blob: 9f43e1c2d63dbd123de5372a3ef1577ce3f6ce91 [file] [log] [blame]
// basisu_tool.cpp
// Copyright (C) 2019-2022 Binomial LLC. All Rights Reserved.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if _MSC_VER
// For sprintf(), strcpy()
#define _CRT_SECURE_NO_WARNINGS (1)
#endif
#include "transcoder/basisu.h"
#include "transcoder/basisu_transcoder_internal.h"
#include "encoder/basisu_enc.h"
#include "encoder/basisu_etc.h"
#include "encoder/basisu_gpu_texture.h"
#include "encoder/basisu_frontend.h"
#include "encoder/basisu_backend.h"
#include "encoder/basisu_comp.h"
#include "transcoder/basisu_transcoder.h"
#include "encoder/basisu_ssim.h"
#include "encoder/basisu_opencl.h"
#define MINIZ_HEADER_FILE_ONLY
#define MINIZ_NO_ZLIB_COMPATIBLE_NAMES
#include "encoder/basisu_miniz.h"
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
// Set BASISU_CATCH_EXCEPTIONS if you want exceptions to crash the app, otherwise main() catches them.
#ifndef BASISU_CATCH_EXCEPTIONS
#define BASISU_CATCH_EXCEPTIONS 0
#endif
using namespace basisu;
using namespace buminiz;
#define BASISU_TOOL_VERSION "1.16.4"
enum tool_mode
{
cDefault,
cCompress,
cValidate,
cInfo,
cUnpack,
cCompare,
cVersion,
cBench,
cCompSize,
cTest,
cCLBench,
cSplitImage,
cCombineImages
};
static void print_usage()
{
printf("\nUsage: basisu filename [filename ...] <options>\n");
puts("\n"
"The default mode is compression of one or more PNG/BMP/TGA/JPG files to a .basis file. Alternate modes:\n"
" -unpack: Use transcoder to unpack .basis file to one or more .ktx/.png files\n"
" -validate: Validate and display information about a .basis file\n"
" -info: Display high-level information about a .basis file\n"
" -compare: Compare two PNG/BMP/TGA/JPG images specified with -file, output PSNR and SSIM statistics and RGB/A delta images\n"
" -version: Print basisu version and exit\n"
"Unless an explicit mode is specified, if one or more files have the .basis extension this tool defaults to unpack mode.\n"
"\n"
"Important: By default, the compressor assumes the input is in the sRGB colorspace (like photos/albedo textures).\n"
"If the input is NOT sRGB (like a normal map), be sure to specify -linear for less artifacts. Depending on the content type, some experimentation may be needed.\n"
"\n"
"Filenames prefixed with a @ symbol are read as filename listing files. Listing text files specify which actual filenames to process (one filename per line).\n"
"\n"
"Options:\n"
" -opencl: Enable OpenCL usage\n"
" -opencl_serialize: Serialize all calls to the OpenCL driver (to work around buggy drivers, only useful with -parallel)\n"
" -parallel: Compress multiple textures simumtanously (one per thread), instead of one at a time. Compatible with OpenCL mode. This is much faster, but in OpenCL mode the driver is pushed harder, and the CLI output will be jumbled.\n"
" -ktx2: Write .KTX2 ETC1S/UASTC files instead of .basis files. By default, UASTC files will be compressed using Zstandard unless -ktx2_no_zstandard is specified.\n"
" -ktx2_no_zstandard: Don't compress UASTC texture data using Zstandard, store it uncompressed instead.\n"
" -ktx2_zstandard_level X: Set ZStandard compression level to X (see Zstandard documentation, default level is 6)\n"
" -ktx2_animdata_duration X: Set KTX2animData duration field to integer value X (only valid/useful for -tex_type video, default is 1)\n"
" -ktx2_animdata_timescale X: Set KTX2animData timescale field to integer value X (only valid/useful for -tex_type video, default is 15)\n"
" -ktx2_animdata_loopcount X: Set KTX2animData loopcount field to integer value X (only valid/useful for -tex_type video, default is 0)\n"
" -file filename.png/bmp/tga/jpg/qoi: Input image filename, multiple images are OK, use -file X for each input filename (prefixing input filenames with -file is optional)\n"
" -alpha_file filename.png/bmp/tga/jpg/qoi: Input alpha image filename, multiple images are OK, use -file X for each input filename (must be paired with -file), images converted to REC709 grayscale and used as input alpha\n"
" -multifile_printf: printf() format strint to use to compose multiple filenames\n"
" -multifile_first: The index of the first file to process, default is 0 (must specify -multifile_printf and -multifile_num)\n"
" -multifile_num: The total number of files to process.\n"
" -q X: Set ETC1S quality level, 1-255, default is 128, lower=better compression/lower quality/faster, higher=less compression/higher quality/slower, default is 128. For even higher quality, use -max_endpoints/-max_selectors.\n"
" -linear: Use linear colorspace metrics (instead of the default sRGB), and by default linear (not sRGB) mipmap filtering.\n"
" -output_file filename: Output .basis/.ktx filename\n"
" -output_path: Output .basis/.ktx files to specified directory.\n"
" -debug: Enable codec debug print to stdout (slightly slower).\n"
" -verbose: Same as -debug (debug output to stdout).\n"
" -debug_images: Enable codec debug images (much slower).\n"
" -stats: Compute and display image quality metrics (slightly slower).\n"
" -tex_type <2d, 2darray, 3d, video, cubemap>: Set Basis file header's texture type field. Cubemap arrays require multiples of 6 images, in X+, X-, Y+, Y-, Z+, Z- order, each image must be the same resolutions.\n"
" 2d=arbitrary 2D images, 2darray=2D array, 3D=volume texture slices, video=video frames, cubemap=array of faces. For 2darray/3d/cubemaps/video, each source image's dimensions and # of mipmap levels must be the same.\n"
" For video, the .basis file will be written with the first frame being an I-Frame, and subsequent frames being P-Frames (using conditional replenishment). Playback must always occur in order from first to last image.\n"
" -framerate X: Set framerate in .basis header to X/frames sec.\n"
" -individual: Process input images individually and output multiple .basis/.ktx2 files (not as a texture array - this is now the default as of v1.16)\n"
" -tex_array: Process input images as a single texture array and write a single .basis/.ktx2 file (the former default before v1.16)\n"
" -comp_level X: Set ETC1S encoding speed vs. quality tradeoff. Range is 0-6, default is 1. Higher values=MUCH slower, but slightly higher quality. Higher levels intended for videos. Use -q first!\n"
" -fuzz_testing: Use with -validate: Disables CRC16 validation of file contents before transcoding\n"
"\nUASTC options:\n"
" -uastc: Enable UASTC texture mode, instead of the default ETC1S mode. Significantly higher texture quality, but larger files. (Note that UASTC .basis files must be losslessly compressed by the user.)\n"
" -uastc_level: Set UASTC encoding level. Range is [0,4], default is 2, higher=slower but higher quality. 0=fastest/lowest quality, 3=slowest practical option, 4=impractically slow/highest achievable quality\n"
" -uastc_rdo_l X: Enable UASTC RDO post-processing and set UASTC RDO quality scalar (lambda) to X. Lower values=higher quality/larger LZ\n"
" compressed files, higher values=lower quality/smaller LZ compressed files. Good range to try is [.25-10].\n"
" Note: Previous versons used the -uastc_rdo_q option, which was removed because the RDO algorithm was changed.\n"
" -uastc_rdo_d X: Set UASTC RDO dictionary size in bytes. Default is 4096, max is 65536. Lower values=faster, but less compression.\n"
" -uastc_rdo_b X: Set UASTC RDO max smooth block error scale. Range is [1,300]. Default is 10.0, 1.0=disabled. Larger values suppress more artifacts (and allocate more bits) on smooth blocks.\n"
" -uastc_rdo_s X: Set UASTC RDO max smooth block standard deviation. Range is [.01,65536]. Default is 18.0. Larger values expand the range of blocks considered smooth.\n"
" -uastc_rdo_f: Don't favor simpler UASTC modes in RDO mode.\n"
" -uastc_rdo_m: Disable RDO multithreading (slightly higher compression, deterministic).\n"
"\n"
"More options:\n"
" -test: Run an automated ETC1S/UASTC encoding and transcoding test. Returns EXIT_FAILURE if any failures\n"
" -test_dir: Optional directory of test files. Defaults to \"../test_files\".\n"
" -max_endpoints X: Manually set the max number of color endpoint clusters from 1-16128, use instead of -q\n"
" -max_selectors X: Manually set the max number of color selector clusters from 1-16128, use instead of -q\n"
" -y_flip: Flip input images vertically before compression\n"
" -normal_map: Tunes codec parameters for better quality on normal maps (linear colorspace metrics, linear mipmap filtering, no selector RDO, no sRGB)\n"
" -no_alpha: Always output non-alpha basis files, even if one or more inputs has alpha\n"
" -force_alpha: Always output alpha basis files, even if no inputs has alpha\n"
" -separate_rg_to_color_alpha: Separate input R and G channels to RGB and A (for tangent space XY normal maps)\n"
" -swizzle rgba: Specify swizzle for the 4 input color channels using r, g, b and a (the -separate_rg_to_color_alpha flag is equivalent to rrrg)\n"
" -renorm: Renormalize each input image before any further processing/compression\n"
" -no_multithreading: Disable multithreading\n"
" -max_threads X: Use at most X threads total when multithreading is enabled (this includes the main thread)\n"
" -no_ktx: Disable KTX writing when unpacking (faster, less output files)\n"
" -ktx_only: Only write KTX files when unpacking (faster, less output files)\n"
" -write_out: Write 3dfx OUT files when unpacking FXT1 textures\n"
" -format_only: Only unpack the specified format, by its numeric code.\n"
" -etc1_only: Only unpack to ETC1, skipping the other texture formats during -unpack\n"
" -disable_hierarchical_endpoint_codebooks: Disable hierarchical endpoint codebook usage, slower but higher quality on some compression levels\n"
" -compare_ssim: Compute and display SSIM of image comparison (slow)\n"
" -bench: UASTC benchmark mode, for development only\n"
" -resample X Y: Resample all input textures to XxY pixels using a box filter\n"
" -resample_factor X: Resample all input textures by scale factor X using a box filter\n"
" -no_sse: Forbid all SSE instruction set usage\n"
" -validate_etc1s: Validate internal ETC1S compressor's data structures during compression (slower, intended for development).\n"
"\n"
"Mipmap generation options:\n"
" -mipmap: Generate mipmaps for each source image\n"
" -mip_srgb: Convert image to linear before filtering, then back to sRGB\n"
" -mip_linear: Keep image in linear light during mipmap filtering (i.e. do not convert to/from sRGB for filtering purposes)\n"
" -mip_scale X: Set mipmap filter kernel's scale, lower=sharper, higher=more blurry, default is 1.0\n"
" -mip_filter X: Set mipmap filter kernel, default is kaiser, filters: box, tent, bell, blackman, catmullrom, mitchell, etc.\n"
" -mip_renorm: Renormalize normal map to unit length vectors after filtering\n"
" -mip_clamp: Use clamp addressing on borders, instead of wrapping\n"
" -mip_fast: Use faster mipmap generation (resample from previous mip, not always first/largest mip level). The default (as of 1/2021)\n"
" -mip_slow: Always resample each mipmap level starting from the largest mipmap. Higher quality, but slower. Opposite of -mip_fast. Was the prior default before 1/2021.\n"
" -mip_smallest X: Set smallest pixel dimension for generated mipmaps, default is 1 pixel\n"
"By default, textures will be converted from sRGB to linear light before mipmap filtering, then back to sRGB (for the RGB color channels) unless -linear is specified.\n"
"You can override this behavior with -mip_srgb/-mip_linear.\n"
"\n"
"Backend endpoint/selector RDO codec options:\n"
" -no_selector_rdo: Disable backend's selector rate distortion optimizations (slightly faster, less noisy output, but lower quality per output bit)\n"
" -selector_rdo_thresh X: Set selector RDO quality threshold, default is 1.25, lower is higher quality but less quality per output bit (try 1.0-3.0)\n"
