blob: 5abfe2faf922b979e1bee726f5387c1941d4dbd5 [file] [log] [blame]
// File: android_astc_decomp.cpp
/*-------------------------------------------------------------------------
* drawElements Quality Program Tester Core
* ----------------------------------------
*
* Copyright 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* rg: Removed external dependencies, minor fix to decompress() so it converts non-sRGB
* output to 8-bits correctly. I've compared this decoder's output
* vs. astc-codec with random inputs.
*
*//*!
* \file
* \brief ASTC Utilities.
*//*--------------------------------------------------------------------*/
#include "android_astc_decomp.h"
#include <assert.h>
#include <algorithm>
#include <fenv.h>
#include <math.h>
#define DE_LENGTH_OF_ARRAY(x) (sizeof(x)/sizeof(x[0]))
#define DE_UNREF(x) (void)x
typedef uint8_t deUint8;
typedef int8_t deInt8;
typedef uint32_t deUint32;
typedef int32_t deInt32;
typedef uint16_t deUint16;
typedef int16_t deInt16;
typedef int64_t deInt64;
typedef uint64_t deUint64;
#define DE_ASSERT assert
#ifdef _MSC_VER
#pragma warning (disable:4505) // unreferenced local function has been removed
#elif defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
#endif
namespace basisu_astc
{
template <typename S> inline S maximum(S a, S b) { return (a > b) ? a : b; }
template <typename S> inline S maximum(S a, S b, S c) { return maximum(maximum(a, b), c); }
template <typename S> inline S maximum(S a, S b, S c, S d) { return maximum(maximum(maximum(a, b), c), d); }
static bool inBounds(int v, int l, int h)
{
return (v >= l) && (v < h);
}
static bool inRange(int v, int l, int h)
{
return (v >= l) && (v <= h);
}
template<typename T>
static inline T max(T a, T b)
{
return (a > b) ? a : b;
}
template<typename T>
static inline T min(T a, T b)
{
return (a < b) ? a : b;
}
template<typename T>
static inline T clamp(T a, T l, T h)
{
if (a < l)
return l;
else if (a > h)
return h;
return a;
}
struct UVec4
{
uint32_t m_c[4];
UVec4()
{
m_c[0] = 0;
m_c[1] = 0;
m_c[2] = 0;
m_c[3] = 0;
}
UVec4(uint32_t x, uint32_t y, uint32_t z, uint32_t w)
{
m_c[0] = x;
m_c[1] = y;
m_c[2] = z;
m_c[3] = w;
}
uint32_t x() const { return m_c[0]; }
uint32_t y() const { return m_c[1]; }
uint32_t z() const { return m_c[2]; }
uint32_t w() const { return m_c[3]; }
uint32_t& x() { return m_c[0]; }
uint32_t& y() { return m_c[1]; }
uint32_t& z() { return m_c[2]; }
uint32_t& w() { return m_c[3]; }
uint32_t operator[] (uint32_t idx) const { assert(idx < 4); return m_c[idx]; }
uint32_t& operator[] (uint32_t idx) { assert(idx < 4); return m_c[idx]; }
};
struct IVec4
{
int32_t m_c[4];
IVec4()
{
m_c[0] = 0;
m_c[1] = 0;
m_c[2] = 0;
m_c[3] = 0;
}
IVec4(int32_t x, int32_t y, int32_t z, int32_t w)
{
m_c[0] = x;
m_c[1] = y;
m_c[2] = z;
m_c[3] = w;
}
int32_t x() const { return m_c[0]; }
int32_t y() const { return m_c[1]; }
int32_t z() const { return m_c[2]; }
int32_t w() const { return m_c[3]; }
int32_t& x() { return m_c[0]; }
int32_t& y() { return m_c[1]; }
int32_t& z() { return m_c[2]; }
int32_t& w() { return m_c[3]; }
UVec4 asUint() const
{
return UVec4(maximum(0, m_c[0]), maximum(0, m_c[1]), maximum(0, m_c[2]), maximum(0, m_c[3]));
}
int32_t operator[] (uint32_t idx) const { assert(idx < 4); return m_c[idx]; }
int32_t& operator[] (uint32_t idx) { assert(idx < 4); return m_c[idx]; }
};
struct IVec3
{
int32_t m_c[3];
IVec3()
{
m_c[0] = 0;
m_c[1] = 0;
m_c[2] = 0;
}
IVec3(int32_t x, int32_t y, int32_t z)
{
m_c[0] = x;
m_c[1] = y;
m_c[2] = z;
}
int32_t x() const { return m_c[0]; }
int32_t y() const { return m_c[1]; }
int32_t z() const { return m_c[2]; }
int32_t& x() { return m_c[0]; }
int32_t& y() { return m_c[1]; }
int32_t& z() { return m_c[2]; }
int32_t operator[] (uint32_t idx) const { assert(idx < 3); return m_c[idx]; }
int32_t& operator[] (uint32_t idx) { assert(idx < 3); return m_c[idx]; }
};
static uint32_t deDivRoundUp32(uint32_t a, uint32_t b)
{
return (a + b - 1) / b;
}
static bool deInBounds32(uint32_t v, uint32_t l, uint32_t h)
{
return (v >= l) && (v < h);
}
namespace astc
{
using std::vector;
namespace
{
// Common utilities
enum
{
MAX_BLOCK_WIDTH = 12,
MAX_BLOCK_HEIGHT = 12
};
inline deUint32 getBit (deUint32 src, int ndx)
{
DE_ASSERT(basisu_astc::inBounds(ndx, 0, 32));
return (src >> ndx) & 1;
}
inline deUint32 getBits (deUint32 src, int low, int high)
{
const int numBits = (high-low) + 1;
DE_ASSERT(basisu_astc::inRange(numBits, 1, 32));
if (numBits < 32)
return (deUint32)((src >> low) & ((1u<<numBits)-1));
else
return (deUint32)((src >> low) & 0xFFFFFFFFu);
}
inline bool isBitSet (deUint32 src, int ndx)
{
return getBit(src, ndx) != 0;
}
inline deUint32 reverseBits (deUint32 src, int numBits)
{
DE_ASSERT(basisu_astc::inRange(numBits, 0, 32));
deUint32 result = 0;
for (int i = 0; i < numBits; i++)
result |= ((src >> i) & 1) << (numBits-1-i);
return result;
}
inline deUint32 bitReplicationScale (deUint32 src, int numSrcBits, int numDstBits)
{
DE_ASSERT(numSrcBits <= numDstBits);
DE_ASSERT((src & ((1<<numSrcBits)-1)) == src);
deUint32 dst = 0;
for (int shift = numDstBits-numSrcBits; shift > -numSrcBits; shift -= numSrcBits)
dst |= (shift >= 0) ? (src << shift) : (src >> -shift);
return dst;
}
inline deInt32 signExtend (deInt32 src, int numSrcBits)
{
DE_ASSERT(basisu_astc::inRange(numSrcBits, 2, 31));
const bool negative = (src & (1 << (numSrcBits-1))) != 0;
return src | (negative ? ~((1 << numSrcBits) - 1) : 0);
}
typedef uint16_t deFloat16;
inline bool isFloat16InfOrNan (deFloat16 v)
{
return getBits(v, 10, 14) == 31;
}
float deFloat16To32(deFloat16 val16)
{
deUint32 sign;
deUint32 expotent;
deUint32 mantissa;
union
{
float f;
deUint32 u;
} x;
x.u = 0u;
sign = ((deUint32)val16 >> 15u) & 0x00000001u;
expotent = ((deUint32)val16 >> 10u) & 0x0000001fu;
mantissa = (deUint32)val16 & 0x000003ffu;
if (expotent == 0u)
{
if (mantissa == 0u)
{
/* +/- 0 */
x.u = sign << 31u;
return x.f;
}
else
{
/* Denormalized, normalize it. */
while (!(mantissa & 0x00000400u))
{
mantissa <<= 1u;
expotent -= 1u;
}
expotent += 1u;
mantissa &= ~0x00000400u;
}
}
else if (expotent == 31u)
{
if (mantissa == 0u)
{
/* +/- InF */
x.u = (sign << 31u) | 0x7f800000u;
return x.f;
}
else
{
/* +/- NaN */
x.u = (sign << 31u) | 0x7f800000u | (mantissa << 13u);
return x.f;
}
}
expotent = expotent + (127u - 15u);
mantissa = mantissa << 13u;
x.u = (sign << 31u) | (expotent << 23u) | mantissa;
return x.f;
}
enum ISEMode
{
ISEMODE_TRIT = 0,
ISEMODE_QUINT,
ISEMODE_PLAIN_BIT,
ISEMODE_LAST
};
struct ISEParams
{
ISEMode mode;
int numBits;
ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {}
};
inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues)
{
switch (iseParams.mode)
{
case ISEMODE_TRIT: return deDivRoundUp32(numValues*8, 5) + numValues*iseParams.numBits;
case ISEMODE_QUINT: return deDivRoundUp32(numValues*7, 3) + numValues*iseParams.numBits;
case ISEMODE_PLAIN_BIT: return numValues*iseParams.numBits;
default:
DE_ASSERT(false);
return -1;
}
}
ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence)
{
int curBitsForTritMode = 6;
int curBitsForQuintMode = 5;
int curBitsForPlainBitMode = 8;
while (true)
{
DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0);
const int tritRange = (curBitsForTritMode > 0) ? (3 << curBitsForTritMode) - 1 : -1;
const int quintRange = (curBitsForQuintMode > 0) ? (5 << curBitsForQuintMode) - 1 : -1;
const int plainBitRange = (curBitsForPlainBitMode > 0) ? (1 << curBitsForPlainBitMode) - 1 : -1;
const int maxRange = basisu_astc::max(basisu_astc::max(tritRange, quintRange), plainBitRange);
if (maxRange == tritRange)
{
const ISEParams params(ISEMODE_TRIT, curBitsForTritMode);
if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
return ISEParams(ISEMODE_TRIT, curBitsForTritMode);
curBitsForTritMode--;
}
else if (maxRange == quintRange)
{
const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode);
if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
return ISEParams(ISEMODE_QUINT, curBitsForQuintMode);
curBitsForQuintMode--;
}
else
{
const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
DE_ASSERT(maxRange == plainBitRange);
if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
curBitsForPlainBitMode--;
}
}
}
inline int computeNumColorEndpointValues (deUint32 endpointMode)
{
DE_ASSERT(endpointMode < 16);
return (endpointMode/4 + 1) * 2;
}
// Decompression utilities
enum DecompressResult
{
DECOMPRESS_RESULT_VALID_BLOCK = 0, //!< Decompressed valid block
DECOMPRESS_RESULT_ERROR, //!< Encountered error while decompressing, error color written
DECOMPRESS_RESULT_LAST
};
// A helper for getting bits from a 128-bit block.
