| // File: basisu_math.h |
| #pragma once |
| |
| // TODO: Would prefer this in the basisu namespace, but to avoid collisions with the existing vec/matrix classes I'm placing this in "bu_math". |
| namespace bu_math |
| { |
| // Cross-platform 1.0f/sqrtf(x) approximation. See https://en.wikipedia.org/wiki/Fast_inverse_square_root#cite_note-37. |
| // Would prefer using SSE1 etc. but that would require implementing multiple versions and platform divergence (needing more testing). |
| BASISU_FORCE_INLINE float inv_sqrt(float v) |
| { |
| union |
| { |
| float flt; |
| uint32_t ui; |
| } un; |
| |
| un.flt = v; |
| un.ui = 0x5F1FFFF9UL - (un.ui >> 1); |
| |
| return 0.703952253f * un.flt * (2.38924456f - v * (un.flt * un.flt)); |
| } |
| |
| inline float smoothstep(float edge0, float edge1, float x) |
| { |
| assert(edge1 != edge0); |
| |
| // Scale, and clamp x to 0..1 range |
| x = basisu::saturate((x - edge0) / (edge1 - edge0)); |
| |
| return x * x * (3.0f - 2.0f * x); |
| } |
| |
| template <uint32_t N, typename T> |
| class vec : public basisu::rel_ops<vec<N, T> > |
| { |
| public: |
| typedef T scalar_type; |
| enum |
| { |
| num_elements = N |
| }; |
| |
| inline vec() |
| { |
| } |
| |
| inline vec(basisu::eClear) |
| { |
| clear(); |
| } |
| |
| inline vec(const vec& other) |
| { |
| for (uint32_t i = 0; i < N; i++) |
| m_s[i] = other.m_s[i]; |
| } |
| |
| template <uint32_t O, typename U> |
| inline vec(const vec<O, U>& other) |
| { |
| set(other); |
| } |
| |
| template <uint32_t O, typename U> |
| inline vec(const vec<O, U>& other, T w) |
| { |
| *this = other; |
| m_s[N - 1] = w; |
| } |
| |
| template <typename... Args> |
| inline explicit vec(Args... args) |
| { |
| static_assert(sizeof...(args) <= N); |
| set(args...); |
| } |
| |
| inline void clear() |
| { |
| if (N > 4) |
| memset(m_s, 0, sizeof(m_s)); |
| else |
| { |
| for (uint32_t i = 0; i < N; i++) |
| m_s[i] = 0; |
| } |
| } |
| |
| template <uint32_t ON, typename OT> |
| inline vec& set(const vec<ON, OT>& other) |
| { |
| if ((void*)this == (void*)&other) |
| return *this; |
| const uint32_t m = basisu::minimum(N, ON); |
| uint32_t i; |
| for (i = 0; i < m; i++) |
| m_s[i] = static_cast<T>(other[i]); |
| for (; i < N; i++) |
| m_s[i] = 0; |
| return *this; |
| } |
| |
| inline vec& set_component(uint32_t index, T val) |
| { |
| assert(index < N); |
| m_s[index] = val; |
| return *this; |
| } |
| |
| inline vec& set_all(T val) |
| { |
| for (uint32_t i = 0; i < N; i++) |
| m_s[i] = val; |
| return *this; |
| } |
| |
| template <typename... Args> |
| inline vec& set(Args... args) |
| { |
| static_assert(sizeof...(args) <= N); |
| |
| // Initialize using parameter pack expansion |
| T values[] = { static_cast<T>(args)... }; |
| |
| // Special case if setting with a scalar |
| if (sizeof...(args) == 1) |
| { |
| set_all(values[0]); |
| } |
| else |
| { |
| // Copy the values into the vector |
| for (std::size_t i = 0; i < sizeof...(args); ++i) |
| { |
| m_s[i] = values[i]; |
| } |
| |
| // Zero-initialize the remaining elements (if any) |
| if (sizeof...(args) < N) |
| { |
| std::fill(m_s + sizeof...(args), m_s + N, T{}); |
| } |
| } |
| |
| return *this; |
| } |
| |
| inline vec& set(const T* pValues) |
| { |
| for (uint32_t i = 0; i < N; i++) |
| m_s[i] = pValues[i]; |
| return *this; |
| } |
| |
| template <uint32_t ON, typename OT> |
| inline vec& swizzle_set(const vec<ON, OT>& other, uint32_t i) |
| { |
| return set(static_cast<T>(other[i])); |
| } |
| |
| template <uint32_t ON, typename OT> |
| inline vec& swizzle_set(const vec<ON, OT>& other, uint32_t i, uint32_t j) |
| { |
| return set(static_cast<T>(other[i]), static_cast<T>(other[j])); |
| } |
| |
| template <uint32_t ON, typename OT> |
| inline vec& swizzle_set(const vec<ON, OT>& other, uint32_t i, uint32_t j, uint32_t k) |
| { |
| return set(static_cast<T>(other[i]), static_cast<T>(other[j]), static_cast<T>(other[k])); |
| } |
| |
| template <uint32_t ON, typename OT> |
| inline vec& swizzle_set(const vec<ON, OT>& other, uint32_t i, uint32_t j, uint32_t k, uint32_t l) |
| { |
| return set(static_cast<T>(other[i]), static_cast<T>(other[j]), static_cast<T>(other[k]), static_cast<T>(other[l])); |
| } |
| |
| inline vec& operator=(const vec& rhs) |
| { |
| if (this != &rhs) |
| { |
| for (uint32_t i = 0; i < N; i++) |
| m_s[i] = rhs.m_s[i]; |
| } |
| return *this; |
| } |
| |
| template <uint32_t O, typename U> |
| inline vec& operator=(const vec<O, U>& other) |
| { |
| if ((void*)this == (void*)&other) |
| return *this; |
| |
| uint32_t s = basisu::minimum(N, O); |
| |
| uint32_t i; |
| for (i = 0; i < s; i++) |
| m_s[i] = static_cast<T>(other[i]); |
| |
| for (; i < N; i++) |
| m_s[i] = 0; |
| |
| return *this; |
| } |
| |
| inline bool operator==(const vec& rhs) const |
| { |
| for (uint32_t i = 0; i < N; i++) |
| if (!(m_s[i] == rhs.m_s[i])) |
| return false; |
| return true; |
| } |
| |
| inline bool operator<(const vec& rhs) const |
| { |
| for (uint32_t i = 0; i < N; i++) |
| { |
| if (m_s[i] < rhs.m_s[i]) |
| return true; |
| else if (!(m_s[i] == rhs.m_s[i])) |
| return false; |
| } |
| |
| return false; |
| } |
| |
| inline T operator[](uint32_t i) const |
| { |
| assert(i < N); |
| return m_s[i]; |
| } |
| |
| inline T& operator[](uint32_t i) |
| { |
| assert(i < N); |
| return m_s[i]; |
| } |
| |
| template <uint32_t index> |
| inline uint64_t get_component_bits_as_uint() const |
| { |
| static_assert(index < N); |
| static_assert((sizeof(T) == sizeof(uint16_t)) || (sizeof(T) == sizeof(uint32_t)) || (sizeof(T) == sizeof(uint64_t)), "Unsupported type"); |
| |
| if (sizeof(T) == sizeof(uint16_t)) |
| return *reinterpret_cast<const uint16_t*>(&m_s[index]); |
| else if (sizeof(T) == sizeof(uint32_t)) |
| return *reinterpret_cast<const uint32_t*>(&m_s[index]); |
| else if (sizeof(T) == sizeof(uint64_t)) |
| return *reinterpret_cast<const uint64_t*>(&m_s[index]); |
| else |
| { |
| assert(0); |
| return 0; |
| } |
| } |
| |
| inline T get_x(void) const |
| { |
| return m_s[0]; |
| } |
| inline T get_y(void) const |
| { |
| static_assert(N >= 2); |
| return m_s[1]; |
| } |
| inline T get_z(void) const |
| { |
| static_assert(N >= 3); |
| return m_s[2]; |
| } |
| inline T get_w(void) const |
| { |
| static_assert(N >= 4); |
| return m_s[3]; |
| } |
| |
| inline vec get_x_vector() const |
| { |
| return broadcast<0>(); |
| } |
| inline vec get_y_vector() const |
| { |
| return broadcast<1>(); |
| } |
| inline vec get_z_vector() const |
| { |
| return broadcast<2>(); |
| } |
| inline vec get_w_vector() const |
| { |
| return broadcast<3>(); |
| } |
| |
| inline T get_component(uint32_t i) const |
| { |
| return (*this)[i]; |
| } |
| |
| inline vec& set_x(T v) |
| { |
| m_s[0] = v; |
| return *this; |
| } |
| inline vec& set_y(T v) |
| { |
| static_assert(N >= 2); |
| m_s[1] = v; |
| return *this; |
| } |
| inline vec& set_z(T v) |
| { |
| static_assert(N >= 3); |
| m_s[2] = v; |
| return *this; |
| } |
| inline vec& set_w(T v) |
| { |
| static_assert(N >= 4); |
| m_s[3] = v; |
| return *this; |
| } |
| |
| inline const T* get_ptr() const |
| { |
| return reinterpret_cast<const T*>(&m_s[0]); |
| } |
| inline T* get_ptr() |
| { |
| return reinterpret_cast<T*>(&m_s[0]); |
| } |
| |
| inline vec as_point() const |
| { |
| vec result(*this); |
| result[N - 1] = 1; |
| return result; |
| } |
| |
| inline vec as_dir() const |
| { |
| vec result(*this); |
| result[N - 1] = 0; |
| return result; |
| } |
| |
| inline vec<2, T> select2(uint32_t i, uint32_t j) const |
| { |
| assert((i < N) && (j < N)); |
| return vec<2, T>(m_s[i], m_s[j]); |
| } |
| |
| inline vec<3, T> select3(uint32_t i, uint32_t j, uint32_t k) const |
| { |
| assert((i < N) && (j < N) && (k < N)); |
| return vec<3, T>(m_s[i], m_s[j], m_s[k]); |
| } |
| |
| inline vec<4, T> select4(uint32_t i, uint32_t j, uint32_t k, uint32_t l) const |
| { |
| assert((i < N) && (j < N) && (k < N) && (l < N)); |
| return vec<4, T>(m_s[i], m_s[j], m_s[k], m_s[l]); |
| } |
| |
| inline bool is_dir() const |
| { |
| return m_s[N - 1] == 0; |
| } |
| inline bool is_vector() const |
| { |
| return is_dir(); |
| } |
| inline bool is_point() const |
| { |
| return m_s[N - 1] == 1; |
| } |
| |
| inline vec project() const |
| { |
| vec result(*this); |
| if (result[N - 1]) |
| result /= result[N - 1]; |
| return result; |
| } |
| |
| inline vec broadcast(unsigned i) const |
| { |
| return vec((*this)[i]); |
| } |
| |
| template <uint32_t i> |
| inline vec broadcast() const |
| { |
| return vec((*this)[i]); |
| } |
| |
| inline vec swizzle(uint32_t i, uint32_t j) const |
| { |
| return vec((*this)[i], (*this)[j]); |
| } |
| |
| inline vec swizzle(uint32_t i, uint32_t j, uint32_t k) const |
| { |
| return vec((*this)[i], (*this)[j], (*this)[k]); |
| } |
| |
| inline vec swizzle(uint32_t i, uint32_t j, uint32_t k, uint32_t l) const |
| { |
| return vec((*this)[i], (*this)[j], (*this)[k], (*this)[l]); |
| } |
| |
| inline vec operator-() const |
| { |
| vec result; |
| for (uint32_t i = 0; i < N; i++) |
| result.m_s[i] = -m_s[i]; |
| return result; |
| } |
| |
| inline vec operator+() const |
| { |
| return *this; |
| } |
| |
| inline vec& operator+=(const vec& other) |
| { |
| for (uint32_t i = 0; i < N; i++) |
| m_s[i] += other.m_s[i]; |
| return *this; |
| } |
| |
| inline vec& operator-=(const vec& other) |
| { |
| for (uint32_t i = 0; i < N; i++) |
| m_s[i] -= other.m_s[i]; |
| return *this; |
| } |
| |
| inline vec& operator*=(const vec& other) |
| { |
| for (uint32_t i = 0; i < N; i++) |
| m_s[i] *= other.m_s[i]; |
| return *this; |
| } |
| |
| inline vec& operator/=(const vec& other) |
