blob: 03fae33974e5756d0a676ad61de8b1d88340ca20 [file] [log] [blame]
// basisu_containers.h
#pragma once
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <assert.h>
#include <algorithm>
#if defined(__linux__) && !defined(ANDROID)
// Only for malloc_usable_size() in basisu_containers_impl.h
#include <malloc.h>
#define HAS_MALLOC_USABLE_SIZE 1
#endif
// Set to 1 to always check vector operator[], front(), and back() even in release.
#define BASISU_VECTOR_FORCE_CHECKING 0
// If 1, the vector container will not query the CRT to get the size of resized memory blocks.
#define BASISU_VECTOR_DETERMINISTIC 1
#ifdef _MSC_VER
#define BASISU_FORCE_INLINE __forceinline
#else
#define BASISU_FORCE_INLINE inline
#endif
#define BASISU_HASHMAP_TEST 0
namespace basisu
{
enum { cInvalidIndex = -1 };
template <typename S> inline S clamp(S value, S low, S high) { return (value < low) ? low : ((value > high) ? high : value); }
template <typename S> inline S maximum(S a, S b) { return (a > b) ? a : b; }
template <typename S> inline S maximum(S a, S b, S c) { return maximum(maximum(a, b), c); }
template <typename S> inline S maximum(S a, S b, S c, S d) { return maximum(maximum(maximum(a, b), c), d); }
template <typename S> inline S minimum(S a, S b) { return (a < b) ? a : b; }
template <typename S> inline S minimum(S a, S b, S c) { return minimum(minimum(a, b), c); }
template <typename S> inline S minimum(S a, S b, S c, S d) { return minimum(minimum(minimum(a, b), c), d); }
#ifdef _MSC_VER
__declspec(noreturn)
#else
[[noreturn]]
#endif
void container_abort(const char* pMsg, ...);
namespace helpers
{
inline bool is_power_of_2(uint32_t x) { return x && ((x & (x - 1U)) == 0U); }
inline bool is_power_of_2(uint64_t x) { return x && ((x & (x - 1U)) == 0U); }
template<class T> const T& minimum(const T& a, const T& b) { return (b < a) ? b : a; }
template<class T> const T& maximum(const T& a, const T& b) { return (a < b) ? b : a; }
inline uint32_t floor_log2i(uint32_t v)
{
uint32_t l = 0;
while (v > 1U)
{
v >>= 1;
l++;
}
return l;
}
inline uint32_t floor_log2i(uint64_t v)
{
uint32_t l = 0;
while (v > 1U)
{
v >>= 1;
l++;
}
return l;
}
inline uint32_t next_pow2(uint32_t val)
{
val--;
val |= val >> 16;
val |= val >> 8;
val |= val >> 4;
val |= val >> 2;
val |= val >> 1;
return val + 1;
}
inline uint64_t next_pow2(uint64_t val)
{
val--;
val |= val >> 32;
val |= val >> 16;
val |= val >> 8;
val |= val >> 4;
val |= val >> 2;
val |= val >> 1;
return val + 1;
}
} // namespace helpers
template <typename T>
inline T* construct(T* p)
{
return new (static_cast<void*>(p)) T;
}
template <typename T, typename U>
inline T* construct(T* p, const U& init)
{
return new (static_cast<void*>(p)) T(init);
}
template <typename T>
inline void construct_array(T* p, size_t n)
{
T* q = p + n;
for (; p != q; ++p)
new (static_cast<void*>(p)) T;
}
template <typename T, typename U>
inline void construct_array(T* p, size_t n, const U& init)
{
T* q = p + n;
for (; p != q; ++p)
new (static_cast<void*>(p)) T(init);
}
template <typename T>
inline void destruct(T* p)
{
p->~T();
}
template <typename T> inline void destruct_array(T* p, size_t n)
{
T* q = p + n;
for (; p != q; ++p)
p->~T();
}
template<typename T>
struct scalar_type
{
enum { cFlag = false };
static inline void construct(T* p) { basisu::construct(p); }
static inline void construct(T* p, const T& init) { basisu::construct(p, init); }
static inline void construct_array(T* p, size_t n) { basisu::construct_array(p, n); }
static inline void destruct(T* p) { basisu::destruct(p); }
static inline void destruct_array(T* p, size_t n) { basisu::destruct_array(p, n); }
};
template<typename T> struct scalar_type<T*>
{
enum { cFlag = true };
static inline void construct(T** p) { memset(p, 0, sizeof(T*)); }
static inline void construct(T** p, T* init) { *p = init; }
static inline void construct_array(T** p, size_t n) { memset(p, 0, sizeof(T*) * n); }
static inline void destruct(T** p) { p; }
static inline void destruct_array(T** p, size_t n) { p, n; }
};
#define BASISU_DEFINE_BUILT_IN_TYPE(X) \
template<> struct scalar_type<X> { \
enum { cFlag = true }; \
static inline void construct(X* p) { memset(p, 0, sizeof(X)); } \
static inline void construct(X* p, const X& init) { memcpy(p, &init, sizeof(X)); } \
static inline void construct_array(X* p, size_t n) { memset(p, 0, sizeof(X) * n); } \
static inline void destruct(X* p) { p; } \
static inline void destruct_array(X* p, size_t n) { p, n; } };
BASISU_DEFINE_BUILT_IN_TYPE(bool)
BASISU_DEFINE_BUILT_IN_TYPE(char)
BASISU_DEFINE_BUILT_IN_TYPE(unsigned char)
BASISU_DEFINE_BUILT_IN_TYPE(short)
BASISU_DEFINE_BUILT_IN_TYPE(unsigned short)
BASISU_DEFINE_BUILT_IN_TYPE(int)
BASISU_DEFINE_BUILT_IN_TYPE(unsigned int)
BASISU_DEFINE_BUILT_IN_TYPE(long)
BASISU_DEFINE_BUILT_IN_TYPE(unsigned long)
#ifdef __GNUC__
BASISU_DEFINE_BUILT_IN_TYPE(long long)
BASISU_DEFINE_BUILT_IN_TYPE(unsigned long long)
#else
BASISU_DEFINE_BUILT_IN_TYPE(__int64)
BASISU_DEFINE_BUILT_IN_TYPE(unsigned __int64)
#endif
BASISU_DEFINE_BUILT_IN_TYPE(float)
BASISU_DEFINE_BUILT_IN_TYPE(double)
BASISU_DEFINE_BUILT_IN_TYPE(long double)
#undef BASISU_DEFINE_BUILT_IN_TYPE
template<typename T>
struct bitwise_movable { enum { cFlag = false }; };
#define BASISU_DEFINE_BITWISE_MOVABLE(Q) template<> struct bitwise_movable<Q> { enum { cFlag = true }; };
template<typename T>
struct bitwise_copyable { enum { cFlag = false }; };
#define BASISU_DEFINE_BITWISE_COPYABLE(Q) template<> struct bitwise_copyable<Q> { enum { cFlag = true }; };
#define BASISU_IS_POD(T) __is_pod(T)
#define BASISU_IS_SCALAR_TYPE(T) (scalar_type<T>::cFlag)
#if !defined(BASISU_HAVE_STD_TRIVIALLY_COPYABLE) && defined(__GNUC__) && (__GNUC__ < 5)
#define BASISU_IS_TRIVIALLY_COPYABLE(...) __is_trivially_copyable(__VA_ARGS__)
#else
#define BASISU_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value
#endif
// TODO: clean this up, it's still confusing (copying vs. movable).
#define BASISU_IS_BITWISE_COPYABLE(T) (BASISU_IS_SCALAR_TYPE(T) || BASISU_IS_POD(T) || BASISU_IS_TRIVIALLY_COPYABLE(T) || std::is_trivial<T>::value || (bitwise_copyable<T>::cFlag))
#define BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) (BASISU_IS_BITWISE_COPYABLE(T) || (bitwise_movable<T>::cFlag))
#define BASISU_HAS_DESTRUCTOR(T) ((!scalar_type<T>::cFlag) && (!__is_pod(T)) && (!std::is_trivially_destructible<T>::value))
typedef char(&yes_t)[1];
typedef char(&no_t)[2];
template <class U> yes_t class_test(int U::*);
template <class U> no_t class_test(...);
template <class T> struct is_class
{
enum { value = (sizeof(class_test<T>(0)) == sizeof(yes_t)) };
};
template <typename T> struct is_pointer
{
enum { value = false };
};
template <typename T> struct is_pointer<T*>
{
enum { value = true };
};
struct empty_type { };
BASISU_DEFINE_BITWISE_COPYABLE(empty_type);
BASISU_DEFINE_BITWISE_MOVABLE(empty_type);
template<typename T> struct rel_ops
{
friend bool operator!=(const T& x, const T& y) { return (!(x == y)); }
friend bool operator> (const T& x, const T& y) { return (y < x); }
friend bool operator<=(const T& x, const T& y) { return (!(y < x)); }
friend bool operator>=(const T& x, const T& y) { return (!(x < y)); }
};
struct elemental_vector
{
void* m_p;
size_t m_size;
size_t m_capacity;
typedef void (*object_mover)(void* pDst, void* pSrc, size_t num);
bool increase_capacity(size_t min_new_capacity, bool grow_hint, size_t element_size, object_mover pRelocate, bool nofail);
};
// Returns true if a+b would overflow a size_t.
inline bool add_overflow_check(size_t a, size_t b)
{
size_t c = a + b;
return c < a;
}
// Returns false on overflow, true if OK.
template<typename T>
inline bool can_fit_into_size_t(T val)
{
static_assert(std::is_integral<T>::value, "T must be an integral type");
return (val >= 0) && (static_cast<size_t>(val) == val);
}
// Returns true if a*b would overflow a size_t.