" -no_endpoint_rdo: Disable backend's endpoint rate distortion optimizations (slightly faster, less noisy output, but lower quality per output bit)\n"
" -endpoint_rdo_thresh X: Set endpoint RDO quality threshold, default is 1.5, lower is higher quality but less quality per output bit (try 1.0-3.0)\n"
"\n"
"Set various fields in the Basis file header:\n"
" -userdata0 X: Set 32-bit userdata0 field in Basis file header to X (X is a signed 32-bit int)\n"
" -userdata1 X: Set 32-bit userdata1 field in Basis file header to X (X is a signed 32-bit int)\n"
"\n"
"Various command line examples:\n"
" basisu x.png : Compress sRGB image x.png to x.basis using default settings (multiple filenames OK, use -tex_array if you want a tex array vs. multiple output files)\n"
" basisu x.basis : Unpack x.basis to PNG/KTX files (multiple filenames OK)\n"
" basisu -file x.png -mipmap -y_flip : Compress a mipmapped x.basis file from an sRGB image named x.png, Y flip each source image\n"
" basisu -validate -file x.basis : Validate x.basis (check header, check file CRC's, attempt to transcode all slices)\n"
" basisu -unpack -file x.basis : Validates, transcodes and unpacks x.basis to mipmapped .KTX and RGB/A .PNG files (transcodes to all supported GPU texture formats)\n"
" basisu -q 255 -file x.png -mipmap -debug -stats : Compress sRGB x.png to x.basis at quality level 255 with compressor debug output/statistics\n"
" basisu -linear -max_endpoints 16128 -max_selectors 16128 -file x.png : Compress non-sRGB x.png to x.basis using the largest supported manually specified codebook sizes\n"
" basisu -comp_level 2 -max_selectors 8192 -max_endpoints 8192 -tex_type video -framerate 20 -multifile_printf \"x%02u.png\" -multifile_first 1 -multifile_count 20 : Compress a 20 sRGB source image video sequence (x01.png, x02.png, x03.png, etc.) to x01.basis\n"
"\n"
"Note: For video use, it's recommended you use a very powerful machine with many cores. Use -comp_level 2 or higher for better codebook\n"
"generation, specify very large codebooks using -max_endpoints and -max_selectors, and reduce the default endpoint RDO threshold\n"
"(-endpoint_rdo_thresh) to around 1.25. Videos may have mipmaps and alpha channels. Videos must always be played back by the transcoder\n"
"in first to last image order.\n"
"Video files currently use I-Frames on the first image, and P-Frames using conditional replenishment on subsequent frames.\n"
"\nCompression level (-comp_level X) details:\n"
" Level 0: Fastest, but has marginal quality and can be brittle on complex images. Avg. Y dB: 35.45\n"
" Level 1: Hierarchical codebook searching, faster ETC1S encoding. 36.87 dB, ~1.4x slower vs. level 0. (This is the default setting.)\n"
" Level 2: Use this or higher for video. Hierarchical codebook searching. 36.87 dB, ~1.4x slower vs. level 0. (This is the v1.12's default setting.)\n"
" Level 3: Full codebook searching. 37.13 dB, ~1.8x slower vs. level 0. (Equivalent the the initial release's default settings.)\n"
" Level 4: Hierarchical codebook searching, codebook k-means iterations. 37.15 dB, ~4x slower vs. level 0\n"
" Level 5: Full codebook searching, codebook k-means iterations. 37.41 dB, ~5.5x slower vs. level 0. (Equivalent to the initial release's -slower setting.)\n"
" Level 6: Full codebook searching, twice as many codebook k-means iterations, best ETC1 endpoint opt. 37.43 dB, ~12x slower vs. level 0\n"
);
}
static bool load_listing_file(const std::string &f, basisu::vector<std::string> &filenames)
{
std::string filename(f);
filename.erase(0, 1);
FILE *pFile = nullptr;
#ifdef _WIN32
fopen_s(&pFile, filename.c_str(), "r");
#else
pFile = fopen(filename.c_str(), "r");
#endif
if (!pFile)
{
error_printf("Failed opening listing file: \"%s\"\n", filename.c_str());
return false;
}
uint32_t total_filenames = 0;
for ( ; ; )
{
char buf[3072];
buf[0] = '\0';
char *p = fgets(buf, sizeof(buf), pFile);
if (!p)
{
if (ferror(pFile))
{
error_printf("Failed reading from listing file: \"%s\"\n", filename.c_str());
fclose(pFile);
return false;
}
else
break;
}
std::string read_filename(p);
while (read_filename.size())
{
if (read_filename[0] == ' ')
read_filename.erase(0, 1);
else
break;
}
while (read_filename.size())
{
const char c = read_filename.back();
if ((c == ' ') || (c == '\n') || (c == '\r'))
read_filename.erase(read_filename.size() - 1, 1);
else
break;
}
if (read_filename.size())
{
filenames.push_back(read_filename);
total_filenames++;
}
}
fclose(pFile);
printf("Successfully read %u filenames(s) from listing file \"%s\"\n", total_filenames, filename.c_str());
return true;
}
class command_line_params
{
BASISU_NO_EQUALS_OR_COPY_CONSTRUCT(command_line_params);
public:
command_line_params() :
m_mode(cDefault),
m_ktx2_mode(false),
m_ktx2_zstandard(true),
m_ktx2_zstandard_level(6),
m_ktx2_animdata_duration(1),
m_ktx2_animdata_timescale(15),
m_ktx2_animdata_loopcount(0),
m_multifile_first(0),
m_multifile_num(0),
m_max_threads(1024), // surely this is high enough
m_individual(true),
m_no_ktx(false),
m_ktx_only(false),
m_write_out(false),
m_format_only(-1),
m_etc1_only(false),
m_fuzz_testing(false),
m_compare_ssim(false),
m_bench(false),
m_parallel_compression(false)
{
m_comp_params.m_compression_level = basisu::maximum<int>(0, BASISU_DEFAULT_COMPRESSION_LEVEL - 1);
m_test_file_dir = "../test_files";
}
bool parse(int arg_c, const char **arg_v)
{
int arg_index = 1;
while (arg_index < arg_c)
{
const char *pArg = arg_v[arg_index];
const int num_remaining_args = arg_c - (arg_index + 1);
int arg_count = 1;
#define REMAINING_ARGS_CHECK(n) if (num_remaining_args < (n)) { error_printf("Error: Expected %u values to follow %s!\n", n, pArg); return false; }
if (strcasecmp(pArg, "-ktx2") == 0)
{
m_ktx2_mode = true;
}
else if (strcasecmp(pArg, "-ktx2_no_zstandard") == 0)
{
m_ktx2_zstandard = false;
}
else if (strcasecmp(pArg, "-ktx2_zstandard_level") == 0)
{
REMAINING_ARGS_CHECK(1);
m_ktx2_zstandard_level = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-ktx2_animdata_duration") == 0)
{
REMAINING_ARGS_CHECK(1);
m_ktx2_animdata_duration = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-ktx2_animdata_timescale") == 0)
{
REMAINING_ARGS_CHECK(1);
m_ktx2_animdata_timescale = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-ktx2_animdata_loopcount") == 0)
{
REMAINING_ARGS_CHECK(1);
m_ktx2_animdata_loopcount = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-compress") == 0)
m_mode = cCompress;
else if (strcasecmp(pArg, "-compare") == 0)
m_mode = cCompare;
else if (strcasecmp(pArg, "-split") == 0)
m_mode = cSplitImage;
else if (strcasecmp(pArg, "-combine") == 0)
m_mode = cCombineImages;
else if (strcasecmp(pArg, "-unpack") == 0)
m_mode = cUnpack;
else if (strcasecmp(pArg, "-validate") == 0)
m_mode = cValidate;
else if (strcasecmp(pArg, "-info") == 0)
m_mode = cInfo;
else if (strcasecmp(pArg, "-version") == 0)
m_mode = cVersion;
else if (strcasecmp(pArg, "-compare_ssim") == 0)
m_compare_ssim = true;
else if (strcasecmp(pArg, "-bench") == 0)
m_mode = cBench;
else if (strcasecmp(pArg, "-comp_size") == 0)
m_mode = cCompSize;
else if (strcasecmp(pArg, "-test") == 0)
m_mode = cTest;
else if (strcasecmp(pArg, "-clbench") == 0)
m_mode = cCLBench;
else if (strcasecmp(pArg, "-test_dir") == 0)
{
REMAINING_ARGS_CHECK(1);
m_test_file_dir = std::string(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-no_sse") == 0)
{
#if BASISU_SUPPORT_SSE
g_cpu_supports_sse41 = false;
#endif
}
else if (strcasecmp(pArg, "-no_status_output") == 0)
{
m_comp_params.m_status_output = false;
}
else if (strcasecmp(pArg, "-file") == 0)
{
REMAINING_ARGS_CHECK(1);
m_input_filenames.push_back(std::string(arg_v[arg_index + 1]));
arg_count++;
}
else if (strcasecmp(pArg, "-alpha_file") == 0)
{
REMAINING_ARGS_CHECK(1);
m_input_alpha_filenames.push_back(std::string(arg_v[arg_index + 1]));
arg_count++;
}
else if (strcasecmp(pArg, "-multifile_printf") == 0)
{
REMAINING_ARGS_CHECK(1);
m_multifile_printf = std::string(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-multifile_first") == 0)
{
REMAINING_ARGS_CHECK(1);
m_multifile_first = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-multifile_num") == 0)
{
REMAINING_ARGS_CHECK(1);
m_multifile_num = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-uastc") == 0)
m_comp_params.m_uastc = true;
else if (strcasecmp(pArg, "-uastc_level") == 0)
{
REMAINING_ARGS_CHECK(1);
int uastc_level = atoi(arg_v[arg_index + 1]);
uastc_level = clamp<int>(uastc_level, 0, TOTAL_PACK_UASTC_LEVELS - 1);
static_assert(TOTAL_PACK_UASTC_LEVELS == 5, "TOTAL_PACK_UASTC_LEVELS==5");
static const uint32_t s_level_flags[TOTAL_PACK_UASTC_LEVELS] = { cPackUASTCLevelFastest, cPackUASTCLevelFaster, cPackUASTCLevelDefault, cPackUASTCLevelSlower, cPackUASTCLevelVerySlow };
m_comp_params.m_pack_uastc_flags &= ~cPackUASTCLevelMask;
m_comp_params.m_pack_uastc_flags |= s_level_flags[uastc_level];
arg_count++;
}
else if (strcasecmp(pArg, "-resample") == 0)
{
REMAINING_ARGS_CHECK(2);
m_comp_params.m_resample_width = atoi(arg_v[arg_index + 1]);
m_comp_params.m_resample_height = atoi(arg_v[arg_index + 2]);
arg_count += 2;
}
else if (strcasecmp(pArg, "-resample_factor") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_resample_factor = (float)atof(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-uastc_rdo_l") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_rdo_uastc_quality_scalar = (float)atof(arg_v[arg_index + 1]);
m_comp_params.m_rdo_uastc = true;
arg_count++;
}
else if (strcasecmp(pArg, "-uastc_rdo_d") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_rdo_uastc_dict_size = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-uastc_rdo_b") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_rdo_uastc_max_smooth_block_error_scale = (float)atof(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-uastc_rdo_s") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_rdo_uastc_smooth_block_max_std_dev = (float)atof(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-uastc_rdo_f") == 0)
m_comp_params.m_rdo_uastc_favor_simpler_modes_in_rdo_mode = false;
else if (strcasecmp(pArg, "-uastc_rdo_m") == 0)
m_comp_params.m_rdo_uastc_multithreading = false;
else if (strcasecmp(pArg, "-linear") == 0)
m_comp_params.m_perceptual = false;
else if (strcasecmp(pArg, "-srgb") == 0)
m_comp_params.m_perceptual = true;
else if (strcasecmp(pArg, "-q") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_quality_level = clamp<int>(atoi(arg_v[arg_index + 1]), BASISU_QUALITY_MIN, BASISU_QUALITY_MAX);
arg_count++;
}
else if (strcasecmp(pArg, "-output_file") == 0)
{
REMAINING_ARGS_CHECK(1);
m_output_filename = arg_v[arg_index + 1];
arg_count++;
}
else if (strcasecmp(pArg, "-output_path") == 0)
{
REMAINING_ARGS_CHECK(1);
m_output_path = arg_v[arg_index + 1];
arg_count++;
}
else if ((strcasecmp(pArg, "-debug") == 0) || (strcasecmp(pArg, "-verbose") == 0))
{
m_comp_params.m_debug = true;
enable_debug_printf(true);
}
else if (strcasecmp(pArg, "-validate_etc1s") == 0)
{
m_comp_params.m_validate_etc1s = true;
}
else if (strcasecmp(pArg, "-validate_output") == 0)
{
m_comp_params.m_validate_output_data = true;
}
else if (strcasecmp(pArg, "-debug_images") == 0)
m_comp_params.m_debug_images = true;
else if (strcasecmp(pArg, "-stats") == 0)
m_comp_params.m_compute_stats = true;
else if (strcasecmp(pArg, "-gen_global_codebooks") == 0)
{
// TODO
}
else if (strcasecmp(pArg, "-use_global_codebooks") == 0)
{
REMAINING_ARGS_CHECK(1);
m_etc1s_use_global_codebooks_file = arg_v[arg_index + 1];
arg_count++;
}
else if (strcasecmp(pArg, "-comp_level") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_compression_level = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-slower") == 0)
{
// This option is gone, but we'll do something reasonable with it anyway. Level 4 is equivalent to the original release's -slower, but let's just go to level 2.
