| // File: android_astc_decomp.cpp |
| |
| /*------------------------------------------------------------------------- |
| * drawElements Quality Program Tester Core |
| * ---------------------------------------- |
| * |
| * Copyright 2016 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| * rg: Removed external dependencies, minor fix to decompress() so it converts non-sRGB |
| * output to 8-bits correctly. I've compared this decoder's output |
| * vs. astc-codec with random inputs. |
| * |
| *//*! |
| * \file |
| * \brief ASTC Utilities. |
| *//*--------------------------------------------------------------------*/ |
| #include "android_astc_decomp.h" |
| #include <assert.h> |
| #include <algorithm> |
| #include <fenv.h> |
| #include <math.h> |
| |
| #define DE_LENGTH_OF_ARRAY(x) (sizeof(x)/sizeof(x[0])) |
| #define DE_UNREF(x) (void)x |
| |
| typedef uint8_t deUint8; |
| typedef int8_t deInt8; |
| typedef uint32_t deUint32; |
| typedef int32_t deInt32; |
| typedef uint16_t deUint16; |
| typedef int16_t deInt16; |
| typedef int64_t deInt64; |
| typedef uint64_t deUint64; |
| |
| #define DE_ASSERT assert |
| |
| #ifdef _MSC_VER |
| #pragma warning (disable:4505) // unreferenced local function has been removed |
| #elif defined(__GNUC__) |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wunused-function" |
| #endif |
| |
| namespace basisu_astc |
| { |
| template <typename S> inline S maximum(S a, S b) { return (a > b) ? a : b; } |
| template <typename S> inline S maximum(S a, S b, S c) { return maximum(maximum(a, b), c); } |
| template <typename S> inline S maximum(S a, S b, S c, S d) { return maximum(maximum(maximum(a, b), c), d); } |
| |
| static bool inBounds(int v, int l, int h) |
| { |
| return (v >= l) && (v < h); |
| } |
| |
| static bool inRange(int v, int l, int h) |
| { |
| return (v >= l) && (v <= h); |
| } |
| |
| template<typename T> |
| static inline T max(T a, T b) |
| { |
| return (a > b) ? a : b; |
| } |
| |
| template<typename T> |
| static inline T min(T a, T b) |
| { |
| return (a < b) ? a : b; |
| } |
| |
| template<typename T> |
| static inline T clamp(T a, T l, T h) |
| { |
| if (a < l) |
| return l; |
| else if (a > h) |
| return h; |
| return a; |
| } |
| |
| struct UVec4 |
| { |
| uint32_t m_c[4]; |
| |
| UVec4() |
| { |
| m_c[0] = 0; |
| m_c[1] = 0; |
| m_c[2] = 0; |
| m_c[3] = 0; |
| } |
| |
| UVec4(uint32_t x, uint32_t y, uint32_t z, uint32_t w) |
| { |
| m_c[0] = x; |
| m_c[1] = y; |
| m_c[2] = z; |
| m_c[3] = w; |
| } |
| |
| uint32_t x() const { return m_c[0]; } |
| uint32_t y() const { return m_c[1]; } |
| uint32_t z() const { return m_c[2]; } |
| uint32_t w() const { return m_c[3]; } |
| |
| uint32_t& x() { return m_c[0]; } |
| uint32_t& y() { return m_c[1]; } |
| uint32_t& z() { return m_c[2]; } |
| uint32_t& w() { return m_c[3]; } |
| |
| uint32_t operator[] (uint32_t idx) const { assert(idx < 4); return m_c[idx]; } |
| uint32_t& operator[] (uint32_t idx) { assert(idx < 4); return m_c[idx]; } |
| }; |
| |
| struct IVec4 |
| { |
| int32_t m_c[4]; |
| |
| IVec4() |
| { |
| m_c[0] = 0; |
| m_c[1] = 0; |
| m_c[2] = 0; |
| m_c[3] = 0; |
| } |
| |
| IVec4(int32_t x, int32_t y, int32_t z, int32_t w) |
| { |
| m_c[0] = x; |
| m_c[1] = y; |
| m_c[2] = z; |
| m_c[3] = w; |
| } |
| |
| int32_t x() const { return m_c[0]; } |
| int32_t y() const { return m_c[1]; } |
| int32_t z() const { return m_c[2]; } |
| int32_t w() const { return m_c[3]; } |
| |
| int32_t& x() { return m_c[0]; } |
| int32_t& y() { return m_c[1]; } |
| int32_t& z() { return m_c[2]; } |
| int32_t& w() { return m_c[3]; } |
| |
| UVec4 asUint() const |
| { |
| return UVec4(maximum(0, m_c[0]), maximum(0, m_c[1]), maximum(0, m_c[2]), maximum(0, m_c[3])); |
| } |
| |
| int32_t operator[] (uint32_t idx) const { assert(idx < 4); return m_c[idx]; } |
| int32_t& operator[] (uint32_t idx) { assert(idx < 4); return m_c[idx]; } |
| }; |
| |
| struct IVec3 |
| { |
| int32_t m_c[3]; |
| |
| IVec3() |
| { |
| m_c[0] = 0; |
| m_c[1] = 0; |
| m_c[2] = 0; |
| } |
| |
| IVec3(int32_t x, int32_t y, int32_t z) |
| { |
| m_c[0] = x; |
| m_c[1] = y; |
| m_c[2] = z; |
| } |
| |
| int32_t x() const { return m_c[0]; } |
| int32_t y() const { return m_c[1]; } |
| int32_t z() const { return m_c[2]; } |
| |
| int32_t& x() { return m_c[0]; } |
| int32_t& y() { return m_c[1]; } |
| int32_t& z() { return m_c[2]; } |
| |
| int32_t operator[] (uint32_t idx) const { assert(idx < 3); return m_c[idx]; } |
| int32_t& operator[] (uint32_t idx) { assert(idx < 3); return m_c[idx]; } |
| }; |
| |
| static uint32_t deDivRoundUp32(uint32_t a, uint32_t b) |
| { |
| return (a + b - 1) / b; |
| } |
| |
| static bool deInBounds32(uint32_t v, uint32_t l, uint32_t h) |
| { |
| return (v >= l) && (v < h); |
| } |
| |
| namespace astc |
| { |
| |
| using std::vector; |
| |
| namespace |
| { |
| |
| // Common utilities |
| enum |
| { |
| MAX_BLOCK_WIDTH = 12, |
| MAX_BLOCK_HEIGHT = 12 |
| }; |
| |
| inline deUint32 getBit (deUint32 src, int ndx) |
| { |
| DE_ASSERT(basisu_astc::inBounds(ndx, 0, 32)); |
| return (src >> ndx) & 1; |
| } |
| |
| inline deUint32 getBits (deUint32 src, int low, int high) |
| { |
| const int numBits = (high-low) + 1; |
| DE_ASSERT(basisu_astc::inRange(numBits, 1, 32)); |
| |
| if (numBits < 32) |
| return (deUint32)((src >> low) & ((1u<<numBits)-1)); |
| else |
| return (deUint32)((src >> low) & 0xFFFFFFFFu); |
| } |
| |
| inline bool isBitSet (deUint32 src, int ndx) |
| { |
| return getBit(src, ndx) != 0; |
| } |
| |
| inline deUint32 reverseBits (deUint32 src, int numBits) |
| { |
| DE_ASSERT(basisu_astc::inRange(numBits, 0, 32)); |
| |
| deUint32 result = 0; |
| for (int i = 0; i < numBits; i++) |
| result |= ((src >> i) & 1) << (numBits-1-i); |
| |
| return result; |
| } |
| |
| inline deUint32 bitReplicationScale (deUint32 src, int numSrcBits, int numDstBits) |
| { |
| DE_ASSERT(numSrcBits <= numDstBits); |
| DE_ASSERT((src & ((1<<numSrcBits)-1)) == src); |
| |
| deUint32 dst = 0; |
| for (int shift = numDstBits-numSrcBits; shift > -numSrcBits; shift -= numSrcBits) |
| dst |= (shift >= 0) ? (src << shift) : (src >> -shift); |
| |
| return dst; |
| } |
| |
| inline deInt32 signExtend (deInt32 src, int numSrcBits) |
| { |
| DE_ASSERT(basisu_astc::inRange(numSrcBits, 2, 31)); |
| |
| const bool negative = (src & (1 << (numSrcBits-1))) != 0; |
| return src | (negative ? ~((1 << numSrcBits) - 1) : 0); |
| } |
| |
| typedef uint16_t deFloat16; |
| |
| inline bool isFloat16InfOrNan (deFloat16 v) |
| { |
| return getBits(v, 10, 14) == 31; |
| } |
| |
| float deFloat16To32(deFloat16 val16) |
| { |
| deUint32 sign; |
| deUint32 expotent; |
| deUint32 mantissa; |
| |
| union |
| { |
| float f; |
| deUint32 u; |
| } x; |
| |
| x.u = 0u; |
| |
| sign = ((deUint32)val16 >> 15u) & 0x00000001u; |
| expotent = ((deUint32)val16 >> 10u) & 0x0000001fu; |
| mantissa = (deUint32)val16 & 0x000003ffu; |
| |
| if (expotent == 0u) |
| { |
| if (mantissa == 0u) |
| { |
| /* +/- 0 */ |
| x.u = sign << 31u; |
| return x.f; |
| } |
| else |
| { |
| /* Denormalized, normalize it. */ |
| |
| while (!(mantissa & 0x00000400u)) |
| { |
| mantissa <<= 1u; |
| expotent -= 1u; |
| } |
| |
| expotent += 1u; |
| mantissa &= ~0x00000400u; |
| } |
| } |
| else if (expotent == 31u) |
| { |
| if (mantissa == 0u) |
| { |
| /* +/- InF */ |
| x.u = (sign << 31u) | 0x7f800000u; |
| return x.f; |
| } |
| else |
| { |
| /* +/- NaN */ |
| x.u = (sign << 31u) | 0x7f800000u | (mantissa << 13u); |
| return x.f; |
| } |
| } |
| |
| expotent = expotent + (127u - 15u); |
| mantissa = mantissa << 13u; |
| |
| x.u = (sign << 31u) | (expotent << 23u) | mantissa; |
| return x.f; |
| } |
| |
| enum ISEMode |
| { |
| ISEMODE_TRIT = 0, |
| ISEMODE_QUINT, |
| ISEMODE_PLAIN_BIT, |
| ISEMODE_LAST |
| }; |
| |
| struct ISEParams |
| { |
| ISEMode mode; |
| int numBits; |
| ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {} |
| }; |
| |
| inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues) |
| { |
| switch (iseParams.mode) |
| { |
| case ISEMODE_TRIT: return deDivRoundUp32(numValues*8, 5) + numValues*iseParams.numBits; |
| case ISEMODE_QUINT: return deDivRoundUp32(numValues*7, 3) + numValues*iseParams.numBits; |
| case ISEMODE_PLAIN_BIT: return numValues*iseParams.numBits; |
| default: |
| DE_ASSERT(false); |
| return -1; |
| } |
| } |
| |
| ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence) |
| { |
| int curBitsForTritMode = 6; |
| int curBitsForQuintMode = 5; |
| int curBitsForPlainBitMode = 8; |
| |
| while (true) |
| { |
| DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0); |
| const int tritRange = (curBitsForTritMode > 0) ? (3 << curBitsForTritMode) - 1 : -1; |
| const int quintRange = (curBitsForQuintMode > 0) ? (5 << curBitsForQuintMode) - 1 : -1; |
| const int plainBitRange = (curBitsForPlainBitMode > 0) ? (1 << curBitsForPlainBitMode) - 1 : -1; |
| const int maxRange = basisu_astc::max(basisu_astc::max(tritRange, quintRange), plainBitRange); |
| |
| if (maxRange == tritRange) |
| { |
| const ISEParams params(ISEMODE_TRIT, curBitsForTritMode); |
| |
| if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) |
| return ISEParams(ISEMODE_TRIT, curBitsForTritMode); |
| |
| curBitsForTritMode--; |
| } |
| else if (maxRange == quintRange) |
| { |
| const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode); |
| |
| if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) |
| return ISEParams(ISEMODE_QUINT, curBitsForQuintMode); |
| |
| curBitsForQuintMode--; |
| } |
| else |
| { |
| const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode); |
| DE_ASSERT(maxRange == plainBitRange); |
| |
| if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) |
| return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode); |
| |
| curBitsForPlainBitMode--; |
| } |
| } |
| } |
| |
| inline int computeNumColorEndpointValues (deUint32 endpointMode) |
| { |
| DE_ASSERT(endpointMode < 16); |
| return (endpointMode/4 + 1) * 2; |
| } |
| |
| // Decompression utilities |
| enum DecompressResult |
| { |
| DECOMPRESS_RESULT_VALID_BLOCK = 0, //!< Decompressed valid block |
| DECOMPRESS_RESULT_ERROR, //!< Encountered error while decompressing, error color written |
| DECOMPRESS_RESULT_LAST |
| }; |
| |
| // A helper for getting bits from a 128-bit block. |
| class Block128 |
| { |
| private: |
| typedef deUint64 Word; |
| |
| enum |
| { |
| WORD_BYTES = sizeof(Word), |
| WORD_BITS = 8*WORD_BYTES, |
| NUM_WORDS = 128 / WORD_BITS |
| }; |
| //DE_STATIC_ASSERT(128 % WORD_BITS == 0); |
| |
| public: |
| Block128 (const deUint8* src) |
| { |
| for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++) |
| { |
| m_words[wordNdx] = 0; |
| for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++) |
| m_words[wordNdx] |= (Word)src[wordNdx*WORD_BYTES + byteNdx] << (8*byteNdx); |
| } |
| } |
| |
| deUint32 getBit (int ndx) const |
| { |
| DE_ASSERT(basisu_astc::inBounds(ndx, 0, 128)); |
| return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1; |
| } |
| |
| deUint32 getBits (int low, int high) const |
| { |
| DE_ASSERT(basisu_astc::inBounds(low, 0, 128)); |
| DE_ASSERT(basisu_astc::inBounds(high, 0, 128)); |
| DE_ASSERT(basisu_astc::inRange(high-low+1, 0, 32)); |
| |
| if (high-low+1 == 0) |
| return 0; |
| |
| const int word0Ndx = low / WORD_BITS; |
| const int word1Ndx = high / WORD_BITS; |
| // \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big. |
| if (word0Ndx == word1Ndx) |
| return (deUint32)((m_words[word0Ndx] & ((((Word)1 << high%WORD_BITS << 1) - 1))) >> ((Word)low % WORD_BITS)); |
| else |
| { |
| DE_ASSERT(word1Ndx == word0Ndx + 1); |
| return (deUint32)(m_words[word0Ndx] >> (low%WORD_BITS)) | |
| (deUint32)((m_words[word1Ndx] & (((Word)1 << high%WORD_BITS << 1) - 1)) << (high-low - high%WORD_BITS)); |
| } |
| } |
| |
| bool isBitSet (int ndx) const |
| { |
| DE_ASSERT(basisu_astc::inBounds(ndx, 0, 128)); |
| return getBit(ndx) != 0; |
| } |
| |
| private: |
| Word m_words[NUM_WORDS]; |
| }; |
| |
| // A helper for sequential access into a Block128. |
| class BitAccessStream |
| { |
| public: |
| BitAccessStream (const Block128& src, int startNdxInSrc, int length, bool forward) |
| : m_src (src) |
| , m_startNdxInSrc (startNdxInSrc) |
| , m_length (length) |
| , m_forward (forward) |
| , m_ndx (0) |
| { |
| } |
| |
| // Get the next num bits. Bits at positions greater than or equal to m_length are zeros. |
| deUint32 getNext (int num) |
| { |
| if (num == 0 || m_ndx >= m_length) |
| return 0; |
| const int end = m_ndx + num; |
| const int numBitsFromSrc = basisu_astc::max(0, basisu_astc::min(m_length, end) - m_ndx); |
| const int low = m_ndx; |
| const int high = m_ndx + numBitsFromSrc - 1; |
| |
| m_ndx += num; |
| |
| return m_forward ? m_src.getBits(m_startNdxInSrc + low, m_startNdxInSrc + high) |
| : reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc); |
| } |
| |
| private: |
| const Block128& m_src; |
| const int m_startNdxInSrc; |
| const int m_length; |
| const bool m_forward; |
| int m_ndx; |
| }; |
| |
| struct ISEDecodedResult |
| { |
| deUint32 m; |
| deUint32 tq; //!< Trit or quint value, depending on ISE mode. |
| deUint32 v; |
| }; |
| |
| // Data from an ASTC block's "block mode" part (i.e. bits [0,10]). |
| struct ASTCBlockMode |
| { |
| bool isError; |
| // \note Following fields only relevant if !isError. |
| bool isVoidExtent; |
| // \note Following fields only relevant if !isVoidExtent. |
| bool isDualPlane; |
| int weightGridWidth; |
| int weightGridHeight; |
| ISEParams weightISEParams; |
| |
| ASTCBlockMode (void) |
| : isError (true) |
| , isVoidExtent (true) |
| , isDualPlane (true) |
| , weightGridWidth (-1) |
| , weightGridHeight (-1) |
| , weightISEParams (ISEMODE_LAST, -1) |
| { |
| } |
| }; |
| |
| inline int computeNumWeights (const ASTCBlockMode& mode) |
| { |
| return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1); |
| } |
| |
| struct ColorEndpointPair |
| { |
| UVec4 e0; |
| UVec4 e1; |
| }; |
| |
| struct TexelWeightPair |
| { |
| deUint32 w[2]; |
| }; |
| |
| ASTCBlockMode getASTCBlockMode (deUint32 blockModeData) |
| { |
| ASTCBlockMode blockMode; |
| blockMode.isError = true; // \note Set to false later, if not error. |
| blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc; |
| if (!blockMode.isVoidExtent) |
| { |
| if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || getBits(blockModeData, 0, 3) == 0) |
| return blockMode; // Invalid ("reserved"). |
| |
| deUint32 r = (deUint32)-1; // \note Set in the following branches. |
| |
| if (getBits(blockModeData, 0, 1) == 0) |
| { |
| const deUint32 r0 = getBit(blockModeData, 4); |
| const deUint32 r1 = getBit(blockModeData, 2); |
| const deUint32 r2 = getBit(blockModeData, 3); |
| const deUint32 i78 = getBits(blockModeData, 7, 8); |
| |
| r = (r2 << 2) | (r1 << 1) | (r0 << 0); |
| |
| if (i78 == 3) |
| { |
| const bool i5 = isBitSet(blockModeData, 5); |
| blockMode.weightGridWidth = i5 ? 10 : 6; |
| blockMode.weightGridHeight = i5 ? 6 : 10; |
| } |
| else |
| { |
| const deUint32 a = getBits(blockModeData, 5, 6); |
| |
| switch (i78) |
| { |
| case 0: blockMode.weightGridWidth = 12; blockMode.weightGridHeight = a + 2; break; |
| case 1: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = 12; break; |
| case 2: blockMode.weightGridWidth = a + 6; blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6; break; |
| default: DE_ASSERT(false); |
| } |
| } |
| } |
| else |
| { |
| const deUint32 r0 = getBit(blockModeData, 4); |
| const deUint32 r1 = getBit(blockModeData, 0); |
| const deUint32 r2 = getBit(blockModeData, 1); |
| const deUint32 i23 = getBits(blockModeData, 2, 3); |
| const deUint32 a = getBits(blockModeData, 5, 6); |
| |
| r = (r2 << 2) | (r1 << 1) | (r0 << 0); |
| if (i23 == 3) |
| { |
| const deUint32 b = getBit(blockModeData, 7); |
| const bool i8 = isBitSet(blockModeData, 8); |
| blockMode.weightGridWidth = i8 ? b+2 : a+2; |
| blockMode.weightGridHeight = i8 ? a+2 : b+6; |
| } |
| else |
| { |
| const deUint32 b = getBits(blockModeData, 7, 8); |
| switch (i23) |
| { |
| case 0: blockMode.weightGridWidth = b + 4; blockMode.weightGridHeight = a + 2; break; |
| case 1: blockMode.weightGridWidth = b + 8; blockMode.weightGridHeight = a + 2; break; |
| case 2: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = b + 8; break; |
| default: DE_ASSERT(false); |
| } |
| } |
| } |
| |
| const bool zeroDH = getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2; |
| const bool h = zeroDH ? 0 : isBitSet(blockModeData, 9); |
| blockMode.isDualPlane = zeroDH ? 0 : isBitSet(blockModeData, 10); |
| |
| { |
| ISEMode& m = blockMode.weightISEParams.mode; |
| int& b = blockMode.weightISEParams.numBits; |
| m = ISEMODE_PLAIN_BIT; |
| b = 0; |
| if (h) |
| { |
| switch (r) |
| { |
| case 2: m = ISEMODE_QUINT; b = 1; break; |
| case 3: m = ISEMODE_TRIT; b = 2; break; |
| case 4: b = 4; break; |
| case 5: m = ISEMODE_QUINT; b = 2; break; |
| case 6: m = ISEMODE_TRIT; b = 3; break; |
| case 7: b = 5; break; |
| default: DE_ASSERT(false); |
| } |
| } |
| else |
| { |
| switch (r) |
| { |
| case 2: b = 1; break; |
| case 3: m = ISEMODE_TRIT; break; |
| case 4: b = 2; break; |
| case 5: m = ISEMODE_QUINT; break; |
| case 6: m = ISEMODE_TRIT; b = 1; break; |
| case 7: b = 3; break; |
| default: DE_ASSERT(false); |
| } |
| } |
| } |
| } |
| |
| blockMode.isError = false; |
| return blockMode; |
| } |
| |
| inline void setASTCErrorColorBlock (void* dst, int blockWidth, int blockHeight, bool isSRGB) |
| { |
| if (isSRGB) |
| { |
| deUint8* const dstU = (deUint8*)dst; |
| for (int i = 0; i < blockWidth*blockHeight; i++) |
| { |
| dstU[4*i + 0] = 0xff; |
| dstU[4*i + 1] = 0; |
| dstU[4*i + 2] = 0xff; |
| dstU[4*i + 3] = 0xff; |
| } |
| } |
| else |
| { |
| float* const dstF = (float*)dst; |
| for (int i = 0; i < blockWidth*blockHeight; i++) |
| { |
| dstF[4*i + 0] = 1.0f; |
| dstF[4*i + 1] = 0.0f; |
| dstF[4*i + 2] = 1.0f; |
| dstF[4*i + 3] = 1.0f; |
| } |
| } |
| } |
| |
| DecompressResult decodeVoidExtentBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode) |
| { |
| const deUint32 minSExtent = blockData.getBits(12, 24); |
| const deUint32 maxSExtent = blockData.getBits(25, 37); |
| const deUint32 minTExtent = blockData.getBits(38, 50); |
| const deUint32 maxTExtent = blockData.getBits(51, 63); |
| const bool allExtentsAllOnes = (minSExtent == 0x1fff) && (maxSExtent == 0x1fff) && (minTExtent == 0x1fff) && (maxTExtent == 0x1fff); |
| const bool isHDRBlock = blockData.isBitSet(9); |
| |
| if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent))) |
| { |
| setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); |
| return DECOMPRESS_RESULT_ERROR; |
| } |
| |
| const deUint32 rgba[4] = |
| { |
| blockData.getBits(64, 79), |
| blockData.getBits(80, 95), |
| blockData.getBits(96, 111), |
| blockData.getBits(112, 127) |
| }; |
| |
| if (isSRGB) |
| { |
| deUint8* const dstU = (deUint8*)dst; |
| for (int i = 0; i < blockWidth * blockHeight; i++) |
| { |
| for (int c = 0; c < 4; c++) |
| dstU[i * 4 + c] = (deUint8)((rgba[c] & 0xff00) >> 8); |
| } |
| } |
| else |
| { |
| float* const dstF = (float*)dst; |
| |
| if (isHDRBlock) |
| { |
| for (int c = 0; c < 4; c++) |
| { |
| if (isFloat16InfOrNan((deFloat16)rgba[c])) |
| { |
| //throw InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture (behavior undefined by ASTC specification)"); |
| setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); |
| return DECOMPRESS_RESULT_ERROR; |
| } |
| } |
| |
| for (int i = 0; i < blockWidth * blockHeight; i++) |
| { |
| for (int c = 0; c < 4; c++) |
| dstF[i * 4 + c] = deFloat16To32((deFloat16)rgba[c]); |
| } |
| } |
| else |
| { |
| for (int i = 0; i < blockWidth * blockHeight; i++) |
| { |
| for (int c = 0; c < 4; c++) |
| dstF[i * 4 + c] = (rgba[c] == 65535) ? 1.0f : ((float)rgba[c] / 65536.0f); |
| } |
| } |
| } |
| |
| return DECOMPRESS_RESULT_VALID_BLOCK; |
| } |
| |
| void decodeColorEndpointModes (deUint32* endpointModesDst, const Block128& blockData, int numPartitions, int extraCemBitsStart) |
| { |
| if (numPartitions == 1) |
| endpointModesDst[0] = blockData.getBits(13, 16); |
| else |
| { |
| const deUint32 highLevelSelector = blockData.getBits(23, 24); |
| |
| if (highLevelSelector == 0) |
| { |
| const deUint32 mode = blockData.getBits(25, 28); |
| |
| for (int i = 0; i < numPartitions; i++) |
| endpointModesDst[i] = mode; |
| } |
| else |
| { |
| for (int partNdx = 0; partNdx < numPartitions; partNdx++) |
| { |
| const deUint32 cemClass = highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1); |
| const deUint32 lowBit0Ndx = numPartitions + 2*partNdx; |
| const deUint32 lowBit1Ndx = numPartitions + 2*partNdx + 1; |
| const deUint32 lowBit0 = blockData.getBit(lowBit0Ndx < 4 ? 25+lowBit0Ndx : extraCemBitsStart+lowBit0Ndx-4); |
| const deUint32 lowBit1 = blockData.getBit(lowBit1Ndx < 4 ? 25+lowBit1Ndx : extraCemBitsStart+lowBit1Ndx-4); |
| |
| endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0; |
| } |
| } |
| } |
| } |
| |
| int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions) |
| { |
| int result = 0; |
| |
| for (int i = 0; i < numPartitions; i++) |
| result += computeNumColorEndpointValues(endpointModes[i]); |
| |
| return result; |
| } |
| |
| void decodeISETritBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits) |
| { |
| DE_ASSERT(basisu_astc::inRange(numValues, 1, 5)); |
| |
| deUint32 m[5]; |
| m[0] = data.getNext(numBits); |
| deUint32 T01 = data.getNext(2); |
| m[1] = data.getNext(numBits); |
| deUint32 T23 = data.getNext(2); |
| m[2] = data.getNext(numBits); |
| deUint32 T4 = data.getNext(1); |
| m[3] = data.getNext(numBits); |
| deUint32 T56 = data.getNext(2); |
| m[4] = data.getNext(numBits); |
| deUint32 T7 = data.getNext(1); |
| |
| #ifdef __GNUC__ |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wimplicit-fallthrough=" |
| #endif |
| switch (numValues) |
| { |
| // \note Fall-throughs. |
| case 1: T23 = 0; |
| case 2: T4 = 0; |
| case 3: T56 = 0; |
| case 4: T7 = 0; |
| case 5: break; |
| default: |
| DE_ASSERT(false); |
| } |
| #ifdef __GNUC__ |
| #pragma GCC diagnostic pop |
| #endif |
| |
| const deUint32 T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0); |
| |
| static const deUint32 tritsFromT[256][5] = |
| { |
| { 0,0,0,0,0 }, { 1,0,0,0,0 }, { 2,0,0,0,0 }, { 0,0,2,0,0 }, { 0,1,0,0,0 }, { 1,1,0,0,0 }, { 2,1,0,0,0 }, { 1,0,2,0,0 }, { 0,2,0,0,0 }, { 1,2,0,0,0 }, { 2,2,0,0,0 }, { 2,0,2,0,0 }, { 0,2,2,0,0 }, { 1,2,2,0,0 }, { 2,2,2,0,0 }, { 2,0,2,0,0 }, |
| { 0,0,1,0,0 }, { 1,0,1,0,0 }, { 2,0,1,0,0 }, { 0,1,2,0,0 }, { 0,1,1,0,0 }, { 1,1,1,0,0 }, { 2,1,1,0,0 }, { 1,1,2,0,0 }, { 0,2,1,0,0 }, { 1,2,1,0,0 }, { 2,2,1,0,0 }, { 2,1,2,0,0 }, { 0,0,0,2,2 }, { 1,0,0,2,2 }, { 2,0,0,2,2 }, { 0,0,2,2,2 }, |
| { 0,0,0,1,0 }, { 1,0,0,1,0 }, { 2,0,0,1,0 }, { 0,0,2,1,0 }, { 0,1,0,1,0 }, { 1,1,0,1,0 }, { 2,1,0,1,0 }, { 1,0,2,1,0 }, { 0,2,0,1,0 }, { 1,2,0,1,0 }, { 2,2,0,1,0 }, { 2,0,2,1,0 }, { 0,2,2,1,0 }, { 1,2,2,1,0 }, { 2,2,2,1,0 }, { 2,0,2,1,0 }, |
| { 0,0,1,1,0 }, { 1,0,1,1,0 }, { 2,0,1,1,0 }, { 0,1,2,1,0 }, { 0,1,1,1,0 }, { 1,1,1,1,0 }, { 2,1,1,1,0 }, { 1,1,2,1,0 }, { 0,2,1,1,0 }, { 1,2,1,1,0 }, { 2,2,1,1,0 }, { 2,1,2,1,0 }, { 0,1,0,2,2 }, { 1,1,0,2,2 }, { 2,1,0,2,2 }, { 1,0,2,2,2 }, |
| { 0,0,0,2,0 }, { 1,0,0,2,0 }, { 2,0,0,2,0 }, { 0,0,2,2,0 }, { 0,1,0,2,0 }, { 1,1,0,2,0 }, { 2,1,0,2,0 }, { 1,0,2,2,0 }, { 0,2,0,2,0 }, { 1,2,0,2,0 }, { 2,2,0,2,0 }, { 2,0,2,2,0 }, { 0,2,2,2,0 }, { 1,2,2,2,0 }, { 2,2,2,2,0 }, { 2,0,2,2,0 }, |
| { 0,0,1,2,0 }, { 1,0,1,2,0 }, { 2,0,1,2,0 }, { 0,1,2,2,0 }, { 0,1,1,2,0 }, { 1,1,1,2,0 }, { 2,1,1,2,0 }, { 1,1,2,2,0 }, { 0,2,1,2,0 }, { 1,2,1,2,0 }, { 2,2,1,2,0 }, { 2,1,2,2,0 }, { 0,2,0,2,2 }, { 1,2,0,2,2 }, { 2,2,0,2,2 }, { 2,0,2,2,2 }, |
| { 0,0,0,0,2 }, { 1,0,0,0,2 }, { 2,0,0,0,2 }, { 0,0,2,0,2 }, { 0,1,0,0,2 }, { 1,1,0,0,2 }, { 2,1,0,0,2 }, { 1,0,2,0,2 }, { 0,2,0,0,2 }, { 1,2,0,0,2 }, { 2,2,0,0,2 }, { 2,0,2,0,2 }, { 0,2,2,0,2 }, { 1,2,2,0,2 }, { 2,2,2,0,2 }, { 2,0,2,0,2 }, |
| { 0,0,1,0,2 }, { 1,0,1,0,2 }, { 2,0,1,0,2 }, { 0,1,2,0,2 }, { 0,1,1,0,2 }, { 1,1,1,0,2 }, { 2,1,1,0,2 }, { 1,1,2,0,2 }, { 0,2,1,0,2 }, { 1,2,1,0,2 }, { 2,2,1,0,2 }, { 2,1,2,0,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,0,2,2,2 }, |
| { 0,0,0,0,1 }, { 1,0,0,0,1 }, { 2,0,0,0,1 }, { 0,0,2,0,1 }, { 0,1,0,0,1 }, { 1,1,0,0,1 }, { 2,1,0,0,1 }, { 1,0,2,0,1 }, { 0,2,0,0,1 }, { 1,2,0,0,1 }, { 2,2,0,0,1 }, { 2,0,2,0,1 }, { 0,2,2,0,1 }, { 1,2,2,0,1 }, { 2,2,2,0,1 }, { 2,0,2,0,1 }, |
| { 0,0,1,0,1 }, { 1,0,1,0,1 }, { 2,0,1,0,1 }, { 0,1,2,0,1 }, { 0,1,1,0,1 }, { 1,1,1,0,1 }, { 2,1,1,0,1 }, { 1,1,2,0,1 }, { 0,2,1,0,1 }, { 1,2,1,0,1 }, { 2,2,1,0,1 }, { 2,1,2,0,1 }, { 0,0,1,2,2 }, { 1,0,1,2,2 }, { 2,0,1,2,2 }, { 0,1,2,2,2 }, |
| { 0,0,0,1,1 }, { 1,0,0,1,1 }, { 2,0,0,1,1 }, { 0,0,2,1,1 }, { 0,1,0,1,1 }, { 1,1,0,1,1 }, { 2,1,0,1,1 }, { 1,0,2,1,1 }, { 0,2,0,1,1 }, { 1,2,0,1,1 }, { 2,2,0,1,1 }, { 2,0,2,1,1 }, { 0,2,2,1,1 }, { 1,2,2,1,1 }, { 2,2,2,1,1 }, { 2,0,2,1,1 }, |
| { 0,0,1,1,1 }, { 1,0,1,1,1 }, { 2,0,1,1,1 }, { 0,1,2,1,1 }, { 0,1,1,1,1 }, { 1,1,1,1,1 }, { 2,1,1,1,1 }, { 1,1,2,1,1 }, { 0,2,1,1,1 }, { 1,2,1,1,1 }, { 2,2,1,1,1 }, { 2,1,2,1,1 }, { 0,1,1,2,2 }, { 1,1,1,2,2 }, { 2,1,1,2,2 }, { 1,1,2,2,2 }, |
| { 0,0,0,2,1 }, { 1,0,0,2,1 }, { 2,0,0,2,1 }, { 0,0,2,2,1 }, { 0,1,0,2,1 }, { 1,1,0,2,1 }, { 2,1,0,2,1 }, { 1,0,2,2,1 }, { 0,2,0,2,1 }, { 1,2,0,2,1 }, { 2,2,0,2,1 }, { 2,0,2,2,1 }, { 0,2,2,2,1 }, { 1,2,2,2,1 }, { 2,2,2,2,1 }, { 2,0,2,2,1 }, |
| { 0,0,1,2,1 }, { 1,0,1,2,1 }, { 2,0,1,2,1 }, { 0,1,2,2,1 }, { 0,1,1,2,1 }, { 1,1,1,2,1 }, { 2,1,1,2,1 }, { 1,1,2,2,1 }, { 0,2,1,2,1 }, { 1,2,1,2,1 }, { 2,2,1,2,1 }, { 2,1,2,2,1 }, { 0,2,1,2,2 }, { 1,2,1,2,2 }, { 2,2,1,2,2 }, { 2,1,2,2,2 }, |
| { 0,0,0,1,2 }, { 1,0,0,1,2 }, { 2,0,0,1,2 }, { 0,0,2,1,2 }, { 0,1,0,1,2 }, { 1,1,0,1,2 }, { 2,1,0,1,2 }, { 1,0,2,1,2 }, { 0,2,0,1,2 }, { 1,2,0,1,2 }, { 2,2,0,1,2 }, { 2,0,2,1,2 }, { 0,2,2,1,2 }, { 1,2,2,1,2 }, { 2,2,2,1,2 }, { 2,0,2,1,2 }, |
| { 0,0,1,1,2 }, { 1,0,1,1,2 }, { 2,0,1,1,2 }, { 0,1,2,1,2 }, { 0,1,1,1,2 }, { 1,1,1,1,2 }, { 2,1,1,1,2 }, { 1,1,2,1,2 }, { 0,2,1,1,2 }, { 1,2,1,1,2 }, { 2,2,1,1,2 }, { 2,1,2,1,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,1,2,2,2 } |
| }; |
| |
| const deUint32 (& trits)[5] = tritsFromT[T]; |
| for (int i = 0; i < numValues; i++) |
| { |
| dst[i].m = m[i]; |
| dst[i].tq = trits[i]; |
| dst[i].v = (trits[i] << numBits) + m[i]; |
| } |
| } |
| |
| void decodeISEQuintBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits) |
| { |
| DE_ASSERT(basisu_astc::inRange(numValues, 1, 3)); |
| |
| deUint32 m[3]; |
| m[0] = data.getNext(numBits); |
| deUint32 Q012 = data.getNext(3); |
| m[1] = data.getNext(numBits); |
| deUint32 Q34 = data.getNext(2); |
| m[2] = data.getNext(numBits); |
| deUint32 Q56 = data.getNext(2); |
| |
| #ifdef __GNUC__ |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wimplicit-fallthrough=" |
| #endif |
| switch (numValues) |
| { |
| // \note Fall-throughs. |
| case 1: Q34 = 0; |
| case 2: Q56 = 0; |
| case 3: break; |
| default: |
| DE_ASSERT(false); |
| } |
| #ifdef __GNUC__ |
| #pragma GCC diagnostic pop |
| #endif |
| |
| const deUint32 Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0); |
| |
| static const deUint32 quintsFromQ[256][3] = |
| { |
| { 0,0,0 }, { 1,0,0 }, { 2,0,0 }, { 3,0,0 }, { 4,0,0 }, { 0,4,0 }, { 4,4,0 }, { 4,4,4 }, { 0,1,0 }, { 1,1,0 }, { 2,1,0 }, { 3,1,0 }, { 4,1,0 }, { 1,4,0 }, { 4,4,1 }, { 4,4,4 }, |
| { 0,2,0 }, { 1,2,0 }, { 2,2,0 }, { 3,2,0 }, { 4,2,0 }, { 2,4,0 }, { 4,4,2 }, { 4,4,4 }, { 0,3,0 }, { 1,3,0 }, { 2,3,0 }, { 3,3,0 }, { 4,3,0 }, { 3,4,0 }, { 4,4,3 }, { 4,4,4 }, |
| { 0,0,1 }, { 1,0,1 }, { 2,0,1 }, { 3,0,1 }, { 4,0,1 }, { 0,4,1 }, { 4,0,4 }, { 0,4,4 }, { 0,1,1 }, { 1,1,1 }, { 2,1,1 }, { 3,1,1 }, { 4,1,1 }, { 1,4,1 }, { 4,1,4 }, { 1,4,4 }, |
| { 0,2,1 }, { 1,2,1 }, { 2,2,1 }, { 3,2,1 }, { 4,2,1 }, { 2,4,1 }, { 4,2,4 }, { 2,4,4 }, { 0,3,1 }, { 1,3,1 }, { 2,3,1 }, { 3,3,1 }, { 4,3,1 }, { 3,4,1 }, { 4,3,4 }, { 3,4,4 }, |
| { 0,0,2 }, { 1,0,2 }, { 2,0,2 }, { 3,0,2 }, { 4,0,2 }, { 0,4,2 }, { 2,0,4 }, { 3,0,4 }, { 0,1,2 }, { 1,1,2 }, { 2,1,2 }, { 3,1,2 }, { 4,1,2 }, { 1,4,2 }, { 2,1,4 }, { 3,1,4 }, |
| { 0,2,2 }, { 1,2,2 }, { 2,2,2 }, { 3,2,2 }, { 4,2,2 }, { 2,4,2 }, { 2,2,4 }, { 3,2,4 }, { 0,3,2 }, { 1,3,2 }, { 2,3,2 }, { 3,3,2 }, { 4,3,2 }, { 3,4,2 }, { 2,3,4 }, { 3,3,4 }, |
| { 0,0,3 }, { 1,0,3 }, { 2,0,3 }, { 3,0,3 }, { 4,0,3 }, { 0,4,3 }, { 0,0,4 }, { 1,0,4 }, { 0,1,3 }, { 1,1,3 }, { 2,1,3 }, { 3,1,3 }, { 4,1,3 }, { 1,4,3 }, { 0,1,4 }, { 1,1,4 }, |
| { 0,2,3 }, { 1,2,3 }, { 2,2,3 }, { 3,2,3 }, { 4,2,3 }, { 2,4,3 }, { 0,2,4 }, { 1,2,4 }, { 0,3,3 }, { 1,3,3 }, { 2,3,3 }, { 3,3,3 }, { 4,3,3 }, { 3,4,3 }, { 0,3,4 }, { 1,3,4 } |
| }; |
| |
| const deUint32 (& quints)[3] = quintsFromQ[Q]; |
| for (int i = 0; i < numValues; i++) |
| { |
| dst[i].m = m[i]; |
| dst[i].tq = quints[i]; |
| dst[i].v = (quints[i] << numBits) + m[i]; |
| } |
| } |
| |
| inline void decodeISEBitBlock (ISEDecodedResult* dst, BitAccessStream& data, int numBits) |
| { |
| dst[0].m = data.getNext(numBits); |
| dst[0].v = dst[0].m; |
| } |
| |
| void decodeISE (ISEDecodedResult* dst, int numValues, BitAccessStream& data, const ISEParams& params) |
| { |
| if (params.mode == ISEMODE_TRIT) |
| { |
| const int numBlocks = deDivRoundUp32(numValues, 5); |
| for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) |
| { |
| const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5; |
| decodeISETritBlock(&dst[5*blockNdx], numValuesInBlock, data, params.numBits); |
| } |
| } |
| else if (params.mode == ISEMODE_QUINT) |
| { |
| const int numBlocks = deDivRoundUp32(numValues, 3); |
| for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) |
| { |
| const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3; |
| decodeISEQuintBlock(&dst[3*blockNdx], numValuesInBlock, data, params.numBits); |
| } |
| } |
| else |
| { |
| DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT); |
| for (int i = 0; i < numValues; i++) |
| decodeISEBitBlock(&dst[i], data, params.numBits); |
| } |
| } |
| |
| void unquantizeColorEndpoints (deUint32* dst, const ISEDecodedResult* iseResults, int numEndpoints, const ISEParams& iseParams) |
| { |
| if ((iseParams.mode == ISEMODE_TRIT) || (iseParams.mode == ISEMODE_QUINT)) |
| { |
| const int rangeCase = iseParams.numBits*2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1); |
| DE_ASSERT(basisu_astc::inRange(rangeCase, 0, 10)); |
| |
| static const deUint32 Ca[11] = { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 }; |
| const deUint32 C = Ca[rangeCase]; |
| |
| for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++) |
| { |
| const deUint32 a = getBit(iseResults[endpointNdx].m, 0); |
| const deUint32 b = getBit(iseResults[endpointNdx].m, 1); |
| const deUint32 c = getBit(iseResults[endpointNdx].m, 2); |
| const deUint32 d = getBit(iseResults[endpointNdx].m, 3); |
| const deUint32 e = getBit(iseResults[endpointNdx].m, 4); |
| const deUint32 f = getBit(iseResults[endpointNdx].m, 5); |
| const deUint32 A = (a == 0) ? 0 : (1<<9)-1; |
| |
| const deUint32 B = (rangeCase == 0) ? 0 |
| : (rangeCase == 1) ? 0 |
| : (rangeCase == 2) ? ((b << 8) | (b << 4) | (b << 2) | (b << 1)) |
| : (rangeCase == 3) ? ((b << 8) | (b << 3) | (b << 2)) |
| : (rangeCase == 4) ? ((c << 8) | (b << 7) | (c << 3) | (b << 2) | (c << 1) | (b << 0)) |
| : (rangeCase == 5) ? ((c << 8) | (b << 7) | (c << 2) | (b << 1) | (c << 0)) |
| : (rangeCase == 6) ? ((d << 8) | (c << 7) | (b << 6) | (d << 2) | (c << 1) | (b << 0)) |
| : (rangeCase == 7) ? ((d << 8) | (c << 7) | (b << 6) | (d << 1) | (c << 0)) |
| : (rangeCase == 8) ? ((e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 1) | (d << 0)) |
| : (rangeCase == 9) ? ((e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 0)) |
| : (rangeCase == 10) ? ((f << 8) | (e << 7) | (d << 6) | (c << 5) | (b << 4) | (f << 0)) |
| : (deUint32)-1; |
| |
| DE_ASSERT(B != (deUint32)-1); |
| dst[endpointNdx] = (((iseResults[endpointNdx].tq*C + B) ^ A) >> 2) | (A & 0x80); |
| } |
| } |
| else |
| { |
| DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT); |
| for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++) |
| dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8); |
| } |
| } |
| |
| inline void bitTransferSigned (deInt32& a, deInt32& b) |
| { |
| b >>= 1; |
| b |= a & 0x80; |
| a >>= 1; |
| a &= 0x3f; |
| if (isBitSet(a, 5)) |
| a -= 0x40; |
| } |
| |
| inline UVec4 clampedRGBA (const IVec4& rgba) |
| { |
| return UVec4(basisu_astc::clamp(rgba.x(), 0, 0xff), |
| basisu_astc::clamp(rgba.y(), 0, 0xff), |
| basisu_astc::clamp(rgba.z(), 0, 0xff), |
| basisu_astc::clamp(rgba.w(), 0, 0xff)); |
| } |
| |
| inline IVec4 blueContract (int r, int g, int b, int a) |
| { |
| return IVec4((r+b)>>1, (g+b)>>1, b, a); |
| } |
| |
| inline bool isColorEndpointModeHDR (deUint32 mode) |
| { |
| return (mode == 2) || |
| (mode == 3) || |
| (mode == 7) || |
| (mode == 11) || |
| (mode == 14) || |
| (mode == 15); |
| } |
| |
| void decodeHDREndpointMode7 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3) |
| { |
| const deUint32 m10 = getBit(v1, 7) | (getBit(v2, 7) << 1); |
| const deUint32 m23 = getBits(v0, 6, 7); |
| |
| const deUint32 majComp = (m10 != 3) ? m10 |
| : (m23 != 3) ? m23 |
| : 0; |
| |
| const deUint32 mode = (m10 != 3) ? m23 |
| : (m23 != 3) ? 4 |
| : 5; |
| |
| deInt32 red = (deInt32)getBits(v0, 0, 5); |
| deInt32 green = (deInt32)getBits(v1, 0, 4); |
| deInt32 blue = (deInt32)getBits(v2, 0, 4); |
| deInt32 scale = (deInt32)getBits(v3, 0, 4); |
| |
| { |
| #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT) |
| #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5, V6,S6) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); SHOR(V6,S6,x6); } while (false) |
| |
| const deUint32 x0 = getBit(v1, 6); |
| const deUint32 x1 = getBit(v1, 5); |
| const deUint32 x2 = getBit(v2, 6); |
| const deUint32 x3 = getBit(v2, 5); |
| const deUint32 x4 = getBit(v3, 7); |
| const deUint32 x5 = getBit(v3, 6); |
| const deUint32 x6 = getBit(v3, 5); |
| |
| deInt32& R = red; |
| deInt32& G = green; |
| deInt32& B = blue; |
| deInt32& S = scale; |
| |
| switch (mode) |
| { |
| case 0: ASSIGN_X_BITS(R,9, R,8, R,7, R,10, R,6, S,6, S,5); break; |
| case 1: ASSIGN_X_BITS(R,8, G,5, R,7, B,5, R,6, R,10, R,9); break; |
| case 2: ASSIGN_X_BITS(R,9, R,8, R,7, R,6, S,7, S,6, S,5); break; |
| case 3: ASSIGN_X_BITS(R,8, G,5, R,7, B,5, R,6, S,6, S,5); break; |
| case 4: ASSIGN_X_BITS(G,6, G,5, B,6, B,5, R,6, R,7, S,5); break; |
| case 5: ASSIGN_X_BITS(G,6, G,5, B,6, B,5, R,6, S,6, S,5); break; |
| default: |
| DE_ASSERT(false); |
| } |
| #undef ASSIGN_X_BITS |
| #undef SHOR |
| } |
| |
| static const int shiftAmounts[] = { 1, 1, 2, 3, 4, 5 }; |
| DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts)); |
| |
| red <<= shiftAmounts[mode]; |
| green <<= shiftAmounts[mode]; |
| blue <<= shiftAmounts[mode]; |
| scale <<= shiftAmounts[mode]; |
| |
| if (mode != 5) |
| { |
| green = red - green; |
| blue = red - blue; |
| } |
| |
| if (majComp == 1) |
| std::swap(red, green); |
| else if (majComp == 2) |
| std::swap(red, blue); |
| |
| e0 = UVec4(basisu_astc::clamp(red - scale, 0, 0xfff), |
| basisu_astc::clamp(green - scale, 0, 0xfff), |
| basisu_astc::clamp(blue - scale, 0, 0xfff), |
| 0x780); |
| |
| e1 = UVec4(basisu_astc::clamp(red, 0, 0xfff), |
| basisu_astc::clamp(green, 0, 0xfff), |
| basisu_astc::clamp(blue, 0, 0xfff), |
| 0x780); |
| } |
| |
| void decodeHDREndpointMode11 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5) |
| { |
| const deUint32 major = (getBit(v5, 7) << 1) | getBit(v4, 7); |
| |
| if (major == 3) |
| { |
| e0 = UVec4(v0<<4, v2<<4, getBits(v4,0,6)<<5, 0x780); |
| e1 = UVec4(v1<<4, v3<<4, getBits(v5,0,6)<<5, 0x780); |
| } |
| else |
| { |
| const deUint32 mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7); |
| |
| deInt32 a = (deInt32)((getBit(v1, 6) << 8) | v0); |
| deInt32 c = (deInt32)(getBits(v1, 0, 5)); |
| deInt32 b0 = (deInt32)(getBits(v2, 0, 5)); |
| deInt32 b1 = (deInt32)(getBits(v3, 0, 5)); |
| deInt32 d0 = (deInt32)(getBits(v4, 0, 4)); |
| deInt32 d1 = (deInt32)(getBits(v5, 0, 4)); |
| |
| { |
| #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT) |
| #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); } while (false) |
| const deUint32 x0 = getBit(v2, 6); |
| const deUint32 x1 = getBit(v3, 6); |
| const deUint32 x2 = getBit(v4, 6); |
| const deUint32 x3 = getBit(v5, 6); |
| const deUint32 x4 = getBit(v4, 5); |
| const deUint32 x5 = getBit(v5, 5); |
| |
| switch (mode) |
| { |
| case 0: ASSIGN_X_BITS(b0,6, b1,6, d0,6, d1,6, d0,5, d1,5); break; |
| case 1: ASSIGN_X_BITS(b0,6, b1,6, b0,7, b1,7, d0,5, d1,5); break; |
| case 2: ASSIGN_X_BITS(a,9, c,6, d0,6, d1,6, d0,5, d1,5); break; |
| case 3: ASSIGN_X_BITS(b0,6, b1,6, a,9, c,6, d0,5, d1,5); break; |
| case 4: ASSIGN_X_BITS(b0,6, b1,6, b0,7, b1,7, a,9, a,10); break; |
| case 5: ASSIGN_X_BITS(a,9, a,10, c,7, c,6, d0,5, d1,5); break; |
| case 6: ASSIGN_X_BITS(b0,6, b1,6, a,11, c,6, a,9, a,10); break; |
| case 7: ASSIGN_X_BITS(a,9, a,10, a,11, c,6, d0,5, d1,5); break; |
| default: |
| DE_ASSERT(false); |
| } |
| #undef ASSIGN_X_BITS |
| #undef SHOR |
| } |
| |
| static const int numDBits[] = { 7, 6, 7, 6, 5, 6, 5, 6 }; |
| DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits)); |
| d0 = signExtend(d0, numDBits[mode]); |
| d1 = signExtend(d1, numDBits[mode]); |
| |
| const int shiftAmount = (mode >> 1) ^ 3; |
| a = (uint32_t)a << shiftAmount; |
| c = (uint32_t)c << shiftAmount; |
| b0 = (uint32_t)b0 << shiftAmount; |
| b1 = (uint32_t)b1 << shiftAmount; |
| d0 = (uint32_t)d0 << shiftAmount; |
| d1 = (uint32_t)d1 << shiftAmount; |
| |
| e0 = UVec4(basisu_astc::clamp(a-c, 0, 0xfff), basisu_astc::clamp(a-b0-c-d0, 0, 0xfff), basisu_astc::clamp(a-b1-c-d1, 0, 0xfff), 0x780); |
| e1 = UVec4(basisu_astc::clamp(a, 0, 0xfff), basisu_astc::clamp(a-b0, 0, 0xfff), basisu_astc::clamp(a-b1, 0, 0xfff), 0x780); |
| |
| if (major == 1) |
| { |
| std::swap(e0.x(), e0.y()); |
| std::swap(e1.x(), e1.y()); |
| } |
| else if (major == 2) |
| { |
| std::swap(e0.x(), e0.z()); |
| std::swap(e1.x(), e1.z()); |
| } |
| } |
| } |
| |
| void decodeHDREndpointMode15(UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5, deUint32 v6In, deUint32 v7In) |
| { |
| decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5); |
| |
| const deUint32 mode = (getBit(v7In, 7) << 1) | getBit(v6In, 7); |
| deInt32 v6 = (deInt32)getBits(v6In, 0, 6); |
| deInt32 v7 = (deInt32)getBits(v7In, 0, 6); |
| |
| if (mode == 3) |
| { |
| e0.w() = v6 << 5; |
| e1.w() = v7 << 5; |
| } |
| else |
| { |
| v6 |= (v7 << (mode+1)) & 0x780; |
| v7 &= (0x3f >> mode); |
| v7 ^= 0x20 >> mode; |
| v7 -= 0x20 >> mode; |
| v6 <<= 4-mode; |
| v7 <<= 4-mode; |
| v7 += v6; |
| v7 = basisu_astc::clamp(v7, 0, 0xfff); |
| e0.w() = v6; |
| e1.w() = v7; |
| } |
| } |
| |
| void decodeColorEndpoints (ColorEndpointPair* dst, const deUint32* unquantizedEndpoints, const deUint32* endpointModes, int numPartitions) |
| { |
| int unquantizedNdx = 0; |
| |
| for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++) |
| { |
| const deUint32 endpointMode = endpointModes[partitionNdx]; |
| const deUint32* v = &unquantizedEndpoints[unquantizedNdx]; |
| |
| UVec4& e0 = dst[partitionNdx].e0; |
| UVec4& e1 = dst[partitionNdx].e1; |
| unquantizedNdx += computeNumColorEndpointValues(endpointMode); |
| |
| switch (endpointMode) |
| { |
| case 0: |
| { |
| e0 = UVec4(v[0], v[0], v[0], 0xff); |
| e1 = UVec4(v[1], v[1], v[1], 0xff); |
| break; |
| } |
| case 1: |
| { |
| const deUint32 L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6); |
| const deUint32 L1 = basisu_astc::min(0xffu, L0 + getBits(v[1], 0, 5)); |
| e0 = UVec4(L0, L0, L0, 0xff); |
| e1 = UVec4(L1, L1, L1, 0xff); |
| break; |
| } |
| case 2: |
| { |
| const deUint32 v1Gr = v[1] >= v[0]; |
| const deUint32 y0 = v1Gr ? v[0]<<4 : (v[1]<<4) + 8; |
| const deUint32 y1 = v1Gr ? v[1]<<4 : (v[0]<<4) - 8; |
| e0 = UVec4(y0, y0, y0, 0x780); |
| e1 = UVec4(y1, y1, y1, 0x780); |
| break; |
| } |
| case 3: |
| { |
| const bool m = isBitSet(v[0], 7); |
| const deUint32 y0 = m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2) |
| : (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1); |
| const deUint32 d = m ? getBits(v[1], 0, 4) << 2 |
| : getBits(v[1], 0, 3) << 1; |
| const deUint32 y1 = basisu_astc::min(0xfffu, y0+d); |
| e0 = UVec4(y0, y0, y0, 0x780); |
| e1 = UVec4(y1, y1, y1, 0x780); |
| break; |
| } |
| case 4: |
| { |
| e0 = UVec4(v[0], v[0], v[0], v[2]); |
| e1 = UVec4(v[1], v[1], v[1], v[3]); |
| break; |
| } |
| case 5: |
| { |
| deInt32 v0 = (deInt32)v[0]; |
| deInt32 v1 = (deInt32)v[1]; |
| deInt32 v2 = (deInt32)v[2]; |
| deInt32 v3 = (deInt32)v[3]; |