class Block128
{
private:
typedef deUint64 Word;
enum
{
WORD_BYTES = sizeof(Word),
WORD_BITS = 8*WORD_BYTES,
NUM_WORDS = 128 / WORD_BITS
};
//DE_STATIC_ASSERT(128 % WORD_BITS == 0);
public:
Block128 (const deUint8* src)
{
for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
{
m_words[wordNdx] = 0;
for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
m_words[wordNdx] |= (Word)src[wordNdx*WORD_BYTES + byteNdx] << (8*byteNdx);
}
}
deUint32 getBit (int ndx) const
{
DE_ASSERT(basisu_astc::inBounds(ndx, 0, 128));
return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1;
}
deUint32 getBits (int low, int high) const
{
DE_ASSERT(basisu_astc::inBounds(low, 0, 128));
DE_ASSERT(basisu_astc::inBounds(high, 0, 128));
DE_ASSERT(basisu_astc::inRange(high-low+1, 0, 32));
if (high-low+1 == 0)
return 0;
const int word0Ndx = low / WORD_BITS;
const int word1Ndx = high / WORD_BITS;
// \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big.
if (word0Ndx == word1Ndx)
return (deUint32)((m_words[word0Ndx] & ((((Word)1 << high%WORD_BITS << 1) - 1))) >> ((Word)low % WORD_BITS));
else
{
DE_ASSERT(word1Ndx == word0Ndx + 1);
return (deUint32)(m_words[word0Ndx] >> (low%WORD_BITS)) |
(deUint32)((m_words[word1Ndx] & (((Word)1 << high%WORD_BITS << 1) - 1)) << (high-low - high%WORD_BITS));
}
}
bool isBitSet (int ndx) const
{
DE_ASSERT(basisu_astc::inBounds(ndx, 0, 128));
return getBit(ndx) != 0;
}
private:
Word m_words[NUM_WORDS];
};
// A helper for sequential access into a Block128.
class BitAccessStream
{
public:
BitAccessStream (const Block128& src, int startNdxInSrc, int length, bool forward)
: m_src (src)
, m_startNdxInSrc (startNdxInSrc)
, m_length (length)
, m_forward (forward)
, m_ndx (0)
{
}
// Get the next num bits. Bits at positions greater than or equal to m_length are zeros.
deUint32 getNext (int num)
{
if (num == 0 || m_ndx >= m_length)
return 0;
const int end = m_ndx + num;
const int numBitsFromSrc = basisu_astc::max(0, basisu_astc::min(m_length, end) - m_ndx);
const int low = m_ndx;
const int high = m_ndx + numBitsFromSrc - 1;
m_ndx += num;
return m_forward ? m_src.getBits(m_startNdxInSrc + low, m_startNdxInSrc + high)
: reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc);
}
private:
const Block128& m_src;
const int m_startNdxInSrc;
const int m_length;
const bool m_forward;
int m_ndx;
};
struct ISEDecodedResult
{
deUint32 m;
deUint32 tq; //!< Trit or quint value, depending on ISE mode.
deUint32 v;
};
// Data from an ASTC block's "block mode" part (i.e. bits [0,10]).
struct ASTCBlockMode
{
bool isError;
// \note Following fields only relevant if !isError.
bool isVoidExtent;
// \note Following fields only relevant if !isVoidExtent.
bool isDualPlane;
int weightGridWidth;
int weightGridHeight;
ISEParams weightISEParams;
ASTCBlockMode (void)
: isError (true)
, isVoidExtent (true)
, isDualPlane (true)
, weightGridWidth (-1)
, weightGridHeight (-1)
, weightISEParams (ISEMODE_LAST, -1)
{
}
};
inline int computeNumWeights (const ASTCBlockMode& mode)
{
return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1);
}
struct ColorEndpointPair
{
UVec4 e0;
UVec4 e1;
};
struct TexelWeightPair
{
deUint32 w[2];
};
ASTCBlockMode getASTCBlockMode (deUint32 blockModeData)
{
ASTCBlockMode blockMode;
blockMode.isError = true; // \note Set to false later, if not error.
blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc;
if (!blockMode.isVoidExtent)
{
if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || getBits(blockModeData, 0, 3) == 0)
return blockMode; // Invalid ("reserved").
deUint32 r = (deUint32)-1; // \note Set in the following branches.
if (getBits(blockModeData, 0, 1) == 0)
{
const deUint32 r0 = getBit(blockModeData, 4);
const deUint32 r1 = getBit(blockModeData, 2);
const deUint32 r2 = getBit(blockModeData, 3);
const deUint32 i78 = getBits(blockModeData, 7, 8);
r = (r2 << 2) | (r1 << 1) | (r0 << 0);
if (i78 == 3)
{
const bool i5 = isBitSet(blockModeData, 5);
blockMode.weightGridWidth = i5 ? 10 : 6;
blockMode.weightGridHeight = i5 ? 6 : 10;
}
else
{
const deUint32 a = getBits(blockModeData, 5, 6);
switch (i78)
{
case 0: blockMode.weightGridWidth = 12; blockMode.weightGridHeight = a + 2; break;
case 1: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = 12; break;
case 2: blockMode.weightGridWidth = a + 6; blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6; break;
default: DE_ASSERT(false);
}
}
}
else
{
const deUint32 r0 = getBit(blockModeData, 4);
const deUint32 r1 = getBit(blockModeData, 0);
const deUint32 r2 = getBit(blockModeData, 1);
const deUint32 i23 = getBits(blockModeData, 2, 3);
const deUint32 a = getBits(blockModeData, 5, 6);
r = (r2 << 2) | (r1 << 1) | (r0 << 0);
if (i23 == 3)
{
const deUint32 b = getBit(blockModeData, 7);
const bool i8 = isBitSet(blockModeData, 8);
blockMode.weightGridWidth = i8 ? b+2 : a+2;
blockMode.weightGridHeight = i8 ? a+2 : b+6;
}
else
{
const deUint32 b = getBits(blockModeData, 7, 8);
switch (i23)
{
case 0: blockMode.weightGridWidth = b + 4; blockMode.weightGridHeight = a + 2; break;
case 1: blockMode.weightGridWidth = b + 8; blockMode.weightGridHeight = a + 2; break;
case 2: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = b + 8; break;
default: DE_ASSERT(false);
}
}
}
const bool zeroDH = getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2;
const bool h = zeroDH ? 0 : isBitSet(blockModeData, 9);
blockMode.isDualPlane = zeroDH ? 0 : isBitSet(blockModeData, 10);
{
ISEMode& m = blockMode.weightISEParams.mode;
int& b = blockMode.weightISEParams.numBits;
m = ISEMODE_PLAIN_BIT;
b = 0;
if (h)
{
switch (r)
{
case 2: m = ISEMODE_QUINT; b = 1; break;
case 3: m = ISEMODE_TRIT; b = 2; break;
case 4: b = 4; break;
case 5: m = ISEMODE_QUINT; b = 2; break;
case 6: m = ISEMODE_TRIT; b = 3; break;
case 7: b = 5; break;
default: DE_ASSERT(false);
}
}
else
{
switch (r)
{
case 2: b = 1; break;
case 3: m = ISEMODE_TRIT; break;
case 4: b = 2; break;
case 5: m = ISEMODE_QUINT; break;
case 6: m = ISEMODE_TRIT; b = 1; break;
case 7: b = 3; break;
default: DE_ASSERT(false);
}
}
}
}
blockMode.isError = false;
return blockMode;
}
inline void setASTCErrorColorBlock (void* dst, int blockWidth, int blockHeight, bool isSRGB)
{
if (isSRGB)
{
deUint8* const dstU = (deUint8*)dst;
for (int i = 0; i < blockWidth*blockHeight; i++)
{
dstU[4*i + 0] = 0xff;
dstU[4*i + 1] = 0;
dstU[4*i + 2] = 0xff;
dstU[4*i + 3] = 0xff;
}
}
else
{
float* const dstF = (float*)dst;
for (int i = 0; i < blockWidth*blockHeight; i++)
{
dstF[4*i + 0] = 1.0f;
dstF[4*i + 1] = 0.0f;
dstF[4*i + 2] = 1.0f;
dstF[4*i + 3] = 1.0f;
}
}
}