m_comp_params.m_compression_level = BASISU_DEFAULT_COMPRESSION_LEVEL + 1;
}
else if (strcasecmp(pArg, "-max_endpoints") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_max_endpoint_clusters = clamp<int>(atoi(arg_v[arg_index + 1]), 1, BASISU_MAX_ENDPOINT_CLUSTERS);
arg_count++;
}
else if (strcasecmp(pArg, "-max_selectors") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_max_selector_clusters = clamp<int>(atoi(arg_v[arg_index + 1]), 1, BASISU_MAX_SELECTOR_CLUSTERS);
arg_count++;
}
else if (strcasecmp(pArg, "-y_flip") == 0)
m_comp_params.m_y_flip = true;
else if (strcasecmp(pArg, "-normal_map") == 0)
{
m_comp_params.m_perceptual = false;
m_comp_params.m_mip_srgb = false;
m_comp_params.m_no_selector_rdo = true;
m_comp_params.m_no_endpoint_rdo = true;
}
else if (strcasecmp(pArg, "-no_alpha") == 0)
m_comp_params.m_check_for_alpha = false;
else if (strcasecmp(pArg, "-force_alpha") == 0)
m_comp_params.m_force_alpha = true;
else if ((strcasecmp(pArg, "-separate_rg_to_color_alpha") == 0) ||
(strcasecmp(pArg, "-seperate_rg_to_color_alpha") == 0)) // was mispelled for a while - whoops!
{
m_comp_params.m_swizzle[0] = 0;
m_comp_params.m_swizzle[1] = 0;
m_comp_params.m_swizzle[2] = 0;
m_comp_params.m_swizzle[3] = 1;
}
else if (strcasecmp(pArg, "-swizzle") == 0)
{
REMAINING_ARGS_CHECK(1);
const char *swizzle = arg_v[arg_index + 1];
if (strlen(swizzle) != 4)
{
error_printf("Swizzle requires exactly 4 characters\n");
return false;
}
for (int i=0; i<4; ++i)
{
if (swizzle[i] == 'r')
m_comp_params.m_swizzle[i] = 0;
else if (swizzle[i] == 'g')
m_comp_params.m_swizzle[i] = 1;
else if (swizzle[i] == 'b')
m_comp_params.m_swizzle[i] = 2;
else if (swizzle[i] == 'a')
m_comp_params.m_swizzle[i] = 3;
else
{
error_printf("Swizzle must be one of [rgba]");
return false;
}
}
arg_count++;
}
else if (strcasecmp(pArg, "-renorm") == 0)
m_comp_params.m_renormalize = true;
else if (strcasecmp(pArg, "-no_multithreading") == 0)
{
m_comp_params.m_multithreading = false;
}
else if (strcasecmp(pArg, "-parallel") == 0)
{
m_parallel_compression = true;
}
else if (strcasecmp(pArg, "-max_threads") == 0)
{
REMAINING_ARGS_CHECK(1);
m_max_threads = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-mipmap") == 0)
m_comp_params.m_mip_gen = true;
else if (strcasecmp(pArg, "-no_ktx") == 0)
m_no_ktx = true;
else if (strcasecmp(pArg, "-ktx_only") == 0)
m_ktx_only = true;
else if (strcasecmp(pArg, "-write_out") == 0)
m_write_out = true;
else if (strcasecmp(pArg, "-format_only") == 0)
{
REMAINING_ARGS_CHECK(1);
m_format_only = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-etc1_only") == 0)
{
m_etc1_only = true;
m_format_only = (int)basist::transcoder_texture_format::cTFETC1_RGB;
}
else if (strcasecmp(pArg, "-disable_hierarchical_endpoint_codebooks") == 0)
m_comp_params.m_disable_hierarchical_endpoint_codebooks = true;
else if (strcasecmp(pArg, "-opencl") == 0)
{
m_comp_params.m_use_opencl = true;
}
else if (strcasecmp(pArg, "-opencl_serialize") == 0)
{
}
else if (strcasecmp(pArg, "-mip_scale") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_mip_scale = (float)atof(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-mip_filter") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_mip_filter = arg_v[arg_index + 1];
// TODO: Check filter
arg_count++;
}
else if (strcasecmp(pArg, "-mip_renorm") == 0)
m_comp_params.m_mip_renormalize = true;
else if (strcasecmp(pArg, "-mip_clamp") == 0)
m_comp_params.m_mip_wrapping = false;
else if (strcasecmp(pArg, "-mip_fast") == 0)
m_comp_params.m_mip_fast = true;
else if (strcasecmp(pArg, "-mip_slow") == 0)
m_comp_params.m_mip_fast = false;
else if (strcasecmp(pArg, "-mip_smallest") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_mip_smallest_dimension = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-mip_srgb") == 0)
m_comp_params.m_mip_srgb = true;
else if (strcasecmp(pArg, "-mip_linear") == 0)
m_comp_params.m_mip_srgb = false;
else if (strcasecmp(pArg, "-no_selector_rdo") == 0)
m_comp_params.m_no_selector_rdo = true;
else if (strcasecmp(pArg, "-selector_rdo_thresh") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_selector_rdo_thresh = (float)atof(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-no_endpoint_rdo") == 0)
m_comp_params.m_no_endpoint_rdo = true;
else if (strcasecmp(pArg, "-endpoint_rdo_thresh") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_endpoint_rdo_thresh = (float)atof(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-userdata0") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_userdata0 = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-userdata1") == 0)
{
REMAINING_ARGS_CHECK(1);
m_comp_params.m_userdata1 = atoi(arg_v[arg_index + 1]);
arg_count++;
}
else if (strcasecmp(pArg, "-framerate") == 0)
{
REMAINING_ARGS_CHECK(1);
double fps = atof(arg_v[arg_index + 1]);
double us_per_frame = 0;
if (fps > 0)
us_per_frame = 1000000.0f / fps;
m_comp_params.m_us_per_frame = clamp<int>(static_cast<int>(us_per_frame + .5f), 0, basist::cBASISMaxUSPerFrame);
arg_count++;
}
else if (strcasecmp(pArg, "-tex_type") == 0)
{
REMAINING_ARGS_CHECK(1);
const char* pType = arg_v[arg_index + 1];
if (strcasecmp(pType, "2d") == 0)
m_comp_params.m_tex_type = basist::cBASISTexType2D;
else if (strcasecmp(pType, "2darray") == 0)
{
m_comp_params.m_tex_type = basist::cBASISTexType2DArray;
m_individual = false;
}
else if (strcasecmp(pType, "3d") == 0)
{
m_comp_params.m_tex_type = basist::cBASISTexTypeVolume;
m_individual = false;
}
else if (strcasecmp(pType, "cubemap") == 0)
{
m_comp_params.m_tex_type = basist::cBASISTexTypeCubemapArray;
m_individual = false;
}
else if (strcasecmp(pType, "video") == 0)
{
m_comp_params.m_tex_type = basist::cBASISTexTypeVideoFrames;
m_individual = false;
}
else
{
error_printf("Invalid texture type: %s\n", pType);
return false;
}
arg_count++;
}
else if (strcasecmp(pArg, "-individual") == 0)
m_individual = true;
else if (strcasecmp(pArg, "-tex_array") == 0)
m_individual = false;
else if (strcasecmp(pArg, "-fuzz_testing") == 0)
m_fuzz_testing = true;
else if (strcasecmp(pArg, "-csv_file") == 0)
{
REMAINING_ARGS_CHECK(1);
m_csv_file = arg_v[arg_index + 1];
m_comp_params.m_compute_stats = true;
arg_count++;
}
else if (pArg[0] == '-')
{
error_printf("Unrecognized command line option: %s\n", pArg);
return false;
}
else
{
// Let's assume it's a source filename, so globbing works
//error_printf("Unrecognized command line option: %s\n", pArg);
m_input_filenames.push_back(pArg);
}
arg_index += arg_count;
}
if (m_comp_params.m_quality_level != -1)
{
m_comp_params.m_max_endpoint_clusters = 0;
m_comp_params.m_max_selector_clusters = 0;
}
else if ((!m_comp_params.m_max_endpoint_clusters) || (!m_comp_params.m_max_selector_clusters))
{
m_comp_params.m_max_endpoint_clusters = 0;
m_comp_params.m_max_selector_clusters = 0;
m_comp_params.m_quality_level = 128;
}
if (!m_comp_params.m_mip_srgb.was_changed())
{
// They didn't specify what colorspace to do mipmap filtering in, so choose sRGB if they've specified that the texture is sRGB.
if (m_comp_params.m_perceptual)
m_comp_params.m_mip_srgb = true;
else
m_comp_params.m_mip_srgb = false;
}
return true;
}
bool process_listing_files()
{
basisu::vector<std::string> new_input_filenames;
for (uint32_t i = 0; i < m_input_filenames.size(); i++)
{
if (m_input_filenames[i][0] == '@')
{
if (!load_listing_file(m_input_filenames[i], new_input_filenames))
return false;
}
else
new_input_filenames.push_back(m_input_filenames[i]);
}
new_input_filenames.swap(m_input_filenames);
basisu::vector<std::string> new_input_alpha_filenames;
for (uint32_t i = 0; i < m_input_alpha_filenames.size(); i++)
{
if (m_input_alpha_filenames[i][0] == '@')
{
if (!load_listing_file(m_input_alpha_filenames[i], new_input_alpha_filenames))
return false;
}
else
new_input_alpha_filenames.push_back(m_input_alpha_filenames[i]);
}
new_input_alpha_filenames.swap(m_input_alpha_filenames);
return true;
}
basis_compressor_params m_comp_params;
tool_mode m_mode;
bool m_ktx2_mode;
bool m_ktx2_zstandard;
int m_ktx2_zstandard_level;
uint32_t m_ktx2_animdata_duration;
uint32_t m_ktx2_animdata_timescale;
uint32_t m_ktx2_animdata_loopcount;
basisu::vector<std::string> m_input_filenames;
basisu::vector<std::string> m_input_alpha_filenames;
std::string m_output_filename;
std::string m_output_path;
int m_format_only;
std::string m_multifile_printf;
uint32_t m_multifile_first;
uint32_t m_multifile_num;
std::string m_csv_file;
std::string m_etc1s_use_global_codebooks_file;
std::string m_test_file_dir;
uint32_t m_max_threads;
bool m_individual;
bool m_no_ktx;
bool m_ktx_only;
bool m_write_out;
bool m_etc1_only;
bool m_fuzz_testing;
bool m_compare_ssim;
bool m_bench;
bool m_parallel_compression;
};
static bool expand_multifile(command_line_params &opts)
{
if (!opts.m_multifile_printf.size())
return true;
if (!opts.m_multifile_num)
{
error_printf("-multifile_printf specified, but not -multifile_num\n");
return false;
}
std::string fmt(opts.m_multifile_printf);
// Workaround for MSVC debugger issues. Questionable to leave in here.
