| // basisu_backend.cpp |
| // Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // TODO: This code originally supported full ETC1 and ETC1S, so there's some legacy stuff in here. |
| // |
| #include "basisu_backend.h" |
| |
| #if BASISU_SUPPORT_SSE |
| #define CPPSPMD_NAME(a) a##_sse41 |
| #include "basisu_kernels_declares.h" |
| #endif |
| |
| #define BASISU_FASTER_SELECTOR_REORDERING 0 |
| #define BASISU_BACKEND_VERIFY(c) verify(c, __LINE__); |
| |
| namespace basisu |
| { |
| // TODO |
| static inline void verify(bool condition, int line) |
| { |
| if (!condition) |
| { |
| fprintf(stderr, "ERROR: basisu_backend: verify() failed at line %i!\n", line); |
| abort(); |
| } |
| } |
| |
| basisu_backend::basisu_backend() |
| { |
| clear(); |
| } |
| |
| void basisu_backend::clear() |
| { |
| m_pFront_end = NULL; |
| m_params.clear(); |
| m_output.clear(); |
| } |
| |
| void basisu_backend::init(basisu_frontend* pFront_end, basisu_backend_params& params, const basisu_backend_slice_desc_vec& slice_descs) |
| { |
| m_pFront_end = pFront_end; |
| m_params = params; |
| m_slices = slice_descs; |
| |
| debug_printf("basisu_backend::Init: Slices: %u, ETC1S: %u, EndpointRDOQualityThresh: %f, SelectorRDOQualityThresh: %f\n", |
| m_slices.size(), |
| params.m_etc1s, |
| params.m_endpoint_rdo_quality_thresh, |
| params.m_selector_rdo_quality_thresh); |
| |
| debug_printf("Frontend endpoints: %u selectors: %u\n", m_pFront_end->get_total_endpoint_clusters(), m_pFront_end->get_total_selector_clusters()); |
| |
| for (uint32_t i = 0; i < m_slices.size(); i++) |
| { |
| debug_printf("Slice: %u, OrigWidth: %u, OrigHeight: %u, Width: %u, Height: %u, NumBlocksX: %u, NumBlocksY: %u, FirstBlockIndex: %u\n", |
| i, |
| m_slices[i].m_orig_width, m_slices[i].m_orig_height, |
| m_slices[i].m_width, m_slices[i].m_height, |
| m_slices[i].m_num_blocks_x, m_slices[i].m_num_blocks_y, |
| m_slices[i].m_first_block_index); |
| } |
| } |
| |
| void basisu_backend::create_endpoint_palette() |
| { |
| const basisu_frontend& r = *m_pFront_end; |
| |
| m_output.m_num_endpoints = r.get_total_endpoint_clusters(); |
| |
| m_endpoint_palette.resize(r.get_total_endpoint_clusters()); |
| for (uint32_t i = 0; i < r.get_total_endpoint_clusters(); i++) |
| { |
| etc1_endpoint_palette_entry& e = m_endpoint_palette[i]; |
| |
| e.m_color5_valid = r.get_endpoint_cluster_color_is_used(i, false); |
| e.m_color5 = r.get_endpoint_cluster_unscaled_color(i, false); |
| e.m_inten5 = r.get_endpoint_cluster_inten_table(i, false); |
| |
| BASISU_BACKEND_VERIFY(e.m_color5_valid); |
| } |
| } |
| |
| void basisu_backend::create_selector_palette() |
| { |
| const basisu_frontend& r = *m_pFront_end; |
| |
| m_output.m_num_selectors = r.get_total_selector_clusters(); |
| |
| m_selector_palette.resize(r.get_total_selector_clusters()); |
| |
| for (uint32_t i = 0; i < r.get_total_selector_clusters(); i++) |
| { |
| etc1_selector_palette_entry& s = m_selector_palette[i]; |
| |
| const etc_block& selector_bits = r.get_selector_cluster_selector_bits(i); |
| |
| for (uint32_t y = 0; y < 4; y++) |
| { |
| for (uint32_t x = 0; x < 4; x++) |
| { |
| s[y * 4 + x] = static_cast<uint8_t>(selector_bits.get_selector(x, y)); |
| } |
| } |
| } |
| } |
| |
| static const struct |
| { |
| int8_t m_dx, m_dy; |
| } g_endpoint_preds[] = |
| { |
| { -1, 0 }, |
| { 0, -1 }, |
| { -1, -1 } |
| }; |
| |
| void basisu_backend::reoptimize_and_sort_endpoints_codebook(uint32_t total_block_endpoints_remapped, uint_vec& all_endpoint_indices) |
| { |
| basisu_frontend& r = *m_pFront_end; |
| //const bool is_video = r.get_params().m_tex_type == basist::cBASISTexTypeVideoFrames; |
| |
| if (m_params.m_used_global_codebooks) |
| { |
| m_endpoint_remap_table_old_to_new.clear(); |
| m_endpoint_remap_table_old_to_new.resize(r.get_total_endpoint_clusters()); |
| for (uint32_t i = 0; i < r.get_total_endpoint_clusters(); i++) |
| m_endpoint_remap_table_old_to_new[i] = i; |
| } |
| else |
| { |
| //if ((total_block_endpoints_remapped) && (m_params.m_compression_level > 0)) |
| if ((total_block_endpoints_remapped) && (m_params.m_compression_level > 1)) |
| { |
| // We've changed the block endpoint indices, so we need to go and adjust the endpoint codebook (remove unused entries, optimize existing entries that have changed) |
| uint_vec new_block_endpoints(get_total_blocks()); |
| |
| for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++) |
| { |
| const uint32_t first_block_index = m_slices[slice_index].m_first_block_index; |
| const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x; |
| const uint32_t num_blocks_y = m_slices[slice_index].m_num_blocks_y; |
| |
| for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) |
| for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) |
| new_block_endpoints[first_block_index + block_x + block_y * num_blocks_x] = m_slice_encoder_blocks[slice_index](block_x, block_y).m_endpoint_index; |
| } |
| |
| int_vec old_to_new_endpoint_indices; |
| r.reoptimize_remapped_endpoints(new_block_endpoints, old_to_new_endpoint_indices, true); |
| |
| create_endpoint_palette(); |
| |
| for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++) |
| { |
| //const uint32_t first_block_index = m_slices[slice_index].m_first_block_index; |
| |
| //const uint32_t width = m_slices[slice_index].m_width; |
| //const uint32_t height = m_slices[slice_index].m_height; |
| const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x; |
| const uint32_t num_blocks_y = m_slices[slice_index].m_num_blocks_y; |
| |
| for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) |
| { |
| for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) |
| { |
| //const uint32_t block_index = first_block_index + block_x + block_y * num_blocks_x; |
| |
| encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y); |
| |
| m.m_endpoint_index = old_to_new_endpoint_indices[m.m_endpoint_index]; |
| } // block_x |
| } // block_y |
| } // slice_index |
| |
| for (uint32_t i = 0; i < all_endpoint_indices.size(); i++) |
| all_endpoint_indices[i] = old_to_new_endpoint_indices[all_endpoint_indices[i]]; |
| |
| } //if (total_block_endpoints_remapped) |
| |
| // Sort endpoint codebook |
| palette_index_reorderer reorderer; |
| reorderer.init((uint32_t)all_endpoint_indices.size(), &all_endpoint_indices[0], r.get_total_endpoint_clusters(), nullptr, nullptr, 0); |
| m_endpoint_remap_table_old_to_new = reorderer.get_remap_table(); |
| } |
| |
| // For endpoints, old_to_new[] may not be bijective! |
| // Some "old" entries may be unused and don't get remapped into the "new" array. |
| |
| m_old_endpoint_was_used.clear(); |
| m_old_endpoint_was_used.resize(r.get_total_endpoint_clusters()); |
| uint32_t first_old_entry_index = UINT32_MAX; |
| |
| for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++) |
| { |
| const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x, num_blocks_y = m_slices[slice_index].m_num_blocks_y; |
| for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) |
| { |
| for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) |
| { |
| encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y); |
| const uint32_t old_endpoint_index = m.m_endpoint_index; |
| |
| m_old_endpoint_was_used[old_endpoint_index] = true; |
| first_old_entry_index = basisu::minimum(first_old_entry_index, old_endpoint_index); |
| } // block_x |
| } // block_y |
| } // slice_index |
| |
| debug_printf("basisu_backend::reoptimize_and_sort_endpoints_codebook: First old entry index: %u\n", first_old_entry_index); |
| |
| m_new_endpoint_was_used.clear(); |
| m_new_endpoint_was_used.resize(r.get_total_endpoint_clusters()); |
| |
| m_endpoint_remap_table_new_to_old.clear(); |
| m_endpoint_remap_table_new_to_old.resize(r.get_total_endpoint_clusters()); |
| |
| // Set unused entries in the new array to point to the first used entry in the old array. |
| m_endpoint_remap_table_new_to_old.set_all(first_old_entry_index); |
| |