inline bool mul_overflow_check(size_t a, size_t b)
{
// Avoid the division on 32-bit platforms
if (sizeof(size_t) == sizeof(uint32_t))
return !can_fit_into_size_t(static_cast<uint64_t>(a) * b);
else
return b && (a > (SIZE_MAX / b));
}
template<typename T>
class writable_span;
template<typename T>
class readable_span
{
public:
using value_type = T;
using size_type = size_t;
using const_pointer = const T*;
using const_reference = const T&;
using const_iterator = const T*;
inline readable_span() :
m_p(nullptr),
m_size(0)
{
}
inline readable_span(const writable_span<T>& other);
inline readable_span& operator= (const writable_span<T>& rhs);
inline readable_span(const_pointer p, size_t n)
{
set(p, n);
}
inline readable_span(const_pointer s, const_pointer e)
{
set(s, e);
}
inline readable_span(const readable_span& other) :
m_p(other.m_p),
m_size(other.m_size)
{
assert(!m_size || m_p);
}
inline readable_span(readable_span&& other) :
m_p(other.m_p),
m_size(other.m_size)
{
assert(!m_size || m_p);
other.m_p = nullptr;
other.m_size = 0;
}
template <size_t N>
inline readable_span(const T(&arr)[N]) :
m_p(arr),
m_size(N)
{
}
template <size_t N>
inline readable_span& set(const T(&arr)[N])
{
m_p = arr;
m_size = N;
return *this;
}
inline readable_span& set(const_pointer p, size_t n)
{
if (!p && n)
{
assert(0);
m_p = nullptr;
m_size = 0;
}
else
{
m_p = p;
m_size = n;
}
return *this;
}
inline readable_span& set(const_pointer s, const_pointer e)
{
if ((e < s) || (!s && e))
{
assert(0);
m_p = nullptr;
m_size = 0;
}
else
{
m_p = s;
m_size = e - s;
}
return *this;
}
inline bool operator== (const readable_span& rhs) const
{
return (m_p == rhs.m_p) && (m_size == rhs.m_size);
}
inline bool operator!= (const readable_span& rhs) const
{
return (m_p != rhs.m_p) || (m_size != rhs.m_size);
}
// only true if the region is totally inside the span
inline bool is_inside_ptr(const_pointer p, size_t n) const
{
if (!is_valid())
{
assert(0);
return false;
}
if (!p)
{
assert(!n);
return false;
}
return (p >= m_p) && ((p + n) <= end());
}
inline bool is_inside(size_t ofs, size_t size) const
{
if (add_overflow_check(ofs, size))
{
assert(0);
return false;
}
if (!is_valid())
{
assert(0);
return false;
}
if ((ofs + size) > m_size)
return false;
return true;
}
inline readable_span subspan(size_t ofs, size_t n) const
{
if (!is_valid())
{
assert(0);
return readable_span((const_pointer)nullptr, (size_t)0);
}
if (add_overflow_check(ofs, n))
{
assert(0);
return readable_span((const_pointer)nullptr, (size_t)0);
}
if ((ofs + n) > m_size)
{
assert(0);
return readable_span((const_pointer)nullptr, (size_t)0);
}
return readable_span(m_p + ofs, n);
}
void clear()
{
m_p = nullptr;
m_size = 0;
}
inline bool empty() const { return !m_size; }
// true if the span is non-nullptr and is not empty
inline bool is_valid() const { return m_p && m_size; }
inline bool is_nullptr() const { return m_p == nullptr; }
inline size_t size() const { return m_size; }
inline size_t size_in_bytes() const { assert(can_fit_into_size_t((uint64_t)m_size * sizeof(T))); return m_size * sizeof(T); }
inline const_pointer get_ptr() const { return m_p; }
inline const_iterator begin() const { return m_p; }
inline const_iterator end() const { assert(m_p || !m_size); return m_p + m_size; }
inline const_iterator cbegin() const { return m_p; }
inline const_iterator cend() const { assert(m_p || !m_size); return m_p + m_size; }
inline const_reference front() const
{
if (!(m_p && m_size))
container_abort("readable_span invalid\n");
return m_p[0];
}
inline const_reference back() const
{
if (!(m_p && m_size))
container_abort("readable_span invalid\n");
return m_p[m_size - 1];
}
inline readable_span& operator= (const readable_span& rhs)
{
m_p = rhs.m_p;
m_size = rhs.m_size;
return *this;
}
inline readable_span& operator= (readable_span&& rhs)
{
if (this != &rhs)
{
m_p = rhs.m_p;
m_size = rhs.m_size;
rhs.m_p = nullptr;
rhs.m_size = 0;
}
return *this;
}
inline const_reference operator* () const
{
if (!(m_p && m_size))
container_abort("readable_span invalid\n");
return *m_p;
}
inline const_pointer operator-> () const
{
if (!(m_p && m_size))
container_abort("readable_span invalid\n");
return m_p;
}
inline readable_span& remove_prefix(size_t n)
{
if ((!m_p) || (n > m_size))
{
assert(0);
return *this;
}
m_p += n;
m_size -= n;
return *this;
}
inline readable_span& remove_suffix(size_t n)
{
if ((!m_p) || (n > m_size))
{
assert(0);
return *this;
}
m_size -= n;
return *this;
}
inline readable_span& enlarge(size_t n)
{
if (!m_p)
{
assert(0);
return *this;
}
if (add_overflow_check(m_size, n))
{
assert(0);
return *this;
}
m_size += n;
return *this;
}
bool copy_from(size_t src_ofs, size_t src_size, T* pDst, size_t dst_ofs) const
{
if (!src_size)
return true;
if (!pDst)
{
assert(0);
return false;
}
if (!is_inside(src_ofs, src_size))
{
assert(0);
return false;
}
const_pointer pS = m_p + src_ofs;
if (BASISU_IS_BITWISE_COPYABLE(T))
{
const uint64_t num_bytes = (uint64_t)src_size * sizeof(T);
if (!can_fit_into_size_t(num_bytes))
{
assert(0);
return false;
}
memcpy(pDst, pS, (size_t)num_bytes);
}
else
{
T* pD = pDst + dst_ofs;
T* pDst_end = pD + src_size;
while (pD != pDst_end)
*pD++ = *pS++;
}
return true;
}
inline const_reference operator[] (size_t idx) const
{
if ((!is_valid()) || (idx >= m_size))
container_abort("readable_span: invalid span or index\n");
return m_p[idx];
}
inline uint16_t read_le16(size_t ofs) const
{
static_assert(sizeof(T) == 1, "T must be byte size");
if (!is_inside(ofs, sizeof(uint16_t)))
{
assert(0);
return false;
}
const uint8_t a = (uint8_t)m_p[ofs];
const uint8_t b = (uint8_t)m_p[ofs + 1];
return a | (b << 8u);
}
template<typename R>
inline R read_val(size_t ofs) const
{
static_assert(sizeof(T) == 1, "T must be byte size");
if (!is_inside(ofs, sizeof(R)))
{
assert(0);
return (R)0;
}
return *reinterpret_cast<const R*>(&m_p[ofs]);
}
inline uint16_t read_be16(size_t ofs) const
{
static_assert(sizeof(T) == 1, "T must be byte size");
if (!is_inside(ofs, sizeof(uint16_t)))
{
assert(0);
return 0;
}
const uint8_t b = (uint8_t)m_p[ofs];
const uint8_t a = (uint8_t)m_p[ofs + 1];
return a | (b << 8u);
}
inline uint32_t read_le32(size_t ofs) const
{
static_assert(sizeof(T) == 1, "T must be byte size");
if (!is_inside(ofs, sizeof(uint32_t)))
{
assert(0);
return 0;
}
const uint8_t a = (uint8_t)m_p[ofs];
const uint8_t b = (uint8_t)m_p[ofs + 1];
const uint8_t c = (uint8_t)m_p[ofs + 2];
const uint8_t d = (uint8_t)m_p[ofs + 3];
return a | (b << 8u) | (c << 16u) | (d << 24u);
}
inline uint32_t read_be32(size_t ofs) const
{
static_assert(sizeof(T) == 1, "T must be byte size");
if (!is_inside(ofs, sizeof(uint32_t)))
{
assert(0);
return 0;
}
const uint8_t d = (uint8_t)m_p[ofs];
const uint8_t c = (uint8_t)m_p[ofs + 1];
const uint8_t b = (uint8_t)m_p[ofs + 2];
const uint8_t a = (uint8_t)m_p[ofs + 3];
return a | (b << 8u) | (c << 16u) | (d << 24u);
}
inline uint64_t read_le64(size_t ofs) const
{
if (!add_overflow_check(ofs, sizeof(uint64_t)))
{
assert(0);
return 0;
}
const uint64_t l = read_le32(ofs);
const uint64_t h = read_le32(ofs + sizeof(uint32_t));
return l | (h << 32u);
}
inline uint64_t read_be64(size_t ofs) const
{
if (!add_overflow_check(ofs, sizeof(uint64_t)))
{
assert(0);
return 0;
}
const uint64_t h = read_be32(ofs);
const uint64_t l = read_be32(ofs + sizeof(uint32_t));
return l | (h << 32u);
}
private:
const_pointer m_p;
size_t m_size;
};
template<typename T>
class writable_span
{
friend readable_span<T>;
public:
using value_type = T;
using size_type = size_t;
using const_pointer = const T*;
using const_reference = const T&;
using const_iterator = const T*;
using pointer = T*;
using reference = T&;
using iterator = T*;
inline writable_span() :
m_p(nullptr),
m_size(0)
{
}
inline writable_span(T* p, size_t n)
{
set(p, n);
}
inline writable_span(T* s, T* e)
{
set(s, e);
}
inline writable_span(const writable_span& other) :
m_p(other.m_p),
m_size(other.m_size)
{
assert(!m_size || m_p);
}
inline writable_span(writable_span&& other) :
m_p(other.m_p),
m_size(other.m_size)
{
assert(!m_size || m_p);
other.m_p = nullptr;
other.m_size = 0;
}
template <size_t N>
inline writable_span(T(&arr)[N]) :
m_p(arr),
m_size(N)
{
}
readable_span<T> get_readable_span() const
{
return readable_span<T>(m_p, m_size);
}
template <size_t N>
inline writable_span& set(T(&arr)[N])
{
m_p = arr;
m_size = N;
return *this;
}
inline writable_span& set(T* p, size_t n)
{
if (!p && n)
{
assert(0);
m_p = nullptr;
m_size = 0;
}
else
{
m_p = p;
m_size = n;
}
return *this;
}
inline writable_span& set(T* s, T* e)
{
if ((e < s) || (!s && e))
{
assert(0);
m_p = nullptr;
m_size = 0;
}
else
{
m_p = s;
m_size = e - s;
}
return *this;
}
inline bool operator== (const writable_span& rhs) const
{
return (m_p == rhs.m_p) && (m_size == rhs.m_size);
}
inline bool operator== (const readable_span<T>& rhs) const
{
return (m_p == rhs.m_p) && (m_size == rhs.m_size);
}
inline bool operator!= (const writable_span& rhs) const
{
return (m_p != rhs.m_p) || (m_size != rhs.m_size);
}
inline bool operator!= (const readable_span<T>& rhs) const
{
return (m_p != rhs.m_p) || (m_size != rhs.m_size);
}
// only true if the region is totally inside the span
inline bool is_inside_ptr(const_pointer p, size_t n) const
{
if (!is_valid())
{
assert(0);
return false;
}
if (!p)
{
assert(!n);
return false;
}
return (p >= m_p) && ((p + n) <= end());
}
inline bool is_inside(size_t ofs, size_t size) const
{
if (add_overflow_check(ofs, size))
{
assert(0);
return false;
}
if (!is_valid())
{
assert(0);
return false;
}
if ((ofs + size) > m_size)
return false;
return true;
}
inline writable_span subspan(size_t ofs, size_t n) const
{
if (!is_valid())
{
assert(0);
return writable_span((T*)nullptr, (size_t)0);
}
if (add_overflow_check(ofs, n))
{
assert(0);
return writable_span((T*)nullptr, (size_t)0);
}
if ((ofs + n) > m_size)
{
assert(0);
return writable_span((T*)nullptr, (size_t)0);
}
return writable_span(m_p + ofs, n);
}
void clear()
{
m_p = nullptr;
m_size = 0;
}
inline bool empty() const { return !m_size; }
// true if the span is non-nullptr and is not empty
inline bool is_valid() const { return m_p && m_size; }
inline bool is_nullptr() const { return m_p == nullptr; }
inline size_t size() const { return m_size; }
inline size_t size_in_bytes() const { assert(can_fit_into_size_t((uint64_t)m_size * sizeof(T))); return m_size * sizeof(T); }
inline T* get_ptr() const { return m_p; }
inline iterator begin() const { return m_p; }
inline iterator end() const { assert(m_p || !m_size); return m_p + m_size; }
inline const_iterator cbegin() const { return m_p; }