size_t x = fmt.find_first_of('!');
if (x != std::string::npos)
fmt[x] = '%';
if (string_find_right(fmt, '%') == -1)
{
error_printf("Must include C-style printf() format character '%%' in -multifile_printf string\n");
return false;
}
for (uint32_t i = opts.m_multifile_first; i < opts.m_multifile_first + opts.m_multifile_num; i++)
{
char buf[1024];
#ifdef _WIN32
sprintf_s(buf, sizeof(buf), fmt.c_str(), i);
#else
snprintf(buf, sizeof(buf), fmt.c_str(), i);
#endif
if (buf[0])
opts.m_input_filenames.push_back(buf);
}
return true;
}
struct basis_data
{
basis_data() :
m_transcoder()
{
}
uint8_vec m_file_data;
basist::basisu_transcoder m_transcoder;
};
static basis_data *load_basis_file(const char *pInput_filename, bool force_etc1s)
{
basis_data* p = new basis_data;
uint8_vec &basis_data = p->m_file_data;
if (!basisu::read_file_to_vec(pInput_filename, basis_data))
{
error_printf("Failed reading file \"%s\"\n", pInput_filename);
delete p;
return nullptr;
}
printf("Input file \"%s\"\n", pInput_filename);
if (!basis_data.size())
{
error_printf("File is empty!\n");
delete p;
return nullptr;
}
if (basis_data.size() > UINT32_MAX)
{
error_printf("File is too large!\n");
delete p;
return nullptr;
}
if (force_etc1s)
{
if (p->m_transcoder.get_tex_format((const void*)&p->m_file_data[0], (uint32_t)p->m_file_data.size()) != basist::basis_tex_format::cETC1S)
{
error_printf("Global codebook file must be in ETC1S format!\n");
delete p;
return nullptr;
}
}
if (!p->m_transcoder.start_transcoding(&basis_data[0], (uint32_t)basis_data.size()))
{
error_printf("start_transcoding() failed!\n");
delete p;
return nullptr;
}
return p;
}
static bool compress_mode(command_line_params &opts)
{
uint32_t num_threads = 1;
if (opts.m_comp_params.m_multithreading)
{
// We use std::thread::hardware_concurrency() as a hint to determine the default # of threads to put into a pool.
num_threads = std::thread::hardware_concurrency();
if (num_threads < 1)
num_threads = 1;
if (num_threads > opts.m_max_threads)
num_threads = opts.m_max_threads;
}
job_pool compressor_jpool(opts.m_parallel_compression ? 1 : num_threads);
if (!opts.m_parallel_compression)
opts.m_comp_params.m_pJob_pool = &compressor_jpool;
if (!expand_multifile(opts))
{
error_printf("-multifile expansion failed!\n");
return false;
}
if (!opts.m_input_filenames.size())
{
error_printf("No input files to process!\n");
return false;
}
basis_data* pGlobal_codebook_data = nullptr;
if (opts.m_etc1s_use_global_codebooks_file.size())
{
pGlobal_codebook_data = load_basis_file(opts.m_etc1s_use_global_codebooks_file.c_str(), true);
if (!pGlobal_codebook_data)
return false;
printf("Loaded global codebooks from .basis file \"%s\"\n", opts.m_etc1s_use_global_codebooks_file.c_str());
#if 0
// Development/test code. TODO: Remove.
basis_data* pGlobal_codebook_data2 = load_basis_file("xmen_1024.basis", sel_codebook, true);
const basist::basisu_lowlevel_etc1s_transcoder &ta = pGlobal_codebook_data->m_transcoder.get_lowlevel_etc1s_decoder();
const basist::basisu_lowlevel_etc1s_transcoder &tb = pGlobal_codebook_data2->m_transcoder.get_lowlevel_etc1s_decoder();
if (ta.get_endpoints().size() != tb.get_endpoints().size())
{
printf("Endpoint CB's don't match\n");
}
else if (ta.get_selectors().size() != tb.get_selectors().size())
{
printf("Selector CB's don't match\n");
}
else
{
for (uint32_t i = 0; i < ta.get_endpoints().size(); i++)
{
if (ta.get_endpoints()[i] != tb.get_endpoints()[i])
{
printf("Endoint CB mismatch entry %u\n", i);
}
}
for (uint32_t i = 0; i < ta.get_selectors().size(); i++)
{
if (ta.get_selectors()[i] != tb.get_selectors()[i])
{
printf("Selector CB mismatch entry %u\n", i);
}
}
}
delete pGlobal_codebook_data2;
pGlobal_codebook_data2 = nullptr;
#endif
}
basis_compressor_params &params = opts.m_comp_params;
if (opts.m_ktx2_mode)
{
params.m_create_ktx2_file = true;
if (opts.m_ktx2_zstandard)
params.m_ktx2_uastc_supercompression = basist::KTX2_SS_ZSTANDARD;
else
params.m_ktx2_uastc_supercompression = basist::KTX2_SS_NONE;
params.m_ktx2_srgb_transfer_func = opts.m_comp_params.m_perceptual;
if (params.m_tex_type == basist::basis_texture_type::cBASISTexTypeVideoFrames)
{
// Create KTXanimData key value entry
// TODO: Move this to basisu_comp.h
basist::ktx2_transcoder::key_value kv;
const char* pAD = "KTXanimData";
kv.m_key.resize(strlen(pAD) + 1);
strcpy((char*)kv.m_key.data(), pAD);
basist::ktx2_animdata ad;
ad.m_duration = opts.m_ktx2_animdata_duration;
ad.m_timescale = opts.m_ktx2_animdata_timescale;
ad.m_loopcount = opts.m_ktx2_animdata_loopcount;
kv.m_value.resize(sizeof(ad));
memcpy(kv.m_value.data(), &ad, sizeof(ad));
params.m_ktx2_key_values.push_back(kv);
}
// TODO- expose this to command line.
params.m_ktx2_zstd_supercompression_level = opts.m_ktx2_zstandard_level;
}
params.m_read_source_images = true;
params.m_write_output_basis_files = true;
params.m_pGlobal_codebooks = pGlobal_codebook_data ? &pGlobal_codebook_data->m_transcoder.get_lowlevel_etc1s_decoder() : nullptr;
FILE *pCSV_file = nullptr;
if (opts.m_csv_file.size())
{
//pCSV_file = fopen_safe(opts.m_csv_file.c_str(), "a");
pCSV_file = fopen_safe(opts.m_csv_file.c_str(), "w");
if (!pCSV_file)
{
error_printf("Failed opening CVS file \"%s\"\n", opts.m_csv_file.c_str());
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
fprintf(pCSV_file, "Filename, Size, Slices, Width, Height, HasAlpha, BitsPerTexel, Slice0RGBAvgPSNR, Slice0RGBAAvgPSNR, Slice0Luma709PSNR, Slice0BestETC1SLuma709PSNR, Q, CL, Time, RGBAvgPSNRMin, RGBAvgPSNRAvg, AAvgPSNRMin, AAvgPSNRAvg, Luma709PSNRMin, Luma709PSNRAvg\n");
}
printf("Processing %u total file(s)\n", (uint32_t)opts.m_input_filenames.size());
interval_timer all_tm;
all_tm.start();
basisu::vector<basis_compressor_params> comp_params_vec;
const size_t total_files = (opts.m_individual ? opts.m_input_filenames.size() : 1U);
bool result = true;
if ((opts.m_individual) && (opts.m_output_filename.size()))
{
if (total_files > 1)
{
error_printf("-output_file specified in individual mode, but multiple input files have been specified which would cause the output file to be written multiple times.\n");
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
}
for (size_t file_index = 0; file_index < total_files; file_index++)
{
if (opts.m_individual)
{
params.m_source_filenames.resize(1);
params.m_source_filenames[0] = opts.m_input_filenames[file_index];
if (file_index < opts.m_input_alpha_filenames.size())
{
params.m_source_alpha_filenames.resize(1);
params.m_source_alpha_filenames[0] = opts.m_input_alpha_filenames[file_index];
if (params.m_status_output)
printf("Processing source file \"%s\", alpha file \"%s\"\n", params.m_source_filenames[0].c_str(), params.m_source_alpha_filenames[0].c_str());
}
else
{
params.m_source_alpha_filenames.resize(0);
if (params.m_status_output)
printf("Processing source file \"%s\"\n", params.m_source_filenames[0].c_str());
}
}
else
{
params.m_source_filenames = opts.m_input_filenames;
params.m_source_alpha_filenames = opts.m_input_alpha_filenames;
}
if (opts.m_output_filename.size())
params.m_out_filename = opts.m_output_filename;
else
{
std::string filename;
string_get_filename(opts.m_input_filenames[file_index].c_str(), filename);
string_remove_extension(filename);
if (opts.m_ktx2_mode)
filename += ".ktx2";
else
filename += ".basis";
if (opts.m_output_path.size())
string_combine_path(filename, opts.m_output_path.c_str(), filename.c_str());
params.m_out_filename = filename;
}
if (opts.m_parallel_compression)
{
comp_params_vec.push_back(params);
}
else
{
basis_compressor c;
if (!c.init(opts.m_comp_params))
{
error_printf("basis_compressor::init() failed!\n");
if (pCSV_file)
{
fclose(pCSV_file);
pCSV_file = nullptr;
}
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
interval_timer tm;
tm.start();
basis_compressor::error_code ec = c.process();
tm.stop();
if (ec == basis_compressor::cECSuccess)
{
if (params.m_status_output)
{
printf("Compression succeeded to file \"%s\" size %u bytes in %3.3f secs\n", params.m_out_filename.c_str(),
opts.m_ktx2_mode ? c.get_output_ktx2_file().size() : c.get_output_basis_file().size(),
tm.get_elapsed_secs());
}
}
else
{
result = false;
if (!params.m_status_output)
{
error_printf("Compression failed on file \"%s\"\n", params.m_out_filename.c_str());
}
bool exit_flag = true;
switch (ec)
{
case basis_compressor::cECFailedReadingSourceImages:
{
error_printf("Compressor failed reading a source image!\n");
if (opts.m_individual)
exit_flag = false;
break;
}
case basis_compressor::cECFailedValidating:
error_printf("Compressor failed 2darray/cubemap/video validation checks!\n");
break;
case basis_compressor::cECFailedEncodeUASTC:
error_printf("Compressor UASTC encode failed!\n");
break;
case basis_compressor::cECFailedFrontEnd:
error_printf("Compressor frontend stage failed!\n");
break;
case basis_compressor::cECFailedFontendExtract:
error_printf("Compressor frontend data extraction failed!\n");
break;
case basis_compressor::cECFailedBackend:
error_printf("Compressor backend stage failed!\n");
break;
case basis_compressor::cECFailedCreateBasisFile:
error_printf("Compressor failed creating Basis file data!\n");
break;
case basis_compressor::cECFailedWritingOutput:
error_printf("Compressor failed writing to output Basis file!\n");
break;
case basis_compressor::cECFailedUASTCRDOPostProcess:
error_printf("Compressor failed during the UASTC post process step!\n");
break;
case basis_compressor::cECFailedCreateKTX2File:
error_printf("Compressor failed creating KTX2 file data!\n");
break;
default:
error_printf("basis_compress::process() failed!\n");
break;
}
if (exit_flag)
{
if (pCSV_file)
{
fclose(pCSV_file);
pCSV_file = nullptr;
}
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
}
if ((pCSV_file) && (c.get_stats().size()))
{
if (c.get_stats().size())
{
float rgb_avg_psnr_min = 1e+9f, rgb_avg_psnr_avg = 0.0f;
float a_avg_psnr_min = 1e+9f, a_avg_psnr_avg = 0.0f;
float luma_709_psnr_min = 1e+9f, luma_709_psnr_avg = 0.0f;
for (size_t slice_index = 0; slice_index < c.get_stats().size(); slice_index++)
{
rgb_avg_psnr_min = basisu::minimum(rgb_avg_psnr_min, c.get_stats()[slice_index].m_basis_rgb_avg_psnr);
rgb_avg_psnr_avg += c.get_stats()[slice_index].m_basis_rgb_avg_psnr;
a_avg_psnr_min = basisu::minimum(a_avg_psnr_min, c.get_stats()[slice_index].m_basis_a_avg_psnr);
a_avg_psnr_avg += c.get_stats()[slice_index].m_basis_a_avg_psnr;
luma_709_psnr_min = basisu::minimum(luma_709_psnr_min, c.get_stats()[slice_index].m_basis_luma_709_psnr);
luma_709_psnr_avg += c.get_stats()[slice_index].m_basis_luma_709_psnr;
}
rgb_avg_psnr_avg /= c.get_stats().size();
a_avg_psnr_avg /= c.get_stats().size();
luma_709_psnr_avg /= c.get_stats().size();
fprintf(pCSV_file, "\"%s\", %u, %u, %u, %u, %u, %f, %f, %f, %f, %f, %u, %u, %f, %f, %f, %f, %f, %f, %f\n",
params.m_out_filename.c_str(),
c.get_basis_file_size(),
(uint32_t)c.get_stats().size(),
