0 = ttSHORT(info->data + info->head + 38);
*x1 = ttSHORT(info->data + info->head + 40);
*y1 = ttSHORT(info->data + info->head + 42);
}
STBTT_DEF float stbtt_ScaleForPixelHeight(const stbtt_fontinfo *info, float height)
{
int fheight = ttSHORT(info->data + info->hhea + 4) - ttSHORT(info->data + info->hhea + 6);
return (float) height / fheight;
}
STBTT_DEF float stbtt_ScaleForMappingEmToPixels(const stbtt_fontinfo *info, float pixels)
{
int unitsPerEm = ttUSHORT(info->data + info->head + 18);
return pixels / unitsPerEm;
}
STBTT_DEF void stbtt_FreeShape(const stbtt_fontinfo *info, stbtt_vertex *v)
{
STBTT_free(v, info->userdata);
}
//////////////////////////////////////////////////////////////////////////////
//
// antialiasing software rasterizer
//
STBTT_DEF void stbtt_GetGlyphBitmapBoxSubpixel(const stbtt_fontinfo *font, int glyph, float scale_x, float scale_y,float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1)
{
int x0=0,y0=0,x1,y1; // =0 suppresses compiler warning
if (!stbtt_GetGlyphBox(font, glyph, &x0,&y0,&x1,&y1)) {
// e.g. space character
if (ix0) *ix0 = 0;
if (iy0) *iy0 = 0;
if (ix1) *ix1 = 0;
if (iy1) *iy1 = 0;
} else {
// move to integral bboxes (treating pixels as little squares, what pixels get touched)?
if (ix0) *ix0 = STBTT_ifloor( x0 * scale_x + shift_x);
if (iy0) *iy0 = STBTT_ifloor(-y1 * scale_y + shift_y);
if (ix1) *ix1 = STBTT_iceil ( x1 * scale_x + shift_x);
if (iy1) *iy1 = STBTT_iceil (-y0 * scale_y + shift_y);
}
}
STBTT_DEF void stbtt_GetGlyphBitmapBox(const stbtt_fontinfo *font, int glyph, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1)
{
stbtt_GetGlyphBitmapBoxSubpixel(font, glyph, scale_x, scale_y,0.0f,0.0f, ix0, iy0, ix1, iy1);
}
STBTT_DEF void stbtt_GetCodepointBitmapBoxSubpixel(const stbtt_fontinfo *font, int codepoint, float scale_x, float scale_y, float shift_x, float shift_y, int *ix0, int *iy0, int *ix1, int *iy1)
{
stbtt_GetGlyphBitmapBoxSubpixel(font, stbtt_FindGlyphIndex(font,codepoint), scale_x, scale_y,shift_x,shift_y, ix0,iy0,ix1,iy1);
}
STBTT_DEF void stbtt_GetCodepointBitmapBox(const stbtt_fontinfo *font, int codepoint, float scale_x, float scale_y, int *ix0, int *iy0, int *ix1, int *iy1)
{
stbtt_GetCodepointBitmapBoxSubpixel(font, codepoint, scale_x, scale_y,0.0f,0.0f, ix0,iy0,ix1,iy1);
}
//////////////////////////////////////////////////////////////////////////////
//
// Rasterizer
typedef struct stbtt__hheap_chunk
{
struct stbtt__hheap_chunk *next;
} stbtt__hheap_chunk;
typedef struct stbtt__hheap
{
struct stbtt__hheap_chunk *head;
void *first_free;
int num_remaining_in_head_chunk;
} stbtt__hheap;
static void *stbtt__hheap_alloc(stbtt__hheap *hh, size_t size, void *userdata)
{
if (hh->first_free) {
void *p = hh->first_free;
hh->first_free = * (void **) p;
return p;
} else {
if (hh->num_remaining_in_head_chunk == 0) {
int count = (size < 32 ? 2000 : size < 128 ? 800 : 100);
stbtt__hheap_chunk *c = (stbtt__hheap_chunk *) STBTT_malloc(sizeof(stbtt__hheap_chunk) + size * count, userdata);
if (c == NULL)
return NULL;
c->next = hh->head;
hh->head = c;
hh->num_remaining_in_head_chunk = count;
}
--hh->num_remaining_in_head_chunk;