DecompressResult decodeVoidExtentBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode)
{
const deUint32 minSExtent = blockData.getBits(12, 24);
const deUint32 maxSExtent = blockData.getBits(25, 37);
const deUint32 minTExtent = blockData.getBits(38, 50);
const deUint32 maxTExtent = blockData.getBits(51, 63);
const bool allExtentsAllOnes = (minSExtent == 0x1fff) && (maxSExtent == 0x1fff) && (minTExtent == 0x1fff) && (maxTExtent == 0x1fff);
const bool isHDRBlock = blockData.isBitSet(9);
if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent)))
{
setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
return DECOMPRESS_RESULT_ERROR;
}
const deUint32 rgba[4] =
{
blockData.getBits(64, 79),
blockData.getBits(80, 95),
blockData.getBits(96, 111),
blockData.getBits(112, 127)
};
if (isSRGB)
{
deUint8* const dstU = (deUint8*)dst;
for (int i = 0; i < blockWidth * blockHeight; i++)
{
for (int c = 0; c < 4; c++)
dstU[i * 4 + c] = (deUint8)((rgba[c] & 0xff00) >> 8);
}
}
else
{
float* const dstF = (float*)dst;
if (isHDRBlock)
{
for (int c = 0; c < 4; c++)
{
if (isFloat16InfOrNan((deFloat16)rgba[c]))
{
//throw InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture (behavior undefined by ASTC specification)");
setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
return DECOMPRESS_RESULT_ERROR;
}
}
for (int i = 0; i < blockWidth * blockHeight; i++)
{
for (int c = 0; c < 4; c++)
dstF[i * 4 + c] = deFloat16To32((deFloat16)rgba[c]);
}
}
else
{
for (int i = 0; i < blockWidth * blockHeight; i++)
{
for (int c = 0; c < 4; c++)
dstF[i * 4 + c] = (rgba[c] == 65535) ? 1.0f : ((float)rgba[c] / 65536.0f);
}
}
}
return DECOMPRESS_RESULT_VALID_BLOCK;
}
void decodeColorEndpointModes (deUint32* endpointModesDst, const Block128& blockData, int numPartitions, int extraCemBitsStart)
{
if (numPartitions == 1)
endpointModesDst[0] = blockData.getBits(13, 16);
else
{
const deUint32 highLevelSelector = blockData.getBits(23, 24);
if (highLevelSelector == 0)
{
const deUint32 mode = blockData.getBits(25, 28);
for (int i = 0; i < numPartitions; i++)
endpointModesDst[i] = mode;
}
else
{
for (int partNdx = 0; partNdx < numPartitions; partNdx++)
{
const deUint32 cemClass = highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1);
const deUint32 lowBit0Ndx = numPartitions + 2*partNdx;
const deUint32 lowBit1Ndx = numPartitions + 2*partNdx + 1;
const deUint32 lowBit0 = blockData.getBit(lowBit0Ndx < 4 ? 25+lowBit0Ndx : extraCemBitsStart+lowBit0Ndx-4);
const deUint32 lowBit1 = blockData.getBit(lowBit1Ndx < 4 ? 25+lowBit1Ndx : extraCemBitsStart+lowBit1Ndx-4);
endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0;
}
}
}
}
int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions)
{
int result = 0;
for (int i = 0; i < numPartitions; i++)
result += computeNumColorEndpointValues(endpointModes[i]);
return result;
}
void decodeISETritBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
{
DE_ASSERT(basisu_astc::inRange(numValues, 1, 5));
deUint32 m[5];
m[0] = data.getNext(numBits);
deUint32 T01 = data.getNext(2);
m[1] = data.getNext(numBits);
deUint32 T23 = data.getNext(2);
m[2] = data.getNext(numBits);
deUint32 T4 = data.getNext(1);
m[3] = data.getNext(numBits);
deUint32 T56 = data.getNext(2);
m[4] = data.getNext(numBits);
deUint32 T7 = data.getNext(1);
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wimplicit-fallthrough="
#endif
switch (numValues)
{
// \note Fall-throughs.
case 1: T23 = 0;
case 2: T4 = 0;
case 3: T56 = 0;
case 4: T7 = 0;
case 5: break;
default:
DE_ASSERT(false);
}
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
const deUint32 T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0);
static const deUint32 tritsFromT[256][5] =
{
{ 0,0,0,0,0 }, { 1,0,0,0,0 }, { 2,0,0,0,0 }, { 0,0,2,0,0 }, { 0,1,0,0,0 }, { 1,1,0,0,0 }, { 2,1,0,0,0 }, { 1,0,2,0,0 }, { 0,2,0,0,0 }, { 1,2,0,0,0 }, { 2,2,0,0,0 }, { 2,0,2,0,0 }, { 0,2,2,0,0 }, { 1,2,2,0,0 }, { 2,2,2,0,0 }, { 2,0,2,0,0 },
{ 0,0,1,0,0 }, { 1,0,1,0,0 }, { 2,0,1,0,0 }, { 0,1,2,0,0 }, { 0,1,1,0,0 }, { 1,1,1,0,0 }, { 2,1,1,0,0 }, { 1,1,2,0,0 }, { 0,2,1,0,0 }, { 1,2,1,0,0 }, { 2,2,1,0,0 }, { 2,1,2,0,0 }, { 0,0,0,2,2 }, { 1,0,0,2,2 }, { 2,0,0,2,2 }, { 0,0,2,2,2 },
{ 0,0,0,1,0 }, { 1,0,0,1,0 }, { 2,0,0,1,0 }, { 0,0,2,1,0 }, { 0,1,0,1,0 }, { 1,1,0,1,0 }, { 2,1,0,1,0 }, { 1,0,2,1,0 }, { 0,2,0,1,0 }, { 1,2,0,1,0 }, { 2,2,0,1,0 }, { 2,0,2,1,0 }, { 0,2,2,1,0 }, { 1,2,2,1,0 }, { 2,2,2,1,0 }, { 2,0,2,1,0 },
{ 0,0,1,1,0 }, { 1,0,1,1,0 }, { 2,0,1,1,0 }, { 0,1,2,1,0 }, { 0,1,1,1,0 }, { 1,1,1,1,0 }, { 2,1,1,1,0 }, { 1,1,2,1,0 }, { 0,2,1,1,0 }, { 1,2,1,1,0 }, { 2,2,1,1,0 }, { 2,1,2,1,0 }, { 0,1,0,2,2 }, { 1,1,0,2,2 }, { 2,1,0,2,2 }, { 1,0,2,2,2 },
{ 0,0,0,2,0 }, { 1,0,0,2,0 }, { 2,0,0,2,0 }, { 0,0,2,2,0 }, { 0,1,0,2,0 }, { 1,1,0,2,0 }, { 2,1,0,2,0 }, { 1,0,2,2,0 }, { 0,2,0,2,0 }, { 1,2,0,2,0 }, { 2,2,0,2,0 }, { 2,0,2,2,0 }, { 0,2,2,2,0 }, { 1,2,2,2,0 }, { 2,2,2,2,0 }, { 2,0,2,2,0 },
{ 0,0,1,2,0 }, { 1,0,1,2,0 }, { 2,0,1,2,0 }, { 0,1,2,2,0 }, { 0,1,1,2,0 }, { 1,1,1,2,0 }, { 2,1,1,2,0 }, { 1,1,2,2,0 }, { 0,2,1,2,0 }, { 1,2,1,2,0 }, { 2,2,1,2,0 }, { 2,1,2,2,0 }, { 0,2,0,2,2 }, { 1,2,0,2,2 }, { 2,2,0,2,2 }, { 2,0,2,2,2 },
{ 0,0,0,0,2 }, { 1,0,0,0,2 }, { 2,0,0,0,2 }, { 0,0,2,0,2 }, { 0,1,0,0,2 }, { 1,1,0,0,2 }, { 2,1,0,0,2 }, { 1,0,2,0,2 }, { 0,2,0,0,2 }, { 1,2,0,0,2 }, { 2,2,0,0,2 }, { 2,0,2,0,2 }, { 0,2,2,0,2 }, { 1,2,2,0,2 }, { 2,2,2,0,2 }, { 2,0,2,0,2 },
{ 0,0,1,0,2 }, { 1,0,1,0,2 }, { 2,0,1,0,2 }, { 0,1,2,0,2 }, { 0,1,1,0,2 }, { 1,1,1,0,2 }, { 2,1,1,0,2 }, { 1,1,2,0,2 }, { 0,2,1,0,2 }, { 1,2,1,0,2 }, { 2,2,1,0,2 }, { 2,1,2,0,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,0,2,2,2 },
{ 0,0,0,0,1 }, { 1,0,0,0,1 }, { 2,0,0,0,1 }, { 0,0,2,0,1 }, { 0,1,0,0,1 }, { 1,1,0,0,1 }, { 2,1,0,0,1 }, { 1,0,2,0,1 }, { 0,2,0,0,1 }, { 1,2,0,0,1 }, { 2,2,0,0,1 }, { 2,0,2,0,1 }, { 0,2,2,0,1 }, { 1,2,2,0,1 }, { 2,2,2,0,1 }, { 2,0,2,0,1 },
{ 0,0,1,0,1 }, { 1,0,1,0,1 }, { 2,0,1,0,1 }, { 0,1,2,0,1 }, { 0,1,1,0,1 }, { 1,1,1,0,1 }, { 2,1,1,0,1 }, { 1,1,2,0,1 }, { 0,2,1,0,1 }, { 1,2,1,0,1 }, { 2,2,1,0,1 }, { 2,1,2,0,1 }, { 0,0,1,2,2 }, { 1,0,1,2,2 }, { 2,0,1,2,2 }, { 0,1,2,2,2 },
{ 0,0,0,1,1 }, { 1,0,0,1,1 }, { 2,0,0,1,1 }, { 0,0,2,1,1 }, { 0,1,0,1,1 }, { 1,1,0,1,1 }, { 2,1,0,1,1 }, { 1,0,2,1,1 }, { 0,2,0,1,1 }, { 1,2,0,1,1 }, { 2,2,0,1,1 }, { 2,0,2,1,1 }, { 0,2,2,1,1 }, { 1,2,2,1,1 }, { 2,2,2,1,1 }, { 2,0,2,1,1 },
{ 0,0,1,1,1 }, { 1,0,1,1,1 }, { 2,0,1,1,1 }, { 0,1,2,1,1 }, { 0,1,1,1,1 }, { 1,1,1,1,1 }, { 2,1,1,1,1 }, { 1,1,2,1,1 }, { 0,2,1,1,1 }, { 1,2,1,1,1 }, { 2,2,1,1,1 }, { 2,1,2,1,1 }, { 0,1,1,2,2 }, { 1,1,1,2,2 }, { 2,1,1,2,2 }, { 1,1,2,2,2 },