c.get_stats()[0].m_width, c.get_stats()[0].m_height, (uint32_t)c.get_any_source_image_has_alpha(),
c.get_basis_bits_per_texel(),
c.get_stats()[0].m_basis_rgb_avg_psnr,
c.get_stats()[0].m_basis_rgba_avg_psnr,
c.get_stats()[0].m_basis_luma_709_psnr,
c.get_stats()[0].m_best_etc1s_luma_709_psnr,
params.m_quality_level, (int)params.m_compression_level, tm.get_elapsed_secs(),
rgb_avg_psnr_min, rgb_avg_psnr_avg,
a_avg_psnr_min, a_avg_psnr_avg,
luma_709_psnr_min, luma_709_psnr_avg);
fflush(pCSV_file);
}
}
//if ((opts.m_individual) && (params.m_status_output))
// printf("\n");
} // if (opts.m_parallel_compression)
} // file_index
if (opts.m_parallel_compression)
{
basisu::vector<parallel_results> results;
bool any_failed = basis_parallel_compress(
num_threads,
comp_params_vec,
results);
BASISU_NOTE_UNUSED(any_failed);
uint32_t total_successes = 0, total_failures = 0;
for (uint32_t i = 0; i < comp_params_vec.size(); i++)
{
if (results[i].m_error_code != basis_compressor::cECSuccess)
{
result = false;
total_failures++;
error_printf("File %u (first source image: \"%s\", output file: \"%s\") failed with error code %i!\n", i,
comp_params_vec[i].m_source_filenames[0].c_str(),
comp_params_vec[i].m_out_filename.c_str(),
(int)results[i].m_error_code);
}
else
{
total_successes++;
}
}
printf("Total successes: %u failures: %u\n", total_successes, total_failures);
} // if (opts.m_parallel_compression)
all_tm.stop();
if (total_files > 1)
printf("Total compression time: %3.3f secs\n", all_tm.get_elapsed_secs());
if (pCSV_file)
{
fclose(pCSV_file);
pCSV_file = nullptr;
}
delete pGlobal_codebook_data;
pGlobal_codebook_data = nullptr;
return result;
}
static bool unpack_and_validate_ktx2_file(
uint32_t file_index,
const std::string& base_filename,
uint8_vec& ktx2_file_data,
command_line_params& opts,
FILE* pCSV_file,
basis_data* pGlobal_codebook_data,
uint32_t& total_unpack_warnings,
uint32_t& total_pvrtc_nonpow2_warnings)
{
// TODO
(void)pCSV_file;
(void)file_index;
const bool validate_flag = (opts.m_mode == cValidate);
basist::ktx2_transcoder dec;
if (!dec.init(ktx2_file_data.data(), ktx2_file_data.size()))
{
error_printf("ktx2_transcoder::init() failed! File either uses an unsupported feature, is invalid, was corrupted, or this is a bug.\n");
return false;
}
if (!dec.start_transcoding())
{
error_printf("ktx2_transcoder::start_transcoding() failed! File either uses an unsupported feature, is invalid, was corrupted, or this is a bug.\n");
return false;
}
printf("Resolution: %ux%u\n", dec.get_width(), dec.get_height());
printf("Mipmap Levels: %u\n", dec.get_levels());
printf("Texture Array Size (layers): %u\n", dec.get_layers());
printf("Total Faces: %u (%s)\n", dec.get_faces(), (dec.get_faces() == 6) ? "CUBEMAP" : "2D");
printf("Is Texture Video: %u\n", dec.is_video());
const bool is_etc1s = dec.get_format() == basist::basis_tex_format::cETC1S;
printf("Supercompression Format: %s\n", is_etc1s ? "ETC1S" : "UASTC");
printf("Supercompression Scheme: ");
switch (dec.get_header().m_supercompression_scheme)
{
case basist::KTX2_SS_NONE: printf("NONE\n"); break;
case basist::KTX2_SS_BASISLZ: printf("BASISLZ\n"); break;
case basist::KTX2_SS_ZSTANDARD: printf("ZSTANDARD\n"); break;
default:
error_printf("Invalid/unknown/unsupported\n");
return false;
}
printf("Has Alpha: %u\n", (uint32_t)dec.get_has_alpha());
printf("\nData Format Descriptor (DFD):\n");
printf("DFD length in bytes: %u\n", dec.get_dfd().size());
printf("DFD color model: %u\n", dec.get_dfd_color_model());
printf("DFD color primaries: %u (%s)\n", dec.get_dfd_color_primaries(), basist::ktx2_get_df_color_primaries_str(dec.get_dfd_color_primaries()));
printf("DFD transfer func: %u (%s)\n", dec.get_dfd_transfer_func(),
(dec.get_dfd_transfer_func() == basist::KTX2_KHR_DF_TRANSFER_LINEAR) ? "LINEAR" : ((dec.get_dfd_transfer_func() == basist::KTX2_KHR_DF_TRANSFER_SRGB) ? "SRGB" : "?"));
printf("DFD flags: %u\n", dec.get_dfd_flags());
printf("DFD samples: %u\n", dec.get_dfd_total_samples());
if (is_etc1s)
{
printf("DFD chan0: %s\n", basist::ktx2_get_etc1s_df_channel_id_str(dec.get_dfd_channel_id0()));
if (dec.get_dfd_total_samples() == 2)
printf("DFD chan1: %s\n", basist::ktx2_get_etc1s_df_channel_id_str(dec.get_dfd_channel_id1()));
}
else
printf("DFD chan0: %s\n", basist::ktx2_get_uastc_df_channel_id_str(dec.get_dfd_channel_id0()));
printf("DFD hex values:\n");
for (uint32_t i = 0; i < dec.get_dfd().size(); i++)
{
if (i)
printf(",");
printf("0x%X", dec.get_dfd()[i]);
}
printf("\n\n");
printf("Total key values: %u\n", dec.get_key_values().size());
for (uint32_t i = 0; i < dec.get_key_values().size(); i++)
{
printf("%u. Key: \"%s\", Value length in bytes: %u", i, (const char*)dec.get_key_values()[i].m_key.data(), dec.get_key_values()[i].m_value.size());
if (dec.get_key_values()[i].m_value.size() > 256)
continue;
bool is_ascii = true;
for (uint32_t j = 0; j < dec.get_key_values()[i].m_value.size(); j++)
{
uint8_t c = dec.get_key_values()[i].m_value[j];
if (!(
((c >= ' ') && (c < 0x80)) ||
((j == dec.get_key_values()[i].m_value.size() - 1) && (!c))
))
{
is_ascii = false;
break;
}
}
if (is_ascii)
{
uint8_vec s(dec.get_key_values()[i].m_value);
s.push_back(0);
printf(" Value String: \"%s\"", (const char *)s.data());
}
else
{
printf(" Value Bytes: ");
for (uint32_t j = 0; j < dec.get_key_values()[i].m_value.size(); j++)
{
if (j)
printf(",");
printf("0x%X", dec.get_key_values()[i].m_value[j]);
}
}
printf("\n");
}
if (is_etc1s)
{
printf("ETC1S header:\n");
printf("Endpoint Count: %u, Selector Count: %u, Endpoint Length: %u, Selector Length: %u, Tables Length: %u, Extended Length: %u\n",
(uint32_t)dec.get_etc1s_header().m_endpoint_count, (uint32_t)dec.get_etc1s_header().m_selector_count,
(uint32_t)dec.get_etc1s_header().m_endpoints_byte_length, (uint32_t)dec.get_etc1s_header().m_selectors_byte_length,
(uint32_t)dec.get_etc1s_header().m_tables_byte_length, (uint32_t)dec.get_etc1s_header().m_extended_byte_length);
printf("Total ETC1S image descs: %u\n", dec.get_etc1s_image_descs().size());
for (uint32_t i = 0; i < dec.get_etc1s_image_descs().size(); i++)
{
printf("%u. Flags: 0x%X, RGB Ofs: %u Len: %u, Alpha Ofs: %u, Len: %u\n", i,
(uint32_t)dec.get_etc1s_image_descs()[i].m_image_flags,
(uint32_t)dec.get_etc1s_image_descs()[i].m_rgb_slice_byte_offset, (uint32_t)dec.get_etc1s_image_descs()[i].m_rgb_slice_byte_length,
(uint32_t)dec.get_etc1s_image_descs()[i].m_alpha_slice_byte_offset, (uint32_t)dec.get_etc1s_image_descs()[i].m_alpha_slice_byte_length);
}
}
printf("Levels:\n");
for (uint32_t i = 0; i < dec.get_levels(); i++)
{
printf("%u. Offset: %llu, Length: %llu, Uncompressed Length: %llu\n",
i, (long long unsigned int)dec.get_level_index()[i].m_byte_offset,
(long long unsigned int)dec.get_level_index()[i].m_byte_length,
(long long unsigned int)dec.get_level_index()[i].m_uncompressed_byte_length);
}
if (opts.m_mode == cInfo)
{
return true;
}
// gpu_images[format][face][layer][level]
basisu::vector< gpu_image_vec > gpu_images[(int)basist::transcoder_texture_format::cTFTotalTextureFormats][6];
int first_format = 0;
int last_format = (int)basist::transcoder_texture_format::cTFTotalTextureFormats;
if (opts.m_format_only > -1)
{
first_format = opts.m_format_only;
last_format = first_format + 1;
}
const uint32_t total_layers = maximum<uint32_t>(1, dec.get_layers());
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
basist::transcoder_texture_format tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (basist::basis_transcoder_format_is_uncompressed(tex_fmt))
continue;
if (!basis_is_format_supported(tex_fmt, dec.get_format()))
continue;
if (tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
for (uint32_t face_index = 0; face_index < dec.get_faces(); face_index++)
{
gpu_images[(int)tex_fmt][face_index].resize(total_layers);
for (uint32_t layer_index = 0; layer_index < total_layers; layer_index++)
gpu_images[(int)tex_fmt][face_index][layer_index].resize(dec.get_levels());
}
}
// Now transcode the file to all supported texture formats and save mipmapped KTX files
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (basist::basis_transcoder_format_is_uncompressed(transcoder_tex_fmt))
continue;
if (!basis_is_format_supported(transcoder_tex_fmt, dec.get_format()))
continue;
if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
for (uint32_t level_index = 0; level_index < dec.get_levels(); level_index++)
{
for (uint32_t layer_index = 0; layer_index < total_layers; layer_index++)
{
for (uint32_t face_index = 0; face_index < dec.get_faces(); face_index++)
{
basist::ktx2_image_level_info level_info;
if (!dec.get_image_level_info(level_info, level_index, layer_index, face_index))
{
error_printf("Failed retrieving image level information (%u %u %u)!\n", layer_index, level_index, face_index);
return false;
}
if ((transcoder_tex_fmt == basist::transcoder_texture_format::cTFPVRTC1_4_RGB) || (transcoder_tex_fmt == basist::transcoder_texture_format::cTFPVRTC1_4_RGBA))
{
if (!is_pow2(level_info.m_width) || !is_pow2(level_info.m_height))
{
total_pvrtc_nonpow2_warnings++;
printf("Warning: Will not transcode image %u level %u res %ux%u to PVRTC1 (one or more dimension is not a power of 2)\n", layer_index, level_index, level_info.m_width, level_info.m_height);
// Can't transcode this image level to PVRTC because it's not a pow2 (we're going to support transcoding non-pow2 to the next larger pow2 soon)
continue;
}
}
basisu::texture_format tex_fmt = basis_get_basisu_texture_format(transcoder_tex_fmt);
gpu_image& gi = gpu_images[(int)transcoder_tex_fmt][face_index][layer_index][level_index];
gi.init(tex_fmt, level_info.m_orig_width, level_info.m_orig_height);
// Fill the buffer with psuedo-random bytes, to help more visibly detect cases where the transcoder fails to write to part of the output.
fill_buffer_with_random_bytes(gi.get_ptr(), gi.get_size_in_bytes());
uint32_t decode_flags = 0;
if (!dec.transcode_image_level(level_index, layer_index, face_index, gi.get_ptr(), gi.get_total_blocks(), transcoder_tex_fmt, decode_flags))
{
error_printf("Failed transcoding image level (%u %u %u %u)!\n", layer_index, level_index, face_index, format_iter);
return false;
}
printf("Transcode of layer %u level %u face %u res %ux%u format %s succeeded\n", layer_index, level_index, face_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt));
}
} // format_iter
} // level_index
} // image_info
if (!validate_flag)
{
// Now write KTX files and unpack them to individual PNG's
const bool is_cubemap_array = (dec.get_faces() > 1) && (total_layers > 1);
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (basist::basis_transcoder_format_is_uncompressed(transcoder_tex_fmt))
continue;
if (!basis_is_format_supported(transcoder_tex_fmt, dec.get_format()))
continue;
if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
if ((!opts.m_no_ktx) && (is_cubemap_array))
{
// No KTX tool that we know of supports cubemap arrays, so write individual cubemap files.