| for (uint32_t old_index = 0; old_index < m_endpoint_remap_table_old_to_new.size(); old_index++) |
| { |
| if (m_old_endpoint_was_used[old_index]) |
| { |
| const uint32_t new_index = m_endpoint_remap_table_old_to_new[old_index]; |
| |
| m_new_endpoint_was_used[new_index] = true; |
| |
| m_endpoint_remap_table_new_to_old[new_index] = old_index; |
| } |
| } |
| } |
| |
| void basisu_backend::sort_selector_codebook() |
| { |
| basisu_frontend& r = *m_pFront_end; |
| |
| m_selector_remap_table_new_to_old.resize(r.get_total_selector_clusters()); |
| |
| if ((m_params.m_compression_level == 0) || (m_params.m_used_global_codebooks)) |
| { |
| for (uint32_t i = 0; i < r.get_total_selector_clusters(); i++) |
| m_selector_remap_table_new_to_old[i] = i; |
| } |
| else |
| { |
| m_selector_remap_table_new_to_old[0] = 0; |
| uint32_t prev_selector_index = 0; |
| |
| int_vec remaining_selectors; |
| remaining_selectors.reserve(r.get_total_selector_clusters() - 1); |
| for (uint32_t i = 1; i < r.get_total_selector_clusters(); i++) |
| remaining_selectors.push_back(i); |
| |
| uint_vec selector_palette_bytes(m_selector_palette.size()); |
| for (uint32_t i = 0; i < m_selector_palette.size(); i++) |
| selector_palette_bytes[i] = m_selector_palette[i].get_byte(0) | (m_selector_palette[i].get_byte(1) << 8) | (m_selector_palette[i].get_byte(2) << 16) | (m_selector_palette[i].get_byte(3) << 24); |
| |
| // This is the traveling salesman problem. |
| for (uint32_t i = 1; i < r.get_total_selector_clusters(); i++) |
| { |
| uint32_t best_hamming_dist = 100; |
| uint32_t best_index = 0; |
| |
| #if BASISU_FASTER_SELECTOR_REORDERING |
| const uint32_t step = (remaining_selectors.size() > 16) ? 16 : 1; |
| for (uint32_t j = 0; j < remaining_selectors.size(); j += step) |
| #else |
| for (uint32_t j = 0; j < remaining_selectors.size(); j++) |
| #endif |
| { |
| int selector_index = remaining_selectors[j]; |
| |
| uint32_t k = selector_palette_bytes[prev_selector_index] ^ selector_palette_bytes[selector_index]; |
| uint32_t hamming_dist = g_hamming_dist[k & 0xFF] + g_hamming_dist[(k >> 8) & 0xFF] + g_hamming_dist[(k >> 16) & 0xFF] + g_hamming_dist[k >> 24]; |
| |
| if (hamming_dist < best_hamming_dist) |
| { |
| best_hamming_dist = hamming_dist; |
| best_index = j; |
| if (best_hamming_dist <= 1) |
| break; |
| } |
| } |
| |
| prev_selector_index = remaining_selectors[best_index]; |
| m_selector_remap_table_new_to_old[i] = prev_selector_index; |
| |
| remaining_selectors[best_index] = remaining_selectors.back(); |
| remaining_selectors.resize(remaining_selectors.size() - 1); |
| } |
| } |
| |
| m_selector_remap_table_old_to_new.resize(r.get_total_selector_clusters()); |
| for (uint32_t i = 0; i < m_selector_remap_table_new_to_old.size(); i++) |
| m_selector_remap_table_old_to_new[m_selector_remap_table_new_to_old[i]] = i; |
| } |
| int basisu_backend::find_video_frame(int slice_index, int delta) |
| { |
| for (uint32_t s = 0; s < m_slices.size(); s++) |
| { |
| if ((int)m_slices[s].m_source_file_index != ((int)m_slices[slice_index].m_source_file_index + delta)) |
| continue; |
| if (m_slices[s].m_mip_index != m_slices[slice_index].m_mip_index) |
| continue; |
| |
| // Being super paranoid here. |
| if (m_slices[s].m_num_blocks_x != (m_slices[slice_index].m_num_blocks_x)) |
| continue; |
| if (m_slices[s].m_num_blocks_y != (m_slices[slice_index].m_num_blocks_y)) |
| continue; |
| if (m_slices[s].m_alpha != (m_slices[slice_index].m_alpha)) |
| continue; |
| return s; |
| } |
| |
| return -1; |
| } |
| |
| void basisu_backend::check_for_valid_cr_blocks() |
| { |
| basisu_frontend& r = *m_pFront_end; |
| const bool is_video = r.get_params().m_tex_type == basist::cBASISTexTypeVideoFrames; |
| |
| if (!is_video) |
| return; |
| |
| debug_printf("basisu_backend::check_for_valid_cr_blocks\n"); |
| |
| uint32_t total_crs = 0; |
| uint32_t total_invalid_crs = 0; |
| |
| for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++) |
| { |
| const bool is_iframe = m_slices[slice_index].m_iframe; |
| //const uint32_t first_block_index = m_slices[slice_index].m_first_block_index; |
| |
| //const uint32_t width = m_slices[slice_index].m_width; |
| //const uint32_t height = m_slices[slice_index].m_height; |
| const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x; |
| const uint32_t num_blocks_y = m_slices[slice_index].m_num_blocks_y; |
| const int prev_frame_slice_index = find_video_frame(slice_index, -1); |
| |
| // If we don't have a previous frame, and we're not an i-frame, something is wrong. |
| if ((prev_frame_slice_index < 0) && (!is_iframe)) |
| { |
| BASISU_BACKEND_VERIFY(0); |
| } |
| |
| if ((is_iframe) || (prev_frame_slice_index < 0)) |
| { |
| // Ensure no blocks use CR's |
| for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) |
| { |
| for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) |
| { |
| encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y); |
| BASISU_BACKEND_VERIFY(m.m_endpoint_predictor != basist::CR_ENDPOINT_PRED_INDEX); |
| } |
| } |
| } |
| else |
| { |
| // For blocks that use CR's, make sure the endpoints/selectors haven't really changed. |
| for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) |
| { |
| for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) |
| { |
| encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y); |
| |
| if (m.m_endpoint_predictor == basist::CR_ENDPOINT_PRED_INDEX) |
| { |
| total_crs++; |
| |
| encoder_block& prev_m = m_slice_encoder_blocks[prev_frame_slice_index](block_x, block_y); |
| |
| if ((m.m_endpoint_index != prev_m.m_endpoint_index) || (m.m_selector_index != prev_m.m_selector_index)) |
| { |
| total_invalid_crs++; |
| } |
| } |
| } // block_x |
| } // block_y |
| |
| } // !slice_index |
| |
| } // slice_index |
| |
| debug_printf("Total CR's: %u, Total invalid CR's: %u\n", total_crs, total_invalid_crs); |
| |
| BASISU_BACKEND_VERIFY(total_invalid_crs == 0); |
| } |
| |
| void basisu_backend::create_encoder_blocks() |
| { |
| debug_printf("basisu_backend::create_encoder_blocks\n"); |
| |
| interval_timer tm; |
| tm.start(); |
| |
| basisu_frontend& r = *m_pFront_end; |
| const bool is_video = r.get_params().m_tex_type == basist::cBASISTexTypeVideoFrames; |
| |
| m_slice_encoder_blocks.resize(m_slices.size()); |
| |
| uint32_t total_endpoint_pred_missed = 0, total_endpoint_pred_hits = 0, total_block_endpoints_remapped = 0; |
| |
| uint_vec all_endpoint_indices; |
| all_endpoint_indices.reserve(get_total_blocks()); |
| |
| for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++) |
| { |
| const int prev_frame_slice_index = is_video ? find_video_frame(slice_index, -1) : -1; |
| const bool is_iframe = m_slices[slice_index].m_iframe; |
| const uint32_t first_block_index = m_slices[slice_index].m_first_block_index; |
| |
| //const uint32_t width = m_slices[slice_index].m_width; |
| //const uint32_t height = m_slices[slice_index].m_height; |
| const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x; |
| const uint32_t num_blocks_y = m_slices[slice_index].m_num_blocks_y; |
| |
| m_slice_encoder_blocks[slice_index].resize(num_blocks_x, num_blocks_y); |
| |
| for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) |
| { |
| for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) |
| { |
| const uint32_t block_index = first_block_index + block_x + block_y * num_blocks_x; |
| |
| encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y); |
| |
| m.m_endpoint_index = r.get_subblock_endpoint_cluster_index(block_index, 0); |
| BASISU_BACKEND_VERIFY(r.get_subblock_endpoint_cluster_index(block_index, 0) == r.get_subblock_endpoint_cluster_index(block_index, 1)); |
| |
| m.m_selector_index = r.get_block_selector_cluster_index(block_index); |
| |
| m.m_endpoint_predictor = basist::NO_ENDPOINT_PRED_INDEX; |
| |
| const uint32_t block_endpoint = m.m_endpoint_index; |
| |
| uint32_t best_endpoint_pred = UINT32_MAX; |
| |
| for (uint32_t endpoint_pred = 0; endpoint_pred < basist::NUM_ENDPOINT_PREDS; endpoint_pred++) |