inline const_iterator cend() const { assert(m_p || !m_size); return m_p + m_size; }
inline T& front() const
{
if (!(m_p && m_size))
container_abort("writable_span invalid\n");
return m_p[0];
}
inline T& back() const
{
if (!(m_p && m_size))
container_abort("writable_span invalid\n");
return m_p[m_size - 1];
}
inline writable_span& operator= (const writable_span& rhs)
{
m_p = rhs.m_p;
m_size = rhs.m_size;
return *this;
}
inline writable_span& operator= (writable_span&& rhs)
{
if (this != &rhs)
{
m_p = rhs.m_p;
m_size = rhs.m_size;
rhs.m_p = nullptr;
rhs.m_size = 0;
}
return *this;
}
inline T& operator* () const
{
if (!(m_p && m_size))
container_abort("writable_span invalid\n");
return *m_p;
}
inline T* operator-> () const
{
if (!(m_p && m_size))
container_abort("writable_span invalid\n");
return m_p;
}
inline bool set_all(size_t ofs, size_t size, const_reference val)
{
if (!size)
return true;
if (!is_inside(ofs, size))
{
assert(0);
return false;
}
T* pDst = m_p + ofs;
if ((sizeof(T) == sizeof(uint8_t)) && (BASISU_IS_BITWISE_COPYABLE(T)))
{
memset(pDst, (int)((uint8_t)val), size);
}
else
{
T* pDst_end = pDst + size;
while (pDst != pDst_end)
*pDst++ = val;
}
return true;
}
inline bool set_all(const_reference val)
{
return set_all(0, m_size, val);
}
inline writable_span& remove_prefix(size_t n)
{
if ((!m_p) || (n > m_size))
{
assert(0);
return *this;
}
m_p += n;
m_size -= n;
return *this;
}
inline writable_span& remove_suffix(size_t n)
{
if ((!m_p) || (n > m_size))
{
assert(0);
return *this;
}
m_size -= n;
return *this;
}
inline writable_span& enlarge(size_t n)
{
if (!m_p)
{
assert(0);
return *this;
}
if (add_overflow_check(m_size, n))
{
assert(0);
return *this;
}
m_size += n;
return *this;
}
// copy from this span to the destination ptr
bool copy_from(size_t src_ofs, size_t src_size, T* pDst, size_t dst_ofs) const
{
if (!src_size)
return true;
if (!pDst)
{
assert(0);
return false;
}
if (!is_inside(src_ofs, src_size))
{
assert(0);
return false;
}
const_pointer pS = m_p + src_ofs;
if (BASISU_IS_BITWISE_COPYABLE(T))
{
const uint64_t num_bytes = (uint64_t)src_size * sizeof(T);
if (!can_fit_into_size_t(num_bytes))
{
assert(0);
return false;
}
memcpy(pDst, pS, (size_t)num_bytes);
}
else
{
T* pD = pDst + dst_ofs;
T* pDst_end = pD + src_size;
while (pD != pDst_end)
*pD++ = *pS++;
}
return true;
}
// copy from the source ptr into this span
bool copy_into(const_pointer pSrc, size_t src_ofs, size_t src_size, size_t dst_ofs) const
{
if (!src_size)
return true;
if (!pSrc)
{
assert(0);
return false;
}
if (add_overflow_check(src_ofs, src_size) || add_overflow_check(dst_ofs, src_size))
{
assert(0);
return false;
}
if (!is_valid())
{
assert(0);
return false;
}
if (!is_inside(dst_ofs, src_size))
{
assert(0);
return false;
}
const_pointer pS = pSrc + src_ofs;
T* pD = m_p + dst_ofs;
if (BASISU_IS_BITWISE_COPYABLE(T))
{
const uint64_t num_bytes = (uint64_t)src_size * sizeof(T);
if (!can_fit_into_size_t(num_bytes))
{
assert(0);
return false;
}
memcpy(pD, pS, (size_t)num_bytes);
}
else
{
T* pDst_end = pD + src_size;
while (pD != pDst_end)
*pD++ = *pS++;
}
return true;
}
// copy from a source span into this span
bool copy_into(const readable_span<T>& src, size_t src_ofs, size_t src_size, size_t dst_ofs) const
{
if (!src.is_inside(src_ofs, src_size))
{
assert(0);
return false;
}
return copy_into(src.get_ptr(), src_ofs, src_size, dst_ofs);
}
// copy from a source span into this span
bool copy_into(const writable_span& src, size_t src_ofs, size_t src_size, size_t dst_ofs) const
{
if (!src.is_inside(src_ofs, src_size))
{
assert(0);
return false;
}
return copy_into(src.get_ptr(), src_ofs, src_size, dst_ofs);
}
inline T& operator[] (size_t idx) const
{
if ((!is_valid()) || (idx >= m_size))
container_abort("writable_span: invalid span or index\n");
return m_p[idx];
}
template<typename R>
inline R read_val(size_t ofs) const
{
static_assert(sizeof(T) == 1, "T must be byte size");
if (!is_inside(ofs, sizeof(R)))
{
assert(0);
return (R)0;
}
return *reinterpret_cast<const R*>(&m_p[ofs]);
}
template<typename R>
inline bool write_val(size_t ofs, R val) const
{
static_assert(sizeof(T) == 1, "T must be byte size");
if (!is_inside(ofs, sizeof(R)))
{
assert(0);
return false;
}
*reinterpret_cast<R*>(&m_p[ofs]) = val;
return true;
}
inline bool write_le16(size_t ofs, uint16_t val) const
{
static_assert(sizeof(T) == 1, "T must be byte size");
if (!is_inside(ofs, sizeof(uint16_t)))
{
assert(0);
return false;
}
m_p[ofs] = (uint8_t)val;
m_p[ofs + 1] = (uint8_t)(val >> 8u);
return true;
}
inline bool write_be16(size_t ofs, uint16_t val) const
{
static_assert(sizeof(T) == 1, "T must be byte size");
if (!is_inside(ofs, sizeof(uint16_t)))
{
assert(0);
return false;
}
m_p[ofs + 1] = (uint8_t)val;
m_p[ofs] = (uint8_t)(val >> 8u);
return true;
}
inline bool write_le32(size_t ofs, uint32_t val) const
{
static_assert(sizeof(T) == 1, "T must be byte size");
if (!is_inside(ofs, sizeof(uint32_t)))
{
assert(0);
return false;
}
m_p[ofs] = (uint8_t)val;
m_p[ofs + 1] = (uint8_t)(val >> 8u);
m_p[ofs + 2] = (uint8_t)(val >> 16u);
m_p[ofs + 3] = (uint8_t)(val >> 24u);
return true;
}
inline bool write_be32(size_t ofs, uint32_t val) const
{
static_assert(sizeof(T) == 1, "T must be byte size");
if (!is_inside(ofs, sizeof(uint32_t)))
{
assert(0);
return false;
}
m_p[ofs + 3] = (uint8_t)val;
m_p[ofs + 2] = (uint8_t)(val >> 8u);
m_p[ofs + 1] = (uint8_t)(val >> 16u);
m_p[ofs] = (uint8_t)(val >> 24u);
return true;
}
inline bool write_le64(size_t ofs, uint64_t val) const
{
if (!add_overflow_check(ofs, sizeof(uint64_t)))
{
assert(0);
return false;
}
return write_le32(ofs, (uint32_t)val) && write_le32(ofs + sizeof(uint32_t), (uint32_t)(val >> 32u));
}
inline bool write_be64(size_t ofs, uint64_t val) const
{
if (!add_overflow_check(ofs, sizeof(uint64_t)))
{
assert(0);
return false;
}
return write_be32(ofs + sizeof(uint32_t), (uint32_t)val) && write_be32(ofs, (uint32_t)(val >> 32u));
}
inline uint16_t read_le16(size_t ofs) const
{
static_assert(sizeof(T) == 1, "T must be byte size");
if (!is_inside(ofs, sizeof(uint16_t)))
{
assert(0);
return 0;
}
const uint8_t a = (uint8_t)m_p[ofs];
const uint8_t b = (uint8_t)m_p[ofs + 1];
return a | (b << 8u);
}
inline uint16_t read_be16(size_t ofs) const
{
static_assert(sizeof(T) == 1, "T must be byte size");
if (!is_inside(ofs, sizeof(uint16_t)))
{
assert(0);
return 0;
}
const uint8_t b = (uint8_t)m_p[ofs];
const uint8_t a = (uint8_t)m_p[ofs + 1];
return a | (b << 8u);
}
inline uint32_t read_le32(size_t ofs) const
{
static_assert(sizeof(T) == 1, "T must be byte size");
if (!is_inside(ofs, sizeof(uint32_t)))
{
assert(0);
return 0;
}
const uint8_t a = (uint8_t)m_p[ofs];
const uint8_t b = (uint8_t)m_p[ofs + 1];
const uint8_t c = (uint8_t)m_p[ofs + 2];
const uint8_t d = (uint8_t)m_p[ofs + 3];
return a | (b << 8u) | (c << 16u) | (d << 24u);
}
inline uint32_t read_be32(size_t ofs) const
{
static_assert(sizeof(T) == 1, "T must be byte size");
if (!is_inside(ofs, sizeof(uint32_t)))
{
assert(0);
return 0;
}
const uint8_t d = (uint8_t)m_p[ofs];
const uint8_t c = (uint8_t)m_p[ofs + 1];
const uint8_t b = (uint8_t)m_p[ofs + 2];
const uint8_t a = (uint8_t)m_p[ofs + 3];
return a | (b << 8u) | (c << 16u) | (d << 24u);
}
inline uint64_t read_le64(size_t ofs) const
{
if (!add_overflow_check(ofs, sizeof(uint64_t)))
{
assert(0);
return 0;
}
const uint64_t l = read_le32(ofs);
const uint64_t h = read_le32(ofs + sizeof(uint32_t));
return l | (h << 32u);
}
inline uint64_t read_be64(size_t ofs) const
{
if (!add_overflow_check(ofs, sizeof(uint64_t)))
{
assert(0);
return 0;
}
const uint64_t h = read_be32(ofs);
const uint64_t l = read_be32(ofs + sizeof(uint32_t));
return l | (h << 32u);
}
private:
T* m_p;
size_t m_size;
};
template<typename T>
inline readable_span<T>::readable_span(const writable_span<T>& other) :
m_p(other.m_p),
m_size(other.m_size)
{
}
template<typename T>
inline readable_span<T>& readable_span<T>::operator= (const writable_span<T>& rhs)
{
m_p = rhs.m_p;
m_size = rhs.m_size;
return *this;
}
template<typename T>
inline bool span_copy(const writable_span<T>& dst, const readable_span<T>& src)
{
return dst.copy_into(src, 0, src.size(), 0);
}
template<typename T>
inline bool span_copy(const writable_span<T>& dst, const writable_span<T>& src)
{
return dst.copy_into(src, 0, src.size(), 0);
}
template<typename T>
inline bool span_copy(const writable_span<T>& dst, size_t dst_ofs, const writable_span<T>& src, size_t src_ofs, size_t len)
{
return dst.copy_into(src, src_ofs, len, dst_ofs);
}
template<typename T>
inline bool span_copy(const writable_span<T>& dst, size_t dst_ofs, const readable_span<T>& src, size_t src_ofs, size_t len)
{
return dst.copy_into(src, src_ofs, len, dst_ofs);
}
template<typename T>
class vector : public rel_ops< vector<T> >
{
public:
typedef T* iterator;
typedef const T* const_iterator;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T* pointer;
typedef const T* const_pointer;
inline vector() :
m_p(nullptr),
m_size(0),
m_capacity(0)
{
}
inline vector(size_t n, const T& init) :
m_p(nullptr),
m_size(0),
m_capacity(0)
{
increase_capacity(n, false);
construct_array(m_p, n, init);
m_size = n;
}
inline vector(vector&& other) :
m_p(other.m_p),
m_size(other.m_size),
m_capacity(other.m_capacity)
{
other.m_p = nullptr;
other.m_size = 0;
other.m_capacity = 0;
}
inline vector(const vector& other) :
m_p(nullptr),
m_size(0),
m_capacity(0)
{
increase_capacity(other.m_size, false);
m_size = other.m_size;
if (BASISU_IS_BITWISE_COPYABLE(T))
{
#ifndef __EMSCRIPTEN__
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wclass-memaccess"
#endif
#endif
if ((m_p) && (other.m_p))
{
memcpy(m_p, other.m_p, m_size * sizeof(T));
}
#ifndef __EMSCRIPTEN__
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
#endif
}
else
{
T* pDst = m_p;
const T* pSrc = other.m_p;
for (size_t i = m_size; i > 0; i--)
construct(pDst++, *pSrc++);
}
}
inline explicit vector(size_t size) :
m_p(nullptr),
m_size(0),
m_capacity(0)
{
resize(size);
}
inline explicit vector(std::initializer_list<T> init_list) :
m_p(nullptr),
m_size(0),
m_capacity(0)
{
resize(init_list.size());
size_t idx = 0;
for (const T& elem : init_list)
m_p[idx++] = elem;
assert(idx == m_size);
}
inline vector(const readable_span<T>& rs) :
m_p(nullptr),
m_size(0),
m_capacity(0)
{
set(rs);
}
inline vector(const writable_span<T>& ws) :
m_p(nullptr),
m_size(0),
m_capacity(0)
{
set(ws);
}
// Set contents of vector to contents of the readable span
bool set(const readable_span<T>& rs)
{
if (!rs.is_valid())
{
assert(0);
return false;
}
const size_t new_size = rs.size();
// Could call resize(), but it'll redundantly construct trivial types.