return (char *) (hh->head) + size * hh->num_remaining_in_head_chunk;
}
}
static void stbtt__hheap_free(stbtt__hheap *hh, void *p)
{
*(void **) p = hh->first_free;
hh->first_free = p;
}
static void stbtt__hheap_cleanup(stbtt__hheap *hh, void *userdata)
{
stbtt__hheap_chunk *c = hh->head;
while (c) {
stbtt__hheap_chunk *n = c->next;
STBTT_free(c, userdata);
c = n;
}
}
typedef struct stbtt__edge {
float x0,y0, x1,y1;
int invert;
} stbtt__edge;
typedef struct stbtt__active_edge
{
struct stbtt__active_edge *next;
#if STBTT_RASTERIZER_VERSION==1
int x,dx;
float ey;
int direction;
#elif STBTT_RASTERIZER_VERSION==2
float fx,fdx,fdy;
float direction;
float sy;
float ey;
#else
#error "Unrecognized value of STBTT_RASTERIZER_VERSION"
#endif
} stbtt__active_edge;
#if STBTT_RASTERIZER_VERSION == 1
#define STBTT_FIXSHIFT 10
#define STBTT_FIX (1 << STBTT_FIXSHIFT)
#define STBTT_FIXMASK (STBTT_FIX-1)
static stbtt__active_edge *stbtt__new_active(stbtt__hheap *hh, stbtt__edge *e, int off_x, float start_point, void *userdata)
{
stbtt__active_edge *z = (stbtt__active_edge *) stbtt__hheap_alloc(hh, sizeof(*z), userdata);
float dxdy = (e->x1 - e->x0) / (e->y1 - e->y0);
STBTT_assert(z != NULL);
if (!z) return z;
// round dx down to avoid overshooting
if (dxdy < 0)
z->dx = -STBTT_ifloor(STBTT_FIX * -dxdy);
else
z->dx = STBTT_ifloor(STBTT_FIX * dxdy);
z->x = STBTT_ifloor(STBTT_FIX * e->x0 + z->dx * (start_point - e->y0)); // use z->dx so when we offset later it's by the same amount
z->x -= off_x * STBTT_FIX;
z->ey = e->y1;
z->next = 0;
z->direction = e->invert ? 1 : -1;
return z;
}
#elif STBTT_RASTERIZER_VERSION == 2
static stbtt__active_edge *stbtt__new_active(stbtt__hheap *hh, stbtt__edge *e, int off_x, float start_point, void *userdata)
{
stbtt__active_edge *z = (stbtt__active_edge *) stbtt__hheap_alloc(hh, sizeof(*z), userdata);
float dxdy = (e->x1 - e->x0) / (e->y1 - e->y0);
STBTT_assert(z != NULL);
//STBTT_assert(e->y0 <= start_point);
if (!z) return z;
z->fdx = dxdy;
z->fdy = dxdy != 0.0f ? (1.0f/dxdy) : 0.0f;
z->fx = e->x0 + dxdy * (start_point - e->y0);
z->fx -= off_x;
z->direction = e->invert ? 1.0f : -1.0f;
z->sy = e->y0;
z->ey = e->y1;
z->next = 0;
return z;
}
#else
#error "Unrecognized value of STBTT_RASTERIZER_VERSION"
#endif
#if STBTT_RASTERIZER_VERSION == 1
// note: this routine clips fills that extend off the edges... ideally this
// wouldn't happen, but it could happen if the truetype glyph bounding boxes
// are wrong, or if the user supplies a too-small bitmap
static void stbtt__fill_active_edges(unsigned char *scanline, int len, stbtt__active_edge *e, int max_weight)
{
// non-zero winding fill
int x0=0, w=0;
while (e) {
if (w == 0) {
// if we're currently at zero, we need to record the edge start point
x0 = e->x; w += e->direction;
} else {
int x1 = e->x; w += e->direction;
// if we went to zero, we need to draw
if (w == 0) {
int i = x0 >> STBTT_FIXSHIFT;
int j = x1 >> STBTT_FIXSHIFT;
if (i < len && j >= 0) {
if (i == j) {
// x0,x1 are the same pixel, so compute combined coverage
scanline[i] = scanline[i] + (stbtt_uint8) ((x1 - x0) * max_weight >> STBTT_FIXSHIFT);