| { |
| if ((is_video) && (endpoint_pred == basist::CR_ENDPOINT_PRED_INDEX)) |
| { |
| if ((prev_frame_slice_index != -1) && (!is_iframe)) |
| { |
| const uint32_t cur_endpoint = m_slice_encoder_blocks[slice_index](block_x, block_y).m_endpoint_index; |
| const uint32_t cur_selector = m_slice_encoder_blocks[slice_index](block_x, block_y).m_selector_index; |
| const uint32_t prev_endpoint = m_slice_encoder_blocks[prev_frame_slice_index](block_x, block_y).m_endpoint_index; |
| const uint32_t prev_selector = m_slice_encoder_blocks[prev_frame_slice_index](block_x, block_y).m_selector_index; |
| if ((cur_endpoint == prev_endpoint) && (cur_selector == prev_selector)) |
| { |
| best_endpoint_pred = basist::CR_ENDPOINT_PRED_INDEX; |
| m_slice_encoder_blocks[prev_frame_slice_index](block_x, block_y).m_is_cr_target = true; |
| } |
| } |
| } |
| else |
| { |
| int pred_block_x = block_x + g_endpoint_preds[endpoint_pred].m_dx; |
| if ((pred_block_x < 0) || (pred_block_x >= (int)num_blocks_x)) |
| continue; |
| |
| int pred_block_y = block_y + g_endpoint_preds[endpoint_pred].m_dy; |
| if ((pred_block_y < 0) || (pred_block_y >= (int)num_blocks_y)) |
| continue; |
| |
| uint32_t pred_endpoint = m_slice_encoder_blocks[slice_index](pred_block_x, pred_block_y).m_endpoint_index; |
| |
| if (pred_endpoint == block_endpoint) |
| { |
| if (endpoint_pred < best_endpoint_pred) |
| { |
| best_endpoint_pred = endpoint_pred; |
| } |
| } |
| } |
| |
| } // endpoint_pred |
| |
| if (best_endpoint_pred != UINT32_MAX) |
| { |
| m.m_endpoint_predictor = best_endpoint_pred; |
| |
| total_endpoint_pred_hits++; |
| } |
| else if (m_params.m_endpoint_rdo_quality_thresh > 0.0f) |
| { |
| const pixel_block& src_pixels = r.get_source_pixel_block(block_index); |
| |
| etc_block etc_blk(r.get_output_block(block_index)); |
| |
| uint64_t cur_err = etc_blk.evaluate_etc1_error(src_pixels.get_ptr(), r.get_params().m_perceptual); |
| |
| if (cur_err) |
| { |
| const uint64_t thresh_err = (uint64_t)(cur_err * maximum(1.0f, m_params.m_endpoint_rdo_quality_thresh)); |
| |
| etc_block trial_etc_block(etc_blk); |
| |
| uint64_t best_err = UINT64_MAX; |
| uint32_t best_endpoint_index = 0; |
| |
| best_endpoint_pred = UINT32_MAX; |
| |
| for (uint32_t endpoint_pred = 0; endpoint_pred < basist::NUM_ENDPOINT_PREDS; endpoint_pred++) |
| { |
| if ((is_video) && (endpoint_pred == basist::CR_ENDPOINT_PRED_INDEX)) |
| continue; |
| |
| int pred_block_x = block_x + g_endpoint_preds[endpoint_pred].m_dx; |
| if ((pred_block_x < 0) || (pred_block_x >= (int)num_blocks_x)) |
| continue; |
| |
| int pred_block_y = block_y + g_endpoint_preds[endpoint_pred].m_dy; |
| if ((pred_block_y < 0) || (pred_block_y >= (int)num_blocks_y)) |
| continue; |
| |
| uint32_t pred_endpoint_index = m_slice_encoder_blocks[slice_index](pred_block_x, pred_block_y).m_endpoint_index; |
| |
| uint32_t pred_inten = r.get_endpoint_cluster_inten_table(pred_endpoint_index, false); |
| color_rgba pred_color = r.get_endpoint_cluster_unscaled_color(pred_endpoint_index, false); |
| |
| trial_etc_block.set_block_color5(pred_color, pred_color); |
| trial_etc_block.set_inten_table(0, pred_inten); |
| trial_etc_block.set_inten_table(1, pred_inten); |
| |
| color_rgba trial_colors[16]; |
| unpack_etc1(trial_etc_block, trial_colors); |
| |
| uint64_t trial_err = 0; |
| if (r.get_params().m_perceptual) |
| { |
| for (uint32_t p = 0; p < 16; p++) |
| { |
| trial_err += color_distance(true, src_pixels.get_ptr()[p], trial_colors[p], false); |
| if (trial_err > thresh_err) |
| break; |
| } |
| } |
| else |
| { |
| for (uint32_t p = 0; p < 16; p++) |
| { |
| trial_err += color_distance(false, src_pixels.get_ptr()[p], trial_colors[p], false); |
| if (trial_err > thresh_err) |
| break; |
| } |
| } |
| |
| if (trial_err <= thresh_err) |
| { |
| if ((trial_err < best_err) || ((trial_err == best_err) && (endpoint_pred < best_endpoint_pred))) |
| { |
| best_endpoint_pred = endpoint_pred; |
| best_err = trial_err; |
| best_endpoint_index = pred_endpoint_index; |
| } |
| } |
| } // endpoint_pred |
| |
| if (best_endpoint_pred != UINT32_MAX) |
| { |
| m.m_endpoint_index = best_endpoint_index; |
| m.m_endpoint_predictor = best_endpoint_pred; |
| |
| total_endpoint_pred_hits++; |
| total_block_endpoints_remapped++; |
| } |
| else |
| { |
| total_endpoint_pred_missed++; |
| } |
| } |
| } |
| else |
| { |
| total_endpoint_pred_missed++; |
| } |
| |
| if (m.m_endpoint_predictor == basist::NO_ENDPOINT_PRED_INDEX) |
| { |
| all_endpoint_indices.push_back(m.m_endpoint_index); |
| } |
| |
| } // block_x |
| |
| } // block_y |
| |
| } // slice |
| |
| debug_printf("total_endpoint_pred_missed: %u (%3.2f%%) total_endpoint_pred_hit: %u (%3.2f%%), total_block_endpoints_remapped: %u (%3.2f%%)\n", |
| total_endpoint_pred_missed, total_endpoint_pred_missed * 100.0f / get_total_blocks(), |
| total_endpoint_pred_hits, total_endpoint_pred_hits * 100.0f / get_total_blocks(), |
| total_block_endpoints_remapped, total_block_endpoints_remapped * 100.0f / get_total_blocks()); |
| |
| reoptimize_and_sort_endpoints_codebook(total_block_endpoints_remapped, all_endpoint_indices); |
| |
| sort_selector_codebook(); |
| check_for_valid_cr_blocks(); |
| |
| debug_printf("Elapsed time: %3.3f secs\n", tm.get_elapsed_secs()); |
| } |
| |
| void basisu_backend::compute_slice_crcs() |
| { |
| for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++) |
| { |
| //const uint32_t first_block_index = m_slices[slice_index].m_first_block_index; |
| const uint32_t width = m_slices[slice_index].m_width; |
| const uint32_t height = m_slices[slice_index].m_height; |
| const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x; |
| const uint32_t num_blocks_y = m_slices[slice_index].m_num_blocks_y; |
| |
| gpu_image gi; |
| gi.init(texture_format::cETC1, width, height); |
| |
| for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) |
| { |
| for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) |
| { |
| //const uint32_t block_index = first_block_index + block_x + block_y * num_blocks_x; |
| |
| encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y); |
| |
| { |
| etc_block& output_block = *(etc_block*)gi.get_block_ptr(block_x, block_y); |
| |
| output_block.set_diff_bit(true); |
| // Setting the flip bit to false to be compatible with the Khronos KDFS. |
| //output_block.set_flip_bit(true); |
| output_block.set_flip_bit(false); |
| |
| const uint32_t endpoint_index = m.m_endpoint_index; |
| |
| output_block.set_block_color5_etc1s(m_endpoint_palette[endpoint_index].m_color5); |
| output_block.set_inten_tables_etc1s(m_endpoint_palette[endpoint_index].m_inten5); |
| |
| const uint32_t selector_idx = m.m_selector_index; |
| |
| const etc1_selector_palette_entry& selectors = m_selector_palette[selector_idx]; |
| for (uint32_t sy = 0; sy < 4; sy++) |
| for (uint32_t sx = 0; sx < 4; sx++) |
| output_block.set_selector(sx, sy, selectors(sx, sy)); |
| } |
| |
| } // block_x |
| } // block_y |
| |
| m_output.m_slice_image_crcs[slice_index] = basist::crc16(gi.get_ptr(), gi.get_size_in_bytes(), 0); |
| |
| if (m_params.m_debug_images) |
| { |
| image gi_unpacked; |
| gi.unpack(gi_unpacked); |
| |
| char buf[256]; |
| #ifdef _WIN32 |
| sprintf_s(buf, sizeof(buf), "basisu_backend_slice_%u.png", slice_index); |
| #else |
| snprintf(buf, sizeof(buf), "basisu_backend_slice_%u.png", slice_index); |
| #endif |
| save_png(buf, gi_unpacked); |
| } |
| |
| } // slice_index |
| } |
| |
| //uint32_t g_color_delta_hist[255 * 3 + 1]; |
| //uint32_t g_color_delta_bad_hist[255 * 3 + 1]; |
| |
| // TODO: Split this into multiple methods. |
| bool basisu_backend::encode_image() |
| { |
| basisu_frontend& r = *m_pFront_end; |
| const bool is_video = r.get_params().m_tex_type == basist::cBASISTexTypeVideoFrames; |
| |
| uint32_t total_used_selector_history_buf = 0; |
| uint32_t total_selector_indices_remapped = 0; |
| |
| basist::approx_move_to_front selector_history_buf(basist::MAX_SELECTOR_HISTORY_BUF_SIZE); |