if (m_size != new_size)
{
if (new_size < m_size)
{
if (BASISU_HAS_DESTRUCTOR(T))
{
scalar_type<T>::destruct_array(m_p + new_size, m_size - new_size);
}
}
else
{
if (new_size > m_capacity)
{
if (!increase_capacity(new_size, false, true))
return false;
}
}
// Don't bother constructing trivial types, because we're going to memcpy() over them anyway.
if (!BASISU_IS_BITWISE_COPYABLE(T))
{
scalar_type<T>::construct_array(m_p + m_size, new_size - m_size);
}
m_size = new_size;
}
if (!rs.copy_from(0, rs.size(), m_p, 0))
{
assert(0);
return false;
}
return true;
}
// Set contents of vector to contents of the writable span
inline bool set(const writable_span<T>& ws)
{
return set(ws.get_readable_span());
}
inline ~vector()
{
if (m_p)
{
if (BASISU_HAS_DESTRUCTOR(T))
{
scalar_type<T>::destruct_array(m_p, m_size);
}
free(m_p);
}
}
inline vector& operator= (const vector& other)
{
if (this == &other)
return *this;
if (m_capacity >= other.m_size)
resize(0);
else
{
clear();
increase_capacity(other.m_size, false);
}
if (BASISU_IS_BITWISE_COPYABLE(T))
{
#ifndef __EMSCRIPTEN__
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wclass-memaccess"
#endif
#endif
if ((m_p) && (other.m_p))
memcpy(m_p, other.m_p, other.m_size * sizeof(T));
#ifndef __EMSCRIPTEN__
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
#endif
}
else
{
T* pDst = m_p;
const T* pSrc = other.m_p;
for (size_t i = other.m_size; i > 0; i--)
construct(pDst++, *pSrc++);
}
m_size = other.m_size;
return *this;
}
inline vector& operator= (vector&& rhs)
{
if (this != &rhs)
{
clear();
m_p = rhs.m_p;
m_size = rhs.m_size;
m_capacity = rhs.m_capacity;
rhs.m_p = nullptr;
rhs.m_size = 0;
rhs.m_capacity = 0;
}
return *this;
}
BASISU_FORCE_INLINE const T* begin() const { return m_p; }
BASISU_FORCE_INLINE T* begin() { return m_p; }
BASISU_FORCE_INLINE const T* end() const { return m_p + m_size; }
BASISU_FORCE_INLINE T* end() { return m_p + m_size; }
BASISU_FORCE_INLINE bool empty() const { return !m_size; }
BASISU_FORCE_INLINE size_t size() const { return m_size; }
BASISU_FORCE_INLINE uint32_t size_u32() const { assert(m_size <= UINT32_MAX); return static_cast<uint32_t>(m_size); }
BASISU_FORCE_INLINE size_t size_in_bytes() const { return m_size * sizeof(T); }
BASISU_FORCE_INLINE uint32_t size_in_bytes_u32() const { assert((m_size * sizeof(T)) <= UINT32_MAX); return static_cast<uint32_t>(m_size * sizeof(T)); }
BASISU_FORCE_INLINE size_t capacity() const { return m_capacity; }
#if !BASISU_VECTOR_FORCE_CHECKING
BASISU_FORCE_INLINE const T& operator[] (size_t i) const { assert(i < m_size); return m_p[i]; }
BASISU_FORCE_INLINE T& operator[] (size_t i) { assert(i < m_size); return m_p[i]; }
#else
BASISU_FORCE_INLINE const T& operator[] (size_t i) const
{
if (i >= m_size)
container_abort("vector::operator[] invalid index: %zu, max entries %u, type size %zu\n", i, m_size, sizeof(T));
return m_p[i];
}
BASISU_FORCE_INLINE T& operator[] (size_t i)
{
if (i >= m_size)
container_abort("vector::operator[] invalid index: %zu, max entries %u, type size %zu\n", i, m_size, sizeof(T));
return m_p[i];
}
#endif
// at() always includes range checking, even in final builds, unlike operator [].
BASISU_FORCE_INLINE const T& at(size_t i) const
{
if (i >= m_size)
container_abort("vector::at() invalid index: %zu, max entries %u, type size %zu\n", i, m_size, sizeof(T));
return m_p[i];
}
BASISU_FORCE_INLINE T& at(size_t i)
{
if (i >= m_size)
container_abort("vector::at() invalid index: %zu, max entries %u, type size %zu\n", i, m_size, sizeof(T));
return m_p[i];
}
#if !BASISU_VECTOR_FORCE_CHECKING
BASISU_FORCE_INLINE const T& front() const { assert(m_size); return m_p[0]; }
BASISU_FORCE_INLINE T& front() { assert(m_size); return m_p[0]; }
BASISU_FORCE_INLINE const T& back() const { assert(m_size); return m_p[m_size - 1]; }
BASISU_FORCE_INLINE T& back() { assert(m_size); return m_p[m_size - 1]; }
#else
BASISU_FORCE_INLINE const T& front() const
{
if (!m_size)
container_abort("front: vector is empty, type size %zu\n", sizeof(T));
return m_p[0];
}
BASISU_FORCE_INLINE T& front()
{
if (!m_size)
container_abort("front: vector is empty, type size %zu\n", sizeof(T));
return m_p[0];
}
BASISU_FORCE_INLINE const T& back() const
{
if (!m_size)
container_abort("back: vector is empty, type size %zu\n", sizeof(T));
return m_p[m_size - 1];
}
BASISU_FORCE_INLINE T& back()
{
if (!m_size)
container_abort("back: vector is empty, type size %zu\n", sizeof(T));
return m_p[m_size - 1];
}
#endif
BASISU_FORCE_INLINE const T* get_ptr() const { return m_p; }
BASISU_FORCE_INLINE T* get_ptr() { return m_p; }
BASISU_FORCE_INLINE const T* data() const { return m_p; }
BASISU_FORCE_INLINE T* data() { return m_p; }
// clear() sets the container to empty, then frees the allocated block.
inline void clear()
{
if (m_p)
{
if (BASISU_HAS_DESTRUCTOR(T))
{
scalar_type<T>::destruct_array(m_p, m_size);
}
free(m_p);
m_p = nullptr;
m_size = 0;
m_capacity = 0;
}
}
inline void clear_no_destruction()
{
if (m_p)
{
free(m_p);
m_p = nullptr;
m_size = 0;
m_capacity = 0;
}
}
inline void reserve(size_t new_capacity)
{
if (!try_reserve(new_capacity))
container_abort("vector:reserve: try_reserve failed!\n");
}
inline bool try_reserve(size_t new_capacity)
{
if (new_capacity > m_capacity)
{
if (!increase_capacity(new_capacity, false, true))
return false;
}
else if (new_capacity < m_capacity)
{
// Must work around the lack of a "decrease_capacity()" method.
// This case is rare enough in practice that it's probably not worth implementing an optimized in-place resize.
vector tmp;
if (!tmp.increase_capacity(helpers::maximum(m_size, new_capacity), false, true))
return false;
tmp = *this;
swap(tmp);
}
return true;
}
// try_resize(0) sets the container to empty, but does not free the allocated block.
inline bool try_resize(size_t new_size, bool grow_hint = false)
{
if (m_size != new_size)
{
if (new_size < m_size)
{
if (BASISU_HAS_DESTRUCTOR(T))
{
scalar_type<T>::destruct_array(m_p + new_size, m_size - new_size);
}
}
else
{
if (new_size > m_capacity)
{
if (!increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint, true))
return false;
}
scalar_type<T>::construct_array(m_p + m_size, new_size - m_size);
}
m_size = new_size;
}
return true;
}
// resize(0) sets the container to empty, but does not free the allocated block.
inline void resize(size_t new_size, bool grow_hint = false)
{
if (!try_resize(new_size, grow_hint))
container_abort("vector::resize failed, new size %zu\n", new_size);
}
// If size >= capacity/2, reset() sets the container's size to 0 but doesn't free the allocated block (because the container may be similarly loaded in the future).
// Otherwise it blows away the allocated block. See http://www.codercorner.com/blog/?p=494
inline void reset()
{
if (m_size >= (m_capacity >> 1))
resize(0);
else
clear();
}
inline T* try_enlarge(size_t i)
{
size_t cur_size = m_size;
if (add_overflow_check(cur_size, i))
return nullptr;
if (!try_resize(cur_size + i, true))
return nullptr;
return get_ptr() + cur_size;
}
inline T* enlarge(size_t i)
{
T* p = try_enlarge(i);
if (!p)
container_abort("vector::enlarge failed, amount %zu!\n", i);
return p;
}
BASISU_FORCE_INLINE void push_back(const T& obj)
{
assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size)));
if (m_size >= m_capacity)
{
if (add_overflow_check(m_size, 1))
container_abort("vector::push_back: vector too large\n");
increase_capacity(m_size + 1, true);
}
scalar_type<T>::construct(m_p + m_size, obj);
m_size++;
}
BASISU_FORCE_INLINE void push_back_value(T&& obj)
{
assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size)));
if (m_size >= m_capacity)
{
if (add_overflow_check(m_size, 1))
container_abort("vector::push_back_value: vector too large\n");
increase_capacity(m_size + 1, true);
}
new ((void*)(m_p + m_size)) T(std::move(obj));
m_size++;
}
inline bool try_push_back(const T& obj)
{
assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size)));
if (m_size >= m_capacity)
{
if (add_overflow_check(m_size, 1))
return false;
if (!increase_capacity(m_size + 1, true, true))
return false;
}
scalar_type<T>::construct(m_p + m_size, obj);
m_size++;
return true;
}
inline bool try_push_back(T&& obj)
{
assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size)));
if (m_size >= m_capacity)
{
if (add_overflow_check(m_size, 1))
return false;
if (!increase_capacity(m_size + 1, true, true))
return false;
}
new ((void*)(m_p + m_size)) T(std::move(obj));
m_size++;
return true;
}
// obj is explictly passed in by value, not ref
inline void push_back_value(T obj)
{
if (m_size >= m_capacity)
{
if (add_overflow_check(m_size, 1))
container_abort("vector::push_back_value: vector too large\n");
increase_capacity(m_size + 1, true);
}
scalar_type<T>::construct(m_p + m_size, obj);
m_size++;
}
// obj is explictly passed in by value, not ref
inline bool try_push_back_value(T obj)
{
if (m_size >= m_capacity)
{
if (add_overflow_check(m_size, 1))
return false;
if (!increase_capacity(m_size + 1, true, true))
return false;
}
scalar_type<T>::construct(m_p + m_size, obj);
m_size++;
return true;
}
template<typename... Args>
BASISU_FORCE_INLINE void emplace_back(Args&&... args)
{
if (m_size >= m_capacity)
{
if (add_overflow_check(m_size, 1))
container_abort("vector::enlarge: vector too large\n");
increase_capacity(m_size + 1, true);
}
new ((void*)(m_p + m_size)) T(std::forward<Args>(args)...); // perfect forwarding
m_size++;
}
template<typename... Args>
BASISU_FORCE_INLINE bool try_emplace_back(Args&&... args)
{
if (m_size >= m_capacity)
{
if (add_overflow_check(m_size, 1))
return false;
if (!increase_capacity(m_size + 1, true, true))
return false;
}
new ((void*)(m_p + m_size)) T(std::forward<Args>(args)...); // perfect forwarding
m_size++;
return true;
}
inline void pop_back()
{
assert(m_size);
if (m_size)
{
m_size--;
scalar_type<T>::destruct(&m_p[m_size]);
}
}
inline bool try_insert(size_t index, const T* p, size_t n)
{
assert(index <= m_size);
if (index > m_size)
return false;
if (!n)
return true;
const size_t orig_size = m_size;
if (add_overflow_check(m_size, n))
return false;
if (!try_resize(m_size + n, true))
return false;
const size_t num_to_move = orig_size - index;
if (BASISU_IS_BITWISE_COPYABLE(T))
{
// This overwrites the destination object bits, but bitwise copyable means we don't need to worry about destruction.