{ 0,0,0,2,1 }, { 1,0,0,2,1 }, { 2,0,0,2,1 }, { 0,0,2,2,1 }, { 0,1,0,2,1 }, { 1,1,0,2,1 }, { 2,1,0,2,1 }, { 1,0,2,2,1 }, { 0,2,0,2,1 }, { 1,2,0,2,1 }, { 2,2,0,2,1 }, { 2,0,2,2,1 }, { 0,2,2,2,1 }, { 1,2,2,2,1 }, { 2,2,2,2,1 }, { 2,0,2,2,1 },
{ 0,0,1,2,1 }, { 1,0,1,2,1 }, { 2,0,1,2,1 }, { 0,1,2,2,1 }, { 0,1,1,2,1 }, { 1,1,1,2,1 }, { 2,1,1,2,1 }, { 1,1,2,2,1 }, { 0,2,1,2,1 }, { 1,2,1,2,1 }, { 2,2,1,2,1 }, { 2,1,2,2,1 }, { 0,2,1,2,2 }, { 1,2,1,2,2 }, { 2,2,1,2,2 }, { 2,1,2,2,2 },
{ 0,0,0,1,2 }, { 1,0,0,1,2 }, { 2,0,0,1,2 }, { 0,0,2,1,2 }, { 0,1,0,1,2 }, { 1,1,0,1,2 }, { 2,1,0,1,2 }, { 1,0,2,1,2 }, { 0,2,0,1,2 }, { 1,2,0,1,2 }, { 2,2,0,1,2 }, { 2,0,2,1,2 }, { 0,2,2,1,2 }, { 1,2,2,1,2 }, { 2,2,2,1,2 }, { 2,0,2,1,2 },
{ 0,0,1,1,2 }, { 1,0,1,1,2 }, { 2,0,1,1,2 }, { 0,1,2,1,2 }, { 0,1,1,1,2 }, { 1,1,1,1,2 }, { 2,1,1,1,2 }, { 1,1,2,1,2 }, { 0,2,1,1,2 }, { 1,2,1,1,2 }, { 2,2,1,1,2 }, { 2,1,2,1,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,1,2,2,2 }
};
const deUint32 (& trits)[5] = tritsFromT[T];
for (int i = 0; i < numValues; i++)
{
dst[i].m = m[i];
dst[i].tq = trits[i];
dst[i].v = (trits[i] << numBits) + m[i];
}
}
void decodeISEQuintBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
{
DE_ASSERT(basisu_astc::inRange(numValues, 1, 3));
deUint32 m[3];
m[0] = data.getNext(numBits);
deUint32 Q012 = data.getNext(3);
m[1] = data.getNext(numBits);
deUint32 Q34 = data.getNext(2);
m[2] = data.getNext(numBits);
deUint32 Q56 = data.getNext(2);
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wimplicit-fallthrough="
#endif
switch (numValues)
{
// \note Fall-throughs.
case 1: Q34 = 0;
case 2: Q56 = 0;
case 3: break;
default:
DE_ASSERT(false);
}
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
const deUint32 Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0);
static const deUint32 quintsFromQ[256][3] =
{
{ 0,0,0 }, { 1,0,0 }, { 2,0,0 }, { 3,0,0 }, { 4,0,0 }, { 0,4,0 }, { 4,4,0 }, { 4,4,4 }, { 0,1,0 }, { 1,1,0 }, { 2,1,0 }, { 3,1,0 }, { 4,1,0 }, { 1,4,0 }, { 4,4,1 }, { 4,4,4 },
{ 0,2,0 }, { 1,2,0 }, { 2,2,0 }, { 3,2,0 }, { 4,2,0 }, { 2,4,0 }, { 4,4,2 }, { 4,4,4 }, { 0,3,0 }, { 1,3,0 }, { 2,3,0 }, { 3,3,0 }, { 4,3,0 }, { 3,4,0 }, { 4,4,3 }, { 4,4,4 },
{ 0,0,1 }, { 1,0,1 }, { 2,0,1 }, { 3,0,1 }, { 4,0,1 }, { 0,4,1 }, { 4,0,4 }, { 0,4,4 }, { 0,1,1 }, { 1,1,1 }, { 2,1,1 }, { 3,1,1 }, { 4,1,1 }, { 1,4,1 }, { 4,1,4 }, { 1,4,4 },
{ 0,2,1 }, { 1,2,1 }, { 2,2,1 }, { 3,2,1 }, { 4,2,1 }, { 2,4,1 }, { 4,2,4 }, { 2,4,4 }, { 0,3,1 }, { 1,3,1 }, { 2,3,1 }, { 3,3,1 }, { 4,3,1 }, { 3,4,1 }, { 4,3,4 }, { 3,4,4 },
{ 0,0,2 }, { 1,0,2 }, { 2,0,2 }, { 3,0,2 }, { 4,0,2 }, { 0,4,2 }, { 2,0,4 }, { 3,0,4 }, { 0,1,2 }, { 1,1,2 }, { 2,1,2 }, { 3,1,2 }, { 4,1,2 }, { 1,4,2 }, { 2,1,4 }, { 3,1,4 },
{ 0,2,2 }, { 1,2,2 }, { 2,2,2 }, { 3,2,2 }, { 4,2,2 }, { 2,4,2 }, { 2,2,4 }, { 3,2,4 }, { 0,3,2 }, { 1,3,2 }, { 2,3,2 }, { 3,3,2 }, { 4,3,2 }, { 3,4,2 }, { 2,3,4 }, { 3,3,4 },
{ 0,0,3 }, { 1,0,3 }, { 2,0,3 }, { 3,0,3 }, { 4,0,3 }, { 0,4,3 }, { 0,0,4 }, { 1,0,4 }, { 0,1,3 }, { 1,1,3 }, { 2,1,3 }, { 3,1,3 }, { 4,1,3 }, { 1,4,3 }, { 0,1,4 }, { 1,1,4 },
{ 0,2,3 }, { 1,2,3 }, { 2,2,3 }, { 3,2,3 }, { 4,2,3 }, { 2,4,3 }, { 0,2,4 }, { 1,2,4 }, { 0,3,3 }, { 1,3,3 }, { 2,3,3 }, { 3,3,3 }, { 4,3,3 }, { 3,4,3 }, { 0,3,4 }, { 1,3,4 }
};
const deUint32 (& quints)[3] = quintsFromQ[Q];
for (int i = 0; i < numValues; i++)
{
dst[i].m = m[i];
dst[i].tq = quints[i];
dst[i].v = (quints[i] << numBits) + m[i];
}
}
inline void decodeISEBitBlock (ISEDecodedResult* dst, BitAccessStream& data, int numBits)
{
dst[0].m = data.getNext(numBits);
dst[0].v = dst[0].m;
}
void decodeISE (ISEDecodedResult* dst, int numValues, BitAccessStream& data, const ISEParams& params)
{
if (params.mode == ISEMODE_TRIT)
{
const int numBlocks = deDivRoundUp32(numValues, 5);
for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
{
const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
decodeISETritBlock(&dst[5*blockNdx], numValuesInBlock, data, params.numBits);
}
}
else if (params.mode == ISEMODE_QUINT)
{
const int numBlocks = deDivRoundUp32(numValues, 3);
for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
{
const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
decodeISEQuintBlock(&dst[3*blockNdx], numValuesInBlock, data, params.numBits);
}
}
else
{
DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
for (int i = 0; i < numValues; i++)
decodeISEBitBlock(&dst[i], data, params.numBits);
}
}
void unquantizeColorEndpoints (deUint32* dst, const ISEDecodedResult* iseResults, int numEndpoints, const ISEParams& iseParams)
{
if ((iseParams.mode == ISEMODE_TRIT) || (iseParams.mode == ISEMODE_QUINT))
{
const int rangeCase = iseParams.numBits*2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1);
DE_ASSERT(basisu_astc::inRange(rangeCase, 0, 10));
static const deUint32 Ca[11] = { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 };
const deUint32 C = Ca[rangeCase];
for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
{
const deUint32 a = getBit(iseResults[endpointNdx].m, 0);
const deUint32 b = getBit(iseResults[endpointNdx].m, 1);
const deUint32 c = getBit(iseResults[endpointNdx].m, 2);
const deUint32 d = getBit(iseResults[endpointNdx].m, 3);
const deUint32 e = getBit(iseResults[endpointNdx].m, 4);
const deUint32 f = getBit(iseResults[endpointNdx].m, 5);
const deUint32 A = (a == 0) ? 0 : (1<<9)-1;
const deUint32 B = (rangeCase == 0) ? 0
: (rangeCase == 1) ? 0
: (rangeCase == 2) ? ((b << 8) | (b << 4) | (b << 2) | (b << 1))
: (rangeCase == 3) ? ((b << 8) | (b << 3) | (b << 2))
: (rangeCase == 4) ? ((c << 8) | (b << 7) | (c << 3) | (b << 2) | (c << 1) | (b << 0))
: (rangeCase == 5) ? ((c << 8) | (b << 7) | (c << 2) | (b << 1) | (c << 0))
: (rangeCase == 6) ? ((d << 8) | (c << 7) | (b << 6) | (d << 2) | (c << 1) | (b << 0))
: (rangeCase == 7) ? ((d << 8) | (c << 7) | (b << 6) | (d << 1) | (c << 0))
: (rangeCase == 8) ? ((e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 1) | (d << 0))
: (rangeCase == 9) ? ((e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 0))
: (rangeCase == 10) ? ((f << 8) | (e << 7) | (d << 6) | (c << 5) | (b << 4) | (f << 0))
: (deUint32)-1;
DE_ASSERT(B != (deUint32)-1);
dst[endpointNdx] = (((iseResults[endpointNdx].tq*C + B) ^ A) >> 2) | (A & 0x80);
}
}
else
{
DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8);
}
}
inline void bitTransferSigned (deInt32& a, deInt32& b)
{
b >>= 1;
b |= a & 0x80;
a >>= 1;
a &= 0x3f;
if (isBitSet(a, 5))
a -= 0x40;
}
inline UVec4 clampedRGBA (const IVec4& rgba)
{
return UVec4(basisu_astc::clamp(rgba.x(), 0, 0xff),
basisu_astc::clamp(rgba.y(), 0, 0xff),