} else {
if (i >= 0) // add antialiasing for x0
scanline[i] = scanline[i] + (stbtt_uint8) (((STBTT_FIX - (x0 & STBTT_FIXMASK)) * max_weight) >> STBTT_FIXSHIFT);
else
i = -1; // clip
if (j < len) // add antialiasing for x1
scanline[j] = scanline[j] + (stbtt_uint8) (((x1 & STBTT_FIXMASK) * max_weight) >> STBTT_FIXSHIFT);
else
j = len; // clip
for (++i; i < j; ++i) // fill pixels between x0 and x1
scanline[i] = scanline[i] + (stbtt_uint8) max_weight;
}
}
}
}
e = e->next;
}
}
static void stbtt__rasterize_sorted_edges(stbtt__bitmap *result, stbtt__edge *e, int n, int vsubsample, int off_x, int off_y, void *userdata)
{
stbtt__hheap hh = { 0, 0, 0 };
stbtt__active_edge *active = NULL;
int y,j=0;
int max_weight = (255 / vsubsample); // weight per vertical scanline
int s; // vertical subsample index
unsigned char scanline_data[512], *scanline;
if (result->w > 512)
scanline = (unsigned char *) STBTT_malloc(result->w, userdata);
else
scanline = scanline_data;
y = off_y * vsubsample;
e[n].y0 = (off_y + result->h) * (float) vsubsample + 1;
while (j < result->h) {
STBTT_memset(scanline, 0, result->w);
for (s=0; s < vsubsample; ++s) {
// find center of pixel for this scanline
float scan_y = y + 0.5f;
stbtt__active_edge **step = &active;
// update all active edges;
// remove all active edges that terminate before the center of this scanline
while (*step) {
stbtt__active_edge * z = *step;
if (z->ey <= scan_y) {
*step = z->next; // delete from list
STBTT_assert(z->direction);
z->direction = 0;
stbtt__hheap_free(&hh, z);
} else {
z->x += z->dx; // advance to position for current scanline
step = &((*step)->next); // advance through list
}
}
// resort the list if needed
for(;;) {
int changed=0;
step = &active;
while (*step && (*step)->next) {
if ((*step)->x > (*step)->next->x) {
stbtt__active_edge *t = *step;
stbtt__active_edge *q = t->next;
t->next = q->next;
q->next = t;
*step = q;
changed = 1;
}
step = &(*step)->next;
}
if (!changed) break;
}
// insert all edges that start before the center of this scanline -- omit ones that also end on this scanline
while (e->y0 <= scan_y) {
if (e->y1 > scan_y) {
stbtt__active_edge *z = stbtt__new_active(&hh, e, off_x, scan_y, userdata);
if (z != NULL) {
// find insertion point
if (active == NULL)
active = z;
else if (z->x < active->x) {
// insert at front
z->next = active;
active = z;
} else {
// find thing to insert AFTER
stbtt__active_edge *p = active;
while (p->next && p->next->x < z->x)
p = p->next;
// at this point, p->next->x is NOT < z->x
z->next = p->next;
p->next = z;
}
}
}
++e;
}
// now process all active edges in XOR fashion
if (active)
stbtt__fill_active_edges(scanline, result->w, active, max_weight);
++y;
}
STBTT_memcpy(result->pixels + j * result->stride, scanline, result->w);
++j;
}
stbtt__hheap_cleanup(&hh, userdata);
if (scanline != scanline_data)
STBTT_free(scanline, userdata);
}
#elif STBTT_RASTERIZER_VERSION == 2
// the edge passed in here does not cross the vertical line at x or the vertical line at x+1
// (i.e. it has already been clipped to those)
static void stbtt__handle_clipped_edge(float *scanline, int x, stbtt__active_edge *e, float x0, float y0, float x1, float y1)