for (uint32_t layer_index = 0; layer_index < total_layers; layer_index++)
{
basisu::vector<gpu_image_vec> cubemap;
for (uint32_t face_index = 0; face_index < 6; face_index++)
cubemap.push_back(gpu_images[format_iter][face_index][layer_index]);
std::string ktx_filename(base_filename + string_format("_transcoded_cubemap_%s_%u.ktx", basist::basis_get_format_name(transcoder_tex_fmt), layer_index));
if (!write_compressed_texture_file(ktx_filename.c_str(), cubemap, true))
{
error_printf("Failed writing KTX file \"%s\"!\n", ktx_filename.c_str());
return false;
}
printf("Wrote KTX file \"%s\"\n", ktx_filename.c_str());
}
}
for (uint32_t layer_index = 0; layer_index < total_layers; layer_index++)
{
for (uint32_t face_index = 0; face_index < dec.get_faces(); face_index++)
{
gpu_image_vec& gi = gpu_images[format_iter][face_index][layer_index];
if (!gi.size())
continue;
uint32_t level;
for (level = 0; level < gi.size(); level++)
if (!gi[level].get_total_blocks())
break;
if (level < gi.size())
continue;
if ((!opts.m_no_ktx) && (!is_cubemap_array))
{
std::string ktx_filename(base_filename + string_format("_transcoded_%s_%04u.ktx", basist::basis_get_format_name(transcoder_tex_fmt), layer_index));
if (!write_compressed_texture_file(ktx_filename.c_str(), gi))
{
error_printf("Failed writing KTX file \"%s\"!\n", ktx_filename.c_str());
return false;
}
printf("Wrote KTX file \"%s\"\n", ktx_filename.c_str());
}
for (uint32_t level_index = 0; level_index < gi.size(); level_index++)
{
basist::ktx2_image_level_info level_info;
if (!dec.get_image_level_info(level_info, level_index, layer_index, face_index))
{
error_printf("Failed retrieving image level information (%u %u %u)!\n", layer_index, level_index, face_index);
return false;
}
image u;
if (!gi[level_index].unpack(u))
{
printf("Warning: Failed unpacking GPU texture data (%u %u %u %u). Unpacking as much as possible.\n", format_iter, layer_index, level_index, face_index);
total_unpack_warnings++;
}
//u.crop(level_info.m_orig_width, level_info.m_orig_height);
bool is_astc = (transcoder_tex_fmt == basist::transcoder_texture_format::cTFASTC_4x4_RGBA);
bool write_png = true;
#if !BASISU_USE_ASTC_DECOMPRESS
if (is_astc)
write_png = false;
#endif
if ((!opts.m_ktx_only) && (write_png))
{
std::string rgb_filename;
if (gi.size() > 1)
rgb_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, face_index, layer_index);
else
rgb_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), face_index, layer_index);
if (!save_png(rgb_filename, u, cImageSaveIgnoreAlpha))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str());
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str());
}
if ((transcoder_tex_fmt == basist::transcoder_texture_format::cTFFXT1_RGB) && (opts.m_write_out))
{
std::string out_filename;
if (gi.size() > 1)
out_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%u_%04u.out", basist::basis_get_format_name(transcoder_tex_fmt), level_index, face_index, layer_index);
else
out_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%04u.out", basist::basis_get_format_name(transcoder_tex_fmt), face_index, layer_index);
if (!write_3dfx_out_file(out_filename.c_str(), gi[level_index]))
{
error_printf("Failed writing to OUT file \"%s\"\n", out_filename.c_str());
return false;
}
printf("Wrote .OUT file \"%s\"\n", out_filename.c_str());
}
if (basis_transcoder_format_has_alpha(transcoder_tex_fmt) && (!opts.m_ktx_only) && (write_png))
{
std::string a_filename;
if (gi.size() > 1)
a_filename = base_filename + string_format("_unpacked_a_%s_%u_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, face_index, layer_index);
else
a_filename = base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), face_index, layer_index);
if (!save_png(a_filename, u, cImageSaveGrayscale, 3))
{
error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", a_filename.c_str());
std::string rgba_filename;
if (gi.size() > 1)
rgba_filename = base_filename + string_format("_unpacked_rgba_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, face_index, layer_index);
else
rgba_filename = base_filename + string_format("_unpacked_rgba_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), face_index, layer_index);
if (!save_png(rgba_filename, u))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgba_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", rgba_filename.c_str());
}
} // level_index
} // face_index
} // layer_index
} // format_iter
} // if (!validate_flag)
return true;
}
static bool unpack_and_validate_basis_file(
uint32_t file_index,
const std::string &base_filename,
uint8_vec &basis_file_data,
command_line_params& opts,
FILE *pCSV_file,
basis_data* pGlobal_codebook_data,
uint32_t &total_unpack_warnings,
uint32_t &total_pvrtc_nonpow2_warnings)
{
const bool validate_flag = (opts.m_mode == cValidate);
basist::basisu_transcoder dec;
if (pGlobal_codebook_data)
{
dec.set_global_codebooks(&pGlobal_codebook_data->m_transcoder.get_lowlevel_etc1s_decoder());
}
if (!opts.m_fuzz_testing)
{
// Skip the full validation, which CRC16's the entire file.
// Validate the file - note this isn't necessary for transcoding
if (!dec.validate_file_checksums(&basis_file_data[0], (uint32_t)basis_file_data.size(), true))
{
error_printf("File version is unsupported, or file failed one or more CRC checks!\n");
return false;
}
}
printf("File version and CRC checks succeeded\n");
basist::basisu_file_info fileinfo;
if (!dec.get_file_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), fileinfo))
{
error_printf("Failed retrieving Basis file information!\n");
return false;
}
assert(fileinfo.m_total_images == fileinfo.m_image_mipmap_levels.size());
assert(fileinfo.m_total_images == dec.get_total_images(&basis_file_data[0], (uint32_t)basis_file_data.size()));
printf("File info:\n");
printf(" Version: %X\n", fileinfo.m_version);
printf(" Total header size: %u\n", fileinfo.m_total_header_size);
printf(" Total selectors: %u\n", fileinfo.m_total_selectors);
printf(" Selector codebook size: %u\n", fileinfo.m_selector_codebook_size);
printf(" Total endpoints: %u\n", fileinfo.m_total_endpoints);
printf(" Endpoint codebook size: %u\n", fileinfo.m_endpoint_codebook_size);
printf(" Tables size: %u\n", fileinfo.m_tables_size);
printf(" Slices size: %u\n", fileinfo.m_slices_size);
printf(" Texture format: %s\n", (fileinfo.m_tex_format == basist::basis_tex_format::cUASTC4x4) ? "UASTC" : "ETC1S");
printf(" Texture type: %s\n", basist::basis_get_texture_type_name(fileinfo.m_tex_type));
printf(" us per frame: %u (%f fps)\n", fileinfo.m_us_per_frame, fileinfo.m_us_per_frame ? (1.0f / ((float)fileinfo.m_us_per_frame / 1000000.0f)) : 0.0f);
printf(" Total slices: %u\n", (uint32_t)fileinfo.m_slice_info.size());
printf(" Total images: %i\n", fileinfo.m_total_images);
printf(" Y Flipped: %u, Has alpha slices: %u\n", fileinfo.m_y_flipped, fileinfo.m_has_alpha_slices);
printf(" userdata0: 0x%X userdata1: 0x%X\n", fileinfo.m_userdata0, fileinfo.m_userdata1);
printf(" Per-image mipmap levels: ");
for (uint32_t i = 0; i < fileinfo.m_total_images; i++)
printf("%u ", fileinfo.m_image_mipmap_levels[i]);
printf("\n");
uint32_t total_texels = 0;
printf("\nImage info:\n");
for (uint32_t i = 0; i < fileinfo.m_total_images; i++)
{
basist::basisu_image_info ii;
if (!dec.get_image_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), ii, i))
{
error_printf("get_image_info() failed!\n");
return false;
}
printf("Image %u: MipLevels: %u OrigDim: %ux%u, BlockDim: %ux%u, FirstSlice: %u, HasAlpha: %u\n", i, ii.m_total_levels, ii.m_orig_width, ii.m_orig_height,
ii.m_num_blocks_x, ii.m_num_blocks_y, ii.m_first_slice_index, (uint32_t)ii.m_alpha_flag);
total_texels += ii.m_width * ii.m_height;
}
printf("\nSlice info:\n");
for (uint32_t i = 0; i < fileinfo.m_slice_info.size(); i++)
{
const basist::basisu_slice_info& sliceinfo = fileinfo.m_slice_info[i];
printf("%u: OrigWidthHeight: %ux%u, BlockDim: %ux%u, TotalBlocks: %u, Compressed size: %u, Image: %u, Level: %u, UnpackedCRC16: 0x%X, alpha: %u, iframe: %i\n",
i,
sliceinfo.m_orig_width, sliceinfo.m_orig_height,
sliceinfo.m_num_blocks_x, sliceinfo.m_num_blocks_y,
sliceinfo.m_total_blocks,
sliceinfo.m_compressed_size,
sliceinfo.m_image_index, sliceinfo.m_level_index,
sliceinfo.m_unpacked_slice_crc16,
(uint32_t)sliceinfo.m_alpha_flag,
(uint32_t)sliceinfo.m_iframe_flag);
}
printf("\n");
size_t comp_size = 0;
void* pComp_data = tdefl_compress_mem_to_heap(&basis_file_data[0], basis_file_data.size(), &comp_size, TDEFL_MAX_PROBES_MASK);// TDEFL_DEFAULT_MAX_PROBES);
mz_free(pComp_data);
const float basis_bits_per_texel = basis_file_data.size() * 8.0f / total_texels;
const float comp_bits_per_texel = comp_size * 8.0f / total_texels;
printf("Original size: %u, bits per texel: %3.3f\nCompressed size (Deflate): %u, bits per texel: %3.3f\n", (uint32_t)basis_file_data.size(), basis_bits_per_texel, (uint32_t)comp_size, comp_bits_per_texel);
if (opts.m_mode == cInfo)
{
return true;
}
if ((fileinfo.m_etc1s) && (fileinfo.m_selector_codebook_size == 0) && (fileinfo.m_endpoint_codebook_size == 0))
{
// File is ETC1S and uses global codebooks - make sure we loaded one
if (!pGlobal_codebook_data)
{
error_printf("ETC1S file uses global codebooks, but none were loaded (see the -use_global_codebooks option)\n");
return false;
}
if ((pGlobal_codebook_data->m_transcoder.get_lowlevel_etc1s_decoder().get_endpoints().size() != fileinfo.m_total_endpoints) ||
(pGlobal_codebook_data->m_transcoder.get_lowlevel_etc1s_decoder().get_selectors().size() != fileinfo.m_total_selectors))
{
error_printf("Supplied global codebook is not compatible with this file\n");
return false;
}
}
interval_timer tm;
tm.start();
if (!dec.start_transcoding(&basis_file_data[0], (uint32_t)basis_file_data.size()))
{
error_printf("start_transcoding() failed!\n");
return false;
}
const double start_transcoding_time_ms = tm.get_elapsed_ms();
printf("start_transcoding time: %3.3f ms\n", start_transcoding_time_ms);
basisu::vector< gpu_image_vec > gpu_images[(int)basist::transcoder_texture_format::cTFTotalTextureFormats];
double total_format_transcoding_time_ms[(int)basist::transcoder_texture_format::cTFTotalTextureFormats];
clear_obj(total_format_transcoding_time_ms);
int first_format = 0;
int last_format = (int)basist::transcoder_texture_format::cTFTotalTextureFormats;
if (opts.m_format_only > -1)
{
first_format = opts.m_format_only;
last_format = first_format + 1;
}
if ((pCSV_file) && (file_index == 0))
{
std::string desc;
desc = "filename,basis_bitrate,comp_bitrate,images,levels,slices,start_transcoding_time,";
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (!basis_is_format_supported(transcoder_tex_fmt, fileinfo.m_tex_format))
continue;
if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
desc += std::string(basis_get_format_name(transcoder_tex_fmt));
if (format_iter != last_format - 1)
desc += ",";
}
fprintf(pCSV_file, "%s\n", desc.c_str());
}
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
basist::transcoder_texture_format tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (basist::basis_transcoder_format_is_uncompressed(tex_fmt))
continue;
if (!basis_is_format_supported(tex_fmt, fileinfo.m_tex_format))
continue;
if (tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
gpu_images[(int)tex_fmt].resize(fileinfo.m_total_images);
for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++)
gpu_images[(int)tex_fmt][image_index].resize(fileinfo.m_image_mipmap_levels[image_index]);
}
// Now transcode the file to all supported texture formats and save mipmapped KTX files
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (basist::basis_transcoder_format_is_uncompressed(transcoder_tex_fmt))
continue;
if (!basis_is_format_supported(transcoder_tex_fmt, fileinfo.m_tex_format))
continue;
if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++)
{
for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++)
{
basist::basisu_image_level_info level_info;
if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index))
{
error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index);
return false;
}
if ((transcoder_tex_fmt == basist::transcoder_texture_format::cTFPVRTC1_4_RGB) || (transcoder_tex_fmt == basist::transcoder_texture_format::cTFPVRTC1_4_RGBA))
{
if (!is_pow2(level_info.m_width) || !is_pow2(level_info.m_height))
{
total_pvrtc_nonpow2_warnings++;
printf("Warning: Will not transcode image %u level %u res %ux%u to PVRTC1 (one or more dimension is not a power of 2)\n", image_index, level_index, level_info.m_width, level_info.m_height);
// Can't transcode this image level to PVRTC because it's not a pow2 (we're going to support transcoding non-pow2 to the next larger pow2 soon)
continue;
}
}
basisu::texture_format tex_fmt = basis_get_basisu_texture_format(transcoder_tex_fmt);
gpu_image& gi = gpu_images[(int)transcoder_tex_fmt][image_index][level_index];
gi.init(tex_fmt, level_info.m_orig_width, level_info.m_orig_height);
// Fill the buffer with psuedo-random bytes, to help more visibly detect cases where the transcoder fails to write to part of the output.
fill_buffer_with_random_bytes(gi.get_ptr(), gi.get_size_in_bytes());
uint32_t decode_flags = 0;
tm.start();
if (!dec.transcode_image_level(&basis_file_data[0], (uint32_t)basis_file_data.size(), image_index, level_index, gi.get_ptr(), gi.get_total_blocks(), transcoder_tex_fmt, decode_flags))
{
error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, format_iter);
return false;
}
double total_transcode_time = tm.get_elapsed_ms();
total_format_transcoding_time_ms[format_iter] += total_transcode_time;
printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time);
} // format_iter
} // level_index
} // image_info
// Upack UASTC files separarely, to validate we can transcode slices to UASTC and unpack them to pixels.
// This is a special path because UASTC is not yet a valid transcoder_texture_format, but a lower-level block_format.
if (fileinfo.m_tex_format == basist::basis_tex_format::cUASTC4x4)
{
for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++)
{
for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++)
{
basist::basisu_image_level_info level_info;
if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index))
{
error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index);
return false;
}
gpu_image gi;
gi.init(basisu::texture_format::cUASTC4x4, level_info.m_orig_width, level_info.m_orig_height);
// Fill the buffer with psuedo-random bytes, to help more visibly detect cases where the transcoder fails to write to part of the output.
fill_buffer_with_random_bytes(gi.get_ptr(), gi.get_size_in_bytes());
//uint32_t decode_flags = 0;
tm.start();
if (!dec.transcode_slice(
&basis_file_data[0], (uint32_t)basis_file_data.size(),
level_info.m_first_slice_index, gi.get_ptr(), gi.get_total_blocks(), basist::block_format::cUASTC_4x4, gi.get_bytes_per_block()))
{
error_printf("Failed transcoding image level (%u %u) to UASTC!\n", image_index, level_index);
return false;
}
double total_transcode_time = tm.get_elapsed_ms();
printf("Transcode of image %u level %u res %ux%u format UASTC_4x4 succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, total_transcode_time);
if ((!validate_flag) && (!opts.m_ktx_only))
{
image u;
if (!gi.unpack(u))
{
error_printf("Warning: Failed unpacking GPU texture data (%u %u) to UASTC. \n", image_index, level_index);
return false;
}
//u.crop(level_info.m_orig_width, level_info.m_orig_height);
std::string rgb_filename;
if (fileinfo.m_image_mipmap_levels[image_index] > 1)
rgb_filename = base_filename + string_format("_unpacked_rgb_UASTC_4x4_%u_%04u.png", level_index, image_index);
else
rgb_filename = base_filename + string_format("_unpacked_rgb_UASTC_4x4_%04u.png", image_index);
if (!save_png(rgb_filename, u, cImageSaveIgnoreAlpha))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str());
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str());
std::string alpha_filename;
if (fileinfo.m_image_mipmap_levels[image_index] > 1)
alpha_filename = base_filename + string_format("_unpacked_a_UASTC_4x4_%u_%04u.png", level_index, image_index);
else
alpha_filename = base_filename + string_format("_unpacked_a_UASTC_4x4_%04u.png", image_index);
if (!save_png(alpha_filename, u, cImageSaveGrayscale, 3))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str());
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
printf("Wrote PNG file \"%s\"\n", alpha_filename.c_str());
}
}
}
}
if (!validate_flag)
{
// Now write KTX files and unpack them to individual PNG's
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (basist::basis_transcoder_format_is_uncompressed(transcoder_tex_fmt))
continue;
if (!basis_is_format_supported(transcoder_tex_fmt, fileinfo.m_tex_format))
continue;
if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
if ((!opts.m_no_ktx) && (fileinfo.m_tex_type == basist::cBASISTexTypeCubemapArray))
{
// No KTX tool that we know of supports cubemap arrays, so write individual cubemap files.
for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index += 6)
{
basisu::vector<gpu_image_vec> cubemap;
for (uint32_t i = 0; i < 6; i++)
cubemap.push_back(gpu_images[format_iter][image_index + i]);
std::string ktx_filename(base_filename + string_format("_transcoded_cubemap_%s_%u.ktx", basist::basis_get_format_name(transcoder_tex_fmt), image_index / 6));
if (!write_compressed_texture_file(ktx_filename.c_str(), cubemap, true))
{
error_printf("Failed writing KTX file \"%s\"!\n", ktx_filename.c_str());
return false;
}
printf("Wrote KTX file \"%s\"\n", ktx_filename.c_str());
}
}
for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++)
{
gpu_image_vec& gi = gpu_images[format_iter][image_index];
if (!gi.size())
continue;
uint32_t level;
for (level = 0; level < gi.size(); level++)
if (!gi[level].get_total_blocks())
break;
if (level < gi.size())
continue;
if ((!opts.m_no_ktx) && (fileinfo.m_tex_type != basist::cBASISTexTypeCubemapArray))
{
std::string ktx_filename(base_filename + string_format("_transcoded_%s_%04u.ktx", basist::basis_get_format_name(transcoder_tex_fmt), image_index));
if (!write_compressed_texture_file(ktx_filename.c_str(), gi))
{
error_printf("Failed writing KTX file \"%s\"!\n", ktx_filename.c_str());
return false;
}
printf("Wrote KTX file \"%s\"\n", ktx_filename.c_str());
}
for (uint32_t level_index = 0; level_index < gi.size(); level_index++)
{
basist::basisu_image_level_info level_info;
if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index))
{
error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index);
return false;
}
image u;
if (!gi[level_index].unpack(u))
{
printf("Warning: Failed unpacking GPU texture data (%u %u %u). Unpacking as much as possible.\n", format_iter, image_index, level_index);
total_unpack_warnings++;
}
//u.crop(level_info.m_orig_width, level_info.m_orig_height);
bool is_astc = (transcoder_tex_fmt == basist::transcoder_texture_format::cTFASTC_4x4_RGBA);
bool write_png = true;
#if !BASISU_USE_ASTC_DECOMPRESS
if (is_astc)
write_png = false;
#endif
if ((!opts.m_ktx_only) && (write_png))
{
std::string rgb_filename;
if (gi.size() > 1)
rgb_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index);
else
rgb_filename = base_filename + string_format("_unpacked_rgb_%s_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), image_index);
if (!save_png(rgb_filename, u, cImageSaveIgnoreAlpha))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str());
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str());
}
if ((transcoder_tex_fmt == basist::transcoder_texture_format::cTFFXT1_RGB) && (opts.m_write_out))
{
std::string out_filename;
if (gi.size() > 1)
out_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%04u.out", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index);
else
out_filename = base_filename + string_format("_unpacked_rgb_%s_%04u.out", basist::basis_get_format_name(transcoder_tex_fmt), image_index);
if (!write_3dfx_out_file(out_filename.c_str(), gi[level_index]))
{
error_printf("Failed writing to OUT file \"%s\"\n", out_filename.c_str());
return false;
}
printf("Wrote .OUT file \"%s\"\n", out_filename.c_str());
}
if (basis_transcoder_format_has_alpha(transcoder_tex_fmt) && (!opts.m_ktx_only) && (write_png))
{
std::string a_filename;
if (gi.size() > 1)
a_filename = base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index);
else
a_filename = base_filename + string_format("_unpacked_a_%s_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), image_index);
if (!save_png(a_filename, u, cImageSaveGrayscale, 3))
{
error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", a_filename.c_str());
std::string rgba_filename;
if (gi.size() > 1)
rgba_filename = base_filename + string_format("_unpacked_rgba_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index);
else
rgba_filename = base_filename + string_format("_unpacked_rgba_%s_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), image_index);
if (!save_png(rgba_filename, u))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgba_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", rgba_filename.c_str());
}
} // level_index
} // image_index
} // format_iter
} // if (!validate_flag)
uint32_t max_mipmap_levels = 0;
//if (!opts.m_etc1_only)
if (opts.m_format_only == -1)
{
// Now unpack to RGBA using the transcoder itself to do the unpacking to raster images
for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++)
{
for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = basist::transcoder_texture_format::cTFRGBA32;
basist::basisu_image_level_info level_info;
if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index))
{
error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index);
return false;
}
image img(level_info.m_orig_width, level_info.m_orig_height);
fill_buffer_with_random_bytes(&img(0, 0), img.get_total_pixels() * sizeof(uint32_t));
tm.start();
if (!dec.transcode_image_level(&basis_file_data[0], (uint32_t)basis_file_data.size(), image_index, level_index, &img(0, 0).r, img.get_total_pixels(), transcoder_tex_fmt, 0, img.get_pitch(), nullptr, img.get_height()))
{
error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, transcoder_tex_fmt);
return false;
}
double total_transcode_time = tm.get_elapsed_ms();
total_format_transcoding_time_ms[(int)transcoder_tex_fmt] += total_transcode_time;
printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time);
if ((!validate_flag) && (!opts.m_ktx_only))
{
std::string rgb_filename(base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index));
if (!save_png(rgb_filename, img, cImageSaveIgnoreAlpha))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str());
std::string a_filename(base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index));
if (!save_png(a_filename, img, cImageSaveGrayscale, 3))
{
error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", a_filename.c_str());
}
} // level_index
} // image_index
// Now unpack to RGB565 using the transcoder itself to do the unpacking to raster images
for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++)
{
for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = basist::transcoder_texture_format::cTFRGB565;
basist::basisu_image_level_info level_info;
if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index))
{
error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index);
return false;
}
basisu::vector<uint16_t> packed_img(level_info.m_orig_width * level_info.m_orig_height);
fill_buffer_with_random_bytes(&packed_img[0], packed_img.size() * sizeof(uint16_t));
tm.start();
if (!dec.transcode_image_level(&basis_file_data[0], (uint32_t)basis_file_data.size(), image_index, level_index, &packed_img[0], (uint32_t)packed_img.size(), transcoder_tex_fmt, 0, level_info.m_orig_width, nullptr, level_info.m_orig_height))
{
error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, transcoder_tex_fmt);
return false;
}
double total_transcode_time = tm.get_elapsed_ms();
total_format_transcoding_time_ms[(int)transcoder_tex_fmt] += total_transcode_time;
image img(level_info.m_orig_width, level_info.m_orig_height);
for (uint32_t y = 0; y < level_info.m_orig_height; y++)
{
for (uint32_t x = 0; x < level_info.m_orig_width; x++)
{
const uint16_t p = packed_img[x + y * level_info.m_orig_width];
uint32_t r = p >> 11, g = (p >> 5) & 63, b = p & 31;
r = (r << 3) | (r >> 2);
g = (g << 2) | (g >> 4);
b = (b << 3) | (b >> 2);
img(x, y).set(r, g, b, 255);
}
}
printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time);
if ((!validate_flag) && (!opts.m_ktx_only))
{
std::string rgb_filename(base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index));
if (!save_png(rgb_filename, img, cImageSaveIgnoreAlpha))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str());
}
} // level_index
} // image_index
// Now unpack to RGBA4444 using the transcoder itself to do the unpacking to raster images
for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++)
{
for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++)
{
max_mipmap_levels = basisu::maximum(max_mipmap_levels, fileinfo.m_image_mipmap_levels[image_index]);
const basist::transcoder_texture_format transcoder_tex_fmt = basist::transcoder_texture_format::cTFRGBA4444;
basist::basisu_image_level_info level_info;
if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index))
{
error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index);
return false;
}
basisu::vector<uint16_t> packed_img(level_info.m_orig_width * level_info.m_orig_height);
fill_buffer_with_random_bytes(&packed_img[0], packed_img.size() * sizeof(uint16_t));
tm.start();
if (!dec.transcode_image_level(&basis_file_data[0], (uint32_t)basis_file_data.size(), image_index, level_index, &packed_img[0], (uint32_t)packed_img.size(), transcoder_tex_fmt, 0, level_info.m_orig_width, nullptr, level_info.m_orig_height))
{
error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, transcoder_tex_fmt);
return false;
}
double total_transcode_time = tm.get_elapsed_ms();
total_format_transcoding_time_ms[(int)transcoder_tex_fmt] += total_transcode_time;
image img(level_info.m_orig_width, level_info.m_orig_height);
for (uint32_t y = 0; y < level_info.m_orig_height; y++)
{
for (uint32_t x = 0; x < level_info.m_orig_width; x++)
{
const uint16_t p = packed_img[x + y * level_info.m_orig_width];
uint32_t r = p >> 12, g = (p >> 8) & 15, b = (p >> 4) & 15, a = p & 15;
r = (r << 4) | r;
g = (g << 4) | g;
b = (b << 4) | b;
a = (a << 4) | a;
img(x, y).set(r, g, b, a);
}
}
printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time);
if ((!validate_flag) && (!opts.m_ktx_only))
{
std::string rgb_filename(base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index));
if (!save_png(rgb_filename, img, cImageSaveIgnoreAlpha))
{
error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str());
std::string a_filename(base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index));
if (!save_png(a_filename, img, cImageSaveGrayscale, 3))
{
error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str());
return false;
}
printf("Wrote PNG file \"%s\"\n", a_filename.c_str());
}
} // level_index
} // image_index
} // if (!m_etc1_only)
if (pCSV_file)
{
fprintf(pCSV_file, "%s, %3.3f, %3.3f, %u, %u, %u, %3.3f, ",
base_filename.c_str(),
basis_bits_per_texel,
comp_bits_per_texel,
fileinfo.m_total_images,
max_mipmap_levels,
(uint32_t)fileinfo.m_slice_info.size(),
start_transcoding_time_ms);
for (int format_iter = first_format; format_iter < last_format; format_iter++)
{
const basist::transcoder_texture_format transcoder_tex_fmt = static_cast<basist::transcoder_texture_format>(format_iter);
if (!basis_is_format_supported(transcoder_tex_fmt, fileinfo.m_tex_format))
continue;
if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT)
continue;
fprintf(pCSV_file, "%3.3f", total_format_transcoding_time_ms[format_iter]);
if (format_iter != (last_format - 1))
fprintf(pCSV_file, ",");
}
fprintf(pCSV_file, "\n");
}
return true;
}
static bool unpack_and_validate_mode(command_line_params &opts)
{
interval_timer tm;
tm.start();
//const bool validate_flag = (opts.m_mode == cValidate);
basis_data* pGlobal_codebook_data = nullptr;
if (opts.m_etc1s_use_global_codebooks_file.size())
{
pGlobal_codebook_data = load_basis_file(opts.m_etc1s_use_global_codebooks_file.c_str(), true);
if (!pGlobal_codebook_data)
{
error_printf("Failed loading global codebook data from file \"%s\"\n", opts.m_etc1s_use_global_codebooks_file.c_str());
return false;
}
printf("Loaded global codebooks from file \"%s\"\n", opts.m_etc1s_use_global_codebooks_file.c_str());
}
if (!opts.m_input_filenames.size())
{
error_printf("No input files to process!\n");
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
FILE* pCSV_file = nullptr;
if ((opts.m_csv_file.size()) && (opts.m_mode == cValidate))
{
pCSV_file = fopen_safe(opts.m_csv_file.c_str(), "w");
if (!pCSV_file)
{
error_printf("Failed opening CVS file \"%s\"\n", opts.m_csv_file.c_str());
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
//fprintf(pCSV_file, "Filename, Size, Slices, Width, Height, HasAlpha, BitsPerTexel, Slice0RGBAvgPSNR, Slice0RGBAAvgPSNR, Slice0Luma709PSNR, Slice0BestETC1SLuma709PSNR, Q, CL, Time, RGBAvgPSNRMin, RGBAvgPSNRAvg, AAvgPSNRMin, AAvgPSNRAvg, Luma709PSNRMin, Luma709PSNRAvg\n");
}
uint32_t total_unpack_warnings = 0;
uint32_t total_pvrtc_nonpow2_warnings = 0;
for (uint32_t file_index = 0; file_index < opts.m_input_filenames.size(); file_index++)
{
const char* pInput_filename = opts.m_input_filenames[file_index].c_str();
std::string base_filename;
string_split_path(pInput_filename, nullptr, nullptr, &base_filename, nullptr);
uint8_vec file_data;
if (!basisu::read_file_to_vec(pInput_filename, file_data))
{
error_printf("Failed reading file \"%s\"\n", pInput_filename);
if (pCSV_file) fclose(pCSV_file);
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
if (!file_data.size())
{
error_printf("File is empty!\n");
if (pCSV_file) fclose(pCSV_file);
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
if (file_data.size() > UINT32_MAX)
{
error_printf("File is too large!\n");
if (pCSV_file) fclose(pCSV_file);
delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr;
return false;
}
bool is_ktx2 = false;
if (file_data.size() >= sizeof(basist::g_ktx2_file_identifier))
{
is_ktx2 = (memcmp(file_data.data(), basist::g_ktx2_file_identifier, sizeof(basist::g_ktx2_file_identifier)) == 0);
}
printf("Input file \"%s\", KTX2: %u\n", pInput_filename, is_ktx2);
bool status;
if (is_ktx2)
{
status = unpack_and_validate_ktx2_file(
file_index,
base_filename,
file_data,
opts,
pCSV_file,
pGlobal_codebook_data,
total_unpack_warnings,
total_pvrtc_nonpow2_warnings);
}
else
{
status = unpack_and_validate_basis_file(
file_index,
base_filename,
file_data,
opts,
pCSV_file,
pGlobal_codebook_data,
total_unpack_warnings,
total_pvrtc_nonpow2_warnings);
}
if (!status)
{
if (pCSV_file)
fclose(pCSV_file);
delete pGlobal_codebook_data;
pGlobal_codebook_data = nullptr;
return false;
}
} // file_index
if (total_pvrtc_nonpow2_warnings)
printf("Warning: %u images could not be transcoded to PVRTC1 because one or both dimensions were not a power of 2\n", total_pvrtc_nonpow2_warnings);
if (total_unpack_warnings)
printf("ATTENTION: %u total images had invalid GPU texture data!\n", total_unpack_warnings);
else
printf("Success\n");
debug_printf("Elapsed time: %3.3f secs\n", tm.get_elapsed_secs());
if (pCSV_file)
{
fclose(pCSV_file);
pCSV_file = nullptr;
}
delete pGlobal_codebook_data;
pGlobal_codebook_data = nullptr;
return true;
}
static bool compare_mode(command_line_params &opts)
{
if (opts.m_input_filenames.size() != 2)
{
error_printf("Must specify two PNG filenames using -file\n");
return false;
}
image a, b;
if (!load_image(opts.m_input_filenames[0].c_str(), a))
{
error_printf("Failed loading image from file \"%s\"!\n", opts.m_input_filenames[0].c_str());
return false;
}
printf("Loaded \"%s\", %ux%u, has alpha: %u\n", opts.m_input_filenames[0].c_str(), a.get_width(), a.get_height(), a.has_alpha());
if (!load_image(opts.m_input_filenames[1].c_str(), b))
{
error_printf("Failed loading image from file \"%s\"!\n", opts.m_input_filenames[1].c_str());
return false;
}
printf("Loaded \"%s\", %ux%u, has alpha: %u\n", opts.m_input_filenames[1].c_str(), b.get_width(), b.get_height(), b.has_alpha());
if ((a.get_width() != b.get_width()) || (a.get_height() != b.get_height()))
{
printf("Images don't have the same dimensions - cropping input images to smallest common dimensions\n");
uint32_t w = minimum(a.get_width(), b.get_width());
uint32_t h = minimum(a.get_height(), b.get_height());
a.crop(w, h);
b.crop(w, h);
}
printf("Comparison image res: %ux%u\n", a.get_width(), a.get_height());
image_metrics im;
im.calc(a, b, 0, 3);
im.print("RGB ");
im.calc(a, b, 0, 4);
im.print("RGBA ");
im.calc(a, b, 0, 1);
im.print("R ");
im.calc(a, b, 1, 1);
im.print("G ");
im.calc(a, b, 2, 1);
im.print("B ");
im.calc(a, b, 3, 1);
im.print("A ");
im.calc(a, b, 0, 0);
im.print("Y 709 " );
im.calc(a, b, 0, 0, true, true);
im.print("Y 601 " );
if (opts.m_compare_ssim)
{
vec4F s_rgb(compute_ssim(a, b, false, false));
printf("R SSIM: %f\n", s_rgb[0]);
printf("G SSIM: %f\n", s_rgb[1]);
printf("B SSIM: %f\n", s_rgb[2]);
printf("RGB Avg SSIM: %f\n", (s_rgb[0] + s_rgb[1] + s_rgb[2]) / 3.0f);
printf("A SSIM: %f\n", s_rgb[3]);
vec4F s_y_709(compute_ssim(a, b, true, false));
printf("Y 709 SSIM: %f\n", s_y_709[0]);
vec4F s_y_601(compute_ssim(a, b, true, true));
printf("Y 601 SSIM: %f\n", s_y_601[0]);
}
image delta_img(a.get_width(), a.get_height());
const int X = 2;
for (uint32_t y = 0; y < a.get_height(); y++)
{
for (uint32_t x = 0; x < a.get_width(); x++)
{
color_rgba &d = delta_img(x, y);
for (int c = 0; c < 4; c++)
d[c] = (uint8_t)clamp<int>((a(x, y)[c] - b(x, y)[c]) * X + 128, 0, 255);
} // x
} // y
save_png("a_rgb.png", a, cImageSaveIgnoreAlpha);
save_png("a_alpha.png", a, cImageSaveGrayscale, 3);
printf("Wrote a_rgb.png and a_alpha.png\n");
save_png("b_rgb.png", b, cImageSaveIgnoreAlpha);
save_png("b_alpha.png", b, cImageSaveGrayscale, 3);
printf("Wrote b_rgb.png and b_alpha.png\n");
save_png("delta_img_rgb.png", delta_img, cImageSaveIgnoreAlpha);
printf("Wrote delta_img_rgb.png\n");
save_png("delta_img_a.png", delta_img, cImageSaveGrayscale, 3);
printf("Wrote delta_img_a.png\n");
uint32_t bins[5][512];
clear_obj(bins);
running_stat delta_stats[5];
basisu::rand rm;
double avg[5];
clear_obj(avg);
for (uint32_t y = 0; y < a.get_height(); y++)
{
for (uint32_t x = 0; x < a.get_width(); x++)
{
//color_rgba& d = delta_img(x, y);
for (int c = 0; c < 4; c++)
{
int delta = a(x, y)[c] - b(x, y)[c];
//delta = clamp<int>((int)std::round(rm.gaussian(70.0f, 10.0f)), -255, 255);
bins[c][delta + 256]++;
delta_stats[c].push(delta);
avg[c] += delta;
}
int y_delta = a(x, y).get_709_luma() - b