memmove(m_p + index + n, m_p + index, sizeof(T) * num_to_move);
}
else
{
const T* pSrc = m_p + orig_size - 1;
T* pDst = const_cast<T*>(pSrc) + n;
for (size_t i = 0; i < num_to_move; i++)
{
assert((uint64_t)(pDst - m_p) < (uint64_t)m_size);
*pDst = std::move(*pSrc);
pDst--;
pSrc--;
}
}
T* pDst = m_p + index;
if (BASISU_IS_BITWISE_COPYABLE(T))
{
// This copies in the new bits, overwriting the existing objects, which is OK for copyable types that don't need destruction.
memcpy(pDst, p, sizeof(T) * n);
}
else
{
for (size_t i = 0; i < n; i++)
{
assert((uint64_t)(pDst - m_p) < (uint64_t)m_size);
*pDst++ = *p++;
}
}
return true;
}
inline void insert(size_t index, const T* p, size_t n)
{
if (!try_insert(index, p, n))
container_abort("vector::insert() failed!\n");
}
inline bool try_insert(T* p, const T& obj)
{
if (p < begin())
{
assert(0);
return false;
}
uint64_t ofs = p - begin();
if (ofs > m_size)
{
assert(0);
return false;
}
if ((size_t)ofs != ofs)
{
assert(0);
return false;
}
return try_insert((size_t)ofs, &obj, 1);
}
inline void insert(T* p, const T& obj)
{
if (!try_insert(p, obj))
container_abort("vector::insert() failed!\n");
}
// push_front() isn't going to be very fast - it's only here for usability.
inline void push_front(const T& obj)
{
insert(0, &obj, 1);
}
inline bool try_push_front(const T& obj)
{
return try_insert(0, &obj, 1);
}
vector& append(const vector& other)
{
if (other.m_size)
insert(m_size, &other[0], other.m_size);
return *this;
}
bool try_append(const vector& other)
{
if (other.m_size)
return try_insert(m_size, &other[0], other.m_size);
return true;
}
vector& append(const T* p, size_t n)
{
if (n)
insert(m_size, p, n);
return *this;
}
bool try_append(const T* p, size_t n)
{
if (n)
return try_insert(m_size, p, n);
return true;
}
inline bool erase(size_t start, size_t n)
{
if (add_overflow_check(start, n))
{
assert(0);
return false;
}
assert((start + n) <= m_size);
if ((start + n) > m_size)
{
assert(0);
return false;
}
if (!n)
return true;
const size_t num_to_move = m_size - (start + n);
T* pDst = m_p + start;
const T* pSrc = m_p + start + n;
if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T))
{
// This test is overly cautious.
if ((!BASISU_IS_BITWISE_COPYABLE(T)) || (BASISU_HAS_DESTRUCTOR(T)))
{
// Type has been marked explictly as bitwise movable, which means we can move them around but they may need to be destructed.
// First destroy the erased objects.
scalar_type<T>::destruct_array(pDst, n);
}
// Copy "down" the objects to preserve, filling in the empty slots.
#ifndef __EMSCRIPTEN__
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wclass-memaccess"
#endif
#endif
memmove(pDst, pSrc, num_to_move * sizeof(T));
#ifndef __EMSCRIPTEN__
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
#endif
}
else
{
// Type is not bitwise copyable or movable.
// Move them down one at a time by using the equals operator, and destroying anything that's left over at the end.
T* pDst_end = pDst + num_to_move;
while (pDst != pDst_end)
{
*pDst = std::move(*pSrc);
++pDst;
++pSrc;
}
scalar_type<T>::destruct_array(pDst_end, n);
}
m_size -= n;
return true;
}
inline bool erase_index(size_t index)
{
return erase(index, 1);
}
inline bool erase(T* p)
{
assert((p >= m_p) && (p < (m_p + m_size)));
if (p < m_p)
return false;
return erase_index(static_cast<size_t>(p - m_p));
}
inline bool erase(T* pFirst, T* pEnd)
{
assert(pFirst <= pEnd);
assert(pFirst >= begin() && pFirst <= end());
assert(pEnd >= begin() && pEnd <= end());
if ((pFirst < begin()) || (pEnd < pFirst))
{
assert(0);
return false;
}
uint64_t ofs = pFirst - begin();
if ((size_t)ofs != ofs)
{
assert(0);
return false;
}
uint64_t n = pEnd - pFirst;
if ((size_t)n != n)
{
assert(0);
return false;
}
return erase((size_t)ofs, (size_t)n);
}
bool erase_unordered(size_t index)
{
if (index >= m_size)
{
assert(0);
return false;
}
if ((index + 1) < m_size)
{
(*this)[index] = std::move(back());
}
pop_back();
return true;
}
inline bool operator== (const vector& rhs) const
{
if (m_size != rhs.m_size)
return false;
else if (m_size)
{
if (scalar_type<T>::cFlag)
return memcmp(m_p, rhs.m_p, sizeof(T) * m_size) == 0;
else
{
const T* pSrc = m_p;
const T* pDst = rhs.m_p;
for (size_t i = m_size; i; i--)
if (!(*pSrc++ == *pDst++))
return false;
}
}
return true;
}
inline bool operator< (const vector& rhs) const
{
const size_t min_size = helpers::minimum(m_size, rhs.m_size);
const T* pSrc = m_p;
const T* pSrc_end = m_p + min_size;
const T* pDst = rhs.m_p;
while ((pSrc < pSrc_end) && (*pSrc == *pDst))
{
pSrc++;
pDst++;
}
if (pSrc < pSrc_end)
return *pSrc < *pDst;
return m_size < rhs.m_size;
}
inline void swap(vector& other)
{
std::swap(m_p, other.m_p);
std::swap(m_size, other.m_size);
std::swap(m_capacity, other.m_capacity);
}
inline void sort()
{
std::sort(begin(), end());
}
inline void unique()
{
if (!empty())
{
sort();
resize(std::unique(begin(), end()) - begin());
}
}
inline void reverse()
{
const size_t j = m_size >> 1;
for (size_t i = 0; i < j; i++)
std::swap(m_p[i], m_p[m_size - 1 - i]);
}
inline bool find(const T& key, size_t &idx) const
{
idx = 0;
const T* p = m_p;
const T* p_end = m_p + m_size;
size_t index = 0;
while (p != p_end)
{
if (key == *p)
{
idx = index;
return true;
}
p++;
index++;
}
return false;
}
inline bool find_sorted(const T& key, size_t& idx) const
{
idx = 0;
if (!m_size)
return false;
// Inclusive range
size_t low = 0, high = m_size - 1;
while (low <= high)
{
size_t mid = (size_t)(((uint64_t)low + (uint64_t)high) >> 1);
const T* pTrial_key = m_p + mid;
// Sanity check comparison operator
assert(!((*pTrial_key < key) && (key < *pTrial_key)));
if (*pTrial_key < key)
{
if (add_overflow_check(mid, 1))
break;
low = mid + 1;
}
else if (key < *pTrial_key)
{
if (!mid)
break;
high = mid - 1;
}
else
{
idx = mid;
return true;
}
}
return false;
}
inline size_t count_occurences(const T& key) const
{
size_t c = 0;
const T* p = m_p;
const T* p_end = m_p + m_size;
while (p != p_end)
{
if (key == *p)
c++;
p++;
}
return c;
}
inline void set_all(const T& o)
{
if ((sizeof(T) == 1) && (scalar_type<T>::cFlag))
{
#ifndef __EMSCRIPTEN__
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wclass-memaccess"
#endif
#endif
memset(m_p, *reinterpret_cast<const uint8_t*>(&o), m_size);
#ifndef __EMSCRIPTEN__
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
#endif
}
else
{
T* pDst = m_p;
T* pDst_end = pDst + m_size;
while (pDst != pDst_end)
*pDst++ = o;
}
}
// Caller assumes ownership of the heap block associated with the container. Container is cleared.
// Caller must use free() on the returned pointer.
inline void* assume_ownership()
{
T* p = m_p;
m_p = nullptr;
m_size = 0;
m_capacity = 0;
return p;
}
// Caller is granting ownership of the indicated heap block.
// Block must have size constructed elements, and have enough room for capacity elements.
// The block must have been allocated using malloc().
// Important: This method is used in Basis Universal. If you change how this container allocates memory, you'll need to change any users of this method.
inline bool grant_ownership(T* p, size_t size, size_t capacity)
{
// To prevent the caller from obviously shooting themselves in the foot.
if (((p + capacity) > m_p) && (p < (m_p + m_capacity)))
{
// Can grant ownership of a block inside the container itself!
assert(0);
return false;
}
if (size > capacity)
{
assert(0);
return false;
}
if (!p)
{
if (capacity)
{
assert(0);
return false;
}
}
else if (!capacity)
{
assert(0);
return false;
}
clear();
m_p = p;
m_size = size;
m_capacity = capacity;
return true;
}
readable_span<T> get_readable_span() const
{
return readable_span<T>(m_p, m_size);
}
writable_span<T> get_writable_span()
{
return writable_span<T>(m_p, m_size);
}
private:
T* m_p;
size_t m_size; // the number of constructed objects
size_t m_capacity; // the size of the allocation
template<typename Q> struct is_vector { enum { cFlag = false }; };
template<typename Q> struct is_vector< vector<Q> > { enum { cFlag = true }; };
static void object_mover(void* pDst_void, void* pSrc_void, size_t num)
{
T* pSrc = static_cast<T*>(pSrc_void);
T* const pSrc_end = pSrc + num;
T* pDst = static_cast<T*>(pDst_void);
while (pSrc != pSrc_end)
{
new ((void*)(pDst)) T(std::move(*pSrc));
scalar_type<T>::destruct(pSrc);
++pSrc;
++pDst;
}
}
inline bool increase_capacity(size_t min_new_capacity, bool grow_hint, bool nofail = false)
{
return reinterpret_cast<elemental_vector*>(this)->increase_capacity(
min_new_capacity, grow_hint, sizeof(T),
(BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) || (is_vector<T>::cFlag)) ? nullptr : object_mover, nofail);
}
};
template<typename T> struct bitwise_movable< vector<T> > { enum { cFlag = true }; };
// Hash map
// rg TODO 9/8/2024: I've upgraded this class to support 64-bit size_t, and it needs a lot more testing.