{
if (y0 == y1) return;
STBTT_assert(y0 < y1);
STBTT_assert(e->sy <= e->ey);
if (y0 > e->ey) return;
if (y1 < e->sy) return;
if (y0 < e->sy) {
x0 += (x1-x0) * (e->sy - y0) / (y1-y0);
y0 = e->sy;
}
if (y1 > e->ey) {
x1 += (x1-x0) * (e->ey - y1) / (y1-y0);
y1 = e->ey;
}
if (x0 == x)
STBTT_assert(x1 <= x+1);
else if (x0 == x+1)
STBTT_assert(x1 >= x);
else if (x0 <= x)
STBTT_assert(x1 <= x);
else if (x0 >= x+1)
STBTT_assert(x1 >= x+1);
else
STBTT_assert(x1 >= x && x1 <= x+1);
if (x0 <= x && x1 <= x)
scanline[x] += e->direction * (y1-y0);
else if (x0 >= x+1 && x1 >= x+1)
;
else {
STBTT_assert(x0 >= x && x0 <= x+1 && x1 >= x && x1 <= x+1);
scanline[x] += e->direction * (y1-y0) * (1-((x0-x)+(x1-x))/2); // coverage = 1 - average x position
}
}
static void stbtt__fill_active_edges_new(float *scanline, float *scanline_fill, int len, stbtt__active_edge *e, float y_top)
{
float y_bottom = y_top+1;
while (e) {
// brute force every pixel
// compute intersection points with top & bottom
STBTT_assert(e->ey >= y_top);
if (e->fdx == 0) {
float x0 = e->fx;
if (x0 < len) {
if (x0 >= 0) {
stbtt__handle_clipped_edge(scanline,(int) x0,e, x0,y_top, x0,y_bottom);
stbtt__handle_clipped_edge(scanline_fill-1,(int) x0+1,e, x0,y_top, x0,y_bottom);
} else {
stbtt__handle_clipped_edge(scanline_fill-1,0,e, x0,y_top, x0,y_bottom);
}
}
} else {
float x0 = e->fx;
float dx = e->fdx;
float xb = x0 + dx;
float x_top, x_bottom;
float sy0,sy1;
float dy = e->fdy;
STBTT_assert(e->sy <= y_bottom && e->ey >= y_top);
// compute endpoints of line segment clipped to this scanline (if the
// line segment starts on this scanline. x0 is the intersection of the
// line with y_top, but that may be off the line segment.
if (e->sy > y_top) {
x_top = x0 + dx * (e->sy - y_top);
sy0 = e->sy;
} else {
x_top = x0;
sy0 = y_top;
}
if (e->ey < y_bottom) {
x_bottom = x0 + dx * (e->ey - y_top);
sy1 = e->ey;
} else {
x_bottom = xb;
sy1 = y_bottom;
}
if (x_top >= 0 && x_bottom >= 0 && x_top < len && x_bottom < len) {
// from here on, we don't have to range check x values
if ((int) x_top == (int) x_bottom) {
float height;
// simple case, only spans one pixel
int x = (int) x_top;
height = sy1 - sy0;
STBTT_assert(x >= 0 && x < len);
scanline[x] += e->direction * (1-((x_top - x) + (x_bottom-x))/2) * height;
scanline_fill[x] += e->direction * height; // everything right of this pixel is filled
} else {
int x,x1,x2;
float y_crossing, step, sign, area;
// covers 2+ pixels
if (x_top > x_bottom) {
// flip scanline vertically; signed area is the same
float t;
sy0 = y_bottom - (sy0 - y_top);
sy1 = y_bottom - (sy1 - y_top);
t = sy0, sy0 = sy1, sy1 = t;
t = x_bottom, x_bottom = x_top, x_top = t;
dx = -dx;
dy = -dy;
t = x0, x0 = xb, xb = t;
}
x1 = (int) x_top;
x2 = (int) x_bottom;
// compute intersection with y axis at x1+1
y_crossing = (x1+1 - x0) * dy + y_top;
sign = e->direction;
// area of the rectangle covered from y0..y_crossing
area = sign * (y_crossing-sy0);
// area of the triangle (x_top,y0), (x+1,y0), (x+1,y_crossing)
scanline[x1] += area * (1-((x_top - x1)+(x1+1-x1))/2);
step = sign * dy;