| { |
| for (uint32_t i = 0; i < N; i++) |
| m_s[i] /= other.m_s[i]; |
| return *this; |
| } |
| |
| inline vec& operator*=(T s) |
| { |
| for (uint32_t i = 0; i < N; i++) |
| m_s[i] *= s; |
| return *this; |
| } |
| |
| inline vec& operator/=(T s) |
| { |
| for (uint32_t i = 0; i < N; i++) |
| m_s[i] /= s; |
| return *this; |
| } |
| |
| friend inline vec operator*(const vec& lhs, T val) |
| { |
| vec result; |
| for (uint32_t i = 0; i < N; i++) |
| result.m_s[i] = lhs.m_s[i] * val; |
| return result; |
| } |
| |
| friend inline vec operator*(T val, const vec& rhs) |
| { |
| vec result; |
| for (uint32_t i = 0; i < N; i++) |
| result.m_s[i] = val * rhs.m_s[i]; |
| return result; |
| } |
| |
| friend inline vec operator/(const vec& lhs, const vec& rhs) |
| { |
| vec result; |
| for (uint32_t i = 0; i < N; i++) |
| result.m_s[i] = lhs.m_s[i] / rhs.m_s[i]; |
| return result; |
| } |
| |
| friend inline vec operator/(const vec& lhs, T val) |
| { |
| vec result; |
| for (uint32_t i = 0; i < N; i++) |
| result.m_s[i] = lhs.m_s[i] / val; |
| return result; |
| } |
| |
| friend inline vec operator+(const vec& lhs, const vec& rhs) |
| { |
| vec result; |
| for (uint32_t i = 0; i < N; i++) |
| result.m_s[i] = lhs.m_s[i] + rhs.m_s[i]; |
| return result; |
| } |
| |
| friend inline vec operator-(const vec& lhs, const vec& rhs) |
| { |
| vec result; |
| for (uint32_t i = 0; i < N; i++) |
| result.m_s[i] = lhs.m_s[i] - rhs.m_s[i]; |
| return result; |
| } |
| |
| static inline vec<3, T> cross2(const vec& a, const vec& b) |
| { |
| static_assert(N >= 2); |
| return vec<3, T>(0, 0, a[0] * b[1] - a[1] * b[0]); |
| } |
| |
| inline vec<3, T> cross2(const vec& b) const |
| { |
| return cross2(*this, b); |
| } |
| |
| static inline vec<3, T> cross3(const vec& a, const vec& b) |
| { |
| static_assert(N >= 3); |
| return vec<3, T>(a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]); |
| } |
| |
| inline vec<3, T> cross3(const vec& b) const |
| { |
| return cross3(*this, b); |
| } |
| |
| static inline vec<3, T> cross(const vec& a, const vec& b) |
| { |
| static_assert(N >= 2); |
| |
| if (N == 2) |
| return cross2(a, b); |
| else |
| return cross3(a, b); |
| } |
| |
| inline vec<3, T> cross(const vec& b) const |
| { |
| static_assert(N >= 2); |
| return cross(*this, b); |
| } |
| |
| inline T dot(const vec& rhs) const |
| { |
| return dot(*this, rhs); |
| } |
| |
| inline vec dot_vector(const vec& rhs) const |
| { |
| return vec(dot(*this, rhs)); |
| } |
| |
| static inline T dot(const vec& lhs, const vec& rhs) |
| { |
| T result = lhs.m_s[0] * rhs.m_s[0]; |
| for (uint32_t i = 1; i < N; i++) |
| result += lhs.m_s[i] * rhs.m_s[i]; |
| return result; |
| } |
| |
| inline T dot2(const vec& rhs) const |
| { |
| static_assert(N >= 2); |
| return m_s[0] * rhs.m_s[0] + m_s[1] * rhs.m_s[1]; |
| } |
| |
| inline T dot3(const vec& rhs) const |
| { |
| static_assert(N >= 3); |
| return m_s[0] * rhs.m_s[0] + m_s[1] * rhs.m_s[1] + m_s[2] * rhs.m_s[2]; |
| } |
| |
| inline T dot4(const vec& rhs) const |
| { |
| static_assert(N >= 4); |
| return m_s[0] * rhs.m_s[0] + m_s[1] * rhs.m_s[1] + m_s[2] * rhs.m_s[2] + m_s[3] * rhs.m_s[3]; |
| } |
| |
| inline T norm(void) const |
| { |
| T sum = m_s[0] * m_s[0]; |
| for (uint32_t i = 1; i < N; i++) |
| sum += m_s[i] * m_s[i]; |
| return sum; |
| } |
| |
| inline T length(void) const |
| { |
| return sqrt(norm()); |
| } |
| |
| inline T squared_distance(const vec& rhs) const |
| { |
| T dist2 = 0; |
| for (uint32_t i = 0; i < N; i++) |
| { |
| T d = m_s[i] - rhs.m_s[i]; |
| dist2 += d * d; |
| } |
| return dist2; |
| } |
| |
| inline T squared_distance(const vec& rhs, T early_out) const |
| { |
| T dist2 = 0; |
| for (uint32_t i = 0; i < N; i++) |
| { |
| T d = m_s[i] - rhs.m_s[i]; |
| dist2 += d * d; |
| if (dist2 > early_out) |
| break; |
| } |
| return dist2; |
| } |
| |
| inline T distance(const vec& rhs) const |
| { |
| T dist2 = 0; |
| for (uint32_t i = 0; i < N; i++) |
| { |
| T d = m_s[i] - rhs.m_s[i]; |
| dist2 += d * d; |
| } |
| return sqrt(dist2); |
| } |
| |
| inline vec inverse() const |
| { |
| vec result; |
| for (uint32_t i = 0; i < N; i++) |
| result[i] = m_s[i] ? (1.0f / m_s[i]) : 0; |
| return result; |
| } |
| |
| // returns squared length (norm) |
| inline double normalize(const vec* pDefaultVec = NULL) |
| { |
| double n = m_s[0] * m_s[0]; |
| for (uint32_t i = 1; i < N; i++) |
| n += m_s[i] * m_s[i]; |
| |
| if (n != 0) |
| *this *= static_cast<T>(1.0f / sqrt(n)); |
| else if (pDefaultVec) |
| *this = *pDefaultVec; |
| return n; |
| } |
| |
| inline double normalize3(const vec* pDefaultVec = NULL) |
| { |
| static_assert(N >= 3); |
| |
| double n = m_s[0] * m_s[0] + m_s[1] * m_s[1] + m_s[2] * m_s[2]; |
| |
| if (n != 0) |
| *this *= static_cast<T>((1.0f / sqrt(n))); |
| else if (pDefaultVec) |
| *this = *pDefaultVec; |
| return n; |
| } |
| |
| inline vec& normalize_in_place(const vec* pDefaultVec = NULL) |
| { |
| normalize(pDefaultVec); |
| return *this; |
| } |
| |
| inline vec& normalize3_in_place(const vec* pDefaultVec = NULL) |
| { |
| normalize3(pDefaultVec); |
| return *this; |
| } |
| |
| inline vec get_normalized(const vec* pDefaultVec = NULL) const |
| { |
| vec result(*this); |
| result.normalize(pDefaultVec); |
| return result; |
| } |
| |
| inline vec get_normalized3(const vec* pDefaultVec = NULL) const |
| { |
| vec result(*this); |
| result.normalize3(pDefaultVec); |
| return result; |
| } |
| |
| inline vec& clamp(T l, T h) |
| { |
| for (uint32_t i = 0; i < N; i++) |
| m_s[i] = static_cast<T>(basisu::clamp(m_s[i], l, h)); |
| return *this; |
| } |
| |
| inline vec& saturate() |
| { |
| return clamp(0.0f, 1.0f); |
| } |
| |
| inline vec& clamp(const vec& l, const vec& h) |
| { |
| for (uint32_t i = 0; i < N; i++) |
| m_s[i] = static_cast<T>(basisu::clamp(m_s[i], l[i], h[i])); |
| return *this; |
| } |
| |
| inline bool is_within_bounds(const vec& l, const vec& h) const |
| { |
| for (uint32_t i = 0; i < N; i++) |
| if ((m_s[i] < l[i]) || (m_s[i] > h[i])) |
| return false; |
| |
| return true; |
| } |
| |
| inline bool is_within_bounds(T l, T h) const |
| { |
| for (uint32_t i = 0; i < N; i++) |
| if ((m_s[i] < l) || (m_s[i] > h)) |
| return false; |
| |
| return true; |
| } |
| |
| inline uint32_t get_major_axis(void) const |
| { |
| T m = fabs(m_s[0]); |
| uint32_t r = 0; |
| for (uint32_t i = 1; i < N; i++) |
| { |
| const T c = fabs(m_s[i]); |
| if (c > m) |
| { |
| m = c; |
| r = i; |
| } |
| } |
| return r; |
| } |
| |
| inline uint32_t get_minor_axis(void) const |
| { |
| T m = fabs(m_s[0]); |
| uint32_t r = 0; |
| for (uint32_t i = 1; i < N; i++) |
| { |
| const T c = fabs(m_s[i]); |
| if (c < m) |
| { |
| m = c; |
| r = i; |
| } |
| } |
| return r; |
| } |
| |
| inline void get_projection_axes(uint32_t& u, uint32_t& v) const |
| { |
| const int axis = get_major_axis(); |
| if (m_s[axis] < 0.0f) |
| { |
| v = basisu::next_wrap<uint32_t>(axis, N); |
| u = basisu::next_wrap<uint32_t>(v, N); |
| } |
| else |
| { |
| u = basisu::next_wrap<uint32_t>(axis, N); |
| v = basisu::next_wrap<uint32_t>(u, N); |
| } |
| } |
| |
| inline T get_absolute_minimum(void) const |
| { |
| T result = fabs(m_s[0]); |
| for (uint32_t i = 1; i < N; i++) |
| result = basisu::minimum(result, fabs(m_s[i])); |
| return result; |
| } |
| |
| inline T get_absolute_maximum(void) const |
| { |
| T result = fabs(m_s[0]); |
| for (uint32_t i = 1; i < N; i++) |
| result = basisu::maximum(result, fabs(m_s[i])); |
| return result; |
| } |
| |
| inline T get_minimum(void) const |
| { |
| T result = m_s[0]; |
| for (uint32_t i = 1; i < N; i++) |
| result = basisu::minimum(result, m_s[i]); |
| return result; |
| } |
| |
| inline T get_maximum(void) const |
| { |
| T result = m_s[0]; |
| for (uint32_t i = 1; i < N; i++) |
| result = basisu::maximum(result, m_s[i]); |
| return result; |
| } |
| |
| inline vec& remove_unit_direction(const vec& dir) |
| { |
| *this -= (dot(dir) * dir); |
| return *this; |
| } |
| |
| inline vec get_remove_unit_direction(const vec& dir) const |
| { |
| return *this - (dot(dir) * dir); |
| } |
| |
| inline bool all_less(const vec& b) const |
| { |
| for (uint32_t i = 0; i < N; i++) |
| if (m_s[i] >= b.m_s[i]) |
| return false; |
| return true; |
| } |
| |
| inline bool all_less_equal(const vec& b) const |
| { |
| for (uint32_t i = 0; i < N; i++) |
| if (m_s[i] > b.m_s[i]) |
| return false; |
| return true; |
| } |
| |
| inline bool all_greater(const vec& b) const |
| { |
| for (uint32_t i = 0; i < N; i++) |
| if (m_s[i] <= b.m_s[i]) |
| return false; |
| return true; |
| } |
| |
| inline bool all_greater_equal(const vec& b) const |
| { |
| for (uint32_t i = 0; i < N; i++) |
| if (m_s[i] < b.m_s[i]) |
| return false; |
| return true; |
| } |
| |
| inline vec negate_xyz() const |
| { |
| vec ret; |
| |
| ret[0] = -m_s[0]; |
| if (N >= 2) |
| ret[1] = -m_s[1]; |
| if (N >= 3) |
| ret[2] = -m_s[2]; |
| |
| for (uint32_t i = 3; i < N; i++) |
| ret[i] = m_s[i]; |
| |
| return ret; |
| } |
| |
| inline vec& invert() |
| { |
| for (uint32_t i = 0; i < N; i++) |
| if (m_s[i] != 0.0f) |
| m_s[i] = 1.0f / m_s[i]; |
| return *this; |
| } |
| |
| inline scalar_type perp_dot(const vec& b) const |
| { |
| static_assert(N == 2); |
| return m_s[0] * b.m_s[1] - m_s[1] * b.m_s[0]; |
| } |
| |
| inline vec perp() const |
| { |
| static_assert(N == 2); |
| return vec(-m_s[1], m_s[0]); |
| } |
| |
| inline vec get_floor() const |
| { |
| vec result; |
| for (uint32_t i = 0; i < N; i++) |
| result[i] = floor(m_s[i]); |
| return result; |
| } |
| |
| inline vec get_ceil() const |
| { |
| vec result; |
| for (uint32_t i = 0; i < N; i++) |