basisu_astc::clamp(rgba.z(), 0, 0xff),
basisu_astc::clamp(rgba.w(), 0, 0xff));
}
inline IVec4 blueContract (int r, int g, int b, int a)
{
return IVec4((r+b)>>1, (g+b)>>1, b, a);
}
inline bool isColorEndpointModeHDR (deUint32 mode)
{
return (mode == 2) ||
(mode == 3) ||
(mode == 7) ||
(mode == 11) ||
(mode == 14) ||
(mode == 15);
}
void decodeHDREndpointMode7 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3)
{
const deUint32 m10 = getBit(v1, 7) | (getBit(v2, 7) << 1);
const deUint32 m23 = getBits(v0, 6, 7);
const deUint32 majComp = (m10 != 3) ? m10
: (m23 != 3) ? m23
: 0;
const deUint32 mode = (m10 != 3) ? m23
: (m23 != 3) ? 4
: 5;
deInt32 red = (deInt32)getBits(v0, 0, 5);
deInt32 green = (deInt32)getBits(v1, 0, 4);
deInt32 blue = (deInt32)getBits(v2, 0, 4);
deInt32 scale = (deInt32)getBits(v3, 0, 4);
{
#define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
#define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5, V6,S6) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); SHOR(V6,S6,x6); } while (false)
const deUint32 x0 = getBit(v1, 6);
const deUint32 x1 = getBit(v1, 5);
const deUint32 x2 = getBit(v2, 6);
const deUint32 x3 = getBit(v2, 5);
const deUint32 x4 = getBit(v3, 7);
const deUint32 x5 = getBit(v3, 6);
const deUint32 x6 = getBit(v3, 5);
deInt32& R = red;
deInt32& G = green;
deInt32& B = blue;
deInt32& S = scale;
switch (mode)
{
case 0: ASSIGN_X_BITS(R,9, R,8, R,7, R,10, R,6, S,6, S,5); break;
case 1: ASSIGN_X_BITS(R,8, G,5, R,7, B,5, R,6, R,10, R,9); break;
case 2: ASSIGN_X_BITS(R,9, R,8, R,7, R,6, S,7, S,6, S,5); break;
case 3: ASSIGN_X_BITS(R,8, G,5, R,7, B,5, R,6, S,6, S,5); break;
case 4: ASSIGN_X_BITS(G,6, G,5, B,6, B,5, R,6, R,7, S,5); break;
case 5: ASSIGN_X_BITS(G,6, G,5, B,6, B,5, R,6, S,6, S,5); break;
default:
DE_ASSERT(false);
}
#undef ASSIGN_X_BITS
#undef SHOR
}
static const int shiftAmounts[] = { 1, 1, 2, 3, 4, 5 };
DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts));
red <<= shiftAmounts[mode];
green <<= shiftAmounts[mode];
blue <<= shiftAmounts[mode];
scale <<= shiftAmounts[mode];
if (mode != 5)
{
green = red - green;
blue = red - blue;
}
if (majComp == 1)
std::swap(red, green);
else if (majComp == 2)
std::swap(red, blue);
e0 = UVec4(basisu_astc::clamp(red - scale, 0, 0xfff),
basisu_astc::clamp(green - scale, 0, 0xfff),
basisu_astc::clamp(blue - scale, 0, 0xfff),
0x780);
e1 = UVec4(basisu_astc::clamp(red, 0, 0xfff),
basisu_astc::clamp(green, 0, 0xfff),
basisu_astc::clamp(blue, 0, 0xfff),
0x780);
}
void decodeHDREndpointMode11 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5)
{
const deUint32 major = (getBit(v5, 7) << 1) | getBit(v4, 7);
if (major == 3)
{
e0 = UVec4(v0<<4, v2<<4, getBits(v4,0,6)<<5, 0x780);
e1 = UVec4(v1<<4, v3<<4, getBits(v5,0,6)<<5, 0x780);
}
else
{
const deUint32 mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7);
deInt32 a = (deInt32)((getBit(v1, 6) << 8) | v0);
deInt32 c = (deInt32)(getBits(v1, 0, 5));
deInt32 b0 = (deInt32)(getBits(v2, 0, 5));
deInt32 b1 = (deInt32)(getBits(v3, 0, 5));
deInt32 d0 = (deInt32)(getBits(v4, 0, 4));
deInt32 d1 = (deInt32)(getBits(v5, 0, 4));
{
#define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
#define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); } while (false)
const deUint32 x0 = getBit(v2, 6);
const deUint32 x1 = getBit(v3, 6);
const deUint32 x2 = getBit(v4, 6);
const deUint32 x3 = getBit(v5, 6);
const deUint32 x4 = getBit(v4, 5);
const deUint32 x5 = getBit(v5, 5);
switch (mode)
{
case 0: ASSIGN_X_BITS(b0,6, b1,6, d0,6, d1,6, d0,5, d1,5); break;
case 1: ASSIGN_X_BITS(b0,6, b1,6, b0,7, b1,7, d0,5, d1,5); break;
case 2: ASSIGN_X_BITS(a,9, c,6, d0,6, d1,6, d0,5, d1,5); break;
case 3: ASSIGN_X_BITS(b0,6, b1,6, a,9, c,6, d0,5, d1,5); break;
case 4: ASSIGN_X_BITS(b0,6, b1,6, b0,7, b1,7, a,9, a,10); break;
case 5: ASSIGN_X_BITS(a,9, a,10, c,7, c,6, d0,5, d1,5); break;
case 6: ASSIGN_X_BITS(b0,6, b1,6, a,11, c,6, a,9, a,10); break;
case 7: ASSIGN_X_BITS(a,9, a,10, a,11, c,6, d0,5, d1,5); break;
default:
DE_ASSERT(false);
}
#undef ASSIGN_X_BITS
#undef SHOR
}
static const int numDBits[] = { 7, 6, 7, 6, 5, 6, 5, 6 };
DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits));
d0 = signExtend(d0, numDBits[mode]);
d1 = signExtend(d1, numDBits[mode]);
const int shiftAmount = (mode >> 1) ^ 3;
a = (uint32_t)a << shiftAmount;
c = (uint32_t)c << shiftAmount;
b0 = (uint32_t)b0 << shiftAmount;
b1 = (uint32_t)b1 << shiftAmount;
d0 = (uint32_t)d0 << shiftAmount;
d1 = (uint32_t)d1 << shiftAmount;
e0 = UVec4(basisu_astc::clamp(a-c, 0, 0xfff), basisu_astc::clamp(a-b0-c-d0, 0, 0xfff), basisu_astc::clamp(a-b1-c-d1, 0, 0xfff), 0x780);
e1 = UVec4(basisu_astc::clamp(a, 0, 0xfff), basisu_astc::clamp(a-b0, 0, 0xfff), basisu_astc::clamp(a-b1, 0, 0xfff), 0x780);
if (major == 1)
{
std::swap(e0.x(), e0.y());
std::swap(e1.x(), e1.y());
}
else if (major == 2)
{
std::swap(e0.x(), e0.z());
std::swap(e1.x(), e1.z());
}
}
}
void decodeHDREndpointMode15(UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5, deUint32 v6In, deUint32 v7In)
{
decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5);
const deUint32 mode = (getBit(v7In, 7) << 1) | getBit(v6In, 7);
deInt32 v6 = (deInt32)getBits(v6In, 0, 6);
deInt32 v7 = (deInt32)getBits(v7In, 0, 6);
if (mode == 3)
{
e0.w() = v6 << 5;
e1.w() = v7 << 5;
}
else
{
v6 |= (v7 << (mode+1)) & 0x780;
v7 &= (0x3f >> mode);
v7 ^= 0x20 >> mode;
v7 -= 0x20 >> mode;
v6 <<= 4-mode;
v7 <<= 4-mode;
v7 += v6;
v7 = basisu_astc::clamp(v7, 0, 0xfff);
e0.w() = v6;
e1.w() = v7;
}
}
void decodeColorEndpoints (ColorEndpointPair* dst, const deUint32* unquantizedEndpoints, const deUint32* endpointModes, int numPartitions)
{
int unquantizedNdx = 0;
for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++)
{
const deUint32 endpointMode = endpointModes[partitionNdx];
const deUint32* v = &unquantizedEndpoints[unquantizedNdx];
UVec4& e0 = dst[partitionNdx].e0;
UVec4& e1 = dst[partitionNdx].e1;
unquantizedNdx += computeNumColorEndpointValues(endpointMode);
switch (endpointMode)
{
case 0:
{
e0 = UVec4(v[0], v[0], v[0], 0xff);
e1 = UVec4(v[1], v[1], v[1], 0xff);
break;
}
case 1:
{
const deUint32 L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6);
const deUint32 L1 = basisu_astc::min(0xffu, L0 + getBits(v[1], 0, 5));
e0 = UVec4(L0, L0, L0, 0xff);
e1 = UVec4(L1, L1, L1, 0xff);
break;
}
case 2:
{
const deUint32 v1Gr = v[1] >= v[0];
const deUint32 y0 = v1Gr ? v[0]<<4 : (v[1]<<4) + 8;
const deUint32 y1 = v1Gr ? v[1]<<4 : (v[0]<<4) - 8;
e0 = UVec4(y0, y0, y0, 0x780);
e1 = UVec4(y1, y1, y1, 0x780);
break;
}
case 3:
{
const bool m = isBitSet(v[0], 7);