const uint32_t SIZE_T_BITS = sizeof(size_t) * 8U;
inline uint32_t safe_shift_left(uint32_t v, uint32_t l)
{
return (l < 32U) ? (v << l) : 0;
}
inline uint64_t safe_shift_left(uint64_t v, uint32_t l)
{
return (l < 64U) ? (v << l) : 0;
}
template <typename T>
struct hasher
{
inline size_t operator() (const T& key) const { return static_cast<size_t>(key); }
};
template <typename T>
struct equal_to
{
inline bool operator()(const T& a, const T& b) const { return a == b; }
};
// Important: The Hasher and Equals objects must be bitwise movable!
template<typename Key, typename Value = empty_type, typename Hasher = hasher<Key>, typename Equals = equal_to<Key> >
class hash_map
{
public:
class iterator;
class const_iterator;
private:
friend class iterator;
friend class const_iterator;
enum state
{
cStateInvalid = 0,
cStateValid = 1
};
enum
{
cMinHashSize = 4U
};
public:
typedef hash_map<Key, Value, Hasher, Equals> hash_map_type;
typedef std::pair<Key, Value> value_type;
typedef Key key_type;
typedef Value referent_type;
typedef Hasher hasher_type;
typedef Equals equals_type;
hash_map() :
m_num_valid(0),
m_grow_threshold(0),
m_hash_shift(SIZE_T_BITS)
{
static_assert((SIZE_T_BITS == 32) || (SIZE_T_BITS == 64), "SIZE_T_BITS must be 32 or 64");
}
hash_map(const hash_map& other) :
m_values(other.m_values),
m_num_valid(other.m_num_valid),
m_grow_threshold(other.m_grow_threshold),
m_hash_shift(other.m_hash_shift),
m_hasher(other.m_hasher),
m_equals(other.m_equals)
{
static_assert((SIZE_T_BITS == 32) || (SIZE_T_BITS == 64), "SIZE_T_BITS must be 32 or 64");
}
hash_map(hash_map&& other) :
m_values(std::move(other.m_values)),
m_num_valid(other.m_num_valid),
m_grow_threshold(other.m_grow_threshold),
m_hash_shift(other.m_hash_shift),
m_hasher(std::move(other.m_hasher)),
m_equals(std::move(other.m_equals))
{
static_assert((SIZE_T_BITS == 32) || (SIZE_T_BITS == 64), "SIZE_T_BITS must be 32 or 64");
other.m_hash_shift = SIZE_T_BITS;
other.m_num_valid = 0;
other.m_grow_threshold = 0;
}
hash_map& operator= (const hash_map& other)
{
if (this == &other)
return *this;
clear();
m_values = other.m_values;
m_hash_shift = other.m_hash_shift;
m_num_valid = other.m_num_valid;
m_grow_threshold = other.m_grow_threshold;
m_hasher = other.m_hasher;
m_equals = other.m_equals;
return *this;
}
hash_map& operator= (hash_map&& other)
{
if (this == &other)
return *this;
clear();
m_values = std::move(other.m_values);
m_hash_shift = other.m_hash_shift;
m_num_valid = other.m_num_valid;
m_grow_threshold = other.m_grow_threshold;
m_hasher = std::move(other.m_hasher);
m_equals = std::move(other.m_equals);
other.m_hash_shift = SIZE_T_BITS;
other.m_num_valid = 0;
other.m_grow_threshold = 0;
return *this;
}
inline ~hash_map()
{
clear();
}
inline const Equals& get_equals() const { return m_equals; }
inline Equals& get_equals() { return m_equals; }
inline void set_equals(const Equals& equals) { m_equals = equals; }
inline const Hasher& get_hasher() const { return m_hasher; }
inline Hasher& get_hasher() { return m_hasher; }
inline void set_hasher(const Hasher& hasher) { m_hasher = hasher; }
inline void clear()
{
if (m_values.empty())
return;
if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value))
{
node* p = &get_node(0);
node* p_end = p + m_values.size();
size_t num_remaining = m_num_valid;
while (p != p_end)
{
if (p->state)
{
destruct_value_type(p);
num_remaining--;
if (!num_remaining)
break;
}
p++;
}
}
m_values.clear_no_destruction();
m_hash_shift = SIZE_T_BITS;
m_num_valid = 0;
m_grow_threshold = 0;
}
inline void reset()
{
if (!m_num_valid)
return;
if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value))
{
node* p = &get_node(0);
node* p_end = p + m_values.size();
size_t num_remaining = m_num_valid;
while (p != p_end)
{
if (p->state)
{
destruct_value_type(p);
p->state = cStateInvalid;
num_remaining--;
if (!num_remaining)
break;
}
p++;
}
}
else if (sizeof(node) <= 16)
{
memset(&m_values[0], 0, m_values.size_in_bytes());
}
else
{
node* p = &get_node(0);
node* p_end = p + m_values.size();
size_t num_remaining = m_num_valid;
while (p != p_end)
{
if (p->state)
{
p->state = cStateInvalid;
num_remaining--;
if (!num_remaining)
break;
}
p++;
}
}
m_num_valid = 0;
}
inline size_t size()
{
return m_num_valid;
}
inline size_t get_table_size()
{
return m_values.size();
}
inline bool empty()
{
return !m_num_valid;
}
inline bool reserve(size_t new_capacity)
{
if (!new_capacity)
return true;
uint64_t new_hash_size = new_capacity;
new_hash_size = new_hash_size * 2ULL;
if (!helpers::is_power_of_2(new_hash_size))
new_hash_size = helpers::next_pow2(new_hash_size);
new_hash_size = helpers::maximum<uint64_t>(cMinHashSize, new_hash_size);
if (!can_fit_into_size_t(new_hash_size))
{
assert(0);
return false;
}
assert(new_hash_size >= new_capacity);
if (new_hash_size <= m_values.size())
return true;
return rehash((size_t)new_hash_size);
}
class iterator
{
friend class hash_map<Key, Value, Hasher, Equals>;
friend class hash_map<Key, Value, Hasher, Equals>::const_iterator;
public:
inline iterator() : m_pTable(nullptr), m_index(0) { }
inline iterator(hash_map_type& table, size_t index) : m_pTable(&table), m_index(index) { }
inline iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { }
inline iterator& operator= (const iterator& other)
{
m_pTable = other.m_pTable;
m_index = other.m_index;
return *this;
}
// post-increment
inline iterator operator++(int)
{
iterator result(*this);
++*this;
return result;
}
// pre-increment
inline iterator& operator++()
{
probe();
return *this;
}
inline value_type& operator*() const { return *get_cur(); }
inline value_type* operator->() const { return get_cur(); }
inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
inline bool operator != (const iterator& b) const { return !(*this == b); }
inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
inline bool operator != (const const_iterator& b) const { return !(*this == b); }
private:
hash_map_type* m_pTable;
size_t m_index;
inline value_type* get_cur() const
{
assert(m_pTable && (m_index < m_pTable->m_values.size()));
assert(m_pTable->get_node_state(m_index) == cStateValid);
return &m_pTable->get_node(m_index);
}
inline void probe()
{
assert(m_pTable);
m_index = m_pTable->find_next(m_index);
}
};
class const_iterator
{
friend class hash_map<Key, Value, Hasher, Equals>;
friend class hash_map<Key, Value, Hasher, Equals>::iterator;
public:
inline const_iterator() : m_pTable(nullptr), m_index(0) { }
inline const_iterator(const hash_map_type& table, size_t index) : m_pTable(&table), m_index(index) { }
inline const_iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { }
inline const_iterator(const const_iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { }
inline const_iterator& operator= (const const_iterator& other)
{
m_pTable = other.m_pTable;
m_index = other.m_index;
return *this;
}
inline const_iterator& operator= (const iterator& other)
{
m_pTable = other.m_pTable;
m_index = other.m_index;
return *this;
}
// post-increment
inline const_iterator operator++(int)
{
const_iterator result(*this);
++*this;
return result;
}
// pre-increment
inline const_iterator& operator++()
{
probe();
return *this;
}
inline const value_type& operator*() const { return *get_cur(); }
inline const value_type* operator->() const { return get_cur(); }
inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
inline bool operator != (const const_iterator& b) const { return !(*this == b); }
inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
inline bool operator != (const iterator& b) const { return !(*this == b); }
private:
const hash_map_type* m_pTable;
size_t m_index;
inline const value_type* get_cur() const
{
assert(m_pTable && (m_index < m_pTable->m_values.size()));
assert(m_pTable->get_node_state(m_index) == cStateValid);
return &m_pTable->get_node(m_index);
}
inline void probe()
{
assert(m_pTable);
m_index = m_pTable->find_next(m_index);
}
};
inline const_iterator begin() const
{
if (!m_num_valid)
return end();
return const_iterator(*this, find_next(std::numeric_limits<size_t>::max()));
}
inline const_iterator end() const
{
return const_iterator(*this, m_values.size());
}
inline iterator begin()
{
if (!m_num_valid)
return end();
return iterator(*this, find_next(std::numeric_limits<size_t>::max()));
}
inline iterator end()
{
return iterator(*this, m_values.size());
}
// insert_result.first will always point to inserted key/value (or the already existing key/value).
// insert_result.second will be true if a new key/value was inserted, or false if the key already existed (in which case first will point to the already existing value).
typedef std::pair<iterator, bool> insert_result;
inline insert_result insert(const Key& k, const Value& v = Value())
{
insert_result result;
if (!insert_no_grow(result, k, v))
{
if (!try_grow())
container_abort("hash_map::try_grow() failed");
// This must succeed.
if (!insert_no_grow(result, k, v))
container_abort("hash_map::insert() failed");
}
return result;
}
inline bool try_insert(insert_result& result, const Key& k, const Value& v = Value())
{
if (!insert_no_grow(result, k, v))
{
if (!try_grow())
return false;
if (!insert_no_grow(result, k, v))
return false;
}
return true;
}
inline insert_result insert(Key&& k, Value&& v = Value())
{
insert_result result;
if (!insert_no_grow_move(result, std::move(k), std::move(v)))
{
if (!try_grow())
container_abort("hash_map::try_grow() failed");
// This must succeed.
if (!insert_no_grow_move(result, std::move(k), std::move(v)))
container_abort("hash_map::insert() failed");
}
return result;
}
inline bool try_insert(insert_result& result, Key&& k, Value&& v = Value())
{
if (!insert_no_grow_move(result, std::move(k), std::move(v)))
{
if (!try_grow())
return false;
if (!insert_no_grow_move(result, std::move(k), std::move(v)))
return false;
}
return true;
}
inline insert_result insert(const value_type& v)
{
return insert(v.first, v.second);
}
inline bool try_insert(insert_result& result, const value_type& v)
{
return try_insert(result, v.first, v.second);
}
inline insert_result insert(value_type&& v)
{
return insert(std::move(v.first), std::move(v.second));
}
inline bool try_insert(insert_result& result, value_type&& v)
{
return try_insert(result, std::move(v.first), std::move(v.second));
}
inline const_iterator find(const Key& k) const
{
return const_iterator(*this, find_index(k));
}
inline iterator find(const Key& k)
{
return iterator(*this, find_index(k));
}
inline bool contains(const Key& k) const
{
const size_t idx = find_index(k);
return idx != m_values.size();
}
inline bool erase(const Key& k)
{
size_t i = find_index(k);
if (i >= m_values.size())
return false;
node* pDst = &get_node(i);
destruct_value_type(pDst);
pDst->state = cStateInvalid;
m_num_valid--;
for (; ; )
{
size_t r, j = i;
node* pSrc = pDst;
do
{
if (!i)
{
i = m_values.size() - 1;
pSrc = &get_node(i);
}
else
{
i--;
pSrc--;
}
if (!pSrc->state)
return true;
r = hash_key(pSrc->first);
} while ((i <= r && r < j) || (r < j && j < i) || (j < i && i <= r));
move_node(pDst, pSrc);
pDst = pSrc;
}
}
inline void swap(hash_map_type& other)
{
m_values.swap(other.m_values);
std::swap(m_hash_shift, other.m_hash_shift);
std::swap(m_num_valid, other.m_num_valid);
std::swap(m_grow_threshold, other.m_grow_threshold);
std::swap(m_hasher, other.m_hasher);
std::swap(m_equals, other.m_equals);
}
private:
struct node : public value_type
{
uint8_t state;
};
static inline void construct_value_type(value_type* pDst, const Key& k, const Value& v)
{
if (BASISU_IS_BITWISE_COPYABLE(Key))
memcpy(&pDst->first, &k, sizeof(Key));
else
scalar_type<Key>::construct(&pDst->first, k);
if (BASISU_IS_BITWISE_COPYABLE(Value))
memcpy(&pDst->second, &v, sizeof(Value));
else
scalar_type<Value>::construct(&pDst->second, v);
}
static inline void construct_value_type(value_type* pDst, const value_type* pSrc)
{
if ((BASISU_IS_BITWISE_COPYABLE(Key)) && (BASISU_IS_BITWISE_COPYABLE(Value)))
{
memcpy(pDst, pSrc, sizeof(value_type));
}
else
{
if (BASISU_IS_BITWISE_COPYABLE(Key))
memcpy(&pDst->first, &pSrc->first, sizeof(Key));
else
scalar_type<Key>::construct(&pDst->first, pSrc->first);
if (BASISU_IS_BITWISE_COPYABLE(Value))
memcpy(&pDst->second, &pSrc->second, sizeof(Value));
else
scalar_type<Value>::construct(&pDst->second, pSrc->second);
}
}
static inline void destruct_value_type(value_type* p)
{
scalar_type<Key>::destruct(&p->first);
scalar_type<Value>::destruct(&p->second);
}
// Moves nodes *pSrc to *pDst efficiently from one hashmap to another.
// pDst should NOT be constructed on entry.
static inline void move_node(node* pDst, node* pSrc, bool update_src_state = true)
{
assert(!pDst->state);
if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key) && BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value))
{
memcpy(pDst, pSrc, sizeof(node));
assert(pDst->state == cStateValid);
}
else
{
if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key))
memcpy(&pDst->first, &pSrc->first, sizeof(Key));
else
{
new ((void*)&pDst->first) Key(std::move(pSrc->first));
scalar_type<Key>::destruct(&pSrc->first);
}
if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value))
memcpy(&pDst->second, &pSrc->second, sizeof(Value));
else
{
new ((void*)&pDst->second) Value(std::move(pSrc->second));
scalar_type<Value>::destruct(&pSrc->second);
}
pDst->state = cStateValid;
}
if (update_src_state)
pSrc->state = cStateInvalid;
}
struct raw_node
{
inline raw_node()
{
node* p = reinterpret_cast<node*>(this);
p->state = cStateInvalid;
}
// In practice, this should never be called (right?). We manage destruction ourselves.
inline ~raw_node()
{
node* p = reinterpret_cast<node*>(this);
if (p->state)
hash_map_type::destruct_value_type(p);
}
inline raw_node(const raw_node& other)
{
node* pDst = reinterpret_cast<node*>(this);
const node* pSrc = reinterpret_cast<const node*>(&other);
if (pSrc->state)
{
hash_map_type::construct_value_type(pDst, pSrc);
pDst->state = cStateValid;
}
else
pDst->state = cStateInvalid;
}
inline raw_node& operator= (const raw_node& rhs)
{
if (this == &rhs)
return *this;
node* pDst = reinterpret_cast<node*>(this);
const node* pSrc = reinterpret_cast<const node*>(&rhs);
if (pSrc->state)
{
if (pDst->state)
{
pDst->first = pSrc->first;
pDst->second = pSrc->second;
}
else
{
hash_map_type::construct_value_type(pDst, pSrc);
pDst->state = cStateValid;
}
}
else if (pDst->state)
{
hash_map_type::destruct_value_type(pDst);
pDst->state = cStateInvalid;
}
return *this;
}
uint8_t m_bits[sizeof(node)];
};
typedef basisu::vector<raw_node> node_vector;
node_vector m_values;
size_t m_num_valid;
size_t m_grow_threshold;
uint32_t m_hash_shift;
Hasher m_hasher;
Equals m_equals;
inline size_t hash_key(const Key& k) const
{
assert((safe_shift_left(1ULL, (SIZE_T_BITS - m_hash_shift))) == m_values.size());
// Fibonacci hashing
if (SIZE_T_BITS == 32)
{
assert(m_hash_shift != 32);
uint32_t hash = static_cast<uint32_t>(m_hasher(k));
hash = (2654435769U * hash) >> m_hash_shift;
assert(hash < m_values.size());
return (size_t)hash;
}
else
{
assert(m_hash_shift != 64);
uint64_t hash = static_cast<uint64_t>(m_hasher(k));
hash = (0x9E3779B97F4A7C15ULL * hash) >> m_hash_shift;
assert(hash < m_values.size());
return (size_t)hash;
}
}
inline const node& get_node(size_t index) const
{
return *reinterpret_cast<const node*>(&m_values[index]);
}
inline node& get_node(size_t index)
{
return *reinterpret_cast<node*>(&m_values[index]);
}
inline state get_node_state(size_t index) const
{
return static_cast<state>(get_node(index).state);
}
inline void set_node_state(size_t index, bool valid)
{
get_node(index).state = valid;
}
inline bool try_grow()
{
uint64_t n = m_values.size() * 2ULL;
if (!helpers::is_power_of_2(n))
n = helpers::next_pow2(n);
if (!can_fit_into_size_t(n))
{
assert(0);
return false;
}
return rehash(helpers::maximum<size_t>(cMinHashSize, (size_t)n));
}
// new_hash_size must be a power of 2.
inline bool rehash(size_t new_hash_size)
{
if (!helpers::is_power_of_2((uint64_t)new_hash_size))
{
assert(0);
return false;
}
if (new_hash_size < m_num_valid)
{
assert(0);
return false;
}
if (new_hash_size == m_values.size())
return true;
hash_map new_map;
if (!new_map.m_values.try_resize(new_hash_size))
return false;
new_map.m_hash_shift = SIZE_T_BITS - helpers::floor_log2i((uint64_t)new_hash_size);
assert(new_hash_size == safe_shift_left(1ULL, SIZE_T_BITS - new_map.m_hash_shift));
new_map.m_grow_threshold = std::numeric_limits<size_t>::max();
node* pNode = reinterpret_cast<node*>(m_values.begin());
node* pNode_end = pNode + m_values.size();
while (pNode != pNode_end)
{
if (pNode->state)
{
new_map.move_into(pNode);
if (new_map.m_num_valid == m_num_valid)
break;
}
pNode++;
}
new_map.m_grow_threshold = new_hash_size >> 1U;
if (new_hash_size & 1)
new_map.m_grow_threshold++;
m_values.clear_no_destruction();
m_hash_shift = SIZE_T_BITS;
swap(new_map);
return true;
}
inline size_t find_next(size_t index) const
{
index++;
if (index >= m_values.size())
return index;
const node* pNode = &get_node(index);
for (; ; )
{
if (pNode->state)
break;
if (++index >= m_values.size())
break;
pNode++;
}
return index;
}
inline size_t find_index(const Key& k) const
{
if (m_num_valid)
{
size_t index = hash_key(k);
const node* pNode = &get_node(index);
if (pNode->state)
{
if (m_equals(pNode->first, k))
return index;
const size_t orig_index = index;
for (; ; )
{
if (!index)
{
index = m_values.size() - 1;
pNode = &get_node(index);
}
else
{
index--;
pNode--;
}
if (index == orig_index)
break;
if (!pNode->state)
break;
if (m_equals(pNode->first, k))
return index;
}
}
}
return m_values.size();
}
inline bool insert_no_grow(insert_result& result, const Key& k, const Value& v)
{
if (!m_values.size())
return false;
size_t index = hash_key(k);
node* pNode = &get_node(index);
if (pNode->state)
{
if (m_equals(pNode->first, k))
{
result.first = iterator(*this, index);
result.second = false;
return true;
}
const size_t orig_index = index;
for (; ; )
{
if (!index)
{
index = m_values.size() - 1;
pNode = &get_node(index);
}
else
{
index--;
pNode--;
}
if (orig_index == index)
return false;
if (!pNode->state)
break;
if (m_equals(pNode->first, k))
{
result.first = iterator(*this, index);
result.second = false;
return true;
}
}
}
if (m_num_valid >= m_grow_threshold)
return false;
construct_value_type(pNode, k, v);
pNode->state = cStateValid;
m_num_valid++;
assert(m_num_valid <= m_values.size());
result.first = iterator(*this, index);
result.second = true;
return true;
}
// Move user supplied key/value into a node.
static inline void move_value_type(value_type* pDst, Key&& k, Value&& v)
{
// Not checking for is MOVABLE because the caller could later destruct k and/or v (what state do we set them to?)
if (BASISU_IS_BITWISE_COPYABLE(Key))
{
memcpy(&pDst->first, &k, sizeof(Key));
}
else
{
new ((void*)&pDst->first) Key(std::move(k));
// No destruction - user will do that (we don't own k).
}
if (BASISU_IS_BITWISE_COPYABLE(Value))
{
memcpy(&pDst->second, &v, sizeof(Value));
}
else
{
new ((void*)&pDst->second) Value(std::move(v));
// No destruction - user will do that (we don't own v).
}
}
// Insert user provided k/v, by moving, into the current hash table
inline bool insert_no_grow_move(insert_result& result, Key&& k, Value&& v)
{
if (!m_values.size())
return false;
size_t index = hash_key(k);
node* pNode = &get_node(index);
if (pNode->state)
{
if (m_equals(pNode->first, k))
{
result.first = iterator(*this, index);
result.second = false;
return true;
}
const size_t orig_index = index;
for (; ; )
{
if (!index)
{
index = m_values.size() - 1;
pNode = &get_node(index);
}
else
{
index--;
pNode--;
}
if (orig_index == index)
return false;
if (!pNode->state)
break;
if (m_equals(pNode->first, k))
{
result.first = iterator(*this, index);
result.second = false;
return true;
}
}
}
if (m_num_valid >= m_grow_threshold)
return false;
move_value_type(pNode, std::move(k), std::move(v));
pNode->state = cStateValid;
m_num_valid++;
assert(m_num_valid <= m_values.size());
result.first = iterator(*this, index);
result.second = true;
return true;
}
// Insert pNode by moving into the current hash table
inline void move_into(node* pNode)
{
size_t index = hash_key(pNode->first);
node* pDst_node = &get_node(index);
if (pDst_node->state)
{
const size_t orig_index = index;
for (; ; )
{
if (!index)
{
index = m_values.size() - 1;
pDst_node = &get_node(index);
}
else
{
index--;
pDst_node--;
}
if (index == orig_index)
{
assert(false);
return;
}
if (!pDst_node->state)
break;
}
}
// No need to update the source node's state (it's going away)
move_node(pDst_node, pNode, false);
m_num_valid++;
}
};
template<typename Key, typename Value, typename Hasher, typename Equals>
struct bitwise_movable< hash_map<Key, Value, Hasher, Equals> > { enum { cFlag = true }; };
#if BASISU_HASHMAP_TEST
extern void hash_map_test();
#endif
// String formatting
inline std::string string_format(const char* pFmt, ...)