| result[i] = ceil(m_s[i]); |
| return result; |
| } |
| |
| inline T get_total() const |
| { |
| T res = m_s[0]; |
| for (uint32_t i = 1; i < N; i++) |
| res += m_s[i]; |
| return res; |
| } |
| |
| // static helper methods |
| |
| static inline vec mul_components(const vec& lhs, const vec& rhs) |
| { |
| vec result; |
| for (uint32_t i = 0; i < N; i++) |
| result[i] = lhs.m_s[i] * rhs.m_s[i]; |
| return result; |
| } |
| |
| static inline vec mul_add_components(const vec& a, const vec& b, const vec& c) |
| { |
| vec result; |
| for (uint32_t i = 0; i < N; i++) |
| result[i] = a.m_s[i] * b.m_s[i] + c.m_s[i]; |
| return result; |
| } |
| |
| static inline vec make_axis(uint32_t i) |
| { |
| vec result; |
| result.clear(); |
| result[i] = 1; |
| return result; |
| } |
| |
| static inline vec equals_mask(const vec& a, const vec& b) |
| { |
| vec ret; |
| for (uint32_t i = 0; i < N; i++) |
| ret[i] = (a[i] == b[i]); |
| return ret; |
| } |
| |
| static inline vec not_equals_mask(const vec& a, const vec& b) |
| { |
| vec ret; |
| for (uint32_t i = 0; i < N; i++) |
| ret[i] = (a[i] != b[i]); |
| return ret; |
| } |
| |
| static inline vec less_mask(const vec& a, const vec& b) |
| { |
| vec ret; |
| for (uint32_t i = 0; i < N; i++) |
| ret[i] = (a[i] < b[i]); |
| return ret; |
| } |
| |
| static inline vec less_equals_mask(const vec& a, const vec& b) |
| { |
| vec ret; |
| for (uint32_t i = 0; i < N; i++) |
| ret[i] = (a[i] <= b[i]); |
| return ret; |
| } |
| |
| static inline vec greater_equals_mask(const vec& a, const vec& b) |
| { |
| vec ret; |
| for (uint32_t i = 0; i < N; i++) |
| ret[i] = (a[i] >= b[i]); |
| return ret; |
| } |
| |
| static inline vec greater_mask(const vec& a, const vec& b) |
| { |
| vec ret; |
| for (uint32_t i = 0; i < N; i++) |
| ret[i] = (a[i] > b[i]); |
| return ret; |
| } |
| |
| static inline vec component_max(const vec& a, const vec& b) |
| { |
| vec ret; |
| for (uint32_t i = 0; i < N; i++) |
| ret.m_s[i] = basisu::maximum(a.m_s[i], b.m_s[i]); |
| return ret; |
| } |
| |
| static inline vec component_min(const vec& a, const vec& b) |
| { |
| vec ret; |
| for (uint32_t i = 0; i < N; i++) |
| ret.m_s[i] = basisu::minimum(a.m_s[i], b.m_s[i]); |
| return ret; |
| } |
| |
| static inline vec lerp(const vec& a, const vec& b, float t) |
| { |
| vec ret; |
| for (uint32_t i = 0; i < N; i++) |
| ret.m_s[i] = a.m_s[i] + (b.m_s[i] - a.m_s[i]) * t; |
| return ret; |
| } |
| |
| static inline bool equal_tol(const vec& a, const vec& b, float t) |
| { |
| for (uint32_t i = 0; i < N; i++) |
| if (!basisu::equal_tol(a.m_s[i], b.m_s[i], t)) |
| return false; |
| return true; |
| } |
| |
| inline bool equal_tol(const vec& b, float t) const |
| { |
| return equal_tol(*this, b, t); |
| } |
| |
| static inline vec make_random(basisu::rand& r, float l, float h) |
| { |
| vec result; |
| for (uint32_t i = 0; i < N; i++) |
| result[i] = r.frand(l, h); |
| return result; |
| } |
| |
| static inline vec make_random(basisu::rand& r, const vec& l, const vec& h) |
| { |
| vec result; |
| for (uint32_t i = 0; i < N; i++) |
| result[i] = r.frand(l[i], h[i]); |
| return result; |
| } |
| |
| void print() const |
| { |
| for (uint32_t c = 0; c < N; c++) |
| printf("%3.3f ", (*this)[c]); |
| printf("\n"); |
| } |
| |
| protected: |
| T m_s[N]; |
| }; |
| |
| typedef vec<1, double> vec1D; |
| typedef vec<2, double> vec2D; |
| typedef vec<3, double> vec3D; |
| typedef vec<4, double> vec4D; |
| |
| typedef vec<1, float> vec1F; |
| |
| typedef vec<2, float> vec2F; |
| typedef basisu::vector<vec2F> vec2F_array; |
| |
| typedef vec<3, float> vec3F; |
| typedef basisu::vector<vec3F> vec3F_array; |
| |
| typedef vec<4, float> vec4F; |
| typedef basisu::vector<vec4F> vec4F_array; |
| |
| typedef vec<2, uint32_t> vec2U; |
| typedef vec<3, uint32_t> vec3U; |
| typedef vec<2, int> vec2I; |
| typedef vec<3, int> vec3I; |
| typedef vec<4, int> vec4I; |
| |
| typedef vec<2, int16_t> vec2I16; |
| typedef vec<3, int16_t> vec3I16; |
| |
| inline vec2F rotate_point_2D(const vec2F& p, float rad) |
| { |
| float c = cosf(rad); |
| float s = sinf(rad); |
| |
| float x = p[0]; |
| float y = p[1]; |
| |
| return vec2F(x * c - y * s, x * s + y * c); |
| } |
| |
| //-------------------------------------------------------------- |
| |
| // Matrix/vector cheat sheet, because confusingly, depending on how matrices are stored in memory people can use opposite definitions of "rows", "cols", etc. |
| // See http://www.mindcontrol.org/~hplus/graphics/matrix-layout.html |
| // |
| // So in this simple row-major general matrix class: |
| // matrix=[NumRows][NumCols] or [R][C], i.e. a 3x3 matrix stored in memory will appear as: R0C0, R0C1, R0C2, R1C0, R1C1, R1C2, etc. |
| // Matrix multiplication: [R0,C0]*[R1,C1]=[R0,C1], C0 must equal R1 |
| // |
| // In this class: |
| // A "row vector" type is a vector of size # of matrix cols, 1xC. It's the vector type that is used to store the matrix rows. |
| // A "col vector" type is a vector of size # of matrix rows, Rx1. It's a vector type large enough to hold each matrix column. |
| // |
| // Subrow/col vectors: last component is assumed to be either 0 (a "vector") or 1 (a "point") |
| // "subrow vector": vector/point of size # cols-1, 1x(C-1) |
| // "subcol vector": vector/point of size # rows-1, (R-1)x1 |
| // |
| // D3D style: |
| // vec*matrix, row vector on left (vec dotted against columns) |
| // [1,4]*[4,4]=[1,4] |
| // abcd * A B C D |
| // A B C D |
| // A B C D |
| // A B C D |
| // = e f g h |
| // |
| // Now confusingly, in the matrix transform method for vec*matrix below the vector's type is "col_vec", because col_vec will have the proper size for non-square matrices. But the vector on the left is written as row vector, argh. |
| // |
| // |
| // OGL style: |
| // matrix*vec, col vector on right (vec dotted against rows): |
| // [4,4]*[4,1]=[4,1] |
| // |
| // A B C D * e = e |
| // A B C D f f |
| // A B C D g g |
| // A B C D h h |
| |
| template <class X, class Y, class Z> |
| Z& matrix_mul_helper(Z& result, const X& lhs, const Y& rhs) |
| { |
| static_assert((int)Z::num_rows == (int)X::num_rows); |
| static_assert((int)Z::num_cols == (int)Y::num_cols); |
| static_assert((int)X::num_cols == (int)Y::num_rows); |
| assert(((void*)&result != (void*)&lhs) && ((void*)&result != (void*)&rhs)); |
| for (int r = 0; r < X::num_rows; r++) |
| for (int c = 0; c < Y::num_cols; c++) |
| { |
| typename Z::scalar_type s = lhs(r, 0) * rhs(0, c); |
| for (uint32_t i = 1; i < X::num_cols; i++) |
| s += lhs(r, i) * rhs(i, c); |
| result(r, c) = s; |
| } |
| return result; |
| } |
| |
| template <class X, class Y, class Z> |
| Z& matrix_mul_helper_transpose_lhs(Z& result, const X& lhs, const Y& rhs) |
| { |
| static_assert((int)Z::num_rows == (int)X::num_cols); |
| static_assert((int)Z::num_cols == (int)Y::num_cols); |
| static_assert((int)X::num_rows == (int)Y::num_rows); |
| assert(((void*)&result != (void*)&lhs) && ((void*)&result != (void*)&rhs)); |
| for (int r = 0; r < X::num_cols; r++) |
| for (int c = 0; c < Y::num_cols; c++) |
| { |
| typename Z::scalar_type s = lhs(0, r) * rhs(0, c); |
| for (uint32_t i = 1; i < X::num_rows; i++) |
| s += lhs(i, r) * rhs(i, c); |
| result(r, c) = s; |
| } |
| return result; |
| } |
| |
| template <class X, class Y, class Z> |
| Z& matrix_mul_helper_transpose_rhs(Z& result, const X& lhs, const Y& rhs) |
| { |
| static_assert((int)Z::num_rows == (int)X::num_rows); |
| static_assert((int)Z::num_cols == (int)Y::num_rows); |
| static_assert((int)X::num_cols == (int)Y::num_cols); |
| assert(((void*)&result != (void*)&lhs) && ((void*)&result != (void*)&rhs)); |
| for (int r = 0; r < X::num_rows; r++) |
| for (int c = 0; c < Y::num_rows; c++) |
| { |
| typename Z::scalar_type s = lhs(r, 0) * rhs(c, 0); |
| for (uint32_t i = 1; i < X::num_cols; i++) |
| s += lhs(r, i) * rhs(c, i); |
| result(r, c) = s; |
| } |
| return result; |
| } |
| |
| template <uint32_t R, uint32_t C, typename T> |
| class matrix |
| { |
| public: |
| typedef T scalar_type; |
| enum |
| { |
| num_rows = R, |
| num_cols = C |
| }; |
| |
| typedef vec<R, T> col_vec; |
| typedef vec < (R > 1) ? (R - 1) : 0, T > subcol_vec; |
| |
| typedef vec<C, T> row_vec; |
| typedef vec < (C > 1) ? (C - 1) : 0, T > subrow_vec; |
| |
| inline matrix() |
| { |
| } |
| |
| inline matrix(basisu::eClear) |
| { |
| clear(); |
| } |
| |
| inline matrix(basisu::eIdentity) |
| { |
| set_identity_matrix(); |
| } |
| |
| inline matrix(const T* p) |
| { |
| set(p); |
| } |
| |
| inline matrix(const matrix& other) |
| { |
| for (uint32_t i = 0; i < R; i++) |
| m_rows[i] = other.m_rows[i]; |
| } |
| |
| inline matrix& operator=(const matrix& rhs) |
| { |
| if (this != &rhs) |
| for (uint32_t i = 0; i < R; i++) |
| m_rows[i] = rhs.m_rows[i]; |
| return *this; |
| } |
| |
| inline matrix(T val00, T val01, |
| T val10, T val11) |
| { |
| set(val00, val01, val10, val11); |
| } |
| |
| inline matrix(T val00, T val01, |
| T val10, T val11, |
| T val20, T val21) |
| { |
| set(val00, val01, val10, val11, val20, val21); |
| } |
| |
| inline matrix(T val00, T val01, T val02, |
| T val10, T val11, T val12, |
| T val20, T val21, T val22) |
| { |
| set(val00, val01, val02, val10, val11, val12, val20, val21, val22); |
| } |
| |
| inline matrix(T val00, T val01, T val02, T val03, |
| T val10, T val11, T val12, T val13, |
| T val20, T val21, T val22, T val23, |
| T val30, T val31, T val32, T val33) |
| { |
| set(val00, val01, val02, val03, val10, val11, val12, val13, val20, val21, val22, val23, val30, val31, val32, val33); |
| } |
| |
| inline matrix(T val00, T val01, T val02, T val03, |
| T val10, T val11, T val12, T val13, |
| T val20, T val21, T val22, T val23) |
| { |
| set(val00, val01, val02, val03, val10, val11, val12, val13, val20, val21, val22, val23); |
| } |
| |
| inline void set(const float* p) |
| { |
| for (uint32_t i = 0; i < R; i++) |
| { |
| m_rows[i].set(p); |
| p += C; |
| } |
| } |
| |
| inline void set(T val00, T val01, |
| T val10, T val11) |
| { |
| m_rows[0].set(val00, val01); |
| if (R >= 2) |
| { |
| m_rows[1].set(val10, val11); |
| |
| for (uint32_t i = 2; i < R; i++) |
| m_rows[i].clear(); |
| } |
| } |
| |
| inline void set(T val00, T val01, |
| T val10, T val11, |
| T val20, T val21) |
| { |
| m_rows[0].set(val00, val01); |
| if (R >= 2) |
| { |
| m_rows[1].set(val10, val11); |
| |
| if (R >= 3) |
| { |
| m_rows[2].set(val20, val21); |
| |
| for (uint32_t i = 3; i < R; i++) |
| m_rows[i].clear(); |
| } |
| } |
| } |
| |
| inline void set(T val00, T val01, T val02, |
| T val10, T val11, T val12, |
| T val20, T val21, T val22) |
| { |
| m_rows[0].set(val00, val01, val02); |
| if (R >= 2) |
| { |
| m_rows[1].set(val10, val11, val12); |
| if (R >= 3) |
| { |
| m_rows[2].set(val20, val21, val22); |
| |
| for (uint32_t i = 3; i < R; i++) |
| m_rows[i].clear(); |
| } |
| } |
| } |
| |
| inline void set(T val00, T val01, T val02, T val03, |
| T val10, T val11, T val12, T val13, |
| T val20, T val21, T val22, T val23, |
| T val30, T val31, T val32, T val33) |
| { |
| m_rows[0].set(val00, val01, val02, val03); |
| if (R >= 2) |
| { |
| m_rows[1].set(val10, val11, val12, val13); |
| if (R >= 3) |
| { |
| m_rows[2].set(val20, val21, val22, val23); |
| |
| if (R >= 4) |
| { |
| m_rows[3].set(val30, val31, val32, val33); |
| |
| for (uint32_t i = 4; i < R; i++) |
| m_rows[i].clear(); |
| } |
| } |
| } |
| } |
| |
| inline void set(T val00, T val01, T val02, T val03, |
| T val10, T val11, T val12, T val13, |
| T val20, T val21, T val22, T val23) |
| { |
| m_rows[0].set(val00, val01, val02, val03); |
| if (R >= 2) |
| { |
| m_rows[1].set(val10, val11, val12, val13); |
| if (R >= 3) |
| { |
| m_rows[2].set(val20, val21, val22, val23); |
| |
| for (uint32_t i = 3; i < R; i++) |
| m_rows[i].clear(); |
| } |
| } |
| } |
| |
| inline uint32_t get_num_rows() const |
| { |
| return num_rows; |
| } |
| |
| inline uint32_t get_num_cols() const |
| { |
| return num_cols; |
| } |
| |
| inline uint32_t get_total_elements() const |
| { |
| return num_rows * num_cols; |
| } |
| |
| inline T operator()(uint32_t r, uint32_t c) const |
| { |
| assert((r < R) && (c < C)); |
| return m_rows[r][c]; |
| } |
| |
| inline T& operator()(uint32_t r, uint32_t c) |
| { |
| assert((r < R) && (c < C)); |
| return m_rows[r][c]; |
| } |
| |
| inline const row_vec& operator[](uint32_t r) const |
| { |
| assert(r < R); |
| return m_rows[r]; |
| } |
| |
| inline row_vec& operator[](uint32_t r) |
| { |
| assert(r < R); |
| return m_rows[r]; |
| } |
| |
| inline const row_vec& get_row(uint32_t r) const |
| { |
| return (*this)[r]; |
| } |
| |
| inline row_vec& get_row(uint32_t r) |
| { |
| return (*this)[r]; |
| } |
| |
| inline void set_row(uint32_t r, const row_vec& v) |
| { |
| (*this)[r] = v; |
| } |
| |
| inline col_vec get_col(uint32_t c) const |
| { |
| assert(c < C); |
| col_vec result; |
| for (uint32_t i = 0; i < R; i++) |
| result[i] = m_rows[i][c]; |
| return result; |
| } |
| |
| inline void set_col(uint32_t c, const col_vec& col) |
| { |
| assert(c < C); |
| for (uint32_t i = 0; i < R; i++) |
| m_rows[i][c] = col[i]; |
| } |
| |
| inline void set_col(uint32_t c, const subcol_vec& col) |
| { |
| assert(c < C); |
| for (uint32_t i = 0; i < (R - 1); i++) |
| m_rows[i][c] = col[i]; |
| |
| m_rows[R - 1][c] = 0.0f; |
| } |
| |
| inline const row_vec& get_translate() const |
| { |
| return m_rows[R - 1]; |
| } |
| |
| inline matrix& set_translate(const row_vec& r) |
| { |
| m_rows[R - 1] = r; |
| return *this; |
| } |
| |
| inline matrix& set_translate(const subrow_vec& r) |
| { |
| m_rows[R - 1] = row_vec(r).as_point(); |
| return *this; |
| } |
| |
| inline const T* get_ptr() const |
| { |
| return reinterpret_cast<const T*>(&m_rows[0]); |
| } |
| inline T* get_ptr() |
| { |
| return reinterpret_cast<T*>(&m_rows[0]); |
| } |
| |
| inline matrix& operator+=(const matrix& other) |
| { |
| for (uint32_t i = 0; i < R; i++) |
| m_rows[i] += other.m_rows[i]; |
| return *this; |
| } |
| |
| inline matrix& operator-=(const matrix& other) |
| { |
| for (uint32_t i = 0; i < R; i++) |
| m_rows[i] -= other.m_rows[i]; |
| return *this; |
| } |
| |
| inline matrix& operator*=(T val) |
| { |
| for (uint32_t i = 0; i < R; i++) |
| m_rows[i] *= val; |
| return *this; |
| } |
| |
| inline matrix& operator/=(T val) |
| { |
| for (uint32_t i = 0; i < R; i++) |
| m_rows[i] /= val; |
| return *this; |
| } |
| |
| inline matrix& operator*=(const matrix& other) |
| { |
| matrix result; |
| matrix_mul_helper(result, *this, other); |
| *this = result; |
| return *this; |
| } |
| |
| friend inline matrix operator+(const matrix& lhs, const matrix& rhs) |
| { |
| matrix result; |
| for (uint32_t i = 0; i < R; i++) |
| result[i] = lhs.m_rows[i] + rhs.m_rows[i]; |
| return result; |
| } |
| |
| friend inline matrix operator-(const matrix& lhs, const matrix& rhs) |
| { |
| matrix result; |
| for (uint32_t i = 0; i < R; i++) |
| result[i] = lhs.m_rows[i] - rhs.m_rows[i]; |
| return result; |
| } |
| |
| friend inline matrix operator*(const matrix& lhs, T val) |
| { |
| matrix result; |
| for (uint32_t i = 0; i < R; i++) |
| result[i] = lhs.m_rows[i] * val; |
| return result; |
| } |
| |
| friend inline matrix operator/(const matrix& lhs, T val) |
| { |
| matrix result; |
| for (uint32_t i = 0; i < R; i++) |
| result[i] = lhs.m_rows[i] / val; |
| return result; |
| } |
| |
| friend inline matrix operator*(T val, const matrix& rhs) |
| { |
| matrix result; |
| for (uint32_t i = 0; i < R; i++) |
| result[i] = val * rhs.m_rows[i]; |
| return result; |
| } |
| |
| #if 0 |
| template<uint32_t R0, uint32_t C0, uint32_t R1, uint32_t C1, typename T> |
| friend inline matrix operator*(const matrix<R0, C0, T>& lhs, const matrix<R1, C1, T>& rhs) |
| { |
| matrix<R0, C1, T> result; |
| return matrix_mul_helper(result, lhs, rhs); |
| } |
| #endif |
| friend inline matrix operator*(const matrix& lhs, const matrix& rhs) |
| { |
| matrix result; |
| return matrix_mul_helper(result, lhs, rhs); |
| } |
| |
| friend inline row_vec operator*(const col_vec& a, const matrix& b) |
| { |
| return transform(a, b); |
| } |
| |
| inline matrix operator+() const |
| { |
| return *this; |
| } |
| |
| inline matrix operator-() const |
| { |
| matrix result; |
| for (uint32_t i = 0; i < R; i++) |
| result[i] = -m_rows[i]; |
| return result; |
| } |
| |
| inline matrix& clear() |
| { |
| for (uint32_t i = 0; i < R; i++) |
| m_rows[i].clear(); |
| return *this; |
| } |
| |
| inline matrix& set_zero_matrix() |
| { |
| clear(); |
| return *this; |
| } |
| |
| inline matrix& set_identity_matrix() |
| { |
| for (uint32_t i = 0; i < R; i++) |
| { |
| m_rows[i].clear(); |
| m_rows[i][i] = 1.0f; |
| } |
| return *this; |
| } |
| |
| inline matrix& set_scale_matrix(float s) |
| { |
| clear(); |
| for (int i = 0; i < (R - 1); i++) |
| m_rows[i][i] = s; |
| m_rows[R - 1][C - 1] = 1.0f; |
| return *this; |
| } |
| |
| inline matrix& set_scale_matrix(const row_vec& s) |
| { |
| clear(); |
| for (uint32_t i = 0; i < R; i++) |
| m_rows[i][i] = s[i]; |
| return *this; |
| } |
| |
| inline matrix& set_scale_matrix(float x, float y) |
| { |
| set_identity_matrix(); |
| m_rows[0].set_x(x); |
| m_rows[1].set_y(y); |
| return *this; |
| } |
| |
| inline matrix& set_scale_matrix(float x, float y, float z) |
| { |
| set_identity_matrix(); |
| m_rows[0].set_x(x); |
| m_rows[1].set_y(y); |
| m_rows[2].set_z(z); |
| return *this; |
| } |
| |
| inline matrix& set_translate_matrix(const row_vec& s) |
| { |
| set_identity_matrix(); |
| set_translate(s); |
| return *this; |
| } |
| |
| inline matrix& set_translate_matrix(float x, float y) |
| { |
| set_identity_matrix(); |
| set_translate(row_vec(x, y).as_point()); |
| return *this; |
| } |
| |
| inline matrix& set_translate_matrix(float x, float y, float z) |
| { |
| set_identity_matrix(); |
| set_translate(row_vec(x, y, z).as_point()); |
| return *this; |
| } |
| |
| inline matrix get_transposed() const |
| { |
| static_assert(R == C); |
| |
| matrix result; |
| for (uint32_t i = 0; i < R; i++) |
| for (uint32_t j = 0; j < C; j++) |
| result.m_rows[i][j] = m_rows[j][i]; |
| return result; |
| } |
| |
| inline matrix<C, R, T> get_transposed_nonsquare() const |
| { |
| matrix<C, R, T> result; |
| for (uint32_t i = 0; i < R; i++) |
| for (uint32_t j = 0; j < C; j++) |
| result[j][i] = m_rows[i][j]; |
| return result; |
| } |
| |
| inline matrix& transpose_in_place() |
| { |
| matrix result; |
| for (uint32_t i = 0; i < R; i++) |
| for (uint32_t j = 0; j < C; j++) |
| result.m_rows[i][j] = m_rows[j][i]; |
| *this = result; |
| return *this; |
| } |
| |
| // Frobenius Norm |
| T get_norm() const |
| { |
| T result = 0; |
| |
| for (uint32_t i = 0; i < R; i++) |
| for (uint32_t j = 0; j < C; j++) |
| result += m_rows[i][j] * m_rows[i][j]; |
| |
| return static_cast<T>(sqrt(result)); |
| } |
| |
| inline matrix get_power(T p) const |
| { |
| matrix result; |
| |
| for (uint32_t i = 0; i < R; i++) |
| for (uint32_t j = 0; j < C; j++) |
| result[i][j] = static_cast<T>(pow(m_rows[i][j], p)); |
| |
| return result; |
| } |
| |
| inline matrix<1, R, T> numpy_dot(const matrix<1, C, T>& b) const |
| { |
| matrix<1, R, T> result; |
| |
| for (uint32_t r = 0; r < R; r++) |
| { |
| T sum = 0; |
| for (uint32_t c = 0; c < C; c++) |
| sum += m_rows[r][c] * b[0][c]; |
| |
| result[0][r] = static_cast<T>(sum); |
| } |
| |
| return result; |
| } |
| |
| bool invert(matrix& result) const |
| { |
| static_assert(R == C); |
| |
| result.set_identity_matrix(); |
| |
| matrix mat(*this); |
| |
| for (uint32_t c = 0; c < C; c++) |
| { |
| uint32_t max_r = c; |
| for (uint32_t r = c + 1; r < R; r++) |
| if (fabs(mat[r][c]) > fabs(mat[max_r][c])) |
| max_r = r; |
| |
| if (mat[max_r][c] == 0.0f) |
| { |
| result.set_identity_matrix(); |
| return false; |
| } |
| |
| std::swap(mat[c], mat[max_r]); |
| std::swap(result[c], result[max_r]); |
| |
| result[c] /= mat[c][c]; |
| mat[c] /= mat[c][c]; |
| |
| for (uint32_t row = 0; row < R; row++) |
| { |
| if (row != c) |
| { |
| const row_vec temp(mat[row][c]); |
| mat[row] -= row_vec::mul_components(mat[c], temp); |
| result[row] -= row_vec::mul_components(result[c], temp); |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| matrix& invert_in_place() |
| { |
| matrix result; |
| invert(result); |
| *this = result; |
| return *this; |
| } |
| |
| matrix get_inverse() const |
| { |
| matrix result; |
| invert(result); |
| return result; |
| } |
| |
| T get_det() const |
| { |
| static_assert(R == C); |
| return det_helper(*this, R); |
| } |
| |
| bool equal_tol(const matrix& b, float tol) const |
| { |
| for (uint32_t r = 0; r < R; r++) |
| if (!row_vec::equal_tol(m_rows[r], b.m_rows[r], tol)) |
| return false; |
| return true; |
| } |
| |
| bool is_square() const |
| { |
| return R == C; |
| } |
| |
| double get_trace() const |
| { |
| static_assert(is_square()); |
| |
| T total = 0; |
| for (uint32_t i = 0; i < R; i++) |
| total += (*this)(i, i); |
| |
| return total; |
| } |
| |
| void print() const |
| { |
| for (uint32_t r = 0; r < R; r++) |
| { |
| for (uint32_t c = 0; c < C; c++) |
| printf("%3.7f ", (*this)(r, c)); |
| printf("\n"); |
| } |
| } |
| |
| // This method transforms a vec by a matrix (D3D-style: row vector on left). |
| // Confusingly, note that the data type is named "col_vec", but mathematically it's actually written as a row vector (of size equal to the # matrix rows, which is why it's called a "col_vec" in this class). |
| // 1xR * RxC = 1xC |
| // This dots against the matrix columns. |
| static inline row_vec transform(const col_vec& a, const matrix& b) |
| { |
| row_vec result(b[0] * a[0]); |
| for (uint32_t r = 1; r < R; r++) |
| result += b[r] * a[r]; |
| return result; |
| } |
| |
| // This method transforms a vec by a matrix (D3D-style: row vector on left). |
| // Last component of vec is assumed to be 1. |
| static inline row_vec transform_point(const col_vec& a, const matrix& b) |
| { |
| row_vec result(0); |
| for (int r = 0; r < (R - 1); r++) |
| result += b[r] * a[r]; |
| result += b[R - 1]; |
| return result; |
| } |
| |
| // This method transforms a vec by a matrix (D3D-style: row vector on left). |
| // Last component of vec is assumed to be 0. |
| static inline row_vec transform_vector(const col_vec& a, const matrix& b) |
| { |
| row_vec result(0); |
| for (int r = 0; r < (R - 1); r++) |
| result += b[r] * a[r]; |
| return result; |
| } |
| |
| // This method transforms a vec by a matrix (D3D-style: row vector on left). |
| // Last component of vec is assumed to be 1. |
| static inline subcol_vec transform_point(const subcol_vec& a, const matrix& b) |
| { |
| subcol_vec result(0); |
| for (int r = 0; r < static_cast<int>(R); r++) |
| { |
| const T s = (r < subcol_vec::num_elements) ? a[r] : 1.0f; |
| for (int c = 0; c < static_cast<int>(C - 1); c++) |
| result[c] += b[r][c] * s; |
| } |
| return result; |
| } |
| |
| // This method transforms a vec by a matrix (D3D-style: row vector on left). |
| // Last component of vec is assumed to be 0. |
| static inline subcol_vec transform_vector(const subcol_vec& a, const matrix& b) |
| { |
| subcol_vec result(0); |
| for (int r = 0; r < static_cast<int>(R - 1); r++) |
| { |
| const T s = a[r]; |
| for (int c = 0; c < static_cast<int>(C - 1); c++) |
| result[c] += b[r][c] * s; |
| } |
| return result; |
| } |
| |
| // Like transform() above, but the matrix is effectively transposed before the multiply. |
| static inline col_vec transform_transposed(const col_vec& a, const matrix& b) |
| { |
| static_assert(R == C); |
| col_vec result; |
| for (uint32_t r = 0; r < R; r++) |
| result[r] = b[r].dot(a); |
| return result; |
| } |
| |
| // Like transform() above, but the matrix is effectively transposed before the multiply. |
| // Last component of vec is assumed to be 0. |
| static inline col_vec transform_vector_transposed(const col_vec& a, const matrix& b) |
| { |
| static_assert(R == C); |
| col_vec result; |
| for (uint32_t r = 0; r < R; r++) |
| { |
| T s = 0; |
| for (uint32_t c = 0; c < (C - 1); c++) |
| s += b[r][c] * a[c]; |
| |
| result[r] = s; |
| } |
| return result; |
| } |
| |
| // This method transforms a vec by a matrix (D3D-style: row vector on left), but the matrix is effectively transposed before the multiply. |
| // Last component of vec is assumed to be 1. |
| static inline subcol_vec transform_point_transposed(const subcol_vec& a, const matrix& b) |
| { |
| static_assert(R == C); |
| subcol_vec result(0); |
| for (int r = 0; r < R; r++) |
| { |
| const T s = (r < subcol_vec::num_elements) ? a[r] : 1.0f; |
| for (int c = 0; c < (C - 1); c++) |
| result[c] += b[c][r] * s; |
| } |
| return result; |
| } |
| |
| // This method transforms a vec by a matrix (D3D-style: row vector on left), but the matrix is effectively transposed before the multiply. |
| // Last component of vec is assumed to be 0. |
| static inline subcol_vec transform_vector_transposed(const subcol_vec& a, const matrix& b) |
| { |
| static_assert(R == C); |
| subcol_vec result(0); |
| for (int r = 0; r < static_cast<int>(R - 1); r++) |
| { |
| const T s = a[r]; |
| for (int c = 0; c < static_cast<int>(C - 1); c++) |
| result[c] += b[c][r] * s; |
| } |
| return result; |
| } |
| |
| // This method transforms a matrix by a vector (OGL style, col vector on the right). |
| // Note that the data type is named "row_vec", but mathematically it's actually written as a column vector (of size equal to the # matrix cols). |
| // RxC * Cx1 = Rx1 |
| // This dots against the matrix rows. |
| static inline col_vec transform(const matrix& b, const row_vec& a) |
| { |
| col_vec result; |
| for (int r = 0; r < static_cast<int>(R); r++) |
| result[r] = b[r].dot(a); |
| return result; |
| } |
| |
| // This method transforms a matrix by a vector (OGL style, col vector on the right), except the matrix is effectively transposed before the multiply. |
| // Note that the data type is named "row_vec", but mathematically it's actually written as a column vector (of size equal to the # matrix cols). |
| // RxC * Cx1 = Rx1 |
| // This dots against the matrix cols. |
| static inline col_vec transform_transposed(const matrix& b, const row_vec& a) |
| { |
| static_assert(R == C); |
| row_vec result(b[0] * a[0]); |
| for (int r = 1; r < static_cast<int>(R); r++) |
| result += b[r] * a[r]; |
| return col_vec(result); |
| } |
| |
| static inline matrix& mul_components(matrix& result, const matrix& lhs, const matrix& rhs) |
| { |
| for (uint32_t r = 0; r < R; r++) |
| result[r] = row_vec::mul_components(lhs[r], rhs[r]); |
| return result; |
| } |
| |
| static inline matrix& concat(matrix& lhs, const matrix& rhs) |
| { |
| return matrix_mul_helper(lhs, matrix(lhs), rhs); |
| } |
| |
| inline matrix& concat_in_place(const matrix& rhs) |
| { |
| return concat(*this, rhs); |
| } |
| |
| static inline matrix& multiply(matrix& result, const matrix& lhs, const matrix& rhs) |
| { |
| matrix temp; |
| matrix* pResult = ((&result == &lhs) || (&result == &rhs)) ? &temp : &result; |
| |
| matrix_mul_helper(*pResult, lhs, rhs); |
| if (pResult != &result) |
| result = *pResult; |
| |
| return result; |
| } |
| |
| static matrix make_zero_matrix() |
| { |
| matrix result; |
| result.clear(); |
| return result; |
| } |
| |
| static matrix make_identity_matrix() |
| { |
| matrix result; |
| result.set_identity_matrix(); |
| return result; |
| } |
| |
| static matrix make_translate_matrix(const row_vec& t) |
| { |
| return matrix(basisu::cIdentity).set_translate(t); |
| } |
| |
| static matrix make_translate_matrix(float x, float y) |
| { |
| return matrix(basisu::cIdentity).set_translate_matrix(x, y); |
| } |
| |
| static matrix make_translate_matrix(float x, float y, float z) |
| { |
| return matrix(basisu::cIdentity).set_translate_matrix(x, y, z); |
| } |
| |
| static inline matrix make_scale_matrix(float s) |
| { |
| return matrix().set_scale_matrix(s); |
| } |
| |
| static inline matrix make_scale_matrix(const row_vec& s) |
| { |
| return matrix().set_scale_matrix(s); |
| } |
| |
| static inline matrix make_scale_matrix(float x, float y) |
| { |
| static_assert(R >= 3 && C >= 3); |
| matrix result; |
| result.set_identity_matrix(); |
| result.m_rows[0][0] = x; |
| result.m_rows[1][1] = y; |
| return result; |
| } |
| |
| static inline matrix make_scale_matrix(float x, float y, float z) |
| { |
| static_assert(R >= 4 && C >= 4); |
| matrix result; |
| result.set_identity_matrix(); |
| result.m_rows[0][0] = x; |
| result.m_rows[1][1] = y; |
| result.m_rows[2][2] = z; |
| return result; |
| } |
| |
| // Helpers derived from Graphics Gems 1 and 2 (Matrices and Transformations, Ronald N. Goldman) |
| static matrix make_rotate_matrix(const vec<3, T>& axis, T ang) |
| { |
| static_assert(R >= 3 && C >= 3); |
| |
| vec<3, T> norm_axis(axis.get_normalized()); |
| |
| double cos_a = cos(ang); |
| double inv_cos_a = 1.0f - cos_a; |
| |
| double sin_a = sin(ang); |
| |
| const T x = norm_axis[0]; |
| const T y = norm_axis[1]; |
| const T z = norm_axis[2]; |
| |
| const double x2 = norm_axis[0] * norm_axis[0]; |
| const double y2 = norm_axis[1] * norm_axis[1]; |
| const double z2 = norm_axis[2] * norm_axis[2]; |
| |
| matrix result; |
| result.set_identity_matrix(); |
| |
| result[0][0] = (T)((inv_cos_a * x2) + cos_a); |
| result[1][0] = (T)((inv_cos_a * x * y) + (sin_a * z)); |
| result[2][0] = (T)((inv_cos_a * x * z) - (sin_a * y)); |
| |
| result[0][1] = (T)((inv_cos_a * x * y) - (sin_a * z)); |
| result[1][1] = (T)((inv_cos_a * y2) + cos_a); |
| result[2][1] = (T)((inv_cos_a * y * z) + (sin_a * x)); |
| |
| result[0][2] = (T)((inv_cos_a * x * z) + (sin_a * y)); |
| result[1][2] = (T)((inv_cos_a * y * z) - (sin_a * x)); |
| result[2][2] = (T)((inv_cos_a * z2) + cos_a); |
| |
| return result; |
| } |
| |
| static inline matrix make_rotate_matrix(T ang) |
| { |
| static_assert(R >= 2 && C >= 2); |
| |
| matrix ret(basisu::cIdentity); |
| |
| const T sin_a = static_cast<T>(sin(ang)); |
| const T cos_a = static_cast<T>(cos(ang)); |
| |
| ret[0][0] = +cos_a; |
| ret[0][1] = -sin_a; |
| ret[1][0] = +sin_a; |
| ret[1][1] = +cos_a; |
| |
| return ret; |
| } |
| |
| static inline matrix make_rotate_matrix(uint32_t axis, T ang) |
| { |
| vec<3, T> axis_vec; |
| axis_vec.clear(); |
| axis_vec[axis] = 1.0f; |
| return make_rotate_matrix(axis_vec, ang); |
| } |
| |
| static inline matrix make_cross_product_matrix(const vec<3, scalar_type>& c) |
| { |
| static_assert((num_rows >= 3) && (num_cols >= 3)); |
| matrix ret(basisu::cClear); |
| ret[0][1] = c[2]; |
| ret[0][2] = -c[1]; |
| ret[1][0] = -c[2]; |
| ret[1][2] = c[0]; |
| ret[2][0] = c[1]; |
| ret[2][1] = -c[0]; |
| return ret; |
| } |
| |
| static inline matrix make_reflection_matrix(const vec<4, scalar_type>& n, const vec<4, scalar_type>& q) |
| { |
| static_assert((num_rows == 4) && (num_cols == 4)); |
| matrix ret; |
| assert(n.is_vector() && q.is_vector()); |
| ret = make_identity_matrix() - 2.0f * make_tensor_product_matrix(n, n); |
| ret.set_translate((2.0f * q.dot(n) * n).as_point()); |
| return ret; |
| } |
| |
| static inline matrix make_tensor_product_matrix(const row_vec& v, const row_vec& w) |
| { |
| matrix ret; |
| for (int r = 0; r < num_rows; r++) |
| ret[r] = row_vec::mul_components(v.broadcast(r), w); |
| return ret; |
| } |
| |
| static inline matrix make_uniform_scaling_matrix(const vec<4, scalar_type>& q, scalar_type c) |
| { |
| static_assert((num_rows == 4) && (num_cols == 4)); |
| assert(q.is_vector()); |
| matrix ret; |
| ret = c * make_identity_matrix(); |
| ret.set_translate(((1.0f - c) * q).as_point()); |
| return ret; |
| } |
| |
| static inline matrix make_nonuniform_scaling_matrix(const vec<4, scalar_type>& q, scalar_type c, const vec<4, scalar_type>& w) |
| { |
| static_assert((num_rows == 4) && (num_cols == 4)); |
| assert(q.is_vector() && w.is_vector()); |
| matrix ret; |
| ret = make_identity_matrix() - (1.0f - c) * make_tensor_product_matrix(w, w); |
| ret.set_translate(((1.0f - c) * q.dot(w) * w).as_point()); |
| return ret; |
| } |
| |
| // n = normal of plane, q = point on plane |
| static inline matrix make_ortho_projection_matrix(const vec<4, scalar_type>& n, const vec<4, scalar_type>& q) |
| { |
| assert(n.is_vector() && q.is_vector()); |
| matrix ret; |
| ret = make_identity_matrix() - make_tensor_product_matrix(n, n); |
| ret.set_translate((q.dot(n) * n).as_point()); |
| return ret; |
| } |
| |
| static inline matrix make_parallel_projection(const vec<4, scalar_type>& n, const vec<4, scalar_type>& q, const vec<4, scalar_type>& w) |
| { |
| assert(n.is_vector() && q.is_vector() && w.is_vector()); |
| matrix ret; |
| ret = make_identity_matrix() - (make_tensor_product_matrix(n, w) / (w.dot(n))); |
| ret.set_translate(((q.dot(n) / w.dot(n)) * w).as_point()); |
| return ret; |
| } |
| |
| protected: |
| row_vec m_rows[R]; |
| |
| static T det_helper(const matrix& a, uint32_t n) |
| { |
| // Algorithm ported from Numerical Recipes in C. |
| T d; |
| matrix m; |
| if (n == 2) |
| d = a(0, 0) * a(1, 1) - a(1, 0) * a(0, 1); |
| else |
| { |
| d = 0; |
| for (uint32_t j1 = 1; j1 <= n; j1++) |
| { |
| for (uint32_t i = 2; i <= n; i++) |
| { |
| int j2 = 1; |
| for (uint32_t j = 1; j <= n; j++) |
| { |
| if (j != j1) |
| { |
| m(i - 2, j2 - 1) = a(i - 1, j - 1); |
| j2++; |
| } |
| } |
| } |
| d += (((1 + j1) & 1) ? -1.0f : 1.0f) * a(1 - 1, j1 - 1) * det_helper(m, n - 1); |
| } |
| } |
| return d; |
| } |
| }; |
| |
| typedef matrix<2, 2, float> matrix22F; |
| typedef matrix<2, 2, double> matrix22D; |
| |
| typedef matrix<3, 3, float> matrix33F; |
| typedef matrix<3, 3, double> matrix33D; |
| |
| typedef matrix<4, 4, float> matrix44F; |
| typedef matrix<4, 4, double> matrix44D; |
| |
| typedef matrix<8, 8, float> matrix88F; |
| |
| // These helpers create good old D3D-style matrices. |
| inline matrix44F matrix44F_make_perspective_offcenter_lh(float l, float r, float b, float t, float nz, float fz) |
| { |
| float two_nz = 2.0f * nz; |
| float one_over_width = 1.0f / (r - l); |
| float one_over_height = 1.0f / (t - b); |
| |
| matrix44F view_to_proj; |
| view_to_proj[0].set(two_nz * one_over_width, 0.0f, 0.0f, 0.0f); |
| view_to_proj[1].set(0.0f, two_nz * one_over_height, 0.0f, 0.0f); |
| view_to_proj[2].set(-(l + r) * one_over_width, -(t + b) * one_over_height, fz / (fz - nz), 1.0f); |
| view_to_proj[3].set(0.0f, 0.0f, -view_to_proj[2][2] * nz, 0.0f); |
| return view_to_proj; |
| } |
| |
| // fov_y: full Y field of view (radians) |
| // aspect: viewspace width/height |
| inline matrix44F matrix44F_make_perspective_fov_lh(float fov_y, float aspect, float nz, float fz) |
| { |
| double sin_fov = sin(0.5f * fov_y); |
| double cos_fov = cos(0.5f * fov_y); |
| |
| float y_scale = static_cast<float>(cos_fov / sin_fov); |
| float x_scale = static_cast<float>(y_scale / aspect); |
| |
| matrix44F view_to_proj; |
| view_to_proj[0].set(x_scale, 0, 0, 0); |
| view_to_proj[1].set(0, y_scale, 0, 0); |
| view_to_proj[2].set(0, 0, fz / (fz - nz), 1); |
| view_to_proj[3].set(0, 0, -nz * fz / (fz - nz), 0); |
| return view_to_proj; |
| } |
| |
| inline matrix44F matrix44F_make_ortho_offcenter_lh(float l, float r, float b, float t, float nz, float fz) |
| { |
| matrix44F view_to_proj; |
| view_to_proj[0].set(2.0f / (r - l), 0.0f, 0.0f, 0.0f); |
| view_to_proj[1].set(0.0f, 2.0f / (t - b), 0.0f, 0.0f); |
| view_to_proj[2].set(0.0f, 0.0f, 1.0f / (fz - nz), 0.0f); |
| view_to_proj[3].set((l + r) / (l - r), (t + b) / (b - t), nz / (nz - fz), 1.0f); |
| return view_to_proj; |
| } |
| |
| inline matrix44F matrix44F_make_ortho_lh(float w, float h, float nz, float fz) |
| { |
| return matrix44F_make_ortho_offcenter_lh(-w * .5f, w * .5f, -h * .5f, h * .5f, nz, fz); |
| } |
| |
| inline matrix44F matrix44F_make_projection_to_screen_d3d(int x, int y, int w, int h, float min_z, float max_z) |
| { |
| matrix44F proj_to_screen; |
| proj_to_screen[0].set(w * .5f, 0.0f, 0.0f, 0.0f); |
| proj_to_screen[1].set(0, h * -.5f, 0.0f, 0.0f); |
| proj_to_screen[2].set(0, 0.0f, max_z - min_z, 0.0f); |
| proj_to_screen[3].set(x + w * .5f, y + h * .5f, min_z, 1.0f); |
| return proj_to_screen; |
| } |
| |
| inline matrix44F matrix44F_make_lookat_lh(const vec3F& camera_pos, const vec3F& look_at, const vec3F& camera_up, float camera_roll_ang_in_radians) |
| { |
| vec4F col2(look_at - camera_pos); |
| assert(col2.is_vector()); |
| if (col2.normalize() == 0.0f) |
| col2.set(0, 0, 1, 0); |
| |
| vec4F col1(camera_up); |
| assert(col1.is_vector()); |
| if (!col2[0] && !col2[2]) |
| col1.set(-1.0f, 0.0f, 0.0f, 0.0f); |
| |
| if ((col1.dot(col2)) > .9999f) |
| col1.set(0.0f, 1.0f, 0.0f, 0.0f); |
| |
| vec4F col0(vec4F::cross3(col1, col2).normalize_in_place()); |
| col1 = vec4F::cross3(col2, col0).normalize_in_place(); |
| |
| matrix44F rotm(matrix44F::make_identity_matrix()); |
| rotm.set_col(0, col0); |
| rotm.set_col(1, col1); |
| rotm.set_col(2, col2); |
| return matrix44F::make_translate_matrix(-camera_pos[0], -camera_pos[1], -camera_pos[2]) * rotm * matrix44F::make_rotate_matrix(2, camera_roll_ang_in_radians); |
| } |
| |
| template<typename R> R matrix_NxN_create_DCT() |
| { |
| assert(R::num_rows == R::num_cols); |
| |
| const uint32_t N = R::num_cols; |
| |
| R result; |
| for (uint32_t k = 0; k < N; k++) |
| { |
| for (uint32_t n = 0; n < N; n++) |
| { |
| double f; |
| |
| if (!k) |
| f = 1.0f / sqrt(float(N)); |
| else |
| f = sqrt(2.0f / float(N)) * cos((basisu::cPiD * (2.0f * float(n) + 1.0f) * float(k)) / (2.0f * float(N))); |
| |
| result(k, n) = static_cast<typename R::scalar_type>(f); |
| } |
| } |
| |
| return result; |
| } |
| |
| template<typename R> R matrix_NxN_DCT(const R& a, const R& dct) |
| { |
| R temp; |
| matrix_mul_helper<R, R, R>(temp, dct, a); |
| R result; |
| matrix_mul_helper_transpose_rhs<R, R, R>(result, temp, dct); |
| return result; |
| } |
| |
| template<typename R> R matrix_NxN_IDCT(const R& b, const R& dct) |
| { |
| R temp; |
| matrix_mul_helper_transpose_lhs<R, R, R>(temp, dct, b); |
| R result; |
| matrix_mul_helper<R, R, R>(result, temp, dct); |
| return result; |
| } |
| |
| template<typename X, typename Y> matrix<X::num_rows* Y::num_rows, X::num_cols* Y::num_cols, typename X::scalar_type> matrix_kronecker_product(const X& a, const Y& b) |
| { |
| matrix<X::num_rows* Y::num_rows, X::num_cols* Y::num_cols, typename X::scalar_type> result; |
| |
| for (uint32_t r = 0; r < X::num_rows; r++) |
| { |
| for (uint32_t c = 0; c < X::num_cols; c++) |
| { |
| for (uint32_t i = 0; i < Y::num_rows; i++) |
| for (uint32_t j = 0; j < Y::num_cols; j++) |
| result(r * Y::num_rows + i, c * Y::num_cols + j) = a(r, c) * b(i, j); |
| } |
| } |
| |
| return result; |
| } |
| |
| template<typename X, typename Y> matrix<X::num_rows + Y::num_rows, X::num_cols, typename X::scalar_type> matrix_combine_vertically(const X& a, const Y& b) |
| { |
| matrix<X::num_rows + Y::num_rows, X::num_cols, typename X::scalar_type> result; |
| |
| for (uint32_t r = 0; r < X::num_rows; r++) |
| for (uint32_t c = 0; c < X::num_cols; c++) |
| result(r, c) = a(r, c); |
| |
| for (uint32_t r = 0; r < Y::num_rows; r++) |
| for (uint32_t c = 0; c < Y::num_cols; c++) |
| result(r + X::num_rows, c) = b(r, c); |
| |
| return result; |
| } |
| |
| inline matrix88F get_haar8() |
| { |
| matrix22F haar2( |
| 1, 1, |
| 1, -1); |
| matrix22F i2( |
| 1, 0, |
| 0, 1); |
| matrix44F i4( |
| 1, 0, 0, 0, |
| 0, 1, 0, 0, |
| 0, 0, 1, 0, |
| 0, 0, 0, 1); |
| |
| matrix<1, 2, float> b0; b0(0, 0) = 1; b0(0, 1) = 1; |
| matrix<1, 2, float> b1; b1(0, 0) = 1.0f; b1(0, 1) = -1.0f; |
| |
| matrix<2, 4, float> haar4_0 = matrix_kronecker_product(haar2, b0); |
| matrix<2, 4, float> haar4_1 = matrix_kronecker_product(i2, b1); |
| |
| matrix<4, 4, float> haar4 = matrix_combine_vertically(haar4_0, haar4_1); |
| |
| matrix<4, 8, float> haar8_0 = matrix_kronecker_product(haar4, b0); |
| matrix<4, 8, float> haar8_1 = matrix_kronecker_product(i4, b1); |
| |
| haar8_0[2] *= sqrtf(2); |
| haar8_0[3] *= sqrtf(2); |
| haar8_1 *= 2.0f; |
| |
| matrix<8, 8, float> haar8 = matrix_combine_vertically(haar8_0, haar8_1); |
| |
| return haar8; |
| } |
| |
| inline matrix44F get_haar4() |
| { |
| const float sqrt2 = 1.4142135623730951f; |
| |
| return matrix44F( |
| .5f * 1, .5f * 1, .5f * 1, .5f * 1, |
| .5f * 1, .5f * 1, .5f * -1, .5f * -1, |
| .5f * sqrt2, .5f * -sqrt2, 0, 0, |
| 0, 0, .5f * sqrt2, .5f * -sqrt2); |
| } |
| |
| template<typename T> |
| inline matrix<2, 2, T> get_inverse_2x2(const matrix<2, 2, T>& m) |
| { |
| double a = m[0][0]; |
| double b = m[0][1]; |
| double c = m[1][0]; |
| double d = m[1][1]; |
| |
| double det = a * d - b * c; |
| if (det != 0.0f) |
| det = 1.0f / det; |
| |
| matrix<2, 2, T> result; |
| result[0][0] = static_cast<T>(d * det); |
| result[0][1] = static_cast<T>(-b * det); |
| result[1][0] = static_cast<T>(-c * det); |
| result[1][1] = static_cast<T>(a * det); |
| return result; |
| } |
| |
| } // namespace bu_math |
| |
| namespace basisu |
| { |
| class tracked_stat |
| { |
| public: |
| tracked_stat() { clear(); } |
| |
| inline void clear() { m_num = 0; m_total = 0; m_total2 = 0; } |
| |
| inline void update(int32_t val) { m_num++; m_total += val; m_total2 += val * val; } |
| |
| inline tracked_stat& operator += (uint32_t val) { update(val); return *this; } |
| |
| inline uint32_t get_number_of_values() { return m_num; } |
| inline uint64_t get_total() const { return m_total; } |
| inline uint64_t get_total2() const { return m_total2; } |
| |
| inline float get_average() const { return m_num ? (float)m_total / m_num : 0.0f; }; |
| inline float get_std_dev() const { return m_num ? sqrtf((float)(m_num * m_total2 - m_total * m_total)) / m_num : 0.0f; } |
| inline float get_variance() const { float s = get_std_dev(); return s * s; } |
| |
| private: |
| uint32_t m_num; |
| int64_t m_total; |
| int64_t m_total2; |
| }; |
| |
| class tracked_stat_dbl |
| { |
| public: |
| tracked_stat_dbl() { clear(); } |
| |
| inline void clear() { m_num = 0; m_total = 0; m_total2 = 0; } |
| |
| inline void update(double val) { m_num++; m_total += val; m_total2 += val * val; } |
| |
| inline tracked_stat_dbl& operator += (double val) { update(val); return *this; } |
| |
| inline uint64_t get_number_of_values() { return m_num; } |
| inline double get_total() const { return m_total; } |
| inline double get_total2() const { return m_total2; } |
| |
| inline double get_average() const { return m_num ? m_total / (double)m_num : 0.0f; }; |
| inline double get_std_dev() const { return m_num ? sqrt((double)(m_num * m_total2 - m_total * m_total)) / m_num : 0.0f; } |
| inline double get_variance() const { double s = get_std_dev(); return s * s; } |
| |
| private: |
| uint64_t m_num; |
| double m_total; |
| double m_total2; |
| }; |
| |
| template<typename FloatType> |
| struct stats |
| { |
| uint32_t m_n; |
| FloatType m_total, m_total_sq; // total, total of squares values |
| FloatType m_avg, m_avg_sq; // mean, mean of the squared values |
| FloatType m_rms; // sqrt(m_avg_sq) |
| FloatType m_std_dev, m_var; // population standard deviation and variance |
| FloatType m_mad; // mean absolute deviation |
| FloatType m_min, m_max, m_range; // min and max values, and max-min |
| FloatType m_len; // length of values as a vector (Euclidean norm or L2 norm) |
| FloatType m_coeff_of_var; // coefficient of variation (std_dev/mean), High CV: Indicates greater variability relative to the mean, meaning the data values are more spread out, |
| // Low CV : Indicates less variability relative to the mean, meaning the data values are more consistent. |
| |
| FloatType m_skewness; // Skewness = 0: The data is perfectly symmetric around the mean, |
| // Skewness > 0: The data is positively skewed (right-skewed), |
| // Skewness < 0: The data is negatively skewed (left-skewed) |
| // 0-.5 approx. symmetry, .5-1 moderate skew, >= 1 highly skewed |
| |
| FloatType m_kurtosis; // Excess Kurtosis: Kurtosis = 0: The distribution has normal kurtosis (mesokurtic) |
| // Kurtosis > 0: The distribution is leptokurtic, with heavy tails and a sharp peak |
| // Kurtosis < 0: The distribution is platykurtic, with light tails and a flatter peak |
| |
| bool m_any_zero; |
| |
| FloatType m_median; |
| uint32_t m_median_index; |
| |
| stats() |
| { |
| clear(); |
| } |
| |
| void clear() |
| { |
| m_n = 0; |
| m_total = 0, m_total_sq = 0; |
| m_avg = 0, m_avg_sq = 0; |
| m_rms = 0; |
| m_std_dev = 0, m_var = 0; |
| m_mad = 0; |
| m_min = BIG_FLOAT_VAL, m_max = -BIG_FLOAT_VAL; m_range = 0.0f; |
| m_len = 0; |
| m_coeff_of_var = 0; |
| m_skewness = 0; |
| m_kurtosis = 0; |
| m_any_zero = false; |
| |
| m_median = 0; |
| m_median_index = 0; |
| } |
| |
| template<typename T> |
| void calc_median(uint32_t n, const T* pVals, uint32_t stride = 1) |
| { |
| m_median = 0; |
| m_median_index = 0; |
| |
| if (!n) |
| return; |
| |
| basisu::vector< std::pair<T, uint32_t> > vals(n); |
| |
| for (uint32_t i = 0; i < n; i++) |
| { |
| vals[i].first = pVals[i * stride]; |
| vals[i].second = i; |
| } |
| |
| std::sort(vals.begin(), vals.end(), [](const std::pair<T, uint32_t>& a, const std::pair<T, uint32_t>& b) { |
| return a.first < b.first; |
| }); |
| |
| m_median = vals[n / 2].first; |
| if ((n & 1) == 0) |
| m_median = (m_median + vals[(n / 2) - 1].first) * .5f; |
| |
| m_median_index = vals[n / 2].second; |
| } |
| |
| template<typename T> |
| void calc(uint32_t n, const T* pVals, uint32_t stride = 1, bool calc_median_flag = false) |
| { |
| clear(); |
| |
| if (!n) |
| return; |
| |
| if (calc_median_flag) |
| calc_median(n, pVals, stride); |
| |
| m_n = n; |
| |
| for (uint32_t i = 0; i < n; i++) |
| { |
| FloatType v = (FloatType)pVals[i * stride]; |
| |
| if (v == 0.0f) |
| m_any_zero = true; |
| |
| m_total += v; |
| m_total_sq += v * v; |
| |
| if (!i) |
| { |
| m_min = v; |
| m_max = v; |
| } |
| else |
| { |
| m_min = minimum(m_min, v); |
| m_max = maximum(m_max, v); |
| } |
| } |
| |
| m_range = m_max - m_min; |
| |
| m_len = sqrt(m_total_sq); |
| |
| const FloatType nd = (FloatType)n; |
| |
| m_avg = m_total / nd; |
| m_avg_sq = m_total_sq / nd; |
| m_rms = sqrt(m_avg_sq); |
| |
| for (uint32_t i = 0; i < n; i++) |
| { |
| FloatType v = (FloatType)pVals[i * stride]; |
| FloatType d = v - m_avg; |
| |
| const FloatType d2 = d * d; |
| const FloatType d3 = d2 * d; |
| const FloatType d4 = d3 * d; |
| |
| m_var += d2; |
| m_mad += fabs(d); |
| m_skewness += d3; |
| m_kurtosis += d4; |
| } |
| |
| m_var /= nd; |
| m_mad /= nd; |
| |
| m_std_dev = sqrt(m_var); |
| |
| m_coeff_of_var = (m_avg != 0.0f) ? (m_std_dev / fabs(m_avg)) : 0.0f; |
| |
| FloatType k3 = m_std_dev * m_std_dev * m_std_dev; |
| FloatType k4 = k3 * m_std_dev; |
| m_skewness = (k3 != 0.0f) ? ((m_skewness / nd) / k3) : 0.0f; |
| m_kurtosis = (k4 != 0.0f) ? (((m_kurtosis / nd) / k4) - 3.0f) : 0.0f; |
| } |
| |
| // Only compute average, variance and standard deviation. |
| template<typename T> |
| void calc_simplified(uint32_t n, const T* pVals, uint32_t stride = 1) |
| { |
| clear(); |
| |
| if (!n) |
| return; |
| |
| m_n = n; |
| |
| for (uint32_t i = 0; i < n; i++) |
| { |
| FloatType v = (FloatType)pVals[i * stride]; |
| |
| m_total += v; |
| } |
| |
| const FloatType nd = (FloatType)n; |
| |
| m_avg = m_total / nd; |
| |
| for (uint32_t i = 0; i < n; i++) |
| { |
| FloatType v = (FloatType)pVals[i * stride]; |
| FloatType d = v - m_avg; |
| |
| const FloatType d2 = d * d; |
| |
| m_var += d2; |
| } |
| |
| m_var /= nd; |
| m_std_dev = sqrt(m_var); |
| } |
| }; |
| |
| template<typename FloatType> |
| struct comparative_stats |
| { |
| FloatType m_cov; // covariance |
| FloatType m_pearson; // Pearson Correlation Coefficient (r) [-1,1] |
| FloatType m_mse; // mean squared error |
| FloatType m_rmse; // root mean squared error |
| FloatType m_mae; // mean abs error |
| FloatType m_rmsle; // root mean squared log error |
| FloatType m_euclidean_dist; // euclidean distance between values as vectors |
| FloatType m_cosine_sim; // normalized dot products of values as vectors |
| FloatType m_min_diff, m_max_diff; // minimum/maximum abs difference between values |
| |
| comparative_stats() |
| { |
| clear(); |
| } |
| |
| void clear() |
| { |
| m_cov = 0; |
| m_pearson = 0; |
| m_mse = 0; |
| m_rmse = 0; |
| m_mae = 0; |
| m_rmsle = 0; |
| m_euclidean_dist = 0; |
| m_cosine_sim = 0; |
| m_min_diff = 0; |
| m_max_diff = 0; |
| } |
| |
| template<typename T> |
| void calc(uint32_t n, const T* pA, const T* pB, uint32_t a_stride = 1, uint32_t b_stride = 1, const stats<FloatType> *pA_stats = nullptr, const stats<FloatType> *pB_stats = nullptr) |
| { |
| clear(); |
| if (!n) |
| return; |
| |
| stats<FloatType> temp_a_stats; |
| if (!pA_stats) |
| { |
| pA_stats = &temp_a_stats; |
| temp_a_stats.calc(n, pA, a_stride); |
| } |
| |
| stats<FloatType> temp_b_stats; |
| if (!pB_stats) |
| { |
| pB_stats = &temp_b_stats; |
| temp_b_stats.calc(n, pB, b_stride); |
| } |
| |
| for (uint32_t i = 0; i < n; i++) |
| { |
| const FloatType fa = (FloatType)pA[i * a_stride]; |
| const FloatType fb = (FloatType)pB[i * b_stride]; |
| |
| if ((pA_stats->m_min >= 0.0f) && (pB_stats->m_min >= 0.0f)) |
| { |
| const FloatType ld = log(fa + 1.0f) - log(fb + 1.0f); |
| m_rmsle += ld * ld; |
| } |
| |
| const FloatType diff = fa - fb; |
| const FloatType abs_diff = fabs(diff); |
| |
| m_mse += diff * diff; |
| m_mae += abs_diff; |
| |
| m_min_diff = i ? minimum(m_min_diff, abs_diff) : abs_diff; |
| m_max_diff = maximum(m_max_diff, abs_diff); |
| |
| const FloatType da = fa - pA_stats->m_avg; |
| const FloatType db = fb - pB_stats->m_avg; |
| m_cov += da * db; |
| |
| m_cosine_sim += fa * fb; |
| } |
| |
| const FloatType nd = (FloatType)n; |
| |
| m_euclidean_dist = sqrt(m_mse); |
| |
| m_mse /= nd; |
| m_rmse = sqrt(m_mse); |
| |
| m_mae /= nd; |
| |
| m_cov /= nd; |
| |
| FloatType dv = (pA_stats->m_std_dev * pB_stats->m_std_dev); |
| if (dv != 0.0f) |
| m_pearson = m_cov / dv; |
| |
| if ((pA_stats->m_min >= 0.0) && (pB_stats->m_min >= 0.0f)) |
| m_rmsle = sqrt(m_rmsle / nd); |
| |
| FloatType c = pA_stats->m_len * pB_stats->m_len; |
| if (c != 0.0f) |
| m_cosine_sim /= c; |
| else |
| m_cosine_sim = 0.0f; |
| } |
| |
| // Only computes Pearson, cov, mse, rmse, Euclidean distance |
| template<typename T> |
| void calc_pearson(uint32_t n, const T* pA, const T* pB, uint32_t a_stride = 1, uint32_t b_stride = 1, const stats<FloatType>* pA_stats = nullptr, const stats<FloatType>* pB_stats = nullptr) |
| { |
| clear(); |
| if (!n) |
| return; |
| |
| stats<FloatType> temp_a_stats; |
| if (!pA_stats) |
| { |
| pA_stats = &temp_a_stats; |
| temp_a_stats.calc(n, pA, a_stride); |
| } |
| |
| stats<FloatType> temp_b_stats; |
| if (!pB_stats) |
| { |
| pB_stats = &temp_b_stats; |
| temp_b_stats.calc(n, pB, b_stride); |
| } |
| |
| for (uint32_t i = 0; i < n; i++) |
| { |
| const FloatType fa = (FloatType)pA[i * a_stride]; |
| const FloatType fb = (FloatType)pB[i * b_stride]; |
| |
| const FloatType diff = fa - fb; |
| |
| m_mse += diff * diff; |
| |
| const FloatType da = fa - pA_stats->m_avg; |
| const FloatType db = fb - pB_stats->m_avg; |
| m_cov += da * db; |
| } |
| |
| const FloatType nd = (FloatType)n; |
| |
| m_euclidean_dist = sqrt(m_mse); |
| |
| m_mse /= nd; |
| m_rmse = sqrt(m_mse); |
| |
| m_cov /= nd; |
| |
| FloatType dv = (pA_stats->m_std_dev * pB_stats->m_std_dev); |
| if (dv != 0.0f) |
| m_pearson = m_cov / dv; |
| } |
| |
| // Only computes MSE, RMSE, eclidiean distance, and covariance. |
| template<typename T> |
| void calc_simplified(uint32_t n, const T* pA, const T* pB, uint32_t a_stride = 1, uint32_t b_stride = 1, const stats<FloatType>* pA_stats = nullptr, const stats<FloatType>* pB_stats = nullptr) |
| { |
| clear(); |
| if (!n) |
| return; |
| |
| stats<FloatType> temp_a_stats; |
| if (!pA_stats) |
| { |
| pA_stats = &temp_a_stats; |
| temp_a_stats.calc(n, pA, a_stride); |
| } |
| |
| stats<FloatType> temp_b_stats; |
| if (!pB_stats) |
| { |
| pB_stats = &temp_b_stats; |
| temp_b_stats.calc(n, pB, b_stride); |
| } |
| |
| for (uint32_t i = 0; i < n; i++) |
| { |
| const FloatType fa = (FloatType)pA[i * a_stride]; |
| const FloatType fb = (FloatType)pB[i * b_stride]; |
| |
| const FloatType diff = fa - fb; |
| |
| m_mse += diff * diff; |
| |
| const FloatType da = fa - pA_stats->m_avg; |
| const FloatType db = fb - pB_stats->m_avg; |
| m_cov += da * db; |
| } |
| |
| const FloatType nd = (FloatType)n; |
| |
| m_euclidean_dist = sqrt(m_mse); |
| |
| m_mse /= nd; |
| m_rmse = sqrt(m_mse); |
| |
| m_cov /= nd; |
| } |
| |
| // Only computes covariance. |
| template<typename T> |
| void calc_cov(uint32_t n, const T* pA, const T* pB, uint32_t a_stride = 1, uint32_t b_stride = 1, const stats<FloatType>* pA_stats = nullptr, const stats<FloatType>* pB_stats = nullptr) |
| { |
| clear(); |
| if (!n) |
| return; |
| |
| stats<FloatType> temp_a_stats; |
| if (!pA_stats) |
| { |
| pA_stats = &temp_a_stats; |
| temp_a_stats.calc(n, pA, a_stride); |
| } |
| |
| stats<FloatType> temp_b_stats; |
| if (!pB_stats) |
| { |
| pB_stats = &temp_b_stats; |
| temp_b_stats.calc(n, pB, b_stride); |
| } |
| |
| for (uint32_t i = 0; i < n; i++) |
| { |
| const FloatType fa = (FloatType)pA[i * a_stride]; |
| const FloatType fb = (FloatType)pB[i * b_stride]; |
| |
| const FloatType da = fa - pA_stats->m_avg; |
| const FloatType db = fb - pB_stats->m_avg; |
| m_cov += da * db; |
| } |
| |
| const FloatType nd = (FloatType)n; |
| |
| m_cov /= nd; |
| } |
| }; |
| |
| class stat_history |
| { |
| public: |
| stat_history(uint32_t size) |
| { |
| init(size); |
| } |
| |
| void init(uint32_t size) |
| { |
| clear(); |
| |
| m_samples.reserve(size); |
| m_samples.resize(0); |
| m_max_samples = size; |
| } |
| |
| inline void clear() |
| { |
| m_samples.resize(0); |
| m_max_samples = 0; |
| } |
| |
| inline void update(double val) |
| { |
| m_samples.push_back(val); |
| |
| if (m_samples.size() > m_max_samples) |
| m_samples.erase_index(0); |
| } |
| |
| inline size_t size() |
| { |
| return m_samples.size(); |
| } |
| |
| struct stats |
| { |
| double m_avg = 0; |
| double m_std_dev = 0; |
| double m_var = 0; |
| double m_mad = 0; |
| double m_min_val = 0; |
| double m_max_val = 0; |
| |
| void clear() |
| { |
| basisu::clear_obj(*this); |
| } |
| }; |
| |
| inline void get_stats(stats& s) |
| { |
| s.clear(); |
| |
| if (m_samples.empty()) |
| return; |
| |
| double total = 0, total2 = 0; |
| |
| for (size_t i = 0; i < m_samples.size(); i++) |
| { |
| const double v = m_samples[i]; |
| |
| total += v; |
| total2 += v * v; |
| |
| if (!i) |
| { |
| s.m_min_val = v; |
| s.m_max_val = v; |
| } |
| else |
| { |
| s.m_min_val = basisu::minimum<double>(s.m_min_val, v); |
| s.m_max_val = basisu::maximum<double>(s.m_max_val, v); |
| } |
| } |
| |
| const double n = (double)m_samples.size(); |
| |
| s.m_avg = total / n; |
| s.m_std_dev = sqrt((n * total2 - total * total)) / n; |
| s.m_var = (n * total2 - total * total) / (n * n); |
| |
| double sc = 0; |
| for (size_t i = 0; i < m_samples.size(); i++) |
| { |
| const double v = m_samples[i]; |
| s.m_mad += fabs(v - s.m_avg); |
| |
| sc += basisu::square(v - s.m_avg); |
| } |
| sc = sqrt(sc / n); |
| |
| s.m_mad /= n; |
| } |
| |
| private: |
| uint32_t m_max_samples; |
| basisu::vector<double> m_samples; |
| }; |
| |
| // bfloat16 helpers, see: |
| // https://en.wikipedia.org/wiki/Bfloat16_floating-point_format |
| |
| typedef union |
| { |
| uint32_t u; |
| float f; |
| } float32_union; |
| |
| typedef uint16_t bfloat16; |
| |
| inline float bfloat16_to_float(bfloat16 bfloat16) |
| { |
| float32_union float_union; |
| float_union.u = ((uint32_t)bfloat16) << 16; |
| return float_union.f; |
| } |
| |
| inline bfloat16 float_to_bfloat16(float input, bool round_flag = true) |
| { |
| float32_union float_union; |
| float_union.f = input; |
| |
| uint32_t exponent = (float_union.u >> 23) & 0xFF; |
| |
| // Check if the number is denormalized in float32 (exponent == 0) |
| if (exponent == 0) |
| { |
| // Handle denormalized float32 as zero in bfloat16 |
| return 0x0000; |
| } |
| |
| // Extract the top 16 bits (sign, exponent, and 7 most significant bits of the mantissa) |
| uint32_t upperBits = float_union.u >> 16; |
| |
| if (round_flag) |
| { |
| // Check the most significant bit of the lower 16 bits for rounding |
| uint32_t lowerBits = float_union.u & 0xFFFF; |
| |
| // Round to nearest or even |
| if ((lowerBits & 0x8000) && |
| ((lowerBits > 0x8000) || ((lowerBits == 0x8000) && (upperBits & 1))) |
| ) |
| { |
| // Round up |
| upperBits += 1; |
| |
| // Check for overflow in the exponent after rounding up |
| if (((upperBits & 0x7F80) == 0x7F80) && ((upperBits & 0x007F) == 0)) |
| { |
| // Exponent overflow (the upper bits became all 1s) |
| // Set the result to infinity |
| upperBits = (upperBits & 0x8000) | 0x7F80; // Preserve the sign bit, set exponent to 0xFF, and mantissa to 0 |
| } |
| } |
| } |
| |
| return (bfloat16)upperBits; |
| } |
| |
| inline int bfloat16_get_exp(bfloat16 v) |
| { |
| return (int)((v >> 7) & 0xFF) - 127; |
| } |
| |
| inline int bfloat16_get_mantissa(bfloat16 v) |
| { |
| return (v & 0x7F); |
| } |
| |
| inline int bfloat16_get_sign(bfloat16 v) |
| { |
| return (v & 0x8000) ? -1 : 1; |
| } |
| |
| inline bool bfloat16_is_nan_or_inf(bfloat16 v) |
| { |
| return ((v >> 7) & 0xFF) == 0xFF; |
| } |
| |
| inline bool bfloat16_is_zero(bfloat16 v) |
| { |
| return (v & 0x7FFF) == 0; |
| } |
| |
| inline bfloat16 bfloat16_init(int sign, int exp, int mant) |
| { |
| uint16_t res = (sign < 0) ? 0x8000 : 0; |
| |
| assert((exp >= -126) && (res <= 127)); |
| res |= ((exp + 127) << 7); |
| |
| assert((mant >= 0) && (mant < 128)); |
| res |= mant; |
| |
| return res; |
| } |
| |
| |
| } // namespace basisu |
| |