const deUint32 y0 = m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2)
: (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1);
const deUint32 d = m ? getBits(v[1], 0, 4) << 2
: getBits(v[1], 0, 3) << 1;
const deUint32 y1 = basisu_astc::min(0xfffu, y0+d);
e0 = UVec4(y0, y0, y0, 0x780);
e1 = UVec4(y1, y1, y1, 0x780);
break;
}
case 4:
{
e0 = UVec4(v[0], v[0], v[0], v[2]);
e1 = UVec4(v[1], v[1], v[1], v[3]);
break;
}
case 5:
{
deInt32 v0 = (deInt32)v[0];
deInt32 v1 = (deInt32)v[1];
deInt32 v2 = (deInt32)v[2];
deInt32 v3 = (deInt32)v[3];
bitTransferSigned(v1, v0);
bitTransferSigned(v3, v2);
e0 = clampedRGBA(IVec4(v0, v0, v0, v2));
e1 = clampedRGBA(IVec4(v0+v1, v0+v1, v0+v1, v2+v3));
break;
}
case 6:
e0 = UVec4((v[0]*v[3]) >> 8, (v[1]*v[3]) >> 8, (v[2]*v[3]) >> 8, 0xff);
e1 = UVec4(v[0], v[1], v[2], 0xff);
break;
case 7:
decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]);
break;
case 8:
{
if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
{
e0 = UVec4(v[0], v[2], v[4], 0xff);
e1 = UVec4(v[1], v[3], v[5], 0xff);
}
else
{
e0 = blueContract(v[1], v[3], v[5], 0xff).asUint();
e1 = blueContract(v[0], v[2], v[4], 0xff).asUint();
}
break;
}
case 9:
{
deInt32 v0 = (deInt32)v[0];
deInt32 v1 = (deInt32)v[1];
deInt32 v2 = (deInt32)v[2];
deInt32 v3 = (deInt32)v[3];
deInt32 v4 = (deInt32)v[4];
deInt32 v5 = (deInt32)v[5];
bitTransferSigned(v1, v0);
bitTransferSigned(v3, v2);
bitTransferSigned(v5, v4);
if (v1+v3+v5 >= 0)
{
e0 = clampedRGBA(IVec4(v0, v2, v4, 0xff));
e1 = clampedRGBA(IVec4(v0+v1, v2+v3, v4+v5, 0xff));
}
else
{
e0 = clampedRGBA(blueContract(v0+v1, v2+v3, v4+v5, 0xff));
e1 = clampedRGBA(blueContract(v0, v2, v4, 0xff));
}
break;
}
case 10:
{
e0 = UVec4((v[0]*v[3]) >> 8, (v[1]*v[3]) >> 8, (v[2]*v[3]) >> 8, v[4]);
e1 = UVec4(v[0], v[1], v[2], v[5]);
break;
}
case 11:
{
decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
break;
}
case 12:
{
if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4])
{
e0 = UVec4(v[0], v[2], v[4], v[6]);
e1 = UVec4(v[1], v[3], v[5], v[7]);
}
else
{
e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7]));
e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6]));
}
break;
}
case 13:
{
deInt32 v0 = (deInt32)v[0];
deInt32 v1 = (deInt32)v[1];
deInt32 v2 = (deInt32)v[2];
deInt32 v3 = (deInt32)v[3];
deInt32 v4 = (deInt32)v[4];
deInt32 v5 = (deInt32)v[5];
deInt32 v6 = (deInt32)v[6];
deInt32 v7 = (deInt32)v[7];
bitTransferSigned(v1, v0);
bitTransferSigned(v3, v2);
bitTransferSigned(v5, v4);
bitTransferSigned(v7, v6);
if (v1+v3+v5 >= 0)
{
e0 = clampedRGBA(IVec4(v0, v2, v4, v6));
e1 = clampedRGBA(IVec4(v0+v1, v2+v3, v4+v5, v6+v7));
}
else
{
e0 = clampedRGBA(blueContract(v0+v1, v2+v3, v4+v5, v6+v7));
e1 = clampedRGBA(blueContract(v0, v2, v4, v6));
}
break;
}
case 14:
decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
e0.w() = v[6];
e1.w() = v[7];
break;
case 15:
{
decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
break;
}
default:
DE_ASSERT(false);
}
}
}
void computeColorEndpoints (ColorEndpointPair* dst, const Block128& blockData, const deUint32* endpointModes, int numPartitions, int numColorEndpointValues, const ISEParams& iseParams, int numBitsAvailable)
{
const int colorEndpointDataStart = (numPartitions == 1) ? 17 : 29;
ISEDecodedResult colorEndpointData[18];
{
BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true);
decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams);
}
{
deUint32 unquantizedEndpoints[18];
unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams);
decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions);
}
}
void unquantizeWeights (deUint32 dst[64], const ISEDecodedResult* weightGrid, const ASTCBlockMode& blockMode)
{
const int numWeights = computeNumWeights(blockMode);
const ISEParams& iseParams = blockMode.weightISEParams;
if ((iseParams.mode == ISEMODE_TRIT) || (iseParams.mode == ISEMODE_QUINT))
{
const int rangeCase = iseParams.numBits*2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0);
if ((rangeCase == 0) || (rangeCase == 1))
{
static const deUint32 map0[3] = { 0, 32, 63 };
static const deUint32 map1[5] = { 0, 16, 32, 47, 63 };
const deUint32* const map = (rangeCase == 0) ? &map0[0] : &map1[0];
for (int i = 0; i < numWeights; i++)
{
DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u));
dst[i] = map[weightGrid[i].v];
}
}
else
{
DE_ASSERT(rangeCase <= 6);
static const deUint32 Ca[5] = { 50, 28, 23, 13, 11 };
const deUint32 C = Ca[rangeCase-2];
for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
{
const deUint32 a = getBit(weightGrid[weightNdx].m, 0);
const deUint32 b = getBit(weightGrid[weightNdx].m, 1);
const deUint32 c = getBit(weightGrid[weightNdx].m, 2);
const deUint32 A = (a == 0) ? 0 : (1<<7)-1;
const deUint32 B = (rangeCase == 2) ? 0
: (rangeCase == 3) ? 0
: (rangeCase == 4) ? (b << 6) | (b << 2) | (b << 0)
: (rangeCase == 5) ? (b << 6) | (b << 1)
: (rangeCase == 6) ? (c << 6) | (b << 5) | (c << 1) | (b << 0)
: (deUint32)-1;
dst[weightNdx] = (((weightGrid[weightNdx].tq*C + B) ^ A) >> 2) | (A & 0x20);
}
}
}
else
{
DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6);
}
for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0;
// Initialize nonexistent weights to poison values
for (int weightNdx = numWeights; weightNdx < 64; weightNdx++)
dst[weightNdx] = ~0u;
}
void interpolateWeights (TexelWeightPair* dst, const deUint32 (&unquantizedWeights) [64], int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
{
const int numWeightsPerTexel = blockMode.isDualPlane ? 2 : 1;
const deUint32 scaleX = (1024 + blockWidth/2) / (blockWidth-1);
const deUint32 scaleY = (1024 + blockHeight/2) / (blockHeight-1);
DE_ASSERT(blockMode.weightGridWidth*blockMode.weightGridHeight*numWeightsPerTexel <= (int)DE_LENGTH_OF_ARRAY(unquantizedWeights));
for (int texelY = 0; texelY < blockHeight; texelY++)
{
for (int texelX = 0; texelX < blockWidth; texelX++)
{
const deUint32 gX = (scaleX*texelX*(blockMode.weightGridWidth-1) + 32) >> 6;
const deUint32 gY = (scaleY*texelY*(blockMode.weightGridHeight-1) + 32) >> 6;
const deUint32 jX = gX >> 4;
const deUint32 jY = gY >> 4;
const deUint32 fX = gX & 0xf;
const deUint32 fY = gY & 0xf;
const deUint32 w11 = (fX*fY + 8) >> 4;
const deUint32 w10 = fY - w11;
const deUint32 w01 = fX - w11;
const deUint32 w00 = 16 - fX - fY + w11;
const deUint32 i00 = jY*blockMode.weightGridWidth + jX;
const deUint32 i01 = i00 + 1;
const deUint32 i10 = i00 + blockMode.weightGridWidth;
const deUint32 i11 = i00 + blockMode.weightGridWidth + 1;
// These addresses can be out of bounds, but respective weights will be 0 then.