| bitTransferSigned(v1, v0); |
| bitTransferSigned(v3, v2); |
| e0 = clampedRGBA(IVec4(v0, v0, v0, v2)); |
| e1 = clampedRGBA(IVec4(v0+v1, v0+v1, v0+v1, v2+v3)); |
| break; |
| } |
| case 6: |
| e0 = UVec4((v[0]*v[3]) >> 8, (v[1]*v[3]) >> 8, (v[2]*v[3]) >> 8, 0xff); |
| e1 = UVec4(v[0], v[1], v[2], 0xff); |
| break; |
| case 7: |
| decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]); |
| break; |
| case 8: |
| { |
| if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4]) |
| { |
| e0 = UVec4(v[0], v[2], v[4], 0xff); |
| e1 = UVec4(v[1], v[3], v[5], 0xff); |
| } |
| else |
| { |
| e0 = blueContract(v[1], v[3], v[5], 0xff).asUint(); |
| e1 = blueContract(v[0], v[2], v[4], 0xff).asUint(); |
| } |
| break; |
| } |
| case 9: |
| { |
| deInt32 v0 = (deInt32)v[0]; |
| deInt32 v1 = (deInt32)v[1]; |
| deInt32 v2 = (deInt32)v[2]; |
| deInt32 v3 = (deInt32)v[3]; |
| deInt32 v4 = (deInt32)v[4]; |
| deInt32 v5 = (deInt32)v[5]; |
| bitTransferSigned(v1, v0); |
| bitTransferSigned(v3, v2); |
| bitTransferSigned(v5, v4); |
| if (v1+v3+v5 >= 0) |
| { |
| e0 = clampedRGBA(IVec4(v0, v2, v4, 0xff)); |
| e1 = clampedRGBA(IVec4(v0+v1, v2+v3, v4+v5, 0xff)); |
| } |
| else |
| { |
| e0 = clampedRGBA(blueContract(v0+v1, v2+v3, v4+v5, 0xff)); |
| e1 = clampedRGBA(blueContract(v0, v2, v4, 0xff)); |
| } |
| break; |
| } |
| case 10: |
| { |
| e0 = UVec4((v[0]*v[3]) >> 8, (v[1]*v[3]) >> 8, (v[2]*v[3]) >> 8, v[4]); |
| e1 = UVec4(v[0], v[1], v[2], v[5]); |
| break; |
| } |
| case 11: |
| { |
| decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]); |
| break; |
| } |
| case 12: |
| { |
| if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) |
| { |
| e0 = UVec4(v[0], v[2], v[4], v[6]); |
| e1 = UVec4(v[1], v[3], v[5], v[7]); |
| } |
| else |
| { |
| e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7])); |
| e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6])); |
| } |
| break; |
| } |
| case 13: |
| { |
| deInt32 v0 = (deInt32)v[0]; |
| deInt32 v1 = (deInt32)v[1]; |
| deInt32 v2 = (deInt32)v[2]; |
| deInt32 v3 = (deInt32)v[3]; |
| deInt32 v4 = (deInt32)v[4]; |
| deInt32 v5 = (deInt32)v[5]; |
| deInt32 v6 = (deInt32)v[6]; |
| deInt32 v7 = (deInt32)v[7]; |
| bitTransferSigned(v1, v0); |
| bitTransferSigned(v3, v2); |
| bitTransferSigned(v5, v4); |
| bitTransferSigned(v7, v6); |
| if (v1+v3+v5 >= 0) |
| { |
| e0 = clampedRGBA(IVec4(v0, v2, v4, v6)); |
| e1 = clampedRGBA(IVec4(v0+v1, v2+v3, v4+v5, v6+v7)); |
| } |
| else |
| { |
| e0 = clampedRGBA(blueContract(v0+v1, v2+v3, v4+v5, v6+v7)); |
| e1 = clampedRGBA(blueContract(v0, v2, v4, v6)); |
| } |
| break; |
| } |
| case 14: |
| decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]); |
| e0.w() = v[6]; |
| e1.w() = v[7]; |
| break; |
| case 15: |
| { |
| decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]); |
| break; |
| } |
| default: |
| DE_ASSERT(false); |
| } |
| } |
| } |
| |
| void computeColorEndpoints (ColorEndpointPair* dst, const Block128& blockData, const deUint32* endpointModes, int numPartitions, int numColorEndpointValues, const ISEParams& iseParams, int numBitsAvailable) |
| { |
| const int colorEndpointDataStart = (numPartitions == 1) ? 17 : 29; |
| ISEDecodedResult colorEndpointData[18]; |
| |
| { |
| BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true); |
| decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams); |
| } |
| |
| { |
| deUint32 unquantizedEndpoints[18]; |
| unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams); |
| decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions); |
| } |
| } |
| |
| void unquantizeWeights (deUint32 dst[64], const ISEDecodedResult* weightGrid, const ASTCBlockMode& blockMode) |
| { |
| const int numWeights = computeNumWeights(blockMode); |
| const ISEParams& iseParams = blockMode.weightISEParams; |
| |
| if ((iseParams.mode == ISEMODE_TRIT) || (iseParams.mode == ISEMODE_QUINT)) |
| { |
| const int rangeCase = iseParams.numBits*2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0); |
| |
| if ((rangeCase == 0) || (rangeCase == 1)) |
| { |
| static const deUint32 map0[3] = { 0, 32, 63 }; |
| static const deUint32 map1[5] = { 0, 16, 32, 47, 63 }; |
| const deUint32* const map = (rangeCase == 0) ? &map0[0] : &map1[0]; |
| |
| for (int i = 0; i < numWeights; i++) |
| { |
| DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u)); |
| dst[i] = map[weightGrid[i].v]; |
| } |
| } |
| else |
| { |
| DE_ASSERT(rangeCase <= 6); |
| static const deUint32 Ca[5] = { 50, 28, 23, 13, 11 }; |
| const deUint32 C = Ca[rangeCase-2]; |
| |
| for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) |
| { |
| const deUint32 a = getBit(weightGrid[weightNdx].m, 0); |
| const deUint32 b = getBit(weightGrid[weightNdx].m, 1); |
| const deUint32 c = getBit(weightGrid[weightNdx].m, 2); |
| |
| const deUint32 A = (a == 0) ? 0 : (1<<7)-1; |
| const deUint32 B = (rangeCase == 2) ? 0 |
| : (rangeCase == 3) ? 0 |
| : (rangeCase == 4) ? (b << 6) | (b << 2) | (b << 0) |
| : (rangeCase == 5) ? (b << 6) | (b << 1) |
| : (rangeCase == 6) ? (c << 6) | (b << 5) | (c << 1) | (b << 0) |
| : (deUint32)-1; |
| |
| dst[weightNdx] = (((weightGrid[weightNdx].tq*C + B) ^ A) >> 2) | (A & 0x20); |
| } |
| } |
| } |
| else |
| { |
| DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT); |
| for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) |
| dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6); |
| } |
| |
| for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) |
| dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0; |
| |
| // Initialize nonexistent weights to poison values |
| for (int weightNdx = numWeights; weightNdx < 64; weightNdx++) |
| dst[weightNdx] = ~0u; |
| } |
| |
| void interpolateWeights (TexelWeightPair* dst, const deUint32 (&unquantizedWeights) [64], int blockWidth, int blockHeight, const ASTCBlockMode& blockMode) |
| { |
| const int numWeightsPerTexel = blockMode.isDualPlane ? 2 : 1; |
| const deUint32 scaleX = (1024 + blockWidth/2) / (blockWidth-1); |
| const deUint32 scaleY = (1024 + blockHeight/2) / (blockHeight-1); |
| DE_ASSERT(blockMode.weightGridWidth*blockMode.weightGridHeight*numWeightsPerTexel <= (int)DE_LENGTH_OF_ARRAY(unquantizedWeights)); |
| |
| for (int texelY = 0; texelY < blockHeight; texelY++) |
| { |
| for (int texelX = 0; texelX < blockWidth; texelX++) |
| { |
| const deUint32 gX = (scaleX*texelX*(blockMode.weightGridWidth-1) + 32) >> 6; |
| const deUint32 gY = (scaleY*texelY*(blockMode.weightGridHeight-1) + 32) >> 6; |
| const deUint32 jX = gX >> 4; |
| const deUint32 jY = gY >> 4; |
| const deUint32 fX = gX & 0xf; |
| const deUint32 fY = gY & 0xf; |
| const deUint32 w11 = (fX*fY + 8) >> 4; |
| const deUint32 w10 = fY - w11; |
| const deUint32 w01 = fX - w11; |
| const deUint32 w00 = 16 - fX - fY + w11; |
| const deUint32 i00 = jY*blockMode.weightGridWidth + jX; |
| const deUint32 i01 = i00 + 1; |
| const deUint32 i10 = i00 + blockMode.weightGridWidth; |
| const deUint32 i11 = i00 + blockMode.weightGridWidth + 1; |
| |
| // These addresses can be out of bounds, but respective weights will be 0 then. |
| DE_ASSERT(deInBounds32(i00, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w00 == 0); |
| DE_ASSERT(deInBounds32(i01, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w01 == 0); |
| DE_ASSERT(deInBounds32(i10, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w10 == 0); |
| DE_ASSERT(deInBounds32(i11, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w11 == 0); |
| |
| for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++) |
| { |
| // & 0x3f clamps address to bounds of unquantizedWeights |
| const deUint32 p00 = unquantizedWeights[(i00 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; |
| const deUint32 p01 = unquantizedWeights[(i01 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; |
| const deUint32 p10 = unquantizedWeights[(i10 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; |
| const deUint32 p11 = unquantizedWeights[(i11 * numWeightsPerTexel + texelWeightNdx) & 0x3f]; |
| |
| dst[texelY*blockWidth + texelX].w[texelWeightNdx] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4; |
| } |
| } |
| } |
| } |
| |
| void computeTexelWeights (TexelWeightPair* dst, const Block128& blockData, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode) |
| { |
| ISEDecodedResult weightGrid[64]; |
| |
| { |
| BitAccessStream dataStream(blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false); |
| decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams); |
| } |
| |
| { |
| deUint32 unquantizedWeights[64]; |
| unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode); |
| |
| interpolateWeights(dst, unquantizedWeights, blockWidth, blockHeight, blockMode); |
| } |
| } |
| |
| inline deUint32 hash52 (deUint32 v) |
| { |
| deUint32 p = v; |
| p ^= p >> 15; p -= p << 17; p += p << 7; p += p << 4; |
| p ^= p >> 5; p += p << 16; p ^= p >> 7; p ^= p >> 3; |
| p ^= p << 6; p ^= p >> 17; |
| return p; |
| } |
| |
| int computeTexelPartition (deUint32 seedIn, deUint32 xIn, deUint32 yIn, deUint32 zIn, int numPartitions, bool smallBlock) |
| { |
| DE_ASSERT(zIn == 0); |
| |
| const deUint32 x = smallBlock ? xIn << 1 : xIn; |
| const deUint32 y = smallBlock ? yIn << 1 : yIn; |
| const deUint32 z = smallBlock ? zIn << 1 : zIn; |
| const deUint32 seed = seedIn + 1024*(numPartitions-1); |
| const deUint32 rnum = hash52(seed); |
| |
| deUint8 seed1 = (deUint8)( rnum & 0xf); |
| deUint8 seed2 = (deUint8)((rnum >> 4) & 0xf); |
| deUint8 seed3 = (deUint8)((rnum >> 8) & 0xf); |
| deUint8 seed4 = (deUint8)((rnum >> 12) & 0xf); |
| deUint8 seed5 = (deUint8)((rnum >> 16) & 0xf); |
| deUint8 seed6 = (deUint8)((rnum >> 20) & 0xf); |
| deUint8 seed7 = (deUint8)((rnum >> 24) & 0xf); |
| deUint8 seed8 = (deUint8)((rnum >> 28) & 0xf); |
| deUint8 seed9 = (deUint8)((rnum >> 18) & 0xf); |
| deUint8 seed10 = (deUint8)((rnum >> 22) & 0xf); |
| deUint8 seed11 = (deUint8)((rnum >> 26) & 0xf); |
| deUint8 seed12 = (deUint8)(((rnum >> 30) | (rnum << 2)) & 0xf); |
| |
| seed1 = (deUint8)(seed1 * seed1 ); |
| seed2 = (deUint8)(seed2 * seed2 ); |
| seed3 = (deUint8)(seed3 * seed3 ); |
| seed4 = (deUint8)(seed4 * seed4 ); |
| seed5 = (deUint8)(seed5 * seed5 ); |
| seed6 = (deUint8)(seed6 * seed6 ); |
| seed7 = (deUint8)(seed7 * seed7 ); |
| seed8 = (deUint8)(seed8 * seed8 ); |
| seed9 = (deUint8)(seed9 * seed9 ); |
| seed10 = (deUint8)(seed10 * seed10); |
| seed11 = (deUint8)(seed11 * seed11); |
| seed12 = (deUint8)(seed12 * seed12); |
| |
| const int shA = (seed & 2) != 0 ? 4 : 5; |
| const int shB = numPartitions == 3 ? 6 : 5; |
| const int sh1 = (seed & 1) != 0 ? shA : shB; |
| const int sh2 = (seed & 1) != 0 ? shB : shA; |
| const int sh3 = (seed & 0x10) != 0 ? sh1 : sh2; |
| |
| seed1 = (deUint8)(seed1 >> sh1); |
| seed2 = (deUint8)(seed2 >> sh2); |
| seed3 = (deUint8)(seed3 >> sh1); |
| seed4 = (deUint8)(seed4 >> sh2); |
| seed5 = (deUint8)(seed5 >> sh1); |
| seed6 = (deUint8)(seed6 >> sh2); |
| seed7 = (deUint8)(seed7 >> sh1); |
| seed8 = (deUint8)(seed8 >> sh2); |
| seed9 = (deUint8)(seed9 >> sh3); |
| seed10 = (deUint8)(seed10 >> sh3); |
| seed11 = (deUint8)(seed11 >> sh3); |
| seed12 = (deUint8)(seed12 >> sh3); |
| |
| const int a = 0x3f & (seed1*x + seed2*y + seed11*z + (rnum >> 14)); |
| const int b = 0x3f & (seed3*x + seed4*y + seed12*z + (rnum >> 10)); |
| const int c = (numPartitions >= 3) ? 0x3f & (seed5*x + seed6*y + seed9*z + (rnum >> 6)) : 0; |
| const int d = (numPartitions >= 4) ? 0x3f & (seed7*x + seed8*y + seed10*z + (rnum >> 2)) : 0; |
| |
| return (a >= b && a >= c && a >= d) ? 0 |
| : (b >= c && b >= d) ? 1 |
| : (c >= d) ? 2 |
| : 3; |
| } |
| |
| DecompressResult setTexelColors (void* dst, ColorEndpointPair* colorEndpoints, TexelWeightPair* texelWeights, int ccs, deUint32 partitionIndexSeed, |
| int numPartitions, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode, const deUint32* colorEndpointModes) |
| { |
| const bool smallBlock = blockWidth*blockHeight < 31; |
| DecompressResult result = DECOMPRESS_RESULT_VALID_BLOCK; |
| bool isHDREndpoint[4]; |
| |
| for (int i = 0; i < numPartitions; i++) |
| { |
| isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]); |
| } |
| |
| for (int texelY = 0; texelY < blockHeight; texelY++) |
| { |
| for (int texelX = 0; texelX < blockWidth; texelX++) |
| { |
| const int texelNdx = texelY * blockWidth + texelX; |
| const int colorEndpointNdx = (numPartitions == 1) ? 0 : computeTexelPartition(partitionIndexSeed, texelX, texelY, 0, numPartitions, smallBlock); |
| |
| DE_ASSERT(colorEndpointNdx < numPartitions); |
| const UVec4& e0 = colorEndpoints[colorEndpointNdx].e0; |
| const UVec4& e1 = colorEndpoints[colorEndpointNdx].e1; |
| const TexelWeightPair& weight = texelWeights[texelNdx]; |
| |
| if (isLDRMode && isHDREndpoint[colorEndpointNdx]) |
| { |
| if (isSRGB) |
| { |
| ((deUint8*)dst)[texelNdx * 4 + 0] = 0xff; |
| ((deUint8*)dst)[texelNdx * 4 + 1] = 0; |
| ((deUint8*)dst)[texelNdx * 4 + 2] = 0xff; |
| ((deUint8*)dst)[texelNdx * 4 + 3] = 0xff; |
| } |
| else |
| { |
| ((float*)dst)[texelNdx * 4 + 0] = 1.0f; |
| ((float*)dst)[texelNdx * 4 + 1] = 0; |
| ((float*)dst)[texelNdx * 4 + 2] = 1.0f; |
| ((float*)dst)[texelNdx * 4 + 3] = 1.0f; |
| } |
| result = DECOMPRESS_RESULT_ERROR; |
| } |
| else |
| { |
| for (int channelNdx = 0; channelNdx < 4; channelNdx++) |
| { |
| if (!isHDREndpoint[colorEndpointNdx] || (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == 14)) // \note Alpha for mode 14 is treated the same as LDR. |
| { |
| const deUint32 c0 = (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]); |
| const deUint32 c1 = (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]); |
| const deUint32 w = weight.w[ccs == channelNdx ? 1 : 0]; |
| const deUint32 c = (c0 * (64 - w) + c1 * w + 32) / 64; |
| |
| if (isSRGB) |
| ((deUint8*)dst)[texelNdx * 4 + channelNdx] = (deUint8)((c & 0xff00) >> 8); |
| else |
| ((float*)dst)[texelNdx * 4 + channelNdx] = (c == 65535) ? 1.0f : (float)c / 65536.0f; |
| } |
| else |
| { |
| DE_ASSERT(!isSRGB); |
| //DE_STATIC_ASSERT((basisu_astc::meta::TypesSame<deFloat16, deUint16>::Value)); |
| |
| const deUint32 c0 = e0[channelNdx] << 4; |
| const deUint32 c1 = e1[channelNdx] << 4; |
| const deUint32 w = weight.w[(ccs == channelNdx) ? 1 : 0]; |
| const deUint32 c = (c0 * (64 - w) + c1 * w + 32) / 64; |
| const deUint32 e = getBits(c, 11, 15); |
| const deUint32 m = getBits(c, 0, 10); |
| const deUint32 mt = (m < 512) ? (3 * m) |
| : (m >= 1536) ? (5 * m - 2048) |
| : (4 * m - 512); |
| |
| const deFloat16 cf = (deFloat16)((e << 10) + (mt >> 3)); |
| |
| ((float*)dst)[texelNdx * 4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf); |
| } |
| |
| } // channelNdx |
| } |
| } // texelX |
| } // texelY |
| |
| return result; |
| } |
| |
| DecompressResult decompressBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDR) |
| { |
| DE_ASSERT(isLDR || !isSRGB); |
| |
| // Decode block mode. |
| const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10)); |
| |
| // Check for block mode errors. |
| if (blockMode.isError) |
| { |
| setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); |
| return DECOMPRESS_RESULT_ERROR; |
| } |
| |
| // Separate path for void-extent. |
| if (blockMode.isVoidExtent) |
| return decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR); |
| |
| // Compute weight grid values. |
| const int numWeights = computeNumWeights(blockMode); |
| const int numWeightDataBits = computeNumRequiredBits(blockMode.weightISEParams, numWeights); |
| const int numPartitions = (int)blockData.getBits(11, 12) + 1; |
| |
| // Check for errors in weight grid, partition and dual-plane parameters. |
| if ((numWeights > 64) || |
| (numWeightDataBits > 96) || |
| (numWeightDataBits < 24) || |
| (blockMode.weightGridWidth > blockWidth) || |
| (blockMode.weightGridHeight > blockHeight) || |
| ((numPartitions == 4) && blockMode.isDualPlane)) |
| { |
| setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); |
| return DECOMPRESS_RESULT_ERROR; |
| } |
| |
| // Compute number of bits available for color endpoint data. |
| const bool isSingleUniqueCem = (numPartitions == 1) || (blockData.getBits(23, 24) == 0); |
| |
| const int numConfigDataBits = ((numPartitions == 1) ? 17 : isSingleUniqueCem ? 29 : 25 + 3*numPartitions) + |
| (blockMode.isDualPlane ? 2 : 0); |
| |
| const int numBitsForColorEndpoints = 128 - numWeightDataBits - numConfigDataBits; |
| |
| const int extraCemBitsStart = 127 - numWeightDataBits - (isSingleUniqueCem ? -1 |
| : (numPartitions == 4) ? 7 |
| : (numPartitions == 3) ? 4 |
| : (numPartitions == 2) ? 1 |
| : 0); |
| |
| // Decode color endpoint modes. |
| deUint32 colorEndpointModes[4]; |
| decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart); |
| const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions); |
| |
| // Check for errors in color endpoint value count. |
| if ((numColorEndpointValues > 18) || (numBitsForColorEndpoints < (int)deDivRoundUp32(13*numColorEndpointValues, 5))) |
| { |
| setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB); |
| return DECOMPRESS_RESULT_ERROR; |
| } |
| |
| // Compute color endpoints. |
| ColorEndpointPair colorEndpoints[4]; |
| computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues, |
| computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), numBitsForColorEndpoints); |
| |
| // Compute texel weights. |
| TexelWeightPair texelWeights[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT]; |
| computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode); |
| |
| // Set texel colors. |
| const int ccs = blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart-2, extraCemBitsStart-1) : -1; |
| const deUint32 partitionIndexSeed = (numPartitions > 1) ? blockData.getBits(13, 22) : (deUint32)-1; |
| |
| return setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, blockHeight, isSRGB, isLDR, &colorEndpointModes[0]); |
| } |
| |
| // Returns -1 on error, 0 if LDR, 1 if HDR |
| int isHDR(const Block128& blockData, int blockWidth, int blockHeight) |
| { |
| // Decode block mode. |
| const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10)); |
| |
| // Check for block mode errors. |
| if (blockMode.isError) |
| return -1; |
| |
| // Separate path for void-extent. |
| if (blockMode.isVoidExtent) |
| { |
| const bool isHDRBlock = blockData.isBitSet(9); |
| return isHDRBlock ? 1 : 0; |
| } |
| |
| // Compute weight grid values. |
| const int numWeights = computeNumWeights(blockMode); |
| const int numWeightDataBits = computeNumRequiredBits(blockMode.weightISEParams, numWeights); |
| const int numPartitions = (int)blockData.getBits(11, 12) + 1; |
| |
| // Check for errors in weight grid, partition and dual-plane parameters. |
| if ((numWeights > 64) || |
| (numWeightDataBits > 96) || |
| (numWeightDataBits < 24) || |
| (blockMode.weightGridWidth > blockWidth) || |
| (blockMode.weightGridHeight > blockHeight) || |
| ((numPartitions == 4) && blockMode.isDualPlane)) |
| { |
| return -1; |
| } |
| |
| // Compute number of bits available for color endpoint data. |
| const bool isSingleUniqueCem = (numPartitions == 1) || (blockData.getBits(23, 24) == 0); |
| |
| const int extraCemBitsStart = 127 - numWeightDataBits - (isSingleUniqueCem ? -1 |
| : (numPartitions == 4) ? 7 |
| : (numPartitions == 3) ? 4 |
| : (numPartitions == 2) ? 1 |
| : 0); |
| |
| // Decode color endpoint modes. |
| deUint32 colorEndpointModes[4]; |
| decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart); |
| |
| for (int i = 0; i < numPartitions; i++) |
| { |
| if (isColorEndpointModeHDR(colorEndpointModes[i])) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| typedef uint16_t half_float; |
| |
| half_float float_to_half(float val, bool toward_zero) |
| { |
| union { float f; int32_t i; uint32_t u; } fi = { val }; |
| const int flt_m = fi.i & 0x7FFFFF, flt_e = (fi.i >> 23) & 0xFF, flt_s = (fi.i >> 31) & 0x1; |
| int s = flt_s, e = 0, m = 0; |
| |
| // inf/NaN |
| if (flt_e == 0xff) |
| { |
| e = 31; |
| if (flt_m != 0) // NaN |
| m = 1; |
| } |
| // not zero or denormal |
| else if (flt_e != 0) |
| { |
| int new_exp = flt_e - 127; |
| if (new_exp > 15) |
| e = 31; |
| else if (new_exp < -14) |
| { |
| if (toward_zero) |
| m = (int)truncf((1 << 24) * fabsf(fi.f)); |
| else |
| m = lrintf((1 << 24) * fabsf(fi.f)); |
| } |
| else |
| { |
| e = new_exp + 15; |
| if (toward_zero) |
| m = (int)truncf((float)flt_m * (1.0f / (float)(1 << 13))); |
| else |
| m = lrintf((float)flt_m * (1.0f / (float)(1 << 13))); |
| } |
| } |
| |
| assert((0 <= m) && (m <= 1024)); |
| if (m == 1024) |
| { |
| e++; |
| m = 0; |
| } |
| |
| assert((s >= 0) && (s <= 1)); |
| assert((e >= 0) && (e <= 31)); |
| assert((m >= 0) && (m <= 1023)); |
| |
| half_float result = (half_float)((s << 15) | (e << 10) | m); |
| return result; |
| } |
| |
| float half_to_float(half_float hval) |
| { |
| union { float f; uint32_t u; } x = { 0 }; |
| |
| uint32_t s = ((uint32_t)hval >> 15) & 1; |
| uint32_t e = ((uint32_t)hval >> 10) & 0x1F; |
| uint32_t m = (uint32_t)hval & 0x3FF; |
| |
| if (!e) |
| { |
| if (!m) |
| { |
| // +- 0 |
| x.u = s << 31; |
| return x.f; |
| } |
| else |
| { |
| // denormalized |
| while (!(m & 0x00000400)) |
| { |
| m <<= 1; |
| --e; |
| } |
| |
| ++e; |
| m &= ~0x00000400; |
| } |
| } |
| else if (e == 31) |
| { |
| if (m == 0) |
| { |
| // +/- INF |
| x.u = (s << 31) | 0x7f800000; |
| return x.f; |
| } |
| else |
| { |
| // +/- NaN |
| x.u = (s << 31) | 0x7f800000 | (m << 13); |
| return x.f; |
| } |
| } |
| |
| e = e + (127 - 15); |
| m = m << 13; |
| |
| assert(s <= 1); |
| assert(m <= 0x7FFFFF); |
| assert(e <= 255); |
| |
| x.u = m | (e << 23) | (s << 31); |
| return x.f; |
| } |
| |
| } // anonymous |
| |
| // See https://registry.khronos.org/DataFormat/specs/1.3/dataformat.1.3.inline.html#_hdr_endpoint_decoding |
| static void convert_to_half_prec(uint32_t n, float* pVals) |
| { |
| #if 0 |
| const int prev_dir = fesetround(FE_TOWARDZERO); |
| |
| for (uint32_t i = 0; i < n; i++) |
| pVals[i] = half_to_float(float_to_half(pVals[i])); |
| |
| fesetround(prev_dir); |
| |
| for (uint32_t i = 0; i < n; i++) |
| { |
| assert(pVals[i] == half_to_float(float_to_half(pVals[i], true))); |
| } |
| #else |
| // This ensures the values are rounded towards zero as half floats. |
| for (uint32_t i = 0; i < n; i++) |
| { |
| pVals[i] = half_to_float(float_to_half(pVals[i], true)); |
| } |
| #endif |
| } |
| |
| bool decompress_ldr(uint8_t *pDst, const uint8_t * data, bool isSRGB, int blockWidth, int blockHeight) |
| { |
| float linear[MAX_BLOCK_WIDTH * MAX_BLOCK_HEIGHT * 4]; |
| |
| const Block128 blockData(data); |
| |
| // isSRGB is true, this writes uint8_t's. Otherwise it writes floats. |
| if (decompressBlock(isSRGB ? (void*)pDst : (void*)&linear[0], blockData, blockWidth, blockHeight, isSRGB, true) != DECOMPRESS_RESULT_VALID_BLOCK) |
| { |
| return false; |
| } |
| |
| if (!isSRGB) |
| { |
| // Convert the floats to 8-bits with rounding. |
| int pix = 0; |
| for (int i = 0; i < blockHeight; i++) |
| { |
| for (int j = 0; j < blockWidth; j++, pix++) |
| { |
| pDst[4 * pix + 0] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 0] * 65536.0f + .5f), 0, 65535) >> 8); |
| pDst[4 * pix + 1] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 1] * 65536.0f + .5f), 0, 65535) >> 8); |
| pDst[4 * pix + 2] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 2] * 65536.0f + .5f), 0, 65535) >> 8); |
| pDst[4 * pix + 3] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 3] * 65536.0f + .5f), 0, 65535) >> 8); |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool decompress_hdr(float* pDstRGBA, const uint8_t* data, int blockWidth, int blockHeight) |
| { |
| const Block128 blockData(data); |
| |
| if (decompressBlock(pDstRGBA, blockData, blockWidth, blockHeight, false, false) != DECOMPRESS_RESULT_VALID_BLOCK) |
| { |
| return false; |
| } |
| |
| convert_to_half_prec(blockWidth * blockHeight * 4, pDstRGBA); |
| |
| return true; |
| } |
| |
| bool is_hdr(const uint8_t* data, int blockWidth, int blockHeight, bool &is_hdr) |
| { |
| is_hdr = false; |
| |
| const Block128 blockData(data); |
| |
| int status = isHDR(blockData, blockWidth, blockHeight); |
| if (status < 0) |
| { |
| return false; |
| } |
| |
| is_hdr = (status == 1); |
| |
| return true; |
| } |
| |
| } // astc |
| |
| } // basisu_astc |
| |
| #if defined(__GNUC__) |
| #pragma GCC diagnostic pop |
| #endif |