{
char buf[2048];
va_list args;
va_start(args, pFmt);
#ifdef _WIN32
vsprintf_s(buf, sizeof(buf), pFmt, args);
#else
vsnprintf(buf, sizeof(buf), pFmt, args);
#endif
va_end(args);
return std::string(buf);
}
enum class variant_type
{
cInvalid,
cI32, cU32,
cI64, cU64,
cFlt, cDbl, cBool,
cStrPtr, cStdStr
};
struct fmt_variant
{
union
{
int32_t m_i32;
uint32_t m_u32;
int64_t m_i64;
uint64_t m_u64;
float m_flt;
double m_dbl;
bool m_bool;
const char* m_pStr;
};
std::string m_str;
variant_type m_type;
inline fmt_variant() :
m_u64(0),
m_type(variant_type::cInvalid)
{
}
inline fmt_variant(const fmt_variant& other) :
m_u64(other.m_u64),
m_str(other.m_str),
m_type(other.m_type)
{
}
inline fmt_variant(fmt_variant&& other) :
m_u64(other.m_u64),
m_str(std::move(other.m_str)),
m_type(other.m_type)
{
other.m_type = variant_type::cInvalid;
other.m_u64 = 0;
}
inline fmt_variant& operator= (fmt_variant&& other)
{
if (this == &other)
return *this;
m_type = other.m_type;
m_u64 = other.m_u64;
m_str = std::move(other.m_str);
other.m_type = variant_type::cInvalid;
other.m_u64 = 0;
return *this;
}
inline fmt_variant& operator= (const fmt_variant& rhs)
{
if (this == &rhs)
return *this;
m_u64 = rhs.m_u64;
m_type = rhs.m_type;
m_str = rhs.m_str;
return *this;
}
inline fmt_variant(int32_t v) : m_i32(v), m_type(variant_type::cI32) { }
inline fmt_variant(uint32_t v) : m_u32(v), m_type(variant_type::cU32) { }
inline fmt_variant(int64_t v) : m_i64(v), m_type(variant_type::cI64) { }
inline fmt_variant(uint64_t v) : m_u64(v), m_type(variant_type::cU64) { }
#ifdef _MSC_VER
inline fmt_variant(unsigned long v) : m_u64(v), m_type(variant_type::cU64) {}
inline fmt_variant(long v) : m_i64(v), m_type(variant_type::cI64) {}
#endif
inline fmt_variant(float v) : m_flt(v), m_type(variant_type::cFlt) { }
inline fmt_variant(double v) : m_dbl(v), m_type(variant_type::cDbl) { }
inline fmt_variant(const char* pStr) : m_pStr(pStr), m_type(variant_type::cStrPtr) { }
inline fmt_variant(const std::string& str) : m_u64(0), m_str(str), m_type(variant_type::cStdStr) { }
inline fmt_variant(bool val) : m_bool(val), m_type(variant_type::cBool) { }
bool to_string(std::string& res, std::string& fmt) const;
};
typedef basisu::vector<fmt_variant> fmt_variant_vec;
bool fmt_variants(std::string& res, const char* pFmt, const fmt_variant_vec& variants);
template <typename... Args>
inline bool fmt_string(std::string& res, const char* pFmt, Args&&... args)
{
return fmt_variants(res, pFmt, fmt_variant_vec{ fmt_variant(std::forward<Args>(args))... });
}
template <typename... Args>
inline std::string fmt_string(const char* pFmt, Args&&... args)
{
std::string res;
fmt_variants(res, pFmt, fmt_variant_vec{ fmt_variant(std::forward<Args>(args))... });
return res;
}
template <typename... Args>
inline int fmt_printf(const char* pFmt, Args&&... args)
{
std::string res;
if (!fmt_variants(res, pFmt, fmt_variant_vec{ fmt_variant(std::forward<Args>(args))... }))
return EOF;
return fputs(res.c_str(), stdout);
}
template <typename... Args>
inline int fmt_fprintf(FILE* pFile, const char* pFmt, Args&&... args)
{
std::string res;
if (!fmt_variants(res, pFmt, fmt_variant_vec{ fmt_variant(std::forward<Args>(args))... }))
return EOF;
return fputs(res.c_str(), pFile);
}
// fixed_array - zero initialized by default, operator[] is always bounds checked.
template <std::size_t N, typename T>
class fixed_array
{
static_assert(N >= 1, "fixed_array size must be at least 1");
public:
using value_type = T;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using reference = T&;
using const_reference = const T&;
using pointer = T*;
using const_pointer = const T*;
using iterator = T*;
using const_iterator = const T*;
T m_data[N];
BASISU_FORCE_INLINE fixed_array()
{
initialize_array();
}
BASISU_FORCE_INLINE fixed_array(std::initializer_list<T> list)
{
assert(list.size() <= N);
std::size_t copy_size = std::min(list.size(), N);
std::copy_n(list.begin(), copy_size, m_data); // Copy up to min(list.size(), N)
if (list.size() < N)
{
// Initialize the rest of the array
std::fill(m_data + copy_size, m_data + N, T{});
}
}
BASISU_FORCE_INLINE T& operator[](std::size_t index)
{
if (index >= N)
container_abort("fixed_array: Index out of bounds.");
return m_data[index];
}
BASISU_FORCE_INLINE const T& operator[](std::size_t index) const
{
if (index >= N)
container_abort("fixed_array: Index out of bounds.");
return m_data[index];
}
BASISU_FORCE_INLINE T* begin() { return m_data; }
BASISU_FORCE_INLINE const T* begin() const { return m_data; }
BASISU_FORCE_INLINE T* end() { return m_data + N; }
BASISU_FORCE_INLINE const T* end() const { return m_data + N; }
BASISU_FORCE_INLINE const T* data() const { return m_data; }
BASISU_FORCE_INLINE T* data() { return m_data; }
BASISU_FORCE_INLINE const T& front() const { return m_data[0]; }
BASISU_FORCE_INLINE T& front() { return m_data[0]; }
BASISU_FORCE_INLINE const T& back() const { return m_data[N - 1]; }
BASISU_FORCE_INLINE T& back() { return m_data[N - 1]; }
BASISU_FORCE_INLINE constexpr std::size_t size() const { return N; }
BASISU_FORCE_INLINE void clear()
{
initialize_array(); // Reinitialize the array
}
BASISU_FORCE_INLINE void set_all(const T& value)
{
std::fill(m_data, m_data + N, value);
}
BASISU_FORCE_INLINE readable_span<T> get_readable_span() const
{
return readable_span<T>(m_data, N);
}
BASISU_FORCE_INLINE writable_span<T> get_writable_span()
{
return writable_span<T>(m_data, N);
}
private:
BASISU_FORCE_INLINE void initialize_array()
{
if constexpr (std::is_integral<T>::value || std::is_floating_point<T>::value)
memset(m_data, 0, sizeof(m_data));
else
std::fill(m_data, m_data + N, T{});
}
BASISU_FORCE_INLINE T& access_element(std::size_t index)
{
if (index >= N)
container_abort("fixed_array: Index out of bounds.");
return m_data[index];
}
BASISU_FORCE_INLINE const T& access_element(std::size_t index) const
{
if (index >= N)
container_abort("fixed_array: Index out of bounds.");
return m_data[index];
}
};
// 2D array
template<typename T>
class vector2D
{
typedef basisu::vector<T> vec_type;
uint32_t m_width, m_height;
vec_type m_values;
public:
vector2D() :
m_width(0),
m_height(0)
{
}
vector2D(uint32_t w, uint32_t h) :
m_width(0),
m_height(0)
{
resize(w, h);
}
vector2D(const vector2D& other)
{
*this = other;
}
vector2D(vector2D&& other) :
m_width(0),
m_height(0)
{
*this = std::move(other);
}
vector2D& operator= (const vector2D& other)
{
if (this != &other)
{
m_width = other.m_width;
m_height = other.m_height;
m_values = other.m_values;
}
return *this;
}
vector2D& operator= (vector2D&& other)
{
if (this != &other)
{
m_width = other.m_width;
m_height = other.m_height;
m_values = std::move(other.m_values);
other.m_width = 0;
other.m_height = 0;
}
return *this;
}
inline bool operator== (const vector2D& rhs) const
{
return (m_width == rhs.m_width) && (m_height == rhs.m_height) && (m_values == rhs.m_values);
}
inline size_t size_in_bytes() const { return m_values.size_in_bytes(); }
inline uint32_t get_width() const { return m_width; }
inline uint32_t get_height() const { return m_height; }
inline const T& operator() (uint32_t x, uint32_t y) const { assert(x < m_width && y < m_height); return m_values[x + y * m_width]; }
inline T& operator() (uint32_t x, uint32_t y) { assert(x < m_width && y < m_height); return m_values[x + y * m_width]; }
inline size_t size() const { return m_values.size(); }
inline const T& operator[] (uint32_t i) const { return m_values[i]; }
inline T& operator[] (uint32_t i) { return m_values[i]; }
inline const T& at_clamped(int x, int y) const { return (*this)(clamp<int>(x, 0, m_width - 1), clamp<int>(y, 0, m_height - 1)); }
inline T& at_clamped(int x, int y) { return (*this)(clamp<int>(x, 0, m_width - 1), clamp<int>(y, 0, m_height - 1)); }
void clear()
{
m_width = 0;
m_height = 0;
m_values.clear();
}
void set_all(const T& val)
{
vector_set_all(m_values, val);
}
inline const T* get_ptr() const { return m_values.data(); }
inline T* get_ptr() { return m_values.data(); }
vector2D& resize(uint32_t new_width, uint32_t new_height)
{
if ((m_width == new_width) && (m_height == new_height))
return *this;
const uint64_t total_vals = (uint64_t)new_width * new_height;
if (!can_fit_into_size_t(total_vals))
{
// What can we do?
assert(0);
return *this;
}
vec_type oldVals((size_t)total_vals);
oldVals.swap(m_values);
const uint32_t w = minimum(m_width, new_width);
const uint32_t h = minimum(m_height, new_height);
if ((w) && (h))
{
for (uint32_t y = 0; y < h; y++)
for (uint32_t x = 0; x < w; x++)
m_values[x + y * new_width] = oldVals[x + y * m_width];
}
m_width = new_width;
m_height = new_height;
return *this;
}
bool try_resize(uint32_t new_width, uint32_t new_height)
{
if ((m_width == new_width) && (m_height == new_height))
return true;
const uint64_t total_vals = (uint64_t)new_width * new_height;
if (!can_fit_into_size_t(total_vals))
{
// What can we do?
assert(0);
return false;
}
vec_type oldVals;
if (!oldVals.try_resize((size_t)total_vals))
return false;
oldVals.swap(m_values);
const uint32_t w = minimum(m_width, new_width);
const uint32_t h = minimum(m_height, new_height);
if ((w) && (h))
{
for (uint32_t y = 0; y < h; y++)
for (uint32_t x = 0; x < w; x++)
m_values[x + y * new_width] = oldVals[x + y * m_width];
}
m_width = new_width;
m_height = new_height;
return true;
}
const vector2D& extract_block_clamped(T* pDst, uint32_t src_x, uint32_t src_y, uint32_t w, uint32_t h) const
{
// HACK HACK
if (((src_x + w) > m_width) || ((src_y + h) > m_height))
{
// Slower clamping case
for (uint32_t y = 0; y < h; y++)
for (uint32_t x = 0; x < w; x++)
*pDst++ = at_clamped(src_x + x, src_y + y);
}
else
{
const T* pSrc = &m_values[src_x + src_y * m_width];
for (uint32_t y = 0; y < h; y++)
{
memcpy(pDst, pSrc, w * sizeof(T));
pSrc += m_width;
pDst += w;
}
}
return *this;
}
};
} // namespace basisu
namespace std
{
template<typename T>
inline void swap(basisu::vector<T>& a, basisu::vector<T>& b)
{
a.swap(b);
}
template<typename Key, typename Value, typename Hasher, typename Equals>
inline void swap(basisu::hash_map<Key, Value, Hasher, Equals>& a, basisu::hash_map<Key, Value, Hasher, Equals>& b)
{
a.swap(b);
}
} // namespace std