DE_ASSERT(deInBounds32(i00, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w00 == 0);
DE_ASSERT(deInBounds32(i01, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w01 == 0);
DE_ASSERT(deInBounds32(i10, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w10 == 0);
DE_ASSERT(deInBounds32(i11, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w11 == 0);
for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++)
{
// & 0x3f clamps address to bounds of unquantizedWeights
const deUint32 p00 = unquantizedWeights[(i00 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
const deUint32 p01 = unquantizedWeights[(i01 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
const deUint32 p10 = unquantizedWeights[(i10 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
const deUint32 p11 = unquantizedWeights[(i11 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
dst[texelY*blockWidth + texelX].w[texelWeightNdx] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
}
}
}
}
void computeTexelWeights (TexelWeightPair* dst, const Block128& blockData, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
{
ISEDecodedResult weightGrid[64];
{
BitAccessStream dataStream(blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false);
decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams);
}
{
deUint32 unquantizedWeights[64];
unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode);
interpolateWeights(dst, unquantizedWeights, blockWidth, blockHeight, blockMode);
}
}
inline deUint32 hash52 (deUint32 v)
{
deUint32 p = v;
p ^= p >> 15; p -= p << 17; p += p << 7; p += p << 4;
p ^= p >> 5; p += p << 16; p ^= p >> 7; p ^= p >> 3;
p ^= p << 6; p ^= p >> 17;
return p;
}
int computeTexelPartition (deUint32 seedIn, deUint32 xIn, deUint32 yIn, deUint32 zIn, int numPartitions, bool smallBlock)
{
DE_ASSERT(zIn == 0);
const deUint32 x = smallBlock ? xIn << 1 : xIn;
const deUint32 y = smallBlock ? yIn << 1 : yIn;
const deUint32 z = smallBlock ? zIn << 1 : zIn;
const deUint32 seed = seedIn + 1024*(numPartitions-1);
const deUint32 rnum = hash52(seed);
deUint8 seed1 = (deUint8)( rnum & 0xf);
deUint8 seed2 = (deUint8)((rnum >> 4) & 0xf);
deUint8 seed3 = (deUint8)((rnum >> 8) & 0xf);
deUint8 seed4 = (deUint8)((rnum >> 12) & 0xf);
deUint8 seed5 = (deUint8)((rnum >> 16) & 0xf);
deUint8 seed6 = (deUint8)((rnum >> 20) & 0xf);
deUint8 seed7 = (deUint8)((rnum >> 24) & 0xf);
deUint8 seed8 = (deUint8)((rnum >> 28) & 0xf);
deUint8 seed9 = (deUint8)((rnum >> 18) & 0xf);
deUint8 seed10 = (deUint8)((rnum >> 22) & 0xf);
deUint8 seed11 = (deUint8)((rnum >> 26) & 0xf);
deUint8 seed12 = (deUint8)(((rnum >> 30) | (rnum << 2)) & 0xf);
seed1 = (deUint8)(seed1 * seed1 );
seed2 = (deUint8)(seed2 * seed2 );
seed3 = (deUint8)(seed3 * seed3 );
seed4 = (deUint8)(seed4 * seed4 );
seed5 = (deUint8)(seed5 * seed5 );
seed6 = (deUint8)(seed6 * seed6 );
seed7 = (deUint8)(seed7 * seed7 );
seed8 = (deUint8)(seed8 * seed8 );
seed9 = (deUint8)(seed9 * seed9 );
seed10 = (deUint8)(seed10 * seed10);
seed11 = (deUint8)(seed11 * seed11);
seed12 = (deUint8)(seed12 * seed12);
const int shA = (seed & 2) != 0 ? 4 : 5;
const int shB = numPartitions == 3 ? 6 : 5;
const int sh1 = (seed & 1) != 0 ? shA : shB;
const int sh2 = (seed & 1) != 0 ? shB : shA;
const int sh3 = (seed & 0x10) != 0 ? sh1 : sh2;
seed1 = (deUint8)(seed1 >> sh1);
seed2 = (deUint8)(seed2 >> sh2);
seed3 = (deUint8)(seed3 >> sh1);
seed4 = (deUint8)(seed4 >> sh2);
seed5 = (deUint8)(seed5 >> sh1);
seed6 = (deUint8)(seed6 >> sh2);
seed7 = (deUint8)(seed7 >> sh1);
seed8 = (deUint8)(seed8 >> sh2);
seed9 = (deUint8)(seed9 >> sh3);
seed10 = (deUint8)(seed10 >> sh3);
seed11 = (deUint8)(seed11 >> sh3);
seed12 = (deUint8)(seed12 >> sh3);
const int a = 0x3f & (seed1*x + seed2*y + seed11*z + (rnum >> 14));
const int b = 0x3f & (seed3*x + seed4*y + seed12*z + (rnum >> 10));
const int c = (numPartitions >= 3) ? 0x3f & (seed5*x + seed6*y + seed9*z + (rnum >> 6)) : 0;
const int d = (numPartitions >= 4) ? 0x3f & (seed7*x + seed8*y + seed10*z + (rnum >> 2)) : 0;
return (a >= b && a >= c && a >= d) ? 0
: (b >= c && b >= d) ? 1
: (c >= d) ? 2
: 3;
}
DecompressResult setTexelColors (void* dst, ColorEndpointPair* colorEndpoints, TexelWeightPair* texelWeights, int ccs, deUint32 partitionIndexSeed,
int numPartitions, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode, const deUint32* colorEndpointModes)
{
const bool smallBlock = blockWidth*blockHeight < 31;
DecompressResult result = DECOMPRESS_RESULT_VALID_BLOCK;
bool isHDREndpoint[4];
for (int i = 0; i < numPartitions; i++)
{
isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]);
}
for (int texelY = 0; texelY < blockHeight; texelY++)
{
for (int texelX = 0; texelX < blockWidth; texelX++)
{
const int texelNdx = texelY * blockWidth + texelX;
const int colorEndpointNdx = (numPartitions == 1) ? 0 : computeTexelPartition(partitionIndexSeed, texelX, texelY, 0, numPartitions, smallBlock);
DE_ASSERT(colorEndpointNdx < numPartitions);
const UVec4& e0 = colorEndpoints[colorEndpointNdx].e0;
const UVec4& e1 = colorEndpoints[colorEndpointNdx].e1;
const TexelWeightPair& weight = texelWeights[texelNdx];
if (isLDRMode && isHDREndpoint[colorEndpointNdx])
{
if (isSRGB)
{
((deUint8*)dst)[texelNdx * 4 + 0] = 0xff;
((deUint8*)dst)[texelNdx * 4 + 1] = 0;
((deUint8*)dst)[texelNdx * 4 + 2] = 0xff;
((deUint8*)dst)[texelNdx * 4 + 3] = 0xff;
}
else
{
((float*)dst)[texelNdx * 4 + 0] = 1.0f;
((float*)dst)[texelNdx * 4 + 1] = 0;
((float*)dst)[texelNdx * 4 + 2] = 1.0f;
((float*)dst)[texelNdx * 4 + 3] = 1.0f;
}
result = DECOMPRESS_RESULT_ERROR;
}
else
{
for (int channelNdx = 0; channelNdx < 4; channelNdx++)
{
if (!isHDREndpoint[colorEndpointNdx] || (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == 14)) // \note Alpha for mode 14 is treated the same as LDR.
{
const deUint32 c0 = (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]);
const deUint32 c1 = (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]);
const deUint32 w = weight.w[ccs == channelNdx ? 1 : 0];
const deUint32 c = (c0 * (64 - w) + c1 * w + 32) / 64;
if (isSRGB)
((deUint8*)dst)[texelNdx * 4 + channelNdx] = (deUint8)((c & 0xff00) >> 8);
else
((float*)dst)[texelNdx * 4 + channelNdx] = (c == 65535) ? 1.0f : (float)c / 65536.0f;
}
else
{
DE_ASSERT(!isSRGB);
//DE_STATIC_ASSERT((basisu_astc::meta::TypesSame<deFloat16, deUint16>::Value));
const deUint32 c0 = e0[channelNdx] << 4;
const deUint32 c1 = e1[channelNdx] << 4;
const deUint32 w = weight.w[(ccs == channelNdx) ? 1 : 0];
const deUint32 c = (c0 * (64 - w) + c1 * w + 32) / 64;
const deUint32 e = getBits(c, 11, 15);
const deUint32 m = getBits(c, 0, 10);
const deUint32 mt = (m < 512) ? (3 * m)
: (m >= 1536) ? (5 * m - 2048)
: (4 * m - 512);
const deFloat16 cf = (deFloat16)((e << 10) + (mt >> 3));
((float*)dst)[texelNdx * 4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf);
}
} // channelNdx
}
} // texelX
} // texelY
return result;
}
DecompressResult decompressBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDR)
{
DE_ASSERT(isLDR || !isSRGB);
// Decode block mode.