| histogram selector_history_buf_histogram(basist::MAX_SELECTOR_HISTORY_BUF_SIZE); |
| histogram selector_histogram(r.get_total_selector_clusters() + basist::MAX_SELECTOR_HISTORY_BUF_SIZE + 1); |
| histogram selector_history_buf_rle_histogram(1 << basist::SELECTOR_HISTORY_BUF_RLE_COUNT_BITS); |
| |
| basisu::vector<uint_vec> selector_syms(m_slices.size()); |
| |
| const uint32_t SELECTOR_HISTORY_BUF_FIRST_SYMBOL_INDEX = r.get_total_selector_clusters(); |
| const uint32_t SELECTOR_HISTORY_BUF_RLE_SYMBOL_INDEX = SELECTOR_HISTORY_BUF_FIRST_SYMBOL_INDEX + basist::MAX_SELECTOR_HISTORY_BUF_SIZE; |
| |
| m_output.m_slice_image_crcs.resize(m_slices.size()); |
| |
| histogram delta_endpoint_histogram(r.get_total_endpoint_clusters()); |
| |
| histogram endpoint_pred_histogram(basist::ENDPOINT_PRED_TOTAL_SYMBOLS); |
| basisu::vector<uint_vec> endpoint_pred_syms(m_slices.size()); |
| |
| uint32_t total_endpoint_indices_remapped = 0; |
| |
| uint_vec block_endpoint_indices, block_selector_indices; |
| |
| interval_timer tm; |
| tm.start(); |
| |
| const int COLOR_DELTA_THRESH = 8; |
| const int SEL_DIFF_THRESHOLD = 11; |
| |
| for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++) |
| { |
| //const int prev_frame_slice_index = is_video ? find_video_frame(slice_index, -1) : -1; |
| //const int next_frame_slice_index = is_video ? find_video_frame(slice_index, 1) : -1; |
| const uint32_t first_block_index = m_slices[slice_index].m_first_block_index; |
| //const uint32_t width = m_slices[slice_index].m_width; |
| //const uint32_t height = m_slices[slice_index].m_height; |
| const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x; |
| const uint32_t num_blocks_y = m_slices[slice_index].m_num_blocks_y; |
| |
| selector_history_buf.reset(); |
| |
| int selector_history_buf_rle_count = 0; |
| |
| int prev_endpoint_pred_sym_bits = -1, endpoint_pred_repeat_count = 0; |
| |
| uint32_t prev_endpoint_index = 0; |
| |
| vector2D<uint8_t> block_endpoints_are_referenced(num_blocks_x, num_blocks_y); |
| |
| for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) |
| { |
| for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) |
| { |
| //const uint32_t block_index = first_block_index + block_x + block_y * num_blocks_x; |
| |
| encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y); |
| |
| if (m.m_endpoint_predictor == 0) |
| block_endpoints_are_referenced(block_x - 1, block_y) = true; |
| else if (m.m_endpoint_predictor == 1) |
| block_endpoints_are_referenced(block_x, block_y - 1) = true; |
| else if (m.m_endpoint_predictor == 2) |
| { |
| if (!is_video) |
| block_endpoints_are_referenced(block_x - 1, block_y - 1) = true; |
| } |
| if (is_video) |
| { |
| if (m.m_is_cr_target) |
| block_endpoints_are_referenced(block_x, block_y) = true; |
| } |
| |
| } // block_x |
| } // block_y |
| |
| for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) |
| { |
| for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) |
| { |
| const uint32_t block_index = first_block_index + block_x + block_y * num_blocks_x; |
| |
| encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y); |
| |
| if (((block_x & 1) == 0) && ((block_y & 1) == 0)) |
| { |
| uint32_t endpoint_pred_cur_sym_bits = 0; |
| |
| for (uint32_t y = 0; y < 2; y++) |
| { |
| for (uint32_t x = 0; x < 2; x++) |
| { |
| const uint32_t bx = block_x + x; |
| const uint32_t by = block_y + y; |
| |
| uint32_t pred = basist::NO_ENDPOINT_PRED_INDEX; |
| if ((bx < num_blocks_x) && (by < num_blocks_y)) |
| pred = m_slice_encoder_blocks[slice_index](bx, by).m_endpoint_predictor; |
| |
| endpoint_pred_cur_sym_bits |= (pred << (x * 2 + y * 4)); |
| } |
| } |
| |
| if ((int)endpoint_pred_cur_sym_bits == prev_endpoint_pred_sym_bits) |
| { |
| endpoint_pred_repeat_count++; |
| } |
| else |
| { |
| if (endpoint_pred_repeat_count > 0) |
| { |
| if (endpoint_pred_repeat_count > (int)basist::ENDPOINT_PRED_MIN_REPEAT_COUNT) |
| { |
| endpoint_pred_histogram.inc(basist::ENDPOINT_PRED_REPEAT_LAST_SYMBOL); |
| endpoint_pred_syms[slice_index].push_back(basist::ENDPOINT_PRED_REPEAT_LAST_SYMBOL); |
| |
| endpoint_pred_syms[slice_index].push_back(endpoint_pred_repeat_count); |
| } |
| else |
| { |
| for (int j = 0; j < endpoint_pred_repeat_count; j++) |
| { |
| endpoint_pred_histogram.inc(prev_endpoint_pred_sym_bits); |
| endpoint_pred_syms[slice_index].push_back(prev_endpoint_pred_sym_bits); |
| } |
| } |
| |
| endpoint_pred_repeat_count = 0; |
| } |
| |
| endpoint_pred_histogram.inc(endpoint_pred_cur_sym_bits); |
| endpoint_pred_syms[slice_index].push_back(endpoint_pred_cur_sym_bits); |
| |
| prev_endpoint_pred_sym_bits = endpoint_pred_cur_sym_bits; |
| } |
| } |
| |
| int new_endpoint_index = m_endpoint_remap_table_old_to_new[m.m_endpoint_index]; |
| |
| if (m.m_endpoint_predictor == basist::NO_ENDPOINT_PRED_INDEX) |
| { |
| int endpoint_delta = new_endpoint_index - prev_endpoint_index; |
| |
| if ((m_params.m_endpoint_rdo_quality_thresh > 1.0f) && (iabs(endpoint_delta) > 1) && (!block_endpoints_are_referenced(block_x, block_y))) |
| { |
| const pixel_block& src_pixels = r.get_source_pixel_block(block_index); |
| |
| etc_block etc_blk(r.get_output_block(block_index)); |
| |
| const uint64_t cur_err = etc_blk.evaluate_etc1_error(src_pixels.get_ptr(), r.get_params().m_perceptual); |
| const uint32_t cur_inten5 = etc_blk.get_inten_table(0); |
| |
| const etc1_endpoint_palette_entry& cur_endpoints = m_endpoint_palette[m.m_endpoint_index]; |
| |
| if (cur_err) |
| { |
| const float endpoint_remap_thresh = maximum(1.0f, m_params.m_endpoint_rdo_quality_thresh); |
| const uint64_t thresh_err = (uint64_t)(cur_err * endpoint_remap_thresh); |
| |
| //const int MAX_ENDPOINT_SEARCH_DIST = (m_params.m_compression_level >= 2) ? 64 : 32; |
| const int MAX_ENDPOINT_SEARCH_DIST = (m_params.m_compression_level >= 2) ? 64 : 16; |
| |
| if (!g_cpu_supports_sse41) |
| { |
| const uint64_t initial_best_trial_err = UINT64_MAX; |
| uint64_t best_trial_err = initial_best_trial_err; |
| int best_trial_idx = 0; |
| |
| etc_block trial_etc_blk(etc_blk); |
| |
| const int search_dist = minimum<int>(iabs(endpoint_delta) - 1, MAX_ENDPOINT_SEARCH_DIST); |
| for (int d = -search_dist; d < search_dist; d++) |
| { |
| int trial_idx = prev_endpoint_index + d; |
| if (trial_idx < 0) |
| trial_idx += (int)r.get_total_endpoint_clusters(); |
| else if (trial_idx >= (int)r.get_total_endpoint_clusters()) |
| trial_idx -= (int)r.get_total_endpoint_clusters(); |
| |
| if (trial_idx == new_endpoint_index) |
| continue; |
| |
| // Skip it if this new endpoint palette entry is actually never used. |
| if (!m_new_endpoint_was_used[trial_idx]) |
| continue; |
| |
| const etc1_endpoint_palette_entry& p = m_endpoint_palette[m_endpoint_remap_table_new_to_old[trial_idx]]; |
| |
| if (m_params.m_compression_level <= 1) |
| { |
| if (p.m_inten5 > cur_inten5) |
| continue; |
| |
| int delta_r = iabs(cur_endpoints.m_color5.r - p.m_color5.r); |
| int delta_g = iabs(cur_endpoints.m_color5.g - p.m_color5.g); |
| int delta_b = iabs(cur_endpoints.m_color5.b - p.m_color5.b); |
| int color_delta = delta_r + delta_g + delta_b; |
| |
| if (color_delta > COLOR_DELTA_THRESH) |
| continue; |
| } |
| |
| trial_etc_blk.set_block_color5_etc1s(p.m_color5); |
| trial_etc_blk.set_inten_tables_etc1s(p.m_inten5); |
| |
| uint64_t trial_err = trial_etc_blk.evaluate_etc1_error(src_pixels.get_ptr(), r.get_params().m_perceptual); |
| |
| if ((trial_err < best_trial_err) && (trial_err <= thresh_err)) |
| { |
| best_trial_err = trial_err; |
| best_trial_idx = trial_idx; |
| } |
| } |
| |
| if (best_trial_err != initial_best_trial_err) |
| { |
| m.m_endpoint_index = m_endpoint_remap_table_new_to_old[best_trial_idx]; |
| |
| new_endpoint_index = best_trial_idx; |
| |
| endpoint_delta = new_endpoint_index - prev_endpoint_index; |
| |
| total_endpoint_indices_remapped++; |
| } |
| } |
| else |
| { |
| #if BASISU_SUPPORT_SSE |
| uint8_t block_selectors[16]; |
| for (uint32_t i = 0; i < 16; i++) |
| block_selectors[i] = (uint8_t)etc_blk.get_selector(i & 3, i >> 2); |
| |
| const int64_t initial_best_trial_err = INT64_MAX; |
| int64_t best_trial_err = initial_best_trial_err; |
| int best_trial_idx = 0; |
| |
| const int search_dist = minimum<int>(iabs(endpoint_delta) - 1, MAX_ENDPOINT_SEARCH_DIST); |
| for (int d = -search_dist; d < search_dist; d++) |
| { |
| int trial_idx = prev_endpoint_index + d; |
| if (trial_idx < 0) |
| trial_idx += (int)r.get_total_endpoint_clusters(); |
| else if (trial_idx >= (int)r.get_total_endpoint_clusters()) |
| trial_idx -= (int)r.get_total_endpoint_clusters(); |
| |
| if (trial_idx == new_endpoint_index) |
| continue; |
| |
| // Skip it if this new endpoint palette entry is actually never used. |
| if (!m_new_endpoint_was_used[trial_idx]) |
| continue; |
| |
| const etc1_endpoint_palette_entry& p = m_endpoint_palette[m_endpoint_remap_table_new_to_old[trial_idx]]; |
| |
| if (m_params.m_compression_level <= 1) |
| { |
| if (p.m_inten5 > cur_inten5) |
| continue; |
| |
| int delta_r = iabs(cur_endpoints.m_color5.r - p.m_color5.r); |
| int delta_g = iabs(cur_endpoints.m_color5.g - p.m_color5.g); |
| int delta_b = iabs(cur_endpoints.m_color5.b - p.m_color5.b); |
| int color_delta = delta_r + delta_g + delta_b; |
| |
| if (color_delta > COLOR_DELTA_THRESH) |
| continue; |
| } |
| |
| color_rgba block_colors[4]; |
| etc_block::get_block_colors_etc1s(block_colors, p.m_color5, p.m_inten5); |
| |
| int64_t trial_err; |
| if (r.get_params().m_perceptual) |
| { |
| perceptual_distance_rgb_4_N_sse41(&trial_err, block_selectors, block_colors, src_pixels.get_ptr(), 16, best_trial_err); |
| } |
| else |
| { |
| linear_distance_rgb_4_N_sse41(&trial_err, block_selectors, block_colors, src_pixels.get_ptr(), 16, best_trial_err); |
| } |
| |
| //if (trial_err > thresh_err) |
| // g_color_delta_bad_hist[color_delta]++; |
| |
| if ((trial_err < best_trial_err) && (trial_err <= (int64_t)thresh_err)) |
| { |
| best_trial_err = trial_err; |
| best_trial_idx = trial_idx; |
| } |
| } |
| |
| if (best_trial_err != initial_best_trial_err) |
| { |
| m.m_endpoint_index = m_endpoint_remap_table_new_to_old[best_trial_idx]; |
| |
| new_endpoint_index = best_trial_idx; |
| |
| endpoint_delta = new_endpoint_index - prev_endpoint_index; |
| |
| total_endpoint_indices_remapped++; |
| } |
| #endif // BASISU_SUPPORT_SSE |
| } // if (!g_cpu_supports_sse41) |
| |
| } // if (cur_err) |
| |
| } // if ((m_params.m_endpoint_rdo_quality_thresh > 1.0f) && (iabs(endpoint_delta) > 1) && (!block_endpoints_are_referenced(block_x, block_y))) |
| |
| if (endpoint_delta < 0) |
| endpoint_delta += (int)r.get_total_endpoint_clusters(); |
| |
| delta_endpoint_histogram.inc(endpoint_delta); |
| |
| } // if (m.m_endpoint_predictor == basist::NO_ENDPOINT_PRED_INDEX) |
| |
| block_endpoint_indices.push_back(m_endpoint_remap_table_new_to_old[new_endpoint_index]); |
| |
| prev_endpoint_index = new_endpoint_index; |
| |
| if ((!is_video) || (m.m_endpoint_predictor != basist::CR_ENDPOINT_PRED_INDEX)) |
| { |
| int new_selector_index = m_selector_remap_table_old_to_new[m.m_selector_index]; |
| |
| const float selector_remap_thresh = maximum(1.0f, m_params.m_selector_rdo_quality_thresh); //2.5f; |
| |
| int selector_history_buf_index = -1; |
| |
| // At low comp levels this hurts compression a tiny amount, but is significantly faster so it's a good tradeoff. |
| if ((m.m_is_cr_target) || (m_params.m_compression_level <= 1)) |
| { |
| for (uint32_t j = 0; j < selector_history_buf.size(); j++) |
| { |
| const int trial_idx = selector_history_buf[j]; |
| if (trial_idx == new_selector_index) |
| { |
| total_used_selector_history_buf++; |
| selector_history_buf_index = j; |
| selector_history_buf_histogram.inc(j); |
| break; |
| } |
| } |
| } |
| |
| // If the block is a CR target we can't override its selectors. |
| if ((!m.m_is_cr_target) && (selector_history_buf_index == -1)) |
| { |
| const pixel_block& src_pixels = r.get_source_pixel_block(block_index); |
| |
| etc_block etc_blk = r.get_output_block(block_index); |
| |
| // This is new code - the initial release just used the endpoints from the frontend, which isn't correct/accurate. |
| const etc1_endpoint_palette_entry& q = m_endpoint_palette[m_endpoint_remap_table_new_to_old[new_endpoint_index]]; |
| etc_blk.set_block_color5_etc1s(q.m_color5); |
| etc_blk.set_inten_tables_etc1s(q.m_inten5); |
| |
| color_rgba block_colors[4]; |
| etc_blk.get_block_colors(block_colors, 0); |
| |
| const uint8_t* pCur_selectors = &m_selector_palette[m.m_selector_index][0]; |
| |
| uint64_t cur_err = 0; |
| if (r.get_params().m_perceptual) |
| { |
| for (uint32_t p = 0; p < 16; p++) |
| cur_err += color_distance(true, src_pixels.get_ptr()[p], block_colors[pCur_selectors[p]], false); |
| } |
| else |
| { |
| for (uint32_t p = 0; p < 16; p++) |
| cur_err += color_distance(false, src_pixels.get_ptr()[p], block_colors[pCur_selectors[p]], false); |
| } |
| |
| const uint64_t limit_err = (uint64_t)ceilf(cur_err * selector_remap_thresh); |
| |
| // Even if cur_err==limit_err, we still want to scan the history buffer because there may be equivalent entries that are cheaper to code. |
| |
| uint64_t best_trial_err = UINT64_MAX; |
| int best_trial_idx = 0; |
| uint32_t best_trial_history_buf_idx = 0; |
| |
| for (uint32_t j = 0; j < selector_history_buf.size(); j++) |
| { |
| const int trial_idx = selector_history_buf[j]; |
| |
| const uint8_t* pSelectors = &m_selector_palette[m_selector_remap_table_new_to_old[trial_idx]][0]; |
| |
| if (m_params.m_compression_level <= 1) |
| { |
| // Predict if evaluating the full color error would cause an early out, by summing the abs err of the selector indices. |
| int sel_diff = 0; |
| for (uint32_t p = 0; p < 16; p += 4) |
| { |
| sel_diff += iabs(pCur_selectors[p + 0] - pSelectors[p + 0]); |
| sel_diff += iabs(pCur_selectors[p + 1] - pSelectors[p + 1]); |
| sel_diff += iabs(pCur_selectors[p + 2] - pSelectors[p + 2]); |
| sel_diff += iabs(pCur_selectors[p + 3] - pSelectors[p + 3]); |
| if (sel_diff >= SEL_DIFF_THRESHOLD) |
| break; |
| } |
| if (sel_diff >= SEL_DIFF_THRESHOLD) |
| continue; |
| } |
| |
| const uint64_t thresh_err = minimum(limit_err, best_trial_err); |
| uint64_t trial_err = 0; |
| |
| // This tends to early out quickly, so SSE has a hard time competing. |
| if (r.get_params().m_perceptual) |
| { |
| for (uint32_t p = 0; p < 16; p++) |
| { |
| uint32_t sel = pSelectors[p]; |
| trial_err += color_distance(true, src_pixels.get_ptr()[p], block_colors[sel], false); |
| if (trial_err > thresh_err) |
| break; |
| } |
| } |
| else |
| { |
| for (uint32_t p = 0; p < 16; p++) |
| { |
| uint32_t sel = pSelectors[p]; |
| trial_err += color_distance(false, src_pixels.get_ptr()[p], block_colors[sel], false); |
| if (trial_err > thresh_err) |
| break; |
| } |
| } |
| |
| if ((trial_err < best_trial_err) && (trial_err <= thresh_err)) |
| { |
| assert(trial_err <= limit_err); |
| |
| best_trial_err = trial_err; |
| best_trial_idx = trial_idx; |
| best_trial_history_buf_idx = j; |
| } |
| } |
| |
| if (best_trial_err != UINT64_MAX) |
| { |
| if (new_selector_index != best_trial_idx) |
| total_selector_indices_remapped++; |
| |
| new_selector_index = best_trial_idx; |
| |
| total_used_selector_history_buf++; |
| |
| selector_history_buf_index = best_trial_history_buf_idx; |
| |
| selector_history_buf_histogram.inc(best_trial_history_buf_idx); |
| } |
| |
| } // if (m_params.m_selector_rdo_quality_thresh > 0.0f) |
| |
| m.m_selector_index = m_selector_remap_table_new_to_old[new_selector_index]; |
| |
| |
| if ((selector_history_buf_rle_count) && (selector_history_buf_index != 0)) |
| { |
| if (selector_history_buf_rle_count >= (int)basist::SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH) |
| { |
| selector_syms[slice_index].push_back(SELECTOR_HISTORY_BUF_RLE_SYMBOL_INDEX); |
| selector_syms[slice_index].push_back(selector_history_buf_rle_count); |
| |
| int run_sym = selector_history_buf_rle_count - basist::SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH; |
| if (run_sym >= ((int)basist::SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL - 1)) |
| selector_history_buf_rle_histogram.inc(basist::SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL - 1); |
| else |
| selector_history_buf_rle_histogram.inc(run_sym); |
| |
| selector_histogram.inc(SELECTOR_HISTORY_BUF_RLE_SYMBOL_INDEX); |
| } |
| else |
| { |
| for (int k = 0; k < selector_history_buf_rle_count; k++) |
| { |
| uint32_t sym_index = SELECTOR_HISTORY_BUF_FIRST_SYMBOL_INDEX + 0; |
| |
| selector_syms[slice_index].push_back(sym_index); |
| |
| selector_histogram.inc(sym_index); |
| } |
| } |
| |
| selector_history_buf_rle_count = 0; |
| } |
| |
| if (selector_history_buf_index >= 0) |
| { |
| if (selector_history_buf_index == 0) |
| selector_history_buf_rle_count++; |
| else |
| { |
| uint32_t history_buf_sym = SELECTOR_HISTORY_BUF_FIRST_SYMBOL_INDEX + selector_history_buf_index; |
| |
| selector_syms[slice_index].push_back(history_buf_sym); |
| |
| selector_histogram.inc(history_buf_sym); |
| } |
| } |
| else |
| { |
| selector_syms[slice_index].push_back(new_selector_index); |
| |
| selector_histogram.inc(new_selector_index); |
| } |
| |
| m.m_selector_history_buf_index = selector_history_buf_index; |
| |
| if (selector_history_buf_index < 0) |
| selector_history_buf.add(new_selector_index); |
| else if (selector_history_buf.size()) |
| selector_history_buf.use(selector_history_buf_index); |
| } |
| block_selector_indices.push_back(m.m_selector_index); |
| |
| } // block_x |
| |
| } // block_y |
| |
| if (endpoint_pred_repeat_count > 0) |
| { |
| if (endpoint_pred_repeat_count > (int)basist::ENDPOINT_PRED_MIN_REPEAT_COUNT) |
| { |
| endpoint_pred_histogram.inc(basist::ENDPOINT_PRED_REPEAT_LAST_SYMBOL); |
| endpoint_pred_syms[slice_index].push_back(basist::ENDPOINT_PRED_REPEAT_LAST_SYMBOL); |
| |
| endpoint_pred_syms[slice_index].push_back(endpoint_pred_repeat_count); |
| } |
| else |
| { |
| for (int j = 0; j < endpoint_pred_repeat_count; j++) |
| { |
| endpoint_pred_histogram.inc(prev_endpoint_pred_sym_bits); |
| endpoint_pred_syms[slice_index].push_back(prev_endpoint_pred_sym_bits); |
| } |
| } |
| |
| endpoint_pred_repeat_count = 0; |
| } |
| |
| if (selector_history_buf_rle_count) |
| { |
| if (selector_history_buf_rle_count >= (int)basist::SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH) |
| { |
| selector_syms[slice_index].push_back(SELECTOR_HISTORY_BUF_RLE_SYMBOL_INDEX); |
| selector_syms[slice_index].push_back(selector_history_buf_rle_count); |
| |
| int run_sym = selector_history_buf_rle_count - basist::SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH; |
| if (run_sym >= ((int)basist::SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL - 1)) |
| selector_history_buf_rle_histogram.inc(basist::SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL - 1); |
| else |
| selector_history_buf_rle_histogram.inc(run_sym); |
| |
| selector_histogram.inc(SELECTOR_HISTORY_BUF_RLE_SYMBOL_INDEX); |
| } |
| else |
| { |
| for (int i = 0; i < selector_history_buf_rle_count; i++) |
| { |
| uint32_t sym_index = SELECTOR_HISTORY_BUF_FIRST_SYMBOL_INDEX + 0; |
| |
| selector_syms[slice_index].push_back(sym_index); |
| |
| selector_histogram.inc(sym_index); |
| } |
| } |
| |
| selector_history_buf_rle_count = 0; |
| } |
| |
| } // slice_index |
| |
| //for (int i = 0; i <= 255 * 3; i++) |
| //{ |
| // printf("%u, %u, %f\n", g_color_delta_bad_hist[i], g_color_delta_hist[i], g_color_delta_hist[i] ? g_color_delta_bad_hist[i] / (float)g_color_delta_hist[i] : 0); |
| //} |
| |
| double total_prep_time = tm.get_elapsed_secs(); |
| debug_printf("basisu_backend::encode_image: Total prep time: %3.2f\n", total_prep_time); |
| |
| debug_printf("Endpoint pred RDO total endpoint indices remapped: %u %3.2f%%\n", |
| total_endpoint_indices_remapped, total_endpoint_indices_remapped * 100.0f / get_total_blocks()); |
| |
| debug_printf("Selector history RDO total selector indices remapped: %u %3.2f%%, Used history buf: %u %3.2f%%\n", |
| total_selector_indices_remapped, total_selector_indices_remapped * 100.0f / get_total_blocks(), |
| total_used_selector_history_buf, total_used_selector_history_buf * 100.0f / get_total_blocks()); |
| |
| //if ((total_endpoint_indices_remapped) && (m_params.m_compression_level > 0)) |
| if ((total_endpoint_indices_remapped) && (m_params.m_compression_level > 1) && (!m_params.m_used_global_codebooks)) |
| { |
| int_vec unused; |
| r.reoptimize_remapped_endpoints(block_endpoint_indices, unused, false, &block_selector_indices); |
| |
| create_endpoint_palette(); |
| } |
| |
| check_for_valid_cr_blocks(); |
| compute_slice_crcs(); |
| |
| double endpoint_pred_entropy = endpoint_pred_histogram.get_entropy() / endpoint_pred_histogram.get_total(); |
| double delta_endpoint_entropy = delta_endpoint_histogram.get_entropy() / delta_endpoint_histogram.get_total(); |
| double selector_entropy = selector_histogram.get_entropy() / selector_histogram.get_total(); |
| |
| debug_printf("Histogram entropy: EndpointPred: %3.3f DeltaEndpoint: %3.3f DeltaSelector: %3.3f\n", endpoint_pred_entropy, delta_endpoint_entropy, selector_entropy); |
| |
| if (!endpoint_pred_histogram.get_total()) |
| endpoint_pred_histogram.inc(0); |
| huffman_encoding_table endpoint_pred_model; |
| if (!endpoint_pred_model.init(endpoint_pred_histogram, 16)) |
| { |
| error_printf("endpoint_pred_model.init() failed!"); |
| return false; |
| } |
| |
| if (!delta_endpoint_histogram.get_total()) |
| delta_endpoint_histogram.inc(0); |
| huffman_encoding_table delta_endpoint_model; |
| if (!delta_endpoint_model.init(delta_endpoint_histogram, 16)) |
| { |
| error_printf("delta_endpoint_model.init() failed!"); |
| return false; |
| } |
| if (!selector_histogram.get_total()) |
| selector_histogram.inc(0); |
| |
| huffman_encoding_table selector_model; |
| if (!selector_model.init(selector_histogram, 16)) |
| { |
| error_printf("selector_model.init() failed!"); |
| return false; |
| } |
| |
| if (!selector_history_buf_rle_histogram.get_total()) |
| selector_history_buf_rle_histogram.inc(0); |
| |
| huffman_encoding_table selector_history_buf_rle_model; |
| if (!selector_history_buf_rle_model.init(selector_history_buf_rle_histogram, 16)) |
| { |
| error_printf("selector_history_buf_rle_model.init() failed!"); |
| return false; |
| } |
| |
| bitwise_coder coder; |
| coder.init(1024 * 1024 * 4); |
| |
| uint32_t endpoint_pred_model_bits = coder.emit_huffman_table(endpoint_pred_model); |
| uint32_t delta_endpoint_bits = coder.emit_huffman_table(delta_endpoint_model); |
| uint32_t selector_model_bits = coder.emit_huffman_table(selector_model); |
| uint32_t selector_history_buf_run_sym_bits = coder.emit_huffman_table(selector_history_buf_rle_model); |
| |
| coder.put_bits(basist::MAX_SELECTOR_HISTORY_BUF_SIZE, 13); |
| |
| debug_printf("Model sizes: EndpointPred: %u bits %u bytes (%3.3f bpp) DeltaEndpoint: %u bits %u bytes (%3.3f bpp) Selector: %u bits %u bytes (%3.3f bpp) SelectorHistBufRLE: %u bits %u bytes (%3.3f bpp)\n", |
| endpoint_pred_model_bits, (endpoint_pred_model_bits + 7) / 8, endpoint_pred_model_bits / float(get_total_input_texels()), |
| delta_endpoint_bits, (delta_endpoint_bits + 7) / 8, delta_endpoint_bits / float(get_total_input_texels()), |
| selector_model_bits, (selector_model_bits + 7) / 8, selector_model_bits / float(get_total_input_texels()), |
| selector_history_buf_run_sym_bits, (selector_history_buf_run_sym_bits + 7) / 8, selector_history_buf_run_sym_bits / float(get_total_input_texels())); |
| |
| coder.flush(); |
| |
| m_output.m_slice_image_tables = coder.get_bytes(); |
| |
| uint32_t total_endpoint_pred_bits = 0, total_delta_endpoint_bits = 0, total_selector_bits = 0; |
| |
| uint32_t total_image_bytes = 0; |
| |
| m_output.m_slice_image_data.resize(m_slices.size()); |
| |
| for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++) |
| { |
| //const uint32_t width = m_slices[slice_index].m_width; |
| //const uint32_t height = m_slices[slice_index].m_height; |
| const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x; |
| const uint32_t num_blocks_y = m_slices[slice_index].m_num_blocks_y; |
| |
| coder.init(1024 * 1024 * 4); |
| |
| uint32_t cur_selector_sym_ofs = 0; |
| uint32_t selector_rle_count = 0; |
| |
| int endpoint_pred_repeat_count = 0; |
| uint32_t cur_endpoint_pred_sym_ofs = 0; |
| // uint32_t prev_endpoint_pred_sym = 0; |
| uint32_t prev_endpoint_index = 0; |
| |
| for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) |
| { |
| for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) |
| { |
| const encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y); |
| |
| if (((block_x & 1) == 0) && ((block_y & 1) == 0)) |
| { |
| if (endpoint_pred_repeat_count > 0) |
| { |
| endpoint_pred_repeat_count--; |
| } |
| else |
| { |
| uint32_t sym = endpoint_pred_syms[slice_index][cur_endpoint_pred_sym_ofs++]; |
| |
| if (sym == basist::ENDPOINT_PRED_REPEAT_LAST_SYMBOL) |
| { |
| total_endpoint_pred_bits += coder.put_code(sym, endpoint_pred_model); |
| |
| endpoint_pred_repeat_count = endpoint_pred_syms[slice_index][cur_endpoint_pred_sym_ofs++]; |
| assert(endpoint_pred_repeat_count >= (int)basist::ENDPOINT_PRED_MIN_REPEAT_COUNT); |
| |
| total_endpoint_pred_bits += coder.put_vlc(endpoint_pred_repeat_count - basist::ENDPOINT_PRED_MIN_REPEAT_COUNT, basist::ENDPOINT_PRED_COUNT_VLC_BITS); |
| |
| endpoint_pred_repeat_count--; |
| } |
| else |
| { |
| total_endpoint_pred_bits += coder.put_code(sym, endpoint_pred_model); |
| |
| //prev_endpoint_pred_sym = sym; |
| } |
| } |
| } |
| |
| const int new_endpoint_index = m_endpoint_remap_table_old_to_new[m.m_endpoint_index]; |
| |
| if (m.m_endpoint_predictor == basist::NO_ENDPOINT_PRED_INDEX) |
| { |
| int endpoint_delta = new_endpoint_index - prev_endpoint_index; |
| if (endpoint_delta < 0) |
| endpoint_delta += (int)r.get_total_endpoint_clusters(); |
| |
| total_delta_endpoint_bits += coder.put_code(endpoint_delta, delta_endpoint_model); |
| } |
| |
| prev_endpoint_index = new_endpoint_index; |
| |
| if ((!is_video) || (m.m_endpoint_predictor != basist::CR_ENDPOINT_PRED_INDEX)) |
| { |
| if (!selector_rle_count) |
| { |
| uint32_t selector_sym_index = selector_syms[slice_index][cur_selector_sym_ofs++]; |
| |
| if (selector_sym_index == SELECTOR_HISTORY_BUF_RLE_SYMBOL_INDEX) |
| selector_rle_count = selector_syms[slice_index][cur_selector_sym_ofs++]; |
| |
| total_selector_bits += coder.put_code(selector_sym_index, selector_model); |
| |
| if (selector_sym_index == SELECTOR_HISTORY_BUF_RLE_SYMBOL_INDEX) |
| { |
| int run_sym = selector_rle_count - basist::SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH; |
| if (run_sym >= ((int)basist::SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL - 1)) |
| { |
| total_selector_bits += coder.put_code(basist::SELECTOR_HISTORY_BUF_RLE_COUNT_TOTAL - 1, selector_history_buf_rle_model); |
| |
| uint32_t n = selector_rle_count - basist::SELECTOR_HISTORY_BUF_RLE_COUNT_THRESH; |
| total_selector_bits += coder.put_vlc(n, 7); |
| } |
| else |
| total_selector_bits += coder.put_code(run_sym, selector_history_buf_rle_model); |
| } |
| } |
| |
| if (selector_rle_count) |
| selector_rle_count--; |
| } |
| |
| } // block_x |
| |
| } // block_y |
| |
| BASISU_BACKEND_VERIFY(cur_endpoint_pred_sym_ofs == endpoint_pred_syms[slice_index].size()); |
| BASISU_BACKEND_VERIFY(cur_selector_sym_ofs == selector_syms[slice_index].size()); |
| |
| coder.flush(); |
| |
| m_output.m_slice_image_data[slice_index] = coder.get_bytes(); |
| |
| total_image_bytes += (uint32_t)coder.get_bytes().size(); |
| |
| debug_printf("Slice %u compressed size: %u bytes, %3.3f bits per slice texel\n", slice_index, m_output.m_slice_image_data[slice_index].size(), m_output.m_slice_image_data[slice_index].size() * 8.0f / (m_slices[slice_index].m_orig_width * m_slices[slice_index].m_orig_height)); |
| |
| } // slice_index |
| |
| const double total_texels = static_cast<double>(get_total_input_texels()); |
| const double total_blocks = static_cast<double>(get_total_blocks()); |
| |
| debug_printf("Total endpoint pred bits: %u bytes: %u bits/texel: %3.3f bits/block: %3.3f\n", total_endpoint_pred_bits, total_endpoint_pred_bits / 8, total_endpoint_pred_bits / total_texels, total_endpoint_pred_bits / total_blocks); |
| debug_printf("Total delta endpoint bits: %u bytes: %u bits/texel: %3.3f bits/block: %3.3f\n", total_delta_endpoint_bits, total_delta_endpoint_bits / 8, total_delta_endpoint_bits / total_texels, total_delta_endpoint_bits / total_blocks); |
| debug_printf("Total selector bits: %u bytes: %u bits/texel: %3.3f bits/block: %3.3f\n", total_selector_bits, total_selector_bits / 8, total_selector_bits / total_texels, total_selector_bits / total_blocks); |
| |
| debug_printf("Total table bytes: %u, %3.3f bits/texel\n", m_output.m_slice_image_tables.size(), m_output.m_slice_image_tables.size() * 8.0f / total_texels); |
| debug_printf("Total image bytes: %u, %3.3f bits/texel\n", total_image_bytes, total_image_bytes * 8.0f / total_texels); |
| |
| return true; |
| } |
| |
| bool basisu_backend::encode_endpoint_palette() |
| { |
| const basisu_frontend& r = *m_pFront_end; |
| |
| // The endpoint indices may have been changed by the backend's RDO step, so go and figure out which ones are actually used again. |
| bool_vec old_endpoint_was_used(r.get_total_endpoint_clusters()); |
| uint32_t first_old_entry_index = UINT32_MAX; |
| |
| for (uint32_t slice_index = 0; slice_index < m_slices.size(); slice_index++) |
| { |
| const uint32_t num_blocks_x = m_slices[slice_index].m_num_blocks_x, num_blocks_y = m_slices[slice_index].m_num_blocks_y; |
| for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) |
| { |
| for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) |
| { |
| encoder_block& m = m_slice_encoder_blocks[slice_index](block_x, block_y); |
| const uint32_t old_endpoint_index = m.m_endpoint_index; |
| |
| old_endpoint_was_used[old_endpoint_index] = true; |
| first_old_entry_index = basisu::minimum(first_old_entry_index, old_endpoint_index); |
| } // block_x |
| } // block_y |
| } // slice_index |
| |
| debug_printf("basisu_backend::encode_endpoint_palette: first_old_entry_index: %u\n", first_old_entry_index); |
| |
| // Maps NEW to OLD endpoints |
| uint_vec endpoint_remap_table_new_to_old(r.get_total_endpoint_clusters()); |
| endpoint_remap_table_new_to_old.set_all(first_old_entry_index); |
| |
| bool_vec new_endpoint_was_used(r.get_total_endpoint_clusters()); |
| |
| for (uint32_t old_endpoint_index = 0; old_endpoint_index < m_endpoint_remap_table_old_to_new.size(); old_endpoint_index++) |
| { |
| if (old_endpoint_was_used[old_endpoint_index]) |
| { |
| const uint32_t new_endpoint_index = m_endpoint_remap_table_old_to_new[old_endpoint_index]; |
| |
| new_endpoint_was_used[new_endpoint_index] = true; |
| |
| endpoint_remap_table_new_to_old[new_endpoint_index] = old_endpoint_index; |
| } |
| } |
| |
| // TODO: Some new endpoint palette entries may actually be unused and aren't worth coding. Fix that. |
| |
| uint32_t total_unused_new_entries = 0; |
| for (uint32_t i = 0; i < new_endpoint_was_used.size(); i++) |
| if (!new_endpoint_was_used[i]) |
| total_unused_new_entries++; |
| debug_printf("basisu_backend::encode_endpoint_palette: total_unused_new_entries: %u out of %u\n", total_unused_new_entries, new_endpoint_was_used.size()); |
| |
| bool is_grayscale = true; |
| for (uint32_t old_endpoint_index = 0; old_endpoint_index < (uint32_t)m_endpoint_palette.size(); old_endpoint_index++) |
| { |
| int r5 = m_endpoint_palette[old_endpoint_index].m_color5[0]; |
| int g5 = m_endpoint_palette[old_endpoint_index].m_color5[1]; |
| int b5 = m_endpoint_palette[old_endpoint_index].m_color5[2]; |
| if ((r5 != g5) || (r5 != b5)) |
| { |
| is_grayscale = false; |
| break; |
| } |
| } |
| |
| histogram color5_delta_hist0(32); // prev 0-9, delta is -9 to 31 |
| histogram color5_delta_hist1(32); // prev 10-21, delta is -21 to 21 |
| histogram color5_delta_hist2(32); // prev 22-31, delta is -31 to 9 |
| histogram inten_delta_hist(8); |
| |
| color_rgba prev_color5(16, 16, 16, 0); |
| uint32_t prev_inten = 0; |
| |
| for (uint32_t new_endpoint_index = 0; new_endpoint_index < r.get_total_endpoint_clusters(); new_endpoint_index++) |
| { |
| const uint32_t old_endpoint_index = endpoint_remap_table_new_to_old[new_endpoint_index]; |
| |
| int delta_inten = m_endpoint_palette[old_endpoint_index].m_inten5 - prev_inten; |
| inten_delta_hist.inc(delta_inten & 7); |
| prev_inten = m_endpoint_palette[old_endpoint_index].m_inten5; |
| |
| for (uint32_t i = 0; i < (is_grayscale ? 1U : 3U); i++) |
| { |
| const int delta = (m_endpoint_palette[old_endpoint_index].m_color5[i] - prev_color5[i]) & 31; |
| |
| if (prev_color5[i] <= basist::COLOR5_PAL0_PREV_HI) |
| color5_delta_hist0.inc(delta); |
| else if (prev_color5[i] <= basist::COLOR5_PAL1_PREV_HI) |
| color5_delta_hist1.inc(delta); |
| else |
| color5_delta_hist2.inc(delta); |
| |
| prev_color5[i] = m_endpoint_palette[old_endpoint_index].m_color5[i]; |
| } |
| } |
| |
| if (!color5_delta_hist0.get_total()) color5_delta_hist0.inc(0); |
| if (!color5_delta_hist1.get_total()) color5_delta_hist1.inc(0); |
| if (!color5_delta_hist2.get_total()) color5_delta_hist2.inc(0); |
| |
| huffman_encoding_table color5_delta_model0, color5_delta_model1, color5_delta_model2, inten_delta_model; |
| if (!color5_delta_model0.init(color5_delta_hist0, 16)) |
| { |
| error_printf("color5_delta_model.init() failed!"); |
| return false; |
| } |
| |
| if (!color5_delta_model1.init(color5_delta_hist1, 16)) |
| { |
| error_printf("color5_delta_model.init() failed!"); |
| return false; |
| } |
| |
| if (!color5_delta_model2.init(color5_delta_hist2, 16)) |
| { |
| error_printf("color5_delta_model.init() failed!"); |
| return false; |
| } |
| |
| if (!inten_delta_model.init(inten_delta_hist, 16)) |
| { |
| error_printf("inten3_model.init() failed!"); |
| return false; |
| } |
| |
| bitwise_coder coder; |
| |
| coder.init(8192); |
| |
| coder.emit_huffman_table(color5_delta_model0); |
| coder.emit_huffman_table(color5_delta_model1); |
| coder.emit_huffman_table(color5_delta_model2); |
| coder.emit_huffman_table(inten_delta_model); |
| |
| coder.put_bits(is_grayscale, 1); |
| |
| prev_color5.set(16, 16, 16, 0); |
| prev_inten = 0; |
| |
| for (uint32_t new_endpoint_index = 0; new_endpoint_index < r.get_total_endpoint_clusters(); new_endpoint_index++) |
| { |
| const uint32_t old_endpoint_index = endpoint_remap_table_new_to_old[new_endpoint_index]; |
| |
| int delta_inten = (m_endpoint_palette[old_endpoint_index].m_inten5 - prev_inten) & 7; |
| coder.put_code(delta_inten, inten_delta_model); |
| prev_inten = m_endpoint_palette[old_endpoint_index].m_inten5; |
| |
| for (uint32_t i = 0; i < (is_grayscale ? 1U : 3U); i++) |
| { |
| const int delta = (m_endpoint_palette[old_endpoint_index].m_color5[i] - prev_color5[i]) & 31; |
| |
| if (prev_color5[i] <= basist::COLOR5_PAL0_PREV_HI) |
| coder.put_code(delta, color5_delta_model0); |
| else if (prev_color5[i] <= basist::COLOR5_PAL1_PREV_HI) |
| coder.put_code(delta, color5_delta_model1); |
| else |
| coder.put_code(delta, color5_delta_model2); |
| |
| prev_color5[i] = m_endpoint_palette[old_endpoint_index].m_color5[i]; |
| } |
| |
| } // q |
| |
| coder.flush(); |
| |
| m_output.m_endpoint_palette = coder.get_bytes(); |
| |
| debug_printf("Endpoint codebook size: %u bits %u bytes, Bits per entry: %3.1f, Avg bits/texel: %3.3f\n", |
| 8 * (int)m_output.m_endpoint_palette.size(), (int)m_output.m_endpoint_palette.size(), m_output.m_endpoint_palette.size() * 8.0f / r.get_total_endpoint_clusters(), m_output.m_endpoint_palette.size() * 8.0f / get_total_input_texels()); |
| |
| return true; |
| } |
| |
| bool basisu_backend::encode_selector_palette() |
| { |
| const basisu_frontend& r = *m_pFront_end; |
| |
| histogram delta_selector_pal_histogram(256); |
| |
| for (uint32_t q = 0; q < r.get_total_selector_clusters(); q++) |
| { |
| if (!q) |
| continue; |
| |
| const etc1_selector_palette_entry& cur = m_selector_palette[m_selector_remap_table_new_to_old[q]]; |
| const etc1_selector_palette_entry predictor(m_selector_palette[m_selector_remap_table_new_to_old[q - 1]]); |
| |
| for (uint32_t j = 0; j < 4; j++) |
| delta_selector_pal_histogram.inc(cur.get_byte(j) ^ predictor.get_byte(j)); |
| } |
| |
| if (!delta_selector_pal_histogram.get_total()) |
| delta_selector_pal_histogram.inc(0); |
| |
| huffman_encoding_table delta_selector_pal_model; |
| if (!delta_selector_pal_model.init(delta_selector_pal_histogram, 16)) |
| { |
| error_printf("delta_selector_pal_model.init() failed!"); |
| return false; |
| } |
| |
| bitwise_coder coder; |
| coder.init(1024 * 1024); |
| |
| coder.put_bits(0, 1); // use global codebook |
| coder.put_bits(0, 1); // uses hybrid codebooks |
| |
| coder.put_bits(0, 1); // raw bytes |
| |
| coder.emit_huffman_table(delta_selector_pal_model); |
| |
| for (uint32_t q = 0; q < r.get_total_selector_clusters(); q++) |
| { |
| if (!q) |
| { |
| for (uint32_t j = 0; j < 4; j++) |
| coder.put_bits(m_selector_palette[m_selector_remap_table_new_to_old[q]].get_byte(j), 8); |
| continue; |
| } |
| |
| const etc1_selector_palette_entry& cur = m_selector_palette[m_selector_remap_table_new_to_old[q]]; |
| const etc1_selector_palette_entry predictor(m_selector_palette[m_selector_remap_table_new_to_old[q - 1]]); |
| |
| for (uint32_t j = 0; j < 4; j++) |
| coder.put_code(cur.get_byte(j) ^ predictor.get_byte(j), delta_selector_pal_model); |
| } |
| |
| coder.flush(); |
| |
| m_output.m_selector_palette = coder.get_bytes(); |
| |
| if (m_output.m_selector_palette.size() >= r.get_total_selector_clusters() * 4) |
| { |
| coder.init(1024 * 1024); |
| |
| coder.put_bits(0, 1); // use global codebook |
| coder.put_bits(0, 1); // uses hybrid codebooks |
| |
| coder.put_bits(1, 1); // raw bytes |
| |
| for (uint32_t q = 0; q < r.get_total_selector_clusters(); q++) |
| { |
| const uint32_t i = m_selector_remap_table_new_to_old[q]; |
| |
| for (uint32_t j = 0; j < 4; j++) |
| coder.put_bits(m_selector_palette[i].get_byte(j), 8); |
| } |
| |
| coder.flush(); |
| |
| m_output.m_selector_palette = coder.get_bytes(); |
| } |
| |
| debug_printf("Selector codebook bits: %u bytes: %u, Bits per entry: %3.1f, Avg bits/texel: %3.3f\n", |
| (int)m_output.m_selector_palette.size() * 8, (int)m_output.m_selector_palette.size(), |
| m_output.m_selector_palette.size() * 8.0f / r.get_total_selector_clusters(), m_output.m_selector_palette.size() * 8.0f / get_total_input_texels()); |
| |
| return true; |
| } |
| |
| uint32_t basisu_backend::encode() |
| { |
| //const bool is_video = m_pFront_end->get_params().m_tex_type == basist::cBASISTexTypeVideoFrames; |
| m_output.m_slice_desc = m_slices; |
| m_output.m_etc1s = m_params.m_etc1s; |
| m_output.m_uses_global_codebooks = m_params.m_used_global_codebooks; |
| m_output.m_srgb = m_pFront_end->get_params().m_perceptual; |
| |
| create_endpoint_palette(); |
| create_selector_palette(); |
| |
| create_encoder_blocks(); |
| |
| if (!encode_image()) |
| return 0; |
| |
| if (!encode_endpoint_palette()) |
| return 0; |
| |
| if (!encode_selector_palette()) |
| return 0; |
| |
| uint32_t total_compressed_bytes = (uint32_t)(m_output.m_slice_image_tables.size() + m_output.m_endpoint_palette.size() + m_output.m_selector_palette.size()); |
| for (uint32_t i = 0; i < m_output.m_slice_image_data.size(); i++) |
| total_compressed_bytes += (uint32_t)m_output.m_slice_image_data[i].size(); |
| |
| debug_printf("Wrote %u bytes, %3.3f bits/texel\n", total_compressed_bytes, total_compressed_bytes * 8.0f / get_total_input_texels()); |
| |
| return total_compressed_bytes; |
| } |
| |
| } // namespace basisu |