const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10));
// Check for block mode errors.
if (blockMode.isError)
{
setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
return DECOMPRESS_RESULT_ERROR;
}
// Separate path for void-extent.
if (blockMode.isVoidExtent)
return decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR);
// Compute weight grid values.
const int numWeights = computeNumWeights(blockMode);
const int numWeightDataBits = computeNumRequiredBits(blockMode.weightISEParams, numWeights);
const int numPartitions = (int)blockData.getBits(11, 12) + 1;
// Check for errors in weight grid, partition and dual-plane parameters.
if ((numWeights > 64) ||
(numWeightDataBits > 96) ||
(numWeightDataBits < 24) ||
(blockMode.weightGridWidth > blockWidth) ||
(blockMode.weightGridHeight > blockHeight) ||
((numPartitions == 4) && blockMode.isDualPlane))
{
setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
return DECOMPRESS_RESULT_ERROR;
}
// Compute number of bits available for color endpoint data.
const bool isSingleUniqueCem = (numPartitions == 1) || (blockData.getBits(23, 24) == 0);
const int numConfigDataBits = ((numPartitions == 1) ? 17 : isSingleUniqueCem ? 29 : 25 + 3*numPartitions) +
(blockMode.isDualPlane ? 2 : 0);
const int numBitsForColorEndpoints = 128 - numWeightDataBits - numConfigDataBits;
const int extraCemBitsStart = 127 - numWeightDataBits - (isSingleUniqueCem ? -1
: (numPartitions == 4) ? 7
: (numPartitions == 3) ? 4
: (numPartitions == 2) ? 1
: 0);
// Decode color endpoint modes.
deUint32 colorEndpointModes[4];
decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart);
const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions);
// Check for errors in color endpoint value count.
if ((numColorEndpointValues > 18) || (numBitsForColorEndpoints < (int)deDivRoundUp32(13*numColorEndpointValues, 5)))
{
setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
return DECOMPRESS_RESULT_ERROR;
}
// Compute color endpoints.
ColorEndpointPair colorEndpoints[4];
computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues,
computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), numBitsForColorEndpoints);
// Compute texel weights.
TexelWeightPair texelWeights[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT];
computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode);
// Set texel colors.
const int ccs = blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart-2, extraCemBitsStart-1) : -1;
const deUint32 partitionIndexSeed = (numPartitions > 1) ? blockData.getBits(13, 22) : (deUint32)-1;
return setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, blockHeight, isSRGB, isLDR, &colorEndpointModes[0]);
}
// Returns -1 on error, 0 if LDR, 1 if HDR
int isHDR(const Block128& blockData, int blockWidth, int blockHeight)
{
// Decode block mode.
const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10));
// Check for block mode errors.
if (blockMode.isError)
return -1;
// Separate path for void-extent.
if (blockMode.isVoidExtent)
{
const bool isHDRBlock = blockData.isBitSet(9);
return isHDRBlock ? 1 : 0;
}
// Compute weight grid values.
const int numWeights = computeNumWeights(blockMode);
const int numWeightDataBits = computeNumRequiredBits(blockMode.weightISEParams, numWeights);
const int numPartitions = (int)blockData.getBits(11, 12) + 1;
// Check for errors in weight grid, partition and dual-plane parameters.
if ((numWeights > 64) ||
(numWeightDataBits > 96) ||
(numWeightDataBits < 24) ||
(blockMode.weightGridWidth > blockWidth) ||
(blockMode.weightGridHeight > blockHeight) ||
((numPartitions == 4) && blockMode.isDualPlane))
{
return -1;
}
// Compute number of bits available for color endpoint data.
const bool isSingleUniqueCem = (numPartitions == 1) || (blockData.getBits(23, 24) == 0);
const int extraCemBitsStart = 127 - numWeightDataBits - (isSingleUniqueCem ? -1
: (numPartitions == 4) ? 7
: (numPartitions == 3) ? 4
: (numPartitions == 2) ? 1
: 0);
// Decode color endpoint modes.
deUint32 colorEndpointModes[4];
decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart);
for (int i = 0; i < numPartitions; i++)
{
if (isColorEndpointModeHDR(colorEndpointModes[i]))
return 1;
}
return 0;
}
typedef uint16_t half_float;
half_float float_to_half(float val, bool toward_zero)
{
union { float f; int32_t i; uint32_t u; } fi = { val };
const int flt_m = fi.i & 0x7FFFFF, flt_e = (fi.i >> 23) & 0xFF, flt_s = (fi.i >> 31) & 0x1;
int s = flt_s, e = 0, m = 0;
// inf/NaN
if (flt_e == 0xff)
{
e = 31;
if (flt_m != 0) // NaN
m = 1;
}
// not zero or denormal
else if (flt_e != 0)
{
int new_exp = flt_e - 127;
if (new_exp > 15)
e = 31;
else if (new_exp < -14)
{
if (toward_zero)
m = (int)truncf((1 << 24) * fabsf(fi.f));
else
m = lrintf((1 << 24) * fabsf(fi.f));
}
else
{
e = new_exp + 15;
if (toward_zero)
m = (int)truncf((float)flt_m * (1.0f / (float)(1 << 13)));
else
m = lrintf((float)flt_m * (1.0f / (float)(1 << 13)));
}
}
assert((0 <= m) && (m <= 1024));
if (m == 1024)
{
e++;
m = 0;
}
assert((s >= 0) && (s <= 1));
assert((e >= 0) && (e <= 31));
assert((m >= 0) && (m <= 1023));
half_float result = (half_float)((s << 15) | (e << 10) | m);
return result;
}
float half_to_float(half_float hval)
{
union { float f; uint32_t u; } x = { 0 };
uint32_t s = ((uint32_t)hval >> 15) & 1;
uint32_t e = ((uint32_t)hval >> 10) & 0x1F;
uint32_t m = (uint32_t)hval & 0x3FF;
if (!e)
{
if (!m)
{
// +- 0
x.u = s << 31;
return x.f;
}
else
{
// denormalized
while (!(m & 0x00000400))
{
m <<= 1;
--e;
}
++e;
m &= ~0x00000400;
}
}
else if (e == 31)
{
if (m == 0)
{
// +/- INF
x.u = (s << 31) | 0x7f800000;
return x.f;
}
else
{
// +/- NaN
x.u = (s << 31) | 0x7f800000 | (m << 13);
return x.f;
}
}
e = e + (127 - 15);
m = m << 13;
assert(s <= 1);
assert(m <= 0x7FFFFF);
assert(e <= 255);
x.u = m | (e << 23) | (s << 31);
return x.f;
}
} // anonymous
// See https://registry.khronos.org/DataFormat/specs/1.3/dataformat.1.3.inline.html#_hdr_endpoint_decoding
static void convert_to_half_prec(uint32_t n, float* pVals)
{
#if 0
const int prev_dir = fesetround(FE_TOWARDZERO);
for (uint32_t i = 0; i < n; i++)
pVals[i] = half_to_float(float_to_half(pVals[i]));
fesetround(prev_dir);
for (uint32_t i = 0; i < n; i++)
{
assert(pVals[i] == half_to_float(float_to_half(pVals[i], true)));
}
#else
// This ensures the values are rounded towards zero as half floats.
for (uint32_t i = 0; i < n; i++)
{
pVals[i] = half_to_float(float_to_half(pVals[i], true));
}
#endif
}
bool decompress_ldr(uint8_t *pDst, const uint8_t * data, bool isSRGB, int blockWidth, int blockHeight)
{
float linear[MAX_BLOCK_WIDTH * MAX_BLOCK_HEIGHT * 4];
const Block128 blockData(data);
// isSRGB is true, this writes uint8_t's. Otherwise it writes floats.
if (decompressBlock(isSRGB ? (void*)pDst : (void*)&linear[0], blockData, blockWidth, blockHeight, isSRGB, true) != DECOMPRESS_RESULT_VALID_BLOCK)
{
return false;
}
if (!isSRGB)
{
// Convert the floats to 8-bits with rounding.
int pix = 0;
for (int i = 0; i < blockHeight; i++)
{
for (int j = 0; j < blockWidth; j++, pix++)
{
pDst[4 * pix + 0] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 0] * 65536.0f + .5f), 0, 65535) >> 8);
pDst[4 * pix + 1] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 1] * 65536.0f + .5f), 0, 65535) >> 8);
pDst[4 * pix + 2] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 2] * 65536.0f + .5f), 0, 65535) >> 8);
pDst[4 * pix + 3] = (uint8_t)(basisu_astc::clamp<int>((int)(linear[pix * 4 + 3] * 65536.0f + .5f), 0, 65535) >> 8);
}
}
}
return true;
}
bool decompress_hdr(float* pDstRGBA, const uint8_t* data, int blockWidth, int blockHeight)
{
const Block128 blockData(data);
if (decompressBlock(pDstRGBA, blockData, blockWidth, blockHeight, false, false) != DECOMPRESS_RESULT_VALID_BLOCK)
{
return false;
}
convert_to_half_prec(blockWidth * blockHeight * 4, pDstRGBA);
return true;
}
bool is_hdr(const uint8_t* data, int blockWidth, int blockHeight, bool &is_hdr)
{
is_hdr = false;
const Block128 blockData(data);
int status = isHDR(blockData, blockWidth, blockHeight);
if (status < 0)
{
return false;
}
is_hdr = (status == 1);
return true;
}
} // astc
} // basisu_astc
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif