| /** |
| * \file zstddeclib.c |
| * Single-file Zstandard decompressor. |
| * |
| * Generate using: |
| * \code |
| * combine.sh -r ../../lib -o zstddeclib.c zstddeclib-in.c |
| * \endcode |
| */ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| /* |
| * Settings to bake for the standalone decompressor. |
| * |
| * Note: It's important that none of these affects 'zstd.h' (only the |
| * implementation files we're amalgamating). |
| * |
| * Note: MEM_MODULE stops xxhash redefining BYTE, U16, etc., which are also |
| * defined in mem.h (breaking C99 compatibility). |
| * |
| * Note: the undefs for xxHash allow Zstd's implementation to coinside with with |
| * standalone xxHash usage (with global defines). |
| */ |
| #define DEBUGLEVEL 0 |
| #define MEM_MODULE |
| #undef XXH_NAMESPACE |
| #define XXH_NAMESPACE ZSTD_ |
| #undef XXH_PRIVATE_API |
| #define XXH_PRIVATE_API |
| #undef XXH_INLINE_ALL |
| #define XXH_INLINE_ALL |
| #define ZSTD_LEGACY_SUPPORT 0 |
| #define ZSTD_STRIP_ERROR_STRINGS |
| #define ZSTD_TRACE 0 |
| |
| /* Include zstd_deps.h first with all the options we need enabled. */ |
| #define ZSTD_DEPS_NEED_MALLOC |
| /**** start inlining common/zstd_deps.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| /* This file provides common libc dependencies that zstd requires. |
| * The purpose is to allow replacing this file with a custom implementation |
| * to compile zstd without libc support. |
| */ |
| |
| /* Need: |
| * NULL |
| * INT_MAX |
| * UINT_MAX |
| * ZSTD_memcpy() |
| * ZSTD_memset() |
| * ZSTD_memmove() |
| */ |
| #ifndef ZSTD_DEPS_COMMON |
| #define ZSTD_DEPS_COMMON |
| |
| #include <limits.h> |
| #include <stddef.h> |
| #include <string.h> |
| |
| #if defined(__GNUC__) && __GNUC__ >= 4 |
| # define ZSTD_memcpy(d,s,l) __builtin_memcpy((d),(s),(l)) |
| # define ZSTD_memmove(d,s,l) __builtin_memmove((d),(s),(l)) |
| # define ZSTD_memset(p,v,l) __builtin_memset((p),(v),(l)) |
| #else |
| # define ZSTD_memcpy(d,s,l) memcpy((d),(s),(l)) |
| # define ZSTD_memmove(d,s,l) memmove((d),(s),(l)) |
| # define ZSTD_memset(p,v,l) memset((p),(v),(l)) |
| #endif |
| |
| #endif /* ZSTD_DEPS_COMMON */ |
| |
| /* Need: |
| * ZSTD_malloc() |
| * ZSTD_free() |
| * ZSTD_calloc() |
| */ |
| #ifdef ZSTD_DEPS_NEED_MALLOC |
| #ifndef ZSTD_DEPS_MALLOC |
| #define ZSTD_DEPS_MALLOC |
| |
| #include <stdlib.h> |
| |
| #define ZSTD_malloc(s) malloc(s) |
| #define ZSTD_calloc(n,s) calloc((n), (s)) |
| #define ZSTD_free(p) free((p)) |
| |
| #endif /* ZSTD_DEPS_MALLOC */ |
| #endif /* ZSTD_DEPS_NEED_MALLOC */ |
| |
| /* |
| * Provides 64-bit math support. |
| * Need: |
| * U64 ZSTD_div64(U64 dividend, U32 divisor) |
| */ |
| #ifdef ZSTD_DEPS_NEED_MATH64 |
| #ifndef ZSTD_DEPS_MATH64 |
| #define ZSTD_DEPS_MATH64 |
| |
| #define ZSTD_div64(dividend, divisor) ((dividend) / (divisor)) |
| |
| #endif /* ZSTD_DEPS_MATH64 */ |
| #endif /* ZSTD_DEPS_NEED_MATH64 */ |
| |
| /* Need: |
| * assert() |
| */ |
| #ifdef ZSTD_DEPS_NEED_ASSERT |
| #ifndef ZSTD_DEPS_ASSERT |
| #define ZSTD_DEPS_ASSERT |
| |
| #include <assert.h> |
| |
| #endif /* ZSTD_DEPS_ASSERT */ |
| #endif /* ZSTD_DEPS_NEED_ASSERT */ |
| |
| /* Need: |
| * ZSTD_DEBUG_PRINT() |
| */ |
| #ifdef ZSTD_DEPS_NEED_IO |
| #ifndef ZSTD_DEPS_IO |
| #define ZSTD_DEPS_IO |
| |
| #include <stdio.h> |
| #define ZSTD_DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__) |
| |
| #endif /* ZSTD_DEPS_IO */ |
| #endif /* ZSTD_DEPS_NEED_IO */ |
| |
| /* Only requested when <stdint.h> is known to be present. |
| * Need: |
| * intptr_t |
| */ |
| #ifdef ZSTD_DEPS_NEED_STDINT |
| #ifndef ZSTD_DEPS_STDINT |
| #define ZSTD_DEPS_STDINT |
| |
| #include <stdint.h> |
| |
| #endif /* ZSTD_DEPS_STDINT */ |
| #endif /* ZSTD_DEPS_NEED_STDINT */ |
| /**** ended inlining common/zstd_deps.h ****/ |
| |
| /**** start inlining common/debug.c ****/ |
| /* ****************************************************************** |
| * debug |
| * Part of FSE library |
| * Copyright (c) 2013-2021, Yann Collet, Facebook, Inc. |
| * |
| * You can contact the author at : |
| * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| ****************************************************************** */ |
| |
| |
| /* |
| * This module only hosts one global variable |
| * which can be used to dynamically influence the verbosity of traces, |
| * such as DEBUGLOG and RAWLOG |
| */ |
| |
| /**** start inlining debug.h ****/ |
| /* ****************************************************************** |
| * debug |
| * Part of FSE library |
| * Copyright (c) 2013-2021, Yann Collet, Facebook, Inc. |
| * |
| * You can contact the author at : |
| * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| ****************************************************************** */ |
| |
| |
| /* |
| * The purpose of this header is to enable debug functions. |
| * They regroup assert(), DEBUGLOG() and RAWLOG() for run-time, |
| * and DEBUG_STATIC_ASSERT() for compile-time. |
| * |
| * By default, DEBUGLEVEL==0, which means run-time debug is disabled. |
| * |
| * Level 1 enables assert() only. |
| * Starting level 2, traces can be generated and pushed to stderr. |
| * The higher the level, the more verbose the traces. |
| * |
| * It's possible to dynamically adjust level using variable g_debug_level, |
| * which is only declared if DEBUGLEVEL>=2, |
| * and is a global variable, not multi-thread protected (use with care) |
| */ |
| |
| #ifndef DEBUG_H_12987983217 |
| #define DEBUG_H_12987983217 |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| |
| /* static assert is triggered at compile time, leaving no runtime artefact. |
| * static assert only works with compile-time constants. |
| * Also, this variant can only be used inside a function. */ |
| #define DEBUG_STATIC_ASSERT(c) (void)sizeof(char[(c) ? 1 : -1]) |
| |
| |
| /* DEBUGLEVEL is expected to be defined externally, |
| * typically through compiler command line. |
| * Value must be a number. */ |
| #ifndef DEBUGLEVEL |
| # define DEBUGLEVEL 0 |
| #endif |
| |
| |
| /* recommended values for DEBUGLEVEL : |
| * 0 : release mode, no debug, all run-time checks disabled |
| * 1 : enables assert() only, no display |
| * 2 : reserved, for currently active debug path |
| * 3 : events once per object lifetime (CCtx, CDict, etc.) |
| * 4 : events once per frame |
| * 5 : events once per block |
| * 6 : events once per sequence (verbose) |
| * 7+: events at every position (*very* verbose) |
| * |
| * It's generally inconvenient to output traces > 5. |
| * In which case, it's possible to selectively trigger high verbosity levels |
| * by modifying g_debug_level. |
| */ |
| |
| #if (DEBUGLEVEL>=1) |
| # define ZSTD_DEPS_NEED_ASSERT |
| /**** skipping file: zstd_deps.h ****/ |
| #else |
| # ifndef assert /* assert may be already defined, due to prior #include <assert.h> */ |
| # define assert(condition) ((void)0) /* disable assert (default) */ |
| # endif |
| #endif |
| |
| #if (DEBUGLEVEL>=2) |
| # define ZSTD_DEPS_NEED_IO |
| /**** skipping file: zstd_deps.h ****/ |
| extern int g_debuglevel; /* the variable is only declared, |
| it actually lives in debug.c, |
| and is shared by the whole process. |
| It's not thread-safe. |
| It's useful when enabling very verbose levels |
| on selective conditions (such as position in src) */ |
| |
| # define RAWLOG(l, ...) { \ |
| if (l<=g_debuglevel) { \ |
| ZSTD_DEBUG_PRINT(__VA_ARGS__); \ |
| } } |
| # define DEBUGLOG(l, ...) { \ |
| if (l<=g_debuglevel) { \ |
| ZSTD_DEBUG_PRINT(__FILE__ ": " __VA_ARGS__); \ |
| ZSTD_DEBUG_PRINT(" \n"); \ |
| } } |
| #else |
| # define RAWLOG(l, ...) {} /* disabled */ |
| # define DEBUGLOG(l, ...) {} /* disabled */ |
| #endif |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* DEBUG_H_12987983217 */ |
| /**** ended inlining debug.h ****/ |
| |
| int g_debuglevel = DEBUGLEVEL; |
| /**** ended inlining common/debug.c ****/ |
| /**** start inlining common/entropy_common.c ****/ |
| /* ****************************************************************** |
| * Common functions of New Generation Entropy library |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * |
| * You can contact the author at : |
| * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| * - Public forum : https://groups.google.com/forum/#!forum/lz4c |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| ****************************************************************** */ |
| |
| /* ************************************* |
| * Dependencies |
| ***************************************/ |
| /**** start inlining mem.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| #ifndef MEM_H_MODULE |
| #define MEM_H_MODULE |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /*-**************************************** |
| * Dependencies |
| ******************************************/ |
| #include <stddef.h> /* size_t, ptrdiff_t */ |
| /**** start inlining compiler.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| #ifndef ZSTD_COMPILER_H |
| #define ZSTD_COMPILER_H |
| |
| /*-******************************************************* |
| * Compiler specifics |
| *********************************************************/ |
| /* force inlining */ |
| |
| #if !defined(ZSTD_NO_INLINE) |
| #if (defined(__GNUC__) && !defined(__STRICT_ANSI__)) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ |
| # define INLINE_KEYWORD inline |
| #else |
| # define INLINE_KEYWORD |
| #endif |
| |
| #if defined(__GNUC__) || defined(__ICCARM__) |
| # define FORCE_INLINE_ATTR __attribute__((always_inline)) |
| #elif defined(_MSC_VER) |
| # define FORCE_INLINE_ATTR __forceinline |
| #else |
| # define FORCE_INLINE_ATTR |
| #endif |
| |
| #else |
| |
| #define INLINE_KEYWORD |
| #define FORCE_INLINE_ATTR |
| |
| #endif |
| |
| /** |
| On MSVC qsort requires that functions passed into it use the __cdecl calling conversion(CC). |
| This explictly marks such functions as __cdecl so that the code will still compile |
| if a CC other than __cdecl has been made the default. |
| */ |
| #if defined(_MSC_VER) |
| # define WIN_CDECL __cdecl |
| #else |
| # define WIN_CDECL |
| #endif |
| |
| /** |
| * FORCE_INLINE_TEMPLATE is used to define C "templates", which take constant |
| * parameters. They must be inlined for the compiler to eliminate the constant |
| * branches. |
| */ |
| #define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR |
| /** |
| * HINT_INLINE is used to help the compiler generate better code. It is *not* |
| * used for "templates", so it can be tweaked based on the compilers |
| * performance. |
| * |
| * gcc-4.8 and gcc-4.9 have been shown to benefit from leaving off the |
| * always_inline attribute. |
| * |
| * clang up to 5.0.0 (trunk) benefit tremendously from the always_inline |
| * attribute. |
| */ |
| #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ >= 4 && __GNUC_MINOR__ >= 8 && __GNUC__ < 5 |
| # define HINT_INLINE static INLINE_KEYWORD |
| #else |
| # define HINT_INLINE static INLINE_KEYWORD FORCE_INLINE_ATTR |
| #endif |
| |
| /* UNUSED_ATTR tells the compiler it is okay if the function is unused. */ |
| #if defined(__GNUC__) |
| # define UNUSED_ATTR __attribute__((unused)) |
| #else |
| # define UNUSED_ATTR |
| #endif |
| |
| /* force no inlining */ |
| #ifdef _MSC_VER |
| # define FORCE_NOINLINE static __declspec(noinline) |
| #else |
| # if defined(__GNUC__) || defined(__ICCARM__) |
| # define FORCE_NOINLINE static __attribute__((__noinline__)) |
| # else |
| # define FORCE_NOINLINE static |
| # endif |
| #endif |
| |
| |
| /* target attribute */ |
| #ifndef __has_attribute |
| #define __has_attribute(x) 0 /* Compatibility with non-clang compilers. */ |
| #endif |
| #if defined(__GNUC__) || defined(__ICCARM__) |
| # define TARGET_ATTRIBUTE(target) __attribute__((__target__(target))) |
| #else |
| # define TARGET_ATTRIBUTE(target) |
| #endif |
| |
| /* Enable runtime BMI2 dispatch based on the CPU. |
| * Enabled for clang & gcc >=4.8 on x86 when BMI2 isn't enabled by default. |
| */ |
| #ifndef DYNAMIC_BMI2 |
| #if ((defined(__clang__) && __has_attribute(__target__)) \ |
| || (defined(__GNUC__) \ |
| && (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))) \ |
| && (defined(__x86_64__) || defined(_M_X86)) \ |
| && !defined(__BMI2__) |
| # define DYNAMIC_BMI2 1 |
| #else |
| # define DYNAMIC_BMI2 0 |
| #endif |
| #endif |
| |
| /* prefetch |
| * can be disabled, by declaring NO_PREFETCH build macro */ |
| #if defined(NO_PREFETCH) |
| # define PREFETCH_L1(ptr) (void)(ptr) /* disabled */ |
| # define PREFETCH_L2(ptr) (void)(ptr) /* disabled */ |
| #else |
| # if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */ |
| # include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ |
| # define PREFETCH_L1(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) |
| # define PREFETCH_L2(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T1) |
| # elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) |
| # define PREFETCH_L1(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) |
| # define PREFETCH_L2(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 2 /* locality */) |
| # elif defined(__aarch64__) |
| # define PREFETCH_L1(ptr) __asm__ __volatile__("prfm pldl1keep, %0" ::"Q"(*(ptr))) |
| # define PREFETCH_L2(ptr) __asm__ __volatile__("prfm pldl2keep, %0" ::"Q"(*(ptr))) |
| # else |
| # define PREFETCH_L1(ptr) (void)(ptr) /* disabled */ |
| # define PREFETCH_L2(ptr) (void)(ptr) /* disabled */ |
| # endif |
| #endif /* NO_PREFETCH */ |
| |
| #define CACHELINE_SIZE 64 |
| |
| #define PREFETCH_AREA(p, s) { \ |
| const char* const _ptr = (const char*)(p); \ |
| size_t const _size = (size_t)(s); \ |
| size_t _pos; \ |
| for (_pos=0; _pos<_size; _pos+=CACHELINE_SIZE) { \ |
| PREFETCH_L2(_ptr + _pos); \ |
| } \ |
| } |
| |
| /* vectorization |
| * older GCC (pre gcc-4.3 picked as the cutoff) uses a different syntax */ |
| #if !defined(__INTEL_COMPILER) && !defined(__clang__) && defined(__GNUC__) |
| # if (__GNUC__ == 4 && __GNUC_MINOR__ > 3) || (__GNUC__ >= 5) |
| # define DONT_VECTORIZE __attribute__((optimize("no-tree-vectorize"))) |
| # else |
| # define DONT_VECTORIZE _Pragma("GCC optimize(\"no-tree-vectorize\")") |
| # endif |
| #else |
| # define DONT_VECTORIZE |
| #endif |
| |
| /* Tell the compiler that a branch is likely or unlikely. |
| * Only use these macros if it causes the compiler to generate better code. |
| * If you can remove a LIKELY/UNLIKELY annotation without speed changes in gcc |
| * and clang, please do. |
| */ |
| #if defined(__GNUC__) |
| #define LIKELY(x) (__builtin_expect((x), 1)) |
| #define UNLIKELY(x) (__builtin_expect((x), 0)) |
| #else |
| #define LIKELY(x) (x) |
| #define UNLIKELY(x) (x) |
| #endif |
| |
| /* disable warnings */ |
| #ifdef _MSC_VER /* Visual Studio */ |
| # include <intrin.h> /* For Visual 2005 */ |
| # pragma warning(disable : 4100) /* disable: C4100: unreferenced formal parameter */ |
| # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
| # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ |
| # pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */ |
| # pragma warning(disable : 4324) /* disable: C4324: padded structure */ |
| #endif |
| |
| /*Like DYNAMIC_BMI2 but for compile time determination of BMI2 support*/ |
| #ifndef STATIC_BMI2 |
| # if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) |
| # ifdef __AVX2__ //MSVC does not have a BMI2 specific flag, but every CPU that supports AVX2 also supports BMI2 |
| # define STATIC_BMI2 1 |
| # endif |
| # endif |
| #endif |
| |
| #ifndef STATIC_BMI2 |
| #define STATIC_BMI2 0 |
| #endif |
| |
| /* compat. with non-clang compilers */ |
| #ifndef __has_builtin |
| # define __has_builtin(x) 0 |
| #endif |
| |
| /* compat. with non-clang compilers */ |
| #ifndef __has_feature |
| # define __has_feature(x) 0 |
| #endif |
| |
| /* detects whether we are being compiled under msan */ |
| #ifndef ZSTD_MEMORY_SANITIZER |
| # if __has_feature(memory_sanitizer) |
| # define ZSTD_MEMORY_SANITIZER 1 |
| # else |
| # define ZSTD_MEMORY_SANITIZER 0 |
| # endif |
| #endif |
| |
| #if ZSTD_MEMORY_SANITIZER |
| /* Not all platforms that support msan provide sanitizers/msan_interface.h. |
| * We therefore declare the functions we need ourselves, rather than trying to |
| * include the header file... */ |
| #include <stddef.h> /* size_t */ |
| #define ZSTD_DEPS_NEED_STDINT |
| /**** skipping file: zstd_deps.h ****/ |
| |
| /* Make memory region fully initialized (without changing its contents). */ |
| void __msan_unpoison(const volatile void *a, size_t size); |
| |
| /* Make memory region fully uninitialized (without changing its contents). |
| This is a legacy interface that does not update origin information. Use |
| __msan_allocated_memory() instead. */ |
| void __msan_poison(const volatile void *a, size_t size); |
| |
| /* Returns the offset of the first (at least partially) poisoned byte in the |
| memory range, or -1 if the whole range is good. */ |
| intptr_t __msan_test_shadow(const volatile void *x, size_t size); |
| #endif |
| |
| /* detects whether we are being compiled under asan */ |
| #ifndef ZSTD_ADDRESS_SANITIZER |
| # if __has_feature(address_sanitizer) |
| # define ZSTD_ADDRESS_SANITIZER 1 |
| # elif defined(__SANITIZE_ADDRESS__) |
| # define ZSTD_ADDRESS_SANITIZER 1 |
| # else |
| # define ZSTD_ADDRESS_SANITIZER 0 |
| # endif |
| #endif |
| |
| #if ZSTD_ADDRESS_SANITIZER |
| /* Not all platforms that support asan provide sanitizers/asan_interface.h. |
| * We therefore declare the functions we need ourselves, rather than trying to |
| * include the header file... */ |
| #include <stddef.h> /* size_t */ |
| |
| /** |
| * Marks a memory region (<c>[addr, addr+size)</c>) as unaddressable. |
| * |
| * This memory must be previously allocated by your program. Instrumented |
| * code is forbidden from accessing addresses in this region until it is |
| * unpoisoned. This function is not guaranteed to poison the entire region - |
| * it could poison only a subregion of <c>[addr, addr+size)</c> due to ASan |
| * alignment restrictions. |
| * |
| * \note This function is not thread-safe because no two threads can poison or |
| * unpoison memory in the same memory region simultaneously. |
| * |
| * \param addr Start of memory region. |
| * \param size Size of memory region. */ |
| void __asan_poison_memory_region(void const volatile *addr, size_t size); |
| |
| /** |
| * Marks a memory region (<c>[addr, addr+size)</c>) as addressable. |
| * |
| * This memory must be previously allocated by your program. Accessing |
| * addresses in this region is allowed until this region is poisoned again. |
| * This function could unpoison a super-region of <c>[addr, addr+size)</c> due |
| * to ASan alignment restrictions. |
| * |
| * \note This function is not thread-safe because no two threads can |
| * poison or unpoison memory in the same memory region simultaneously. |
| * |
| * \param addr Start of memory region. |
| * \param size Size of memory region. */ |
| void __asan_unpoison_memory_region(void const volatile *addr, size_t size); |
| #endif |
| |
| #endif /* ZSTD_COMPILER_H */ |
| /**** ended inlining compiler.h ****/ |
| /**** skipping file: debug.h ****/ |
| /**** skipping file: zstd_deps.h ****/ |
| |
| |
| /*-**************************************** |
| * Compiler specifics |
| ******************************************/ |
| #if defined(_MSC_VER) /* Visual Studio */ |
| # include <stdlib.h> /* _byteswap_ulong */ |
| # include <intrin.h> /* _byteswap_* */ |
| #endif |
| #if defined(__GNUC__) |
| # define MEM_STATIC static __inline __attribute__((unused)) |
| #elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
| # define MEM_STATIC static inline |
| #elif defined(_MSC_VER) |
| # define MEM_STATIC static __inline |
| #else |
| # define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ |
| #endif |
| |
| /*-************************************************************** |
| * Basic Types |
| *****************************************************************/ |
| #if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
| # if defined(_AIX) |
| # include <inttypes.h> |
| # else |
| # include <stdint.h> /* intptr_t */ |
| # endif |
| typedef uint8_t BYTE; |
| typedef uint16_t U16; |
| typedef int16_t S16; |
| typedef uint32_t U32; |
| typedef int32_t S32; |
| typedef uint64_t U64; |
| typedef int64_t S64; |
| #else |
| # include <limits.h> |
| #if CHAR_BIT != 8 |
| # error "this implementation requires char to be exactly 8-bit type" |
| #endif |
| typedef unsigned char BYTE; |
| #if USHRT_MAX != 65535 |
| # error "this implementation requires short to be exactly 16-bit type" |
| #endif |
| typedef unsigned short U16; |
| typedef signed short S16; |
| #if UINT_MAX != 4294967295 |
| # error "this implementation requires int to be exactly 32-bit type" |
| #endif |
| typedef unsigned int U32; |
| typedef signed int S32; |
| /* note : there are no limits defined for long long type in C90. |
| * limits exist in C99, however, in such case, <stdint.h> is preferred */ |
| typedef unsigned long long U64; |
| typedef signed long long S64; |
| #endif |
| |
| |
| /*-************************************************************** |
| * Memory I/O API |
| *****************************************************************/ |
| /*=== Static platform detection ===*/ |
| MEM_STATIC unsigned MEM_32bits(void); |
| MEM_STATIC unsigned MEM_64bits(void); |
| MEM_STATIC unsigned MEM_isLittleEndian(void); |
| |
| /*=== Native unaligned read/write ===*/ |
| MEM_STATIC U16 MEM_read16(const void* memPtr); |
| MEM_STATIC U32 MEM_read32(const void* memPtr); |
| MEM_STATIC U64 MEM_read64(const void* memPtr); |
| MEM_STATIC size_t MEM_readST(const void* memPtr); |
| |
| MEM_STATIC void MEM_write16(void* memPtr, U16 value); |
| MEM_STATIC void MEM_write32(void* memPtr, U32 value); |
| MEM_STATIC void MEM_write64(void* memPtr, U64 value); |
| |
| /*=== Little endian unaligned read/write ===*/ |
| MEM_STATIC U16 MEM_readLE16(const void* memPtr); |
| MEM_STATIC U32 MEM_readLE24(const void* memPtr); |
| MEM_STATIC U32 MEM_readLE32(const void* memPtr); |
| MEM_STATIC U64 MEM_readLE64(const void* memPtr); |
| MEM_STATIC size_t MEM_readLEST(const void* memPtr); |
| |
| MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val); |
| MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val); |
| MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32); |
| MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64); |
| MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val); |
| |
| /*=== Big endian unaligned read/write ===*/ |
| MEM_STATIC U32 MEM_readBE32(const void* memPtr); |
| MEM_STATIC U64 MEM_readBE64(const void* memPtr); |
| MEM_STATIC size_t MEM_readBEST(const void* memPtr); |
| |
| MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32); |
| MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64); |
| MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val); |
| |
| /*=== Byteswap ===*/ |
| MEM_STATIC U32 MEM_swap32(U32 in); |
| MEM_STATIC U64 MEM_swap64(U64 in); |
| MEM_STATIC size_t MEM_swapST(size_t in); |
| |
| |
| /*-************************************************************** |
| * Memory I/O Implementation |
| *****************************************************************/ |
| /* MEM_FORCE_MEMORY_ACCESS : |
| * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. |
| * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. |
| * The below switch allow to select different access method for improved performance. |
| * Method 0 (default) : use `memcpy()`. Safe and portable. |
| * Method 1 : `__packed` statement. It depends on compiler extension (i.e., not portable). |
| * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. |
| * Method 2 : direct access. This method is portable but violate C standard. |
| * It can generate buggy code on targets depending on alignment. |
| * In some circumstances, it's the only known way to get the most performance (i.e. GCC + ARMv6) |
| * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details. |
| * Prefer these methods in priority order (0 > 1 > 2) |
| */ |
| #ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
| # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) |
| # define MEM_FORCE_MEMORY_ACCESS 2 |
| # elif defined(__INTEL_COMPILER) || defined(__GNUC__) || defined(__ICCARM__) |
| # define MEM_FORCE_MEMORY_ACCESS 1 |
| # endif |
| #endif |
| |
| MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; } |
| MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; } |
| |
| MEM_STATIC unsigned MEM_isLittleEndian(void) |
| { |
| const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ |
| return one.c[0]; |
| } |
| |
| #if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2) |
| |
| /* violates C standard, by lying on structure alignment. |
| Only use if no other choice to achieve best performance on target platform */ |
| MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; } |
| MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; } |
| MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; } |
| MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; } |
| |
| MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; } |
| MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; } |
| MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; } |
| |
| #elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1) |
| |
| /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ |
| /* currently only defined for gcc and icc */ |
| #if defined(_MSC_VER) || (defined(__INTEL_COMPILER) && defined(WIN32)) |
| __pragma( pack(push, 1) ) |
| typedef struct { U16 v; } unalign16; |
| typedef struct { U32 v; } unalign32; |
| typedef struct { U64 v; } unalign64; |
| typedef struct { size_t v; } unalignArch; |
| __pragma( pack(pop) ) |
| #else |
| typedef struct { U16 v; } __attribute__((packed)) unalign16; |
| typedef struct { U32 v; } __attribute__((packed)) unalign32; |
| typedef struct { U64 v; } __attribute__((packed)) unalign64; |
| typedef struct { size_t v; } __attribute__((packed)) unalignArch; |
| #endif |
| |
| MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign16*)ptr)->v; } |
| MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign32*)ptr)->v; } |
| MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign64*)ptr)->v; } |
| MEM_STATIC size_t MEM_readST(const void* ptr) { return ((const unalignArch*)ptr)->v; } |
| |
| MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign16*)memPtr)->v = value; } |
| MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign32*)memPtr)->v = value; } |
| MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign64*)memPtr)->v = value; } |
| |
| #else |
| |
| /* default method, safe and standard. |
| can sometimes prove slower */ |
| |
| MEM_STATIC U16 MEM_read16(const void* memPtr) |
| { |
| U16 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val; |
| } |
| |
| MEM_STATIC U32 MEM_read32(const void* memPtr) |
| { |
| U32 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val; |
| } |
| |
| MEM_STATIC U64 MEM_read64(const void* memPtr) |
| { |
| U64 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val; |
| } |
| |
| MEM_STATIC size_t MEM_readST(const void* memPtr) |
| { |
| size_t val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val; |
| } |
| |
| MEM_STATIC void MEM_write16(void* memPtr, U16 value) |
| { |
| ZSTD_memcpy(memPtr, &value, sizeof(value)); |
| } |
| |
| MEM_STATIC void MEM_write32(void* memPtr, U32 value) |
| { |
| ZSTD_memcpy(memPtr, &value, sizeof(value)); |
| } |
| |
| MEM_STATIC void MEM_write64(void* memPtr, U64 value) |
| { |
| ZSTD_memcpy(memPtr, &value, sizeof(value)); |
| } |
| |
| #endif /* MEM_FORCE_MEMORY_ACCESS */ |
| |
| MEM_STATIC U32 MEM_swap32(U32 in) |
| { |
| #if defined(_MSC_VER) /* Visual Studio */ |
| return _byteswap_ulong(in); |
| #elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \ |
| || (defined(__clang__) && __has_builtin(__builtin_bswap32)) |
| return __builtin_bswap32(in); |
| #else |
| return ((in << 24) & 0xff000000 ) | |
| ((in << 8) & 0x00ff0000 ) | |
| ((in >> 8) & 0x0000ff00 ) | |
| ((in >> 24) & 0x000000ff ); |
| #endif |
| } |
| |
| MEM_STATIC U64 MEM_swap64(U64 in) |
| { |
| #if defined(_MSC_VER) /* Visual Studio */ |
| return _byteswap_uint64(in); |
| #elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \ |
| || (defined(__clang__) && __has_builtin(__builtin_bswap64)) |
| return __builtin_bswap64(in); |
| #else |
| return ((in << 56) & 0xff00000000000000ULL) | |
| ((in << 40) & 0x00ff000000000000ULL) | |
| ((in << 24) & 0x0000ff0000000000ULL) | |
| ((in << 8) & 0x000000ff00000000ULL) | |
| ((in >> 8) & 0x00000000ff000000ULL) | |
| ((in >> 24) & 0x0000000000ff0000ULL) | |
| ((in >> 40) & 0x000000000000ff00ULL) | |
| ((in >> 56) & 0x00000000000000ffULL); |
| #endif |
| } |
| |
| MEM_STATIC size_t MEM_swapST(size_t in) |
| { |
| if (MEM_32bits()) |
| return (size_t)MEM_swap32((U32)in); |
| else |
| return (size_t)MEM_swap64((U64)in); |
| } |
| |
| /*=== Little endian r/w ===*/ |
| |
| MEM_STATIC U16 MEM_readLE16(const void* memPtr) |
| { |
| if (MEM_isLittleEndian()) |
| return MEM_read16(memPtr); |
| else { |
| const BYTE* p = (const BYTE*)memPtr; |
| return (U16)(p[0] + (p[1]<<8)); |
| } |
| } |
| |
| MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val) |
| { |
| if (MEM_isLittleEndian()) { |
| MEM_write16(memPtr, val); |
| } else { |
| BYTE* p = (BYTE*)memPtr; |
| p[0] = (BYTE)val; |
| p[1] = (BYTE)(val>>8); |
| } |
| } |
| |
| MEM_STATIC U32 MEM_readLE24(const void* memPtr) |
| { |
| return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16); |
| } |
| |
| MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val) |
| { |
| MEM_writeLE16(memPtr, (U16)val); |
| ((BYTE*)memPtr)[2] = (BYTE)(val>>16); |
| } |
| |
| MEM_STATIC U32 MEM_readLE32(const void* memPtr) |
| { |
| if (MEM_isLittleEndian()) |
| return MEM_read32(memPtr); |
| else |
| return MEM_swap32(MEM_read32(memPtr)); |
| } |
| |
| MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32) |
| { |
| if (MEM_isLittleEndian()) |
| MEM_write32(memPtr, val32); |
| else |
| MEM_write32(memPtr, MEM_swap32(val32)); |
| } |
| |
| MEM_STATIC U64 MEM_readLE64(const void* memPtr) |
| { |
| if (MEM_isLittleEndian()) |
| return MEM_read64(memPtr); |
| else |
| return MEM_swap64(MEM_read64(memPtr)); |
| } |
| |
| MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64) |
| { |
| if (MEM_isLittleEndian()) |
| MEM_write64(memPtr, val64); |
| else |
| MEM_write64(memPtr, MEM_swap64(val64)); |
| } |
| |
| MEM_STATIC size_t MEM_readLEST(const void* memPtr) |
| { |
| if (MEM_32bits()) |
| return (size_t)MEM_readLE32(memPtr); |
| else |
| return (size_t)MEM_readLE64(memPtr); |
| } |
| |
| MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val) |
| { |
| if (MEM_32bits()) |
| MEM_writeLE32(memPtr, (U32)val); |
| else |
| MEM_writeLE64(memPtr, (U64)val); |
| } |
| |
| /*=== Big endian r/w ===*/ |
| |
| MEM_STATIC U32 MEM_readBE32(const void* memPtr) |
| { |
| if (MEM_isLittleEndian()) |
| return MEM_swap32(MEM_read32(memPtr)); |
| else |
| return MEM_read32(memPtr); |
| } |
| |
| MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32) |
| { |
| if (MEM_isLittleEndian()) |
| MEM_write32(memPtr, MEM_swap32(val32)); |
| else |
| MEM_write32(memPtr, val32); |
| } |
| |
| MEM_STATIC U64 MEM_readBE64(const void* memPtr) |
| { |
| if (MEM_isLittleEndian()) |
| return MEM_swap64(MEM_read64(memPtr)); |
| else |
| return MEM_read64(memPtr); |
| } |
| |
| MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64) |
| { |
| if (MEM_isLittleEndian()) |
| MEM_write64(memPtr, MEM_swap64(val64)); |
| else |
| MEM_write64(memPtr, val64); |
| } |
| |
| MEM_STATIC size_t MEM_readBEST(const void* memPtr) |
| { |
| if (MEM_32bits()) |
| return (size_t)MEM_readBE32(memPtr); |
| else |
| return (size_t)MEM_readBE64(memPtr); |
| } |
| |
| MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val) |
| { |
| if (MEM_32bits()) |
| MEM_writeBE32(memPtr, (U32)val); |
| else |
| MEM_writeBE64(memPtr, (U64)val); |
| } |
| |
| /* code only tested on 32 and 64 bits systems */ |
| MEM_STATIC void MEM_check(void) { DEBUG_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); } |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* MEM_H_MODULE */ |
| /**** ended inlining mem.h ****/ |
| /**** start inlining error_private.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| /* Note : this module is expected to remain private, do not expose it */ |
| |
| #ifndef ERROR_H_MODULE |
| #define ERROR_H_MODULE |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| |
| /* **************************************** |
| * Dependencies |
| ******************************************/ |
| /**** skipping file: zstd_deps.h ****/ |
| /**** start inlining zstd_errors.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| #ifndef ZSTD_ERRORS_H_398273423 |
| #define ZSTD_ERRORS_H_398273423 |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /*===== dependency =====*/ |
| #include <stddef.h> /* size_t */ |
| |
| |
| /* ===== ZSTDERRORLIB_API : control library symbols visibility ===== */ |
| #ifndef ZSTDERRORLIB_VISIBILITY |
| # if defined(__GNUC__) && (__GNUC__ >= 4) |
| # define ZSTDERRORLIB_VISIBILITY __attribute__ ((visibility ("default"))) |
| # else |
| # define ZSTDERRORLIB_VISIBILITY |
| # endif |
| #endif |
| #if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1) |
| # define ZSTDERRORLIB_API __declspec(dllexport) ZSTDERRORLIB_VISIBILITY |
| #elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1) |
| # define ZSTDERRORLIB_API __declspec(dllimport) ZSTDERRORLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ |
| #else |
| # define ZSTDERRORLIB_API ZSTDERRORLIB_VISIBILITY |
| #endif |
| |
| /*-********************************************* |
| * Error codes list |
| *-********************************************* |
| * Error codes _values_ are pinned down since v1.3.1 only. |
| * Therefore, don't rely on values if you may link to any version < v1.3.1. |
| * |
| * Only values < 100 are considered stable. |
| * |
| * note 1 : this API shall be used with static linking only. |
| * dynamic linking is not yet officially supported. |
| * note 2 : Prefer relying on the enum than on its value whenever possible |
| * This is the only supported way to use the error list < v1.3.1 |
| * note 3 : ZSTD_isError() is always correct, whatever the library version. |
| **********************************************/ |
| typedef enum { |
| ZSTD_error_no_error = 0, |
| ZSTD_error_GENERIC = 1, |
| ZSTD_error_prefix_unknown = 10, |
| ZSTD_error_version_unsupported = 12, |
| ZSTD_error_frameParameter_unsupported = 14, |
| ZSTD_error_frameParameter_windowTooLarge = 16, |
| ZSTD_error_corruption_detected = 20, |
| ZSTD_error_checksum_wrong = 22, |
| ZSTD_error_dictionary_corrupted = 30, |
| ZSTD_error_dictionary_wrong = 32, |
| ZSTD_error_dictionaryCreation_failed = 34, |
| ZSTD_error_parameter_unsupported = 40, |
| ZSTD_error_parameter_outOfBound = 42, |
| ZSTD_error_tableLog_tooLarge = 44, |
| ZSTD_error_maxSymbolValue_tooLarge = 46, |
| ZSTD_error_maxSymbolValue_tooSmall = 48, |
| ZSTD_error_stage_wrong = 60, |
| ZSTD_error_init_missing = 62, |
| ZSTD_error_memory_allocation = 64, |
| ZSTD_error_workSpace_tooSmall= 66, |
| ZSTD_error_dstSize_tooSmall = 70, |
| ZSTD_error_srcSize_wrong = 72, |
| ZSTD_error_dstBuffer_null = 74, |
| /* following error codes are __NOT STABLE__, they can be removed or changed in future versions */ |
| ZSTD_error_frameIndex_tooLarge = 100, |
| ZSTD_error_seekableIO = 102, |
| ZSTD_error_dstBuffer_wrong = 104, |
| ZSTD_error_srcBuffer_wrong = 105, |
| ZSTD_error_maxCode = 120 /* never EVER use this value directly, it can change in future versions! Use ZSTD_isError() instead */ |
| } ZSTD_ErrorCode; |
| |
| /*! ZSTD_getErrorCode() : |
| convert a `size_t` function result into a `ZSTD_ErrorCode` enum type, |
| which can be used to compare with enum list published above */ |
| ZSTDERRORLIB_API ZSTD_ErrorCode ZSTD_getErrorCode(size_t functionResult); |
| ZSTDERRORLIB_API const char* ZSTD_getErrorString(ZSTD_ErrorCode code); /**< Same as ZSTD_getErrorName, but using a `ZSTD_ErrorCode` enum argument */ |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* ZSTD_ERRORS_H_398273423 */ |
| /**** ended inlining zstd_errors.h ****/ |
| |
| |
| /* **************************************** |
| * Compiler-specific |
| ******************************************/ |
| #if defined(__GNUC__) |
| # define ERR_STATIC static __attribute__((unused)) |
| #elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
| # define ERR_STATIC static inline |
| #elif defined(_MSC_VER) |
| # define ERR_STATIC static __inline |
| #else |
| # define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ |
| #endif |
| |
| |
| /*-**************************************** |
| * Customization (error_public.h) |
| ******************************************/ |
| typedef ZSTD_ErrorCode ERR_enum; |
| #define PREFIX(name) ZSTD_error_##name |
| |
| |
| /*-**************************************** |
| * Error codes handling |
| ******************************************/ |
| #undef ERROR /* already defined on Visual Studio */ |
| #define ERROR(name) ZSTD_ERROR(name) |
| #define ZSTD_ERROR(name) ((size_t)-PREFIX(name)) |
| |
| ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); } |
| |
| ERR_STATIC ERR_enum ERR_getErrorCode(size_t code) { if (!ERR_isError(code)) return (ERR_enum)0; return (ERR_enum) (0-code); } |
| |
| /* check and forward error code */ |
| #define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return e |
| #define CHECK_F(f) { CHECK_V_F(_var_err__, f); } |
| |
| |
| /*-**************************************** |
| * Error Strings |
| ******************************************/ |
| |
| const char* ERR_getErrorString(ERR_enum code); /* error_private.c */ |
| |
| ERR_STATIC const char* ERR_getErrorName(size_t code) |
| { |
| return ERR_getErrorString(ERR_getErrorCode(code)); |
| } |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* ERROR_H_MODULE */ |
| /**** ended inlining error_private.h ****/ |
| #define FSE_STATIC_LINKING_ONLY /* FSE_MIN_TABLELOG */ |
| /**** start inlining fse.h ****/ |
| /* ****************************************************************** |
| * FSE : Finite State Entropy codec |
| * Public Prototypes declaration |
| * Copyright (c) 2013-2021, Yann Collet, Facebook, Inc. |
| * |
| * You can contact the author at : |
| * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| ****************************************************************** */ |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| #ifndef FSE_H |
| #define FSE_H |
| |
| |
| /*-***************************************** |
| * Dependencies |
| ******************************************/ |
| /**** skipping file: zstd_deps.h ****/ |
| |
| |
| /*-***************************************** |
| * FSE_PUBLIC_API : control library symbols visibility |
| ******************************************/ |
| #if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4) |
| # define FSE_PUBLIC_API __attribute__ ((visibility ("default"))) |
| #elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */ |
| # define FSE_PUBLIC_API __declspec(dllexport) |
| #elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1) |
| # define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ |
| #else |
| # define FSE_PUBLIC_API |
| #endif |
| |
| /*------ Version ------*/ |
| #define FSE_VERSION_MAJOR 0 |
| #define FSE_VERSION_MINOR 9 |
| #define FSE_VERSION_RELEASE 0 |
| |
| #define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE |
| #define FSE_QUOTE(str) #str |
| #define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str) |
| #define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION) |
| |
| #define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE) |
| FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */ |
| |
| |
| /*-**************************************** |
| * FSE simple functions |
| ******************************************/ |
| /*! FSE_compress() : |
| Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'. |
| 'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize). |
| @return : size of compressed data (<= dstCapacity). |
| Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!! |
| if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead. |
| if FSE_isError(return), compression failed (more details using FSE_getErrorName()) |
| */ |
| FSE_PUBLIC_API size_t FSE_compress(void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize); |
| |
| /*! FSE_decompress(): |
| Decompress FSE data from buffer 'cSrc', of size 'cSrcSize', |
| into already allocated destination buffer 'dst', of size 'dstCapacity'. |
| @return : size of regenerated data (<= maxDstSize), |
| or an error code, which can be tested using FSE_isError() . |
| |
| ** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!! |
| Why ? : making this distinction requires a header. |
| Header management is intentionally delegated to the user layer, which can better manage special cases. |
| */ |
| FSE_PUBLIC_API size_t FSE_decompress(void* dst, size_t dstCapacity, |
| const void* cSrc, size_t cSrcSize); |
| |
| |
| /*-***************************************** |
| * Tool functions |
| ******************************************/ |
| FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */ |
| |
| /* Error Management */ |
| FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */ |
| FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */ |
| |
| |
| /*-***************************************** |
| * FSE advanced functions |
| ******************************************/ |
| /*! FSE_compress2() : |
| Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog' |
| Both parameters can be defined as '0' to mean : use default value |
| @return : size of compressed data |
| Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!! |
| if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression. |
| if FSE_isError(return), it's an error code. |
| */ |
| FSE_PUBLIC_API size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog); |
| |
| |
| /*-***************************************** |
| * FSE detailed API |
| ******************************************/ |
| /*! |
| FSE_compress() does the following: |
| 1. count symbol occurrence from source[] into table count[] (see hist.h) |
| 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog) |
| 3. save normalized counters to memory buffer using writeNCount() |
| 4. build encoding table 'CTable' from normalized counters |
| 5. encode the data stream using encoding table 'CTable' |
| |
| FSE_decompress() does the following: |
| 1. read normalized counters with readNCount() |
| 2. build decoding table 'DTable' from normalized counters |
| 3. decode the data stream using decoding table 'DTable' |
| |
| The following API allows targeting specific sub-functions for advanced tasks. |
| For example, it's possible to compress several blocks using the same 'CTable', |
| or to save and provide normalized distribution using external method. |
| */ |
| |
| /* *** COMPRESSION *** */ |
| |
| /*! FSE_optimalTableLog(): |
| dynamically downsize 'tableLog' when conditions are met. |
| It saves CPU time, by using smaller tables, while preserving or even improving compression ratio. |
| @return : recommended tableLog (necessarily <= 'maxTableLog') */ |
| FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue); |
| |
| /*! FSE_normalizeCount(): |
| normalize counts so that sum(count[]) == Power_of_2 (2^tableLog) |
| 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1). |
| useLowProbCount is a boolean parameter which trades off compressed size for |
| faster header decoding. When it is set to 1, the compressed data will be slightly |
| smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be |
| faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0 |
| is a good default, since header deserialization makes a big speed difference. |
| Otherwise, useLowProbCount=1 is a good default, since the speed difference is small. |
| @return : tableLog, |
| or an errorCode, which can be tested using FSE_isError() */ |
| FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, |
| const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount); |
| |
| /*! FSE_NCountWriteBound(): |
| Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'. |
| Typically useful for allocation purpose. */ |
| FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog); |
| |
| /*! FSE_writeNCount(): |
| Compactly save 'normalizedCounter' into 'buffer'. |
| @return : size of the compressed table, |
| or an errorCode, which can be tested using FSE_isError(). */ |
| FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize, |
| const short* normalizedCounter, |
| unsigned maxSymbolValue, unsigned tableLog); |
| |
| /*! Constructor and Destructor of FSE_CTable. |
| Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */ |
| typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */ |
| FSE_PUBLIC_API FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog); |
| FSE_PUBLIC_API void FSE_freeCTable (FSE_CTable* ct); |
| |
| /*! FSE_buildCTable(): |
| Builds `ct`, which must be already allocated, using FSE_createCTable(). |
| @return : 0, or an errorCode, which can be tested using FSE_isError() */ |
| FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); |
| |
| /*! FSE_compress_usingCTable(): |
| Compress `src` using `ct` into `dst` which must be already allocated. |
| @return : size of compressed data (<= `dstCapacity`), |
| or 0 if compressed data could not fit into `dst`, |
| or an errorCode, which can be tested using FSE_isError() */ |
| FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct); |
| |
| /*! |
| Tutorial : |
| ---------- |
| The first step is to count all symbols. FSE_count() does this job very fast. |
| Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells. |
| 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0] |
| maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value) |
| FSE_count() will return the number of occurrence of the most frequent symbol. |
| This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility. |
| If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). |
| |
| The next step is to normalize the frequencies. |
| FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'. |
| It also guarantees a minimum of 1 to any Symbol with frequency >= 1. |
| You can use 'tableLog'==0 to mean "use default tableLog value". |
| If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(), |
| which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default"). |
| |
| The result of FSE_normalizeCount() will be saved into a table, |
| called 'normalizedCounter', which is a table of signed short. |
| 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells. |
| The return value is tableLog if everything proceeded as expected. |
| It is 0 if there is a single symbol within distribution. |
| If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()). |
| |
| 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount(). |
| 'buffer' must be already allocated. |
| For guaranteed success, buffer size must be at least FSE_headerBound(). |
| The result of the function is the number of bytes written into 'buffer'. |
| If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small). |
| |
| 'normalizedCounter' can then be used to create the compression table 'CTable'. |
| The space required by 'CTable' must be already allocated, using FSE_createCTable(). |
| You can then use FSE_buildCTable() to fill 'CTable'. |
| If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()). |
| |
| 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable(). |
| Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize' |
| The function returns the size of compressed data (without header), necessarily <= `dstCapacity`. |
| If it returns '0', compressed data could not fit into 'dst'. |
| If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). |
| */ |
| |
| |
| /* *** DECOMPRESSION *** */ |
| |
| /*! FSE_readNCount(): |
| Read compactly saved 'normalizedCounter' from 'rBuffer'. |
| @return : size read from 'rBuffer', |
| or an errorCode, which can be tested using FSE_isError(). |
| maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */ |
| FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter, |
| unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, |
| const void* rBuffer, size_t rBuffSize); |
| |
| /*! FSE_readNCount_bmi2(): |
| * Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise. |
| */ |
| FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter, |
| unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, |
| const void* rBuffer, size_t rBuffSize, int bmi2); |
| |
| /*! Constructor and Destructor of FSE_DTable. |
| Note that its size depends on 'tableLog' */ |
| typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ |
| FSE_PUBLIC_API FSE_DTable* FSE_createDTable(unsigned tableLog); |
| FSE_PUBLIC_API void FSE_freeDTable(FSE_DTable* dt); |
| |
| /*! FSE_buildDTable(): |
| Builds 'dt', which must be already allocated, using FSE_createDTable(). |
| return : 0, or an errorCode, which can be tested using FSE_isError() */ |
| FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); |
| |
| /*! FSE_decompress_usingDTable(): |
| Decompress compressed source `cSrc` of size `cSrcSize` using `dt` |
| into `dst` which must be already allocated. |
| @return : size of regenerated data (necessarily <= `dstCapacity`), |
| or an errorCode, which can be tested using FSE_isError() */ |
| FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt); |
| |
| /*! |
| Tutorial : |
| ---------- |
| (Note : these functions only decompress FSE-compressed blocks. |
| If block is uncompressed, use memcpy() instead |
| If block is a single repeated byte, use memset() instead ) |
| |
| The first step is to obtain the normalized frequencies of symbols. |
| This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount(). |
| 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short. |
| In practice, that means it's necessary to know 'maxSymbolValue' beforehand, |
| or size the table to handle worst case situations (typically 256). |
| FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'. |
| The result of FSE_readNCount() is the number of bytes read from 'rBuffer'. |
| Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that. |
| If there is an error, the function will return an error code, which can be tested using FSE_isError(). |
| |
| The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'. |
| This is performed by the function FSE_buildDTable(). |
| The space required by 'FSE_DTable' must be already allocated using FSE_createDTable(). |
| If there is an error, the function will return an error code, which can be tested using FSE_isError(). |
| |
| `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable(). |
| `cSrcSize` must be strictly correct, otherwise decompression will fail. |
| FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`). |
| If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small) |
| */ |
| |
| #endif /* FSE_H */ |
| |
| #if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY) |
| #define FSE_H_FSE_STATIC_LINKING_ONLY |
| |
| /* *** Dependency *** */ |
| /**** start inlining bitstream.h ****/ |
| /* ****************************************************************** |
| * bitstream |
| * Part of FSE library |
| * Copyright (c) 2013-2021, Yann Collet, Facebook, Inc. |
| * |
| * You can contact the author at : |
| * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| ****************************************************************** */ |
| #ifndef BITSTREAM_H_MODULE |
| #define BITSTREAM_H_MODULE |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| /* |
| * This API consists of small unitary functions, which must be inlined for best performance. |
| * Since link-time-optimization is not available for all compilers, |
| * these functions are defined into a .h to be included. |
| */ |
| |
| /*-**************************************** |
| * Dependencies |
| ******************************************/ |
| /**** skipping file: mem.h ****/ |
| /**** skipping file: compiler.h ****/ |
| /**** skipping file: debug.h ****/ |
| /**** skipping file: error_private.h ****/ |
| |
| |
| /*========================================= |
| * Target specific |
| =========================================*/ |
| #ifndef ZSTD_NO_INTRINSICS |
| # if defined(__BMI__) && defined(__GNUC__) |
| # include <immintrin.h> /* support for bextr (experimental) */ |
| # elif defined(__ICCARM__) |
| # include <intrinsics.h> |
| # endif |
| #endif |
| |
| #define STREAM_ACCUMULATOR_MIN_32 25 |
| #define STREAM_ACCUMULATOR_MIN_64 57 |
| #define STREAM_ACCUMULATOR_MIN ((U32)(MEM_32bits() ? STREAM_ACCUMULATOR_MIN_32 : STREAM_ACCUMULATOR_MIN_64)) |
| |
| |
| /*-****************************************** |
| * bitStream encoding API (write forward) |
| ********************************************/ |
| /* bitStream can mix input from multiple sources. |
| * A critical property of these streams is that they encode and decode in **reverse** direction. |
| * So the first bit sequence you add will be the last to be read, like a LIFO stack. |
| */ |
| typedef struct { |
| size_t bitContainer; |
| unsigned bitPos; |
| char* startPtr; |
| char* ptr; |
| char* endPtr; |
| } BIT_CStream_t; |
| |
| MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* dstBuffer, size_t dstCapacity); |
| MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits); |
| MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC); |
| MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC); |
| |
| /* Start with initCStream, providing the size of buffer to write into. |
| * bitStream will never write outside of this buffer. |
| * `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code. |
| * |
| * bits are first added to a local register. |
| * Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems. |
| * Writing data into memory is an explicit operation, performed by the flushBits function. |
| * Hence keep track how many bits are potentially stored into local register to avoid register overflow. |
| * After a flushBits, a maximum of 7 bits might still be stored into local register. |
| * |
| * Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers. |
| * |
| * Last operation is to close the bitStream. |
| * The function returns the final size of CStream in bytes. |
| * If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable) |
| */ |
| |
| |
| /*-******************************************** |
| * bitStream decoding API (read backward) |
| **********************************************/ |
| typedef struct { |
| size_t bitContainer; |
| unsigned bitsConsumed; |
| const char* ptr; |
| const char* start; |
| const char* limitPtr; |
| } BIT_DStream_t; |
| |
| typedef enum { BIT_DStream_unfinished = 0, |
| BIT_DStream_endOfBuffer = 1, |
| BIT_DStream_completed = 2, |
| BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */ |
| /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */ |
| |
| MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize); |
| MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits); |
| MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD); |
| MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD); |
| |
| |
| /* Start by invoking BIT_initDStream(). |
| * A chunk of the bitStream is then stored into a local register. |
| * Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t). |
| * You can then retrieve bitFields stored into the local register, **in reverse order**. |
| * Local register is explicitly reloaded from memory by the BIT_reloadDStream() method. |
| * A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished. |
| * Otherwise, it can be less than that, so proceed accordingly. |
| * Checking if DStream has reached its end can be performed with BIT_endOfDStream(). |
| */ |
| |
| |
| /*-**************************************** |
| * unsafe API |
| ******************************************/ |
| MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits); |
| /* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */ |
| |
| MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC); |
| /* unsafe version; does not check buffer overflow */ |
| |
| MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits); |
| /* faster, but works only if nbBits >= 1 */ |
| |
| |
| |
| /*-************************************************************** |
| * Internal functions |
| ****************************************************************/ |
| MEM_STATIC unsigned BIT_highbit32 (U32 val) |
| { |
| assert(val != 0); |
| { |
| # if defined(_MSC_VER) /* Visual */ |
| # if STATIC_BMI2 == 1 |
| return _lzcnt_u32(val) ^ 31; |
| # else |
| unsigned long r = 0; |
| return _BitScanReverse(&r, val) ? (unsigned)r : 0; |
| # endif |
| # elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */ |
| return __builtin_clz (val) ^ 31; |
| # elif defined(__ICCARM__) /* IAR Intrinsic */ |
| return 31 - __CLZ(val); |
| # else /* Software version */ |
| static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, |
| 11, 14, 16, 18, 22, 25, 3, 30, |
| 8, 12, 20, 28, 15, 17, 24, 7, |
| 19, 27, 23, 6, 26, 5, 4, 31 }; |
| U32 v = val; |
| v |= v >> 1; |
| v |= v >> 2; |
| v |= v >> 4; |
| v |= v >> 8; |
| v |= v >> 16; |
| return DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27]; |
| # endif |
| } |
| } |
| |
| /*===== Local Constants =====*/ |
| static const unsigned BIT_mask[] = { |
| 0, 1, 3, 7, 0xF, 0x1F, |
| 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, |
| 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF, |
| 0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF, |
| 0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF, 0x1FFFFFFF, |
| 0x3FFFFFFF, 0x7FFFFFFF}; /* up to 31 bits */ |
| #define BIT_MASK_SIZE (sizeof(BIT_mask) / sizeof(BIT_mask[0])) |
| |
| /*-************************************************************** |
| * bitStream encoding |
| ****************************************************************/ |
| /*! BIT_initCStream() : |
| * `dstCapacity` must be > sizeof(size_t) |
| * @return : 0 if success, |
| * otherwise an error code (can be tested using ERR_isError()) */ |
| MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, |
| void* startPtr, size_t dstCapacity) |
| { |
| bitC->bitContainer = 0; |
| bitC->bitPos = 0; |
| bitC->startPtr = (char*)startPtr; |
| bitC->ptr = bitC->startPtr; |
| bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer); |
| if (dstCapacity <= sizeof(bitC->bitContainer)) return ERROR(dstSize_tooSmall); |
| return 0; |
| } |
| |
| /*! BIT_addBits() : |
| * can add up to 31 bits into `bitC`. |
| * Note : does not check for register overflow ! */ |
| MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, |
| size_t value, unsigned nbBits) |
| { |
| DEBUG_STATIC_ASSERT(BIT_MASK_SIZE == 32); |
| assert(nbBits < BIT_MASK_SIZE); |
| assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8); |
| bitC->bitContainer |= (value & BIT_mask[nbBits]) << bitC->bitPos; |
| bitC->bitPos += nbBits; |
| } |
| |
| /*! BIT_addBitsFast() : |
| * works only if `value` is _clean_, |
| * meaning all high bits above nbBits are 0 */ |
| MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, |
| size_t value, unsigned nbBits) |
| { |
| assert((value>>nbBits) == 0); |
| assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8); |
| bitC->bitContainer |= value << bitC->bitPos; |
| bitC->bitPos += nbBits; |
| } |
| |
| /*! BIT_flushBitsFast() : |
| * assumption : bitContainer has not overflowed |
| * unsafe version; does not check buffer overflow */ |
| MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC) |
| { |
| size_t const nbBytes = bitC->bitPos >> 3; |
| assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8); |
| assert(bitC->ptr <= bitC->endPtr); |
| MEM_writeLEST(bitC->ptr, bitC->bitContainer); |
| bitC->ptr += nbBytes; |
| bitC->bitPos &= 7; |
| bitC->bitContainer >>= nbBytes*8; |
| } |
| |
| /*! BIT_flushBits() : |
| * assumption : bitContainer has not overflowed |
| * safe version; check for buffer overflow, and prevents it. |
| * note : does not signal buffer overflow. |
| * overflow will be revealed later on using BIT_closeCStream() */ |
| MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC) |
| { |
| size_t const nbBytes = bitC->bitPos >> 3; |
| assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8); |
| assert(bitC->ptr <= bitC->endPtr); |
| MEM_writeLEST(bitC->ptr, bitC->bitContainer); |
| bitC->ptr += nbBytes; |
| if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr; |
| bitC->bitPos &= 7; |
| bitC->bitContainer >>= nbBytes*8; |
| } |
| |
| /*! BIT_closeCStream() : |
| * @return : size of CStream, in bytes, |
| * or 0 if it could not fit into dstBuffer */ |
| MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC) |
| { |
| BIT_addBitsFast(bitC, 1, 1); /* endMark */ |
| BIT_flushBits(bitC); |
| if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */ |
| return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0); |
| } |
| |
| |
| /*-******************************************************** |
| * bitStream decoding |
| **********************************************************/ |
| /*! BIT_initDStream() : |
| * Initialize a BIT_DStream_t. |
| * `bitD` : a pointer to an already allocated BIT_DStream_t structure. |
| * `srcSize` must be the *exact* size of the bitStream, in bytes. |
| * @return : size of stream (== srcSize), or an errorCode if a problem is detected |
| */ |
| MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize) |
| { |
| if (srcSize < 1) { ZSTD_memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); } |
| |
| bitD->start = (const char*)srcBuffer; |
| bitD->limitPtr = bitD->start + sizeof(bitD->bitContainer); |
| |
| if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */ |
| bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer); |
| bitD->bitContainer = MEM_readLEST(bitD->ptr); |
| { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1]; |
| bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; /* ensures bitsConsumed is always set */ |
| if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ } |
| } else { |
| bitD->ptr = bitD->start; |
| bitD->bitContainer = *(const BYTE*)(bitD->start); |
| switch(srcSize) |
| { |
| case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16); |
| /* fall-through */ |
| |
| case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24); |
| /* fall-through */ |
| |
| case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32); |
| /* fall-through */ |
| |
| case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24; |
| /* fall-through */ |
| |
| case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16; |
| /* fall-through */ |
| |
| case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8; |
| /* fall-through */ |
| |
| default: break; |
| } |
| { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1]; |
| bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; |
| if (lastByte == 0) return ERROR(corruption_detected); /* endMark not present */ |
| } |
| bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8; |
| } |
| |
| return srcSize; |
| } |
| |
| MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getUpperBits(size_t bitContainer, U32 const start) |
| { |
| return bitContainer >> start; |
| } |
| |
| MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getMiddleBits(size_t bitContainer, U32 const start, U32 const nbBits) |
| { |
| U32 const regMask = sizeof(bitContainer)*8 - 1; |
| /* if start > regMask, bitstream is corrupted, and result is undefined */ |
| assert(nbBits < BIT_MASK_SIZE); |
| return (bitContainer >> (start & regMask)) & BIT_mask[nbBits]; |
| } |
| |
| MEM_STATIC FORCE_INLINE_ATTR size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits) |
| { |
| #if defined(STATIC_BMI2) && STATIC_BMI2 == 1 |
| return _bzhi_u64(bitContainer, nbBits); |
| #else |
| assert(nbBits < BIT_MASK_SIZE); |
| return bitContainer & BIT_mask[nbBits]; |
| #endif |
| } |
| |
| /*! BIT_lookBits() : |
| * Provides next n bits from local register. |
| * local register is not modified. |
| * On 32-bits, maxNbBits==24. |
| * On 64-bits, maxNbBits==56. |
| * @return : value extracted */ |
| MEM_STATIC FORCE_INLINE_ATTR size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits) |
| { |
| /* arbitrate between double-shift and shift+mask */ |
| #if 1 |
| /* if bitD->bitsConsumed + nbBits > sizeof(bitD->bitContainer)*8, |
| * bitstream is likely corrupted, and result is undefined */ |
| return BIT_getMiddleBits(bitD->bitContainer, (sizeof(bitD->bitContainer)*8) - bitD->bitsConsumed - nbBits, nbBits); |
| #else |
| /* this code path is slower on my os-x laptop */ |
| U32 const regMask = sizeof(bitD->bitContainer)*8 - 1; |
| return ((bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> 1) >> ((regMask-nbBits) & regMask); |
| #endif |
| } |
| |
| /*! BIT_lookBitsFast() : |
| * unsafe version; only works if nbBits >= 1 */ |
| MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits) |
| { |
| U32 const regMask = sizeof(bitD->bitContainer)*8 - 1; |
| assert(nbBits >= 1); |
| return (bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> (((regMask+1)-nbBits) & regMask); |
| } |
| |
| MEM_STATIC FORCE_INLINE_ATTR void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits) |
| { |
| bitD->bitsConsumed += nbBits; |
| } |
| |
| /*! BIT_readBits() : |
| * Read (consume) next n bits from local register and update. |
| * Pay attention to not read more than nbBits contained into local register. |
| * @return : extracted value. */ |
| MEM_STATIC FORCE_INLINE_ATTR size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits) |
| { |
| size_t const value = BIT_lookBits(bitD, nbBits); |
| BIT_skipBits(bitD, nbBits); |
| return value; |
| } |
| |
| /*! BIT_readBitsFast() : |
| * unsafe version; only works only if nbBits >= 1 */ |
| MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits) |
| { |
| size_t const value = BIT_lookBitsFast(bitD, nbBits); |
| assert(nbBits >= 1); |
| BIT_skipBits(bitD, nbBits); |
| return value; |
| } |
| |
| /*! BIT_reloadDStreamFast() : |
| * Similar to BIT_reloadDStream(), but with two differences: |
| * 1. bitsConsumed <= sizeof(bitD->bitContainer)*8 must hold! |
| * 2. Returns BIT_DStream_overflow when bitD->ptr < bitD->limitPtr, at this |
| * point you must use BIT_reloadDStream() to reload. |
| */ |
| MEM_STATIC BIT_DStream_status BIT_reloadDStreamFast(BIT_DStream_t* bitD) |
| { |
| if (UNLIKELY(bitD->ptr < bitD->limitPtr)) |
| return BIT_DStream_overflow; |
| assert(bitD->bitsConsumed <= sizeof(bitD->bitContainer)*8); |
| bitD->ptr -= bitD->bitsConsumed >> 3; |
| bitD->bitsConsumed &= 7; |
| bitD->bitContainer = MEM_readLEST(bitD->ptr); |
| return BIT_DStream_unfinished; |
| } |
| |
| /*! BIT_reloadDStream() : |
| * Refill `bitD` from buffer previously set in BIT_initDStream() . |
| * This function is safe, it guarantees it will not read beyond src buffer. |
| * @return : status of `BIT_DStream_t` internal register. |
| * when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */ |
| MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD) |
| { |
| if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* overflow detected, like end of stream */ |
| return BIT_DStream_overflow; |
| |
| if (bitD->ptr >= bitD->limitPtr) { |
| return BIT_reloadDStreamFast(bitD); |
| } |
| if (bitD->ptr == bitD->start) { |
| if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer; |
| return BIT_DStream_completed; |
| } |
| /* start < ptr < limitPtr */ |
| { U32 nbBytes = bitD->bitsConsumed >> 3; |
| BIT_DStream_status result = BIT_DStream_unfinished; |
| if (bitD->ptr - nbBytes < bitD->start) { |
| nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */ |
| result = BIT_DStream_endOfBuffer; |
| } |
| bitD->ptr -= nbBytes; |
| bitD->bitsConsumed -= nbBytes*8; |
| bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD->bitContainer), otherwise bitD->ptr == bitD->start */ |
| return result; |
| } |
| } |
| |
| /*! BIT_endOfDStream() : |
| * @return : 1 if DStream has _exactly_ reached its end (all bits consumed). |
| */ |
| MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream) |
| { |
| return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8)); |
| } |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* BITSTREAM_H_MODULE */ |
| /**** ended inlining bitstream.h ****/ |
| |
| |
| /* ***************************************** |
| * Static allocation |
| *******************************************/ |
| /* FSE buffer bounds */ |
| #define FSE_NCOUNTBOUND 512 |
| #define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */) |
| #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ |
| |
| /* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */ |
| #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2)) |
| #define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<(maxTableLog))) |
| |
| /* or use the size to malloc() space directly. Pay attention to alignment restrictions though */ |
| #define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue) (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable)) |
| #define FSE_DTABLE_SIZE(maxTableLog) (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable)) |
| |
| |
| /* ***************************************** |
| * FSE advanced API |
| ***************************************** */ |
| |
| unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus); |
| /**< same as FSE_optimalTableLog(), which used `minus==2` */ |
| |
| /* FSE_compress_wksp() : |
| * Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`). |
| * FSE_COMPRESS_WKSP_SIZE_U32() provides the minimum size required for `workSpace` as a table of FSE_CTable. |
| */ |
| #define FSE_COMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ( FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) + ((maxTableLog > 12) ? (1 << (maxTableLog - 2)) : 1024) ) |
| size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); |
| |
| size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits); |
| /**< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */ |
| |
| size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue); |
| /**< build a fake FSE_CTable, designed to compress always the same symbolValue */ |
| |
| /* FSE_buildCTable_wksp() : |
| * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`). |
| * `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`. |
| */ |
| #define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (maxSymbolValue + 2 + (1ull << (tableLog - 2))) |
| #define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)) |
| size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); |
| |
| #define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8) |
| #define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned)) |
| FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); |
| /**< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */ |
| |
| size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits); |
| /**< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */ |
| |
| size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue); |
| /**< build a fake FSE_DTable, designed to always generate the same symbolValue */ |
| |
| #define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue)) |
| #define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned)) |
| size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize); |
| /**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)` */ |
| |
| size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2); |
| /**< Same as FSE_decompress_wksp() but with dynamic BMI2 support. Pass 1 if your CPU supports BMI2 or 0 if it doesn't. */ |
| |
| typedef enum { |
| FSE_repeat_none, /**< Cannot use the previous table */ |
| FSE_repeat_check, /**< Can use the previous table but it must be checked */ |
| FSE_repeat_valid /**< Can use the previous table and it is assumed to be valid */ |
| } FSE_repeat; |
| |
| /* ***************************************** |
| * FSE symbol compression API |
| *******************************************/ |
| /*! |
| This API consists of small unitary functions, which highly benefit from being inlined. |
| Hence their body are included in next section. |
| */ |
| typedef struct { |
| ptrdiff_t value; |
| const void* stateTable; |
| const void* symbolTT; |
| unsigned stateLog; |
| } FSE_CState_t; |
| |
| static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct); |
| |
| static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol); |
| |
| static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr); |
| |
| /**< |
| These functions are inner components of FSE_compress_usingCTable(). |
| They allow the creation of custom streams, mixing multiple tables and bit sources. |
| |
| A key property to keep in mind is that encoding and decoding are done **in reverse direction**. |
| So the first symbol you will encode is the last you will decode, like a LIFO stack. |
| |
| You will need a few variables to track your CStream. They are : |
| |
| FSE_CTable ct; // Provided by FSE_buildCTable() |
| BIT_CStream_t bitStream; // bitStream tracking structure |
| FSE_CState_t state; // State tracking structure (can have several) |
| |
| |
| The first thing to do is to init bitStream and state. |
| size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize); |
| FSE_initCState(&state, ct); |
| |
| Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError(); |
| You can then encode your input data, byte after byte. |
| FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time. |
| Remember decoding will be done in reverse direction. |
| FSE_encodeByte(&bitStream, &state, symbol); |
| |
| At any time, you can also add any bit sequence. |
| Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders |
| BIT_addBits(&bitStream, bitField, nbBits); |
| |
| The above methods don't commit data to memory, they just store it into local register, for speed. |
| Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t). |
| Writing data to memory is a manual operation, performed by the flushBits function. |
| BIT_flushBits(&bitStream); |
| |
| Your last FSE encoding operation shall be to flush your last state value(s). |
| FSE_flushState(&bitStream, &state); |
| |
| Finally, you must close the bitStream. |
| The function returns the size of CStream in bytes. |
| If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible) |
| If there is an error, it returns an errorCode (which can be tested using FSE_isError()). |
| size_t size = BIT_closeCStream(&bitStream); |
| */ |
| |
| |
| /* ***************************************** |
| * FSE symbol decompression API |
| *******************************************/ |
| typedef struct { |
| size_t state; |
| const void* table; /* precise table may vary, depending on U16 */ |
| } FSE_DState_t; |
| |
| |
| static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt); |
| |
| static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); |
| |
| static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr); |
| |
| /**< |
| Let's now decompose FSE_decompress_usingDTable() into its unitary components. |
| You will decode FSE-encoded symbols from the bitStream, |
| and also any other bitFields you put in, **in reverse order**. |
| |
| You will need a few variables to track your bitStream. They are : |
| |
| BIT_DStream_t DStream; // Stream context |
| FSE_DState_t DState; // State context. Multiple ones are possible |
| FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable() |
| |
| The first thing to do is to init the bitStream. |
| errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize); |
| |
| You should then retrieve your initial state(s) |
| (in reverse flushing order if you have several ones) : |
| errorCode = FSE_initDState(&DState, &DStream, DTablePtr); |
| |
| You can then decode your data, symbol after symbol. |
| For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'. |
| Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out). |
| unsigned char symbol = FSE_decodeSymbol(&DState, &DStream); |
| |
| You can retrieve any bitfield you eventually stored into the bitStream (in reverse order) |
| Note : maximum allowed nbBits is 25, for 32-bits compatibility |
| size_t bitField = BIT_readBits(&DStream, nbBits); |
| |
| All above operations only read from local register (which size depends on size_t). |
| Refueling the register from memory is manually performed by the reload method. |
| endSignal = FSE_reloadDStream(&DStream); |
| |
| BIT_reloadDStream() result tells if there is still some more data to read from DStream. |
| BIT_DStream_unfinished : there is still some data left into the DStream. |
| BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled. |
| BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed. |
| BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted. |
| |
| When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop, |
| to properly detect the exact end of stream. |
| After each decoded symbol, check if DStream is fully consumed using this simple test : |
| BIT_reloadDStream(&DStream) >= BIT_DStream_completed |
| |
| When it's done, verify decompression is fully completed, by checking both DStream and the relevant states. |
| Checking if DStream has reached its end is performed by : |
| BIT_endOfDStream(&DStream); |
| Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible. |
| FSE_endOfDState(&DState); |
| */ |
| |
| |
| /* ***************************************** |
| * FSE unsafe API |
| *******************************************/ |
| static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); |
| /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */ |
| |
| |
| /* ***************************************** |
| * Implementation of inlined functions |
| *******************************************/ |
| typedef struct { |
| int deltaFindState; |
| U32 deltaNbBits; |
| } FSE_symbolCompressionTransform; /* total 8 bytes */ |
| |
| MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct) |
| { |
| const void* ptr = ct; |
| const U16* u16ptr = (const U16*) ptr; |
| const U32 tableLog = MEM_read16(ptr); |
| statePtr->value = (ptrdiff_t)1<<tableLog; |
| statePtr->stateTable = u16ptr+2; |
| statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1); |
| statePtr->stateLog = tableLog; |
| } |
| |
| |
| /*! FSE_initCState2() : |
| * Same as FSE_initCState(), but the first symbol to include (which will be the last to be read) |
| * uses the smallest state value possible, saving the cost of this symbol */ |
| MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol) |
| { |
| FSE_initCState(statePtr, ct); |
| { const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; |
| const U16* stateTable = (const U16*)(statePtr->stateTable); |
| U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16); |
| statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits; |
| statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; |
| } |
| } |
| |
| MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol) |
| { |
| FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; |
| const U16* const stateTable = (const U16*)(statePtr->stateTable); |
| U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16); |
| BIT_addBits(bitC, statePtr->value, nbBitsOut); |
| statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; |
| } |
| |
| MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr) |
| { |
| BIT_addBits(bitC, statePtr->value, statePtr->stateLog); |
| BIT_flushBits(bitC); |
| } |
| |
| |
| /* FSE_getMaxNbBits() : |
| * Approximate maximum cost of a symbol, in bits. |
| * Fractional get rounded up (i.e : a symbol with a normalized frequency of 3 gives the same result as a frequency of 2) |
| * note 1 : assume symbolValue is valid (<= maxSymbolValue) |
| * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ |
| MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue) |
| { |
| const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; |
| return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16; |
| } |
| |
| /* FSE_bitCost() : |
| * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits) |
| * note 1 : assume symbolValue is valid (<= maxSymbolValue) |
| * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ |
| MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog) |
| { |
| const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; |
| U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16; |
| U32 const threshold = (minNbBits+1) << 16; |
| assert(tableLog < 16); |
| assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */ |
| { U32 const tableSize = 1 << tableLog; |
| U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize); |
| U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */ |
| U32 const bitMultiplier = 1 << accuracyLog; |
| assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold); |
| assert(normalizedDeltaFromThreshold <= bitMultiplier); |
| return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold; |
| } |
| } |
| |
| |
| /* ====== Decompression ====== */ |
| |
| typedef struct { |
| U16 tableLog; |
| U16 fastMode; |
| } FSE_DTableHeader; /* sizeof U32 */ |
| |
| typedef struct |
| { |
| unsigned short newState; |
| unsigned char symbol; |
| unsigned char nbBits; |
| } FSE_decode_t; /* size == U32 */ |
| |
| MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt) |
| { |
| const void* ptr = dt; |
| const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr; |
| DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog); |
| BIT_reloadDStream(bitD); |
| DStatePtr->table = dt + 1; |
| } |
| |
| MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr) |
| { |
| FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; |
| return DInfo.symbol; |
| } |
| |
| MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) |
| { |
| FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; |
| U32 const nbBits = DInfo.nbBits; |
| size_t const lowBits = BIT_readBits(bitD, nbBits); |
| DStatePtr->state = DInfo.newState + lowBits; |
| } |
| |
| MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) |
| { |
| FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; |
| U32 const nbBits = DInfo.nbBits; |
| BYTE const symbol = DInfo.symbol; |
| size_t const lowBits = BIT_readBits(bitD, nbBits); |
| |
| DStatePtr->state = DInfo.newState + lowBits; |
| return symbol; |
| } |
| |
| /*! FSE_decodeSymbolFast() : |
| unsafe, only works if no symbol has a probability > 50% */ |
| MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) |
| { |
| FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; |
| U32 const nbBits = DInfo.nbBits; |
| BYTE const symbol = DInfo.symbol; |
| size_t const lowBits = BIT_readBitsFast(bitD, nbBits); |
| |
| DStatePtr->state = DInfo.newState + lowBits; |
| return symbol; |
| } |
| |
| MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) |
| { |
| return DStatePtr->state == 0; |
| } |
| |
| |
| |
| #ifndef FSE_COMMONDEFS_ONLY |
| |
| /* ************************************************************** |
| * Tuning parameters |
| ****************************************************************/ |
| /*!MEMORY_USAGE : |
| * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) |
| * Increasing memory usage improves compression ratio |
| * Reduced memory usage can improve speed, due to cache effect |
| * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ |
| #ifndef FSE_MAX_MEMORY_USAGE |
| # define FSE_MAX_MEMORY_USAGE 14 |
| #endif |
| #ifndef FSE_DEFAULT_MEMORY_USAGE |
| # define FSE_DEFAULT_MEMORY_USAGE 13 |
| #endif |
| #if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE) |
| # error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE" |
| #endif |
| |
| /*!FSE_MAX_SYMBOL_VALUE : |
| * Maximum symbol value authorized. |
| * Required for proper stack allocation */ |
| #ifndef FSE_MAX_SYMBOL_VALUE |
| # define FSE_MAX_SYMBOL_VALUE 255 |
| #endif |
| |
| /* ************************************************************** |
| * template functions type & suffix |
| ****************************************************************/ |
| #define FSE_FUNCTION_TYPE BYTE |
| #define FSE_FUNCTION_EXTENSION |
| #define FSE_DECODE_TYPE FSE_decode_t |
| |
| |
| #endif /* !FSE_COMMONDEFS_ONLY */ |
| |
| |
| /* *************************************************************** |
| * Constants |
| *****************************************************************/ |
| #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) |
| #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG) |
| #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1) |
| #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2) |
| #define FSE_MIN_TABLELOG 5 |
| |
| #define FSE_TABLELOG_ABSOLUTE_MAX 15 |
| #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX |
| # error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" |
| #endif |
| |
| #define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3) |
| |
| |
| #endif /* FSE_STATIC_LINKING_ONLY */ |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| /**** ended inlining fse.h ****/ |
| #define HUF_STATIC_LINKING_ONLY /* HUF_TABLELOG_ABSOLUTEMAX */ |
| /**** start inlining huf.h ****/ |
| /* ****************************************************************** |
| * huff0 huffman codec, |
| * part of Finite State Entropy library |
| * Copyright (c) 2013-2021, Yann Collet, Facebook, Inc. |
| * |
| * You can contact the author at : |
| * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| ****************************************************************** */ |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| #ifndef HUF_H_298734234 |
| #define HUF_H_298734234 |
| |
| /* *** Dependencies *** */ |
| /**** skipping file: zstd_deps.h ****/ |
| |
| |
| /* *** library symbols visibility *** */ |
| /* Note : when linking with -fvisibility=hidden on gcc, or by default on Visual, |
| * HUF symbols remain "private" (internal symbols for library only). |
| * Set macro FSE_DLL_EXPORT to 1 if you want HUF symbols visible on DLL interface */ |
| #if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4) |
| # define HUF_PUBLIC_API __attribute__ ((visibility ("default"))) |
| #elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */ |
| # define HUF_PUBLIC_API __declspec(dllexport) |
| #elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1) |
| # define HUF_PUBLIC_API __declspec(dllimport) /* not required, just to generate faster code (saves a function pointer load from IAT and an indirect jump) */ |
| #else |
| # define HUF_PUBLIC_API |
| #endif |
| |
| |
| /* ========================== */ |
| /* *** simple functions *** */ |
| /* ========================== */ |
| |
| /** HUF_compress() : |
| * Compress content from buffer 'src', of size 'srcSize', into buffer 'dst'. |
| * 'dst' buffer must be already allocated. |
| * Compression runs faster if `dstCapacity` >= HUF_compressBound(srcSize). |
| * `srcSize` must be <= `HUF_BLOCKSIZE_MAX` == 128 KB. |
| * @return : size of compressed data (<= `dstCapacity`). |
| * Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!! |
| * if HUF_isError(return), compression failed (more details using HUF_getErrorName()) |
| */ |
| HUF_PUBLIC_API size_t HUF_compress(void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize); |
| |
| /** HUF_decompress() : |
| * Decompress HUF data from buffer 'cSrc', of size 'cSrcSize', |
| * into already allocated buffer 'dst', of minimum size 'dstSize'. |
| * `originalSize` : **must** be the ***exact*** size of original (uncompressed) data. |
| * Note : in contrast with FSE, HUF_decompress can regenerate |
| * RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data, |
| * because it knows size to regenerate (originalSize). |
| * @return : size of regenerated data (== originalSize), |
| * or an error code, which can be tested using HUF_isError() |
| */ |
| HUF_PUBLIC_API size_t HUF_decompress(void* dst, size_t originalSize, |
| const void* cSrc, size_t cSrcSize); |
| |
| |
| /* *** Tool functions *** */ |
| #define HUF_BLOCKSIZE_MAX (128 * 1024) /**< maximum input size for a single block compressed with HUF_compress */ |
| HUF_PUBLIC_API size_t HUF_compressBound(size_t size); /**< maximum compressed size (worst case) */ |
| |
| /* Error Management */ |
| HUF_PUBLIC_API unsigned HUF_isError(size_t code); /**< tells if a return value is an error code */ |
| HUF_PUBLIC_API const char* HUF_getErrorName(size_t code); /**< provides error code string (useful for debugging) */ |
| |
| |
| /* *** Advanced function *** */ |
| |
| /** HUF_compress2() : |
| * Same as HUF_compress(), but offers control over `maxSymbolValue` and `tableLog`. |
| * `maxSymbolValue` must be <= HUF_SYMBOLVALUE_MAX . |
| * `tableLog` must be `<= HUF_TABLELOG_MAX` . */ |
| HUF_PUBLIC_API size_t HUF_compress2 (void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| unsigned maxSymbolValue, unsigned tableLog); |
| |
| /** HUF_compress4X_wksp() : |
| * Same as HUF_compress2(), but uses externally allocated `workSpace`. |
| * `workspace` must have minimum alignment of 4, and be at least as large as HUF_WORKSPACE_SIZE */ |
| #define HUF_WORKSPACE_SIZE ((6 << 10) + 256) |
| #define HUF_WORKSPACE_SIZE_U32 (HUF_WORKSPACE_SIZE / sizeof(U32)) |
| HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| unsigned maxSymbolValue, unsigned tableLog, |
| void* workSpace, size_t wkspSize); |
| |
| #endif /* HUF_H_298734234 */ |
| |
| /* ****************************************************************** |
| * WARNING !! |
| * The following section contains advanced and experimental definitions |
| * which shall never be used in the context of a dynamic library, |
| * because they are not guaranteed to remain stable in the future. |
| * Only consider them in association with static linking. |
| * *****************************************************************/ |
| #if defined(HUF_STATIC_LINKING_ONLY) && !defined(HUF_H_HUF_STATIC_LINKING_ONLY) |
| #define HUF_H_HUF_STATIC_LINKING_ONLY |
| |
| /* *** Dependencies *** */ |
| /**** skipping file: mem.h ****/ |
| #define FSE_STATIC_LINKING_ONLY |
| /**** skipping file: fse.h ****/ |
| |
| |
| /* *** Constants *** */ |
| #define HUF_TABLELOG_MAX 12 /* max runtime value of tableLog (due to static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */ |
| #define HUF_TABLELOG_DEFAULT 11 /* default tableLog value when none specified */ |
| #define HUF_SYMBOLVALUE_MAX 255 |
| |
| #define HUF_TABLELOG_ABSOLUTEMAX 15 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */ |
| #if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX) |
| # error "HUF_TABLELOG_MAX is too large !" |
| #endif |
| |
| |
| /* **************************************** |
| * Static allocation |
| ******************************************/ |
| /* HUF buffer bounds */ |
| #define HUF_CTABLEBOUND 129 |
| #define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true when incompressible is pre-filtered with fast heuristic */ |
| #define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ |
| |
| /* static allocation of HUF's Compression Table */ |
| /* this is a private definition, just exposed for allocation and strict aliasing purpose. never EVER access its members directly */ |
| struct HUF_CElt_s { |
| U16 val; |
| BYTE nbBits; |
| }; /* typedef'd to HUF_CElt */ |
| typedef struct HUF_CElt_s HUF_CElt; /* consider it an incomplete type */ |
| #define HUF_CTABLE_SIZE_U32(maxSymbolValue) ((maxSymbolValue)+1) /* Use tables of U32, for proper alignment */ |
| #define HUF_CTABLE_SIZE(maxSymbolValue) (HUF_CTABLE_SIZE_U32(maxSymbolValue) * sizeof(U32)) |
| #define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \ |
| HUF_CElt name[HUF_CTABLE_SIZE_U32(maxSymbolValue)] /* no final ; */ |
| |
| /* static allocation of HUF's DTable */ |
| typedef U32 HUF_DTable; |
| #define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog))) |
| #define HUF_CREATE_STATIC_DTABLEX1(DTable, maxTableLog) \ |
| HUF_DTable DTable[HUF_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1) * 0x01000001) } |
| #define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \ |
| HUF_DTable DTable[HUF_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog) * 0x01000001) } |
| |
| |
| /* **************************************** |
| * Advanced decompression functions |
| ******************************************/ |
| size_t HUF_decompress4X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */ |
| #ifndef HUF_FORCE_DECOMPRESS_X1 |
| size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */ |
| #endif |
| |
| size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< decodes RLE and uncompressed */ |
| size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< considers RLE and uncompressed as errors */ |
| size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< considers RLE and uncompressed as errors */ |
| size_t HUF_decompress4X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */ |
| size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */ |
| #ifndef HUF_FORCE_DECOMPRESS_X1 |
| size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */ |
| size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */ |
| #endif |
| |
| |
| /* **************************************** |
| * HUF detailed API |
| * ****************************************/ |
| |
| /*! HUF_compress() does the following: |
| * 1. count symbol occurrence from source[] into table count[] using FSE_count() (exposed within "fse.h") |
| * 2. (optional) refine tableLog using HUF_optimalTableLog() |
| * 3. build Huffman table from count using HUF_buildCTable() |
| * 4. save Huffman table to memory buffer using HUF_writeCTable() |
| * 5. encode the data stream using HUF_compress4X_usingCTable() |
| * |
| * The following API allows targeting specific sub-functions for advanced tasks. |
| * For example, it's possible to compress several blocks using the same 'CTable', |
| * or to save and regenerate 'CTable' using external methods. |
| */ |
| unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue); |
| size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits); /* @return : maxNbBits; CTable and count can overlap. In which case, CTable will overwrite count content */ |
| size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog); |
| size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable); |
| size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue); |
| int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue); |
| |
| typedef enum { |
| HUF_repeat_none, /**< Cannot use the previous table */ |
| HUF_repeat_check, /**< Can use the previous table but it must be checked. Note : The previous table must have been constructed by HUF_compress{1, 4}X_repeat */ |
| HUF_repeat_valid /**< Can use the previous table and it is assumed to be valid */ |
| } HUF_repeat; |
| /** HUF_compress4X_repeat() : |
| * Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none. |
| * If it uses hufTable it does not modify hufTable or repeat. |
| * If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used. |
| * If preferRepeat then the old table will always be used if valid. */ |
| size_t HUF_compress4X_repeat(void* dst, size_t dstSize, |
| const void* src, size_t srcSize, |
| unsigned maxSymbolValue, unsigned tableLog, |
| void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */ |
| HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2); |
| |
| /** HUF_buildCTable_wksp() : |
| * Same as HUF_buildCTable(), but using externally allocated scratch buffer. |
| * `workSpace` must be aligned on 4-bytes boundaries, and its size must be >= HUF_CTABLE_WORKSPACE_SIZE. |
| */ |
| #define HUF_CTABLE_WORKSPACE_SIZE_U32 (2*HUF_SYMBOLVALUE_MAX +1 +1) |
| #define HUF_CTABLE_WORKSPACE_SIZE (HUF_CTABLE_WORKSPACE_SIZE_U32 * sizeof(unsigned)) |
| size_t HUF_buildCTable_wksp (HUF_CElt* tree, |
| const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, |
| void* workSpace, size_t wkspSize); |
| |
| /*! HUF_readStats() : |
| * Read compact Huffman tree, saved by HUF_writeCTable(). |
| * `huffWeight` is destination buffer. |
| * @return : size read from `src` , or an error Code . |
| * Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */ |
| size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, |
| U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr, |
| const void* src, size_t srcSize); |
| |
| /*! HUF_readStats_wksp() : |
| * Same as HUF_readStats() but takes an external workspace which must be |
| * 4-byte aligned and its size must be >= HUF_READ_STATS_WORKSPACE_SIZE. |
| * If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0. |
| */ |
| #define HUF_READ_STATS_WORKSPACE_SIZE_U32 FSE_DECOMPRESS_WKSP_SIZE_U32(6, HUF_TABLELOG_MAX-1) |
| #define HUF_READ_STATS_WORKSPACE_SIZE (HUF_READ_STATS_WORKSPACE_SIZE_U32 * sizeof(unsigned)) |
| size_t HUF_readStats_wksp(BYTE* huffWeight, size_t hwSize, |
| U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr, |
| const void* src, size_t srcSize, |
| void* workspace, size_t wkspSize, |
| int bmi2); |
| |
| /** HUF_readCTable() : |
| * Loading a CTable saved with HUF_writeCTable() */ |
| size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned *hasZeroWeights); |
| |
| /** HUF_getNbBits() : |
| * Read nbBits from CTable symbolTable, for symbol `symbolValue` presumed <= HUF_SYMBOLVALUE_MAX |
| * Note 1 : is not inlined, as HUF_CElt definition is private |
| * Note 2 : const void* used, so that it can provide a statically allocated table as argument (which uses type U32) */ |
| U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue); |
| |
| /* |
| * HUF_decompress() does the following: |
| * 1. select the decompression algorithm (X1, X2) based on pre-computed heuristics |
| * 2. build Huffman table from save, using HUF_readDTableX?() |
| * 3. decode 1 or 4 segments in parallel using HUF_decompress?X?_usingDTable() |
| */ |
| |
| /** HUF_selectDecoder() : |
| * Tells which decoder is likely to decode faster, |
| * based on a set of pre-computed metrics. |
| * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 . |
| * Assumption : 0 < dstSize <= 128 KB */ |
| U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize); |
| |
| /** |
| * The minimum workspace size for the `workSpace` used in |
| * HUF_readDTableX1_wksp() and HUF_readDTableX2_wksp(). |
| * |
| * The space used depends on HUF_TABLELOG_MAX, ranging from ~1500 bytes when |
| * HUF_TABLE_LOG_MAX=12 to ~1850 bytes when HUF_TABLE_LOG_MAX=15. |
| * Buffer overflow errors may potentially occur if code modifications result in |
| * a required workspace size greater than that specified in the following |
| * macro. |
| */ |
| #define HUF_DECOMPRESS_WORKSPACE_SIZE (2 << 10) |
| #define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32)) |
| |
| #ifndef HUF_FORCE_DECOMPRESS_X2 |
| size_t HUF_readDTableX1 (HUF_DTable* DTable, const void* src, size_t srcSize); |
| size_t HUF_readDTableX1_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize); |
| #endif |
| #ifndef HUF_FORCE_DECOMPRESS_X1 |
| size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize); |
| size_t HUF_readDTableX2_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize); |
| #endif |
| |
| size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); |
| #ifndef HUF_FORCE_DECOMPRESS_X2 |
| size_t HUF_decompress4X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); |
| #endif |
| #ifndef HUF_FORCE_DECOMPRESS_X1 |
| size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); |
| #endif |
| |
| |
| /* ====================== */ |
| /* single stream variants */ |
| /* ====================== */ |
| |
| size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog); |
| size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */ |
| size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable); |
| /** HUF_compress1X_repeat() : |
| * Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none. |
| * If it uses hufTable it does not modify hufTable or repeat. |
| * If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used. |
| * If preferRepeat then the old table will always be used if valid. */ |
| size_t HUF_compress1X_repeat(void* dst, size_t dstSize, |
| const void* src, size_t srcSize, |
| unsigned maxSymbolValue, unsigned tableLog, |
| void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */ |
| HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2); |
| |
| size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */ |
| #ifndef HUF_FORCE_DECOMPRESS_X1 |
| size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */ |
| #endif |
| |
| size_t HUF_decompress1X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); |
| size_t HUF_decompress1X_DCtx_wksp (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); |
| #ifndef HUF_FORCE_DECOMPRESS_X2 |
| size_t HUF_decompress1X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */ |
| size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */ |
| #endif |
| #ifndef HUF_FORCE_DECOMPRESS_X1 |
| size_t HUF_decompress1X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */ |
| size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */ |
| #endif |
| |
| size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); /**< automatic selection of sing or double symbol decoder, based on DTable */ |
| #ifndef HUF_FORCE_DECOMPRESS_X2 |
| size_t HUF_decompress1X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); |
| #endif |
| #ifndef HUF_FORCE_DECOMPRESS_X1 |
| size_t HUF_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); |
| #endif |
| |
| /* BMI2 variants. |
| * If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0. |
| */ |
| size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2); |
| #ifndef HUF_FORCE_DECOMPRESS_X2 |
| size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2); |
| #endif |
| size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2); |
| size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2); |
| #ifndef HUF_FORCE_DECOMPRESS_X2 |
| size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2); |
| #endif |
| |
| #endif /* HUF_STATIC_LINKING_ONLY */ |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| /**** ended inlining huf.h ****/ |
| |
| |
| /*=== Version ===*/ |
| unsigned FSE_versionNumber(void) { return FSE_VERSION_NUMBER; } |
| |
| |
| /*=== Error Management ===*/ |
| unsigned FSE_isError(size_t code) { return ERR_isError(code); } |
| const char* FSE_getErrorName(size_t code) { return ERR_getErrorName(code); } |
| |
| unsigned HUF_isError(size_t code) { return ERR_isError(code); } |
| const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); } |
| |
| |
| /*-************************************************************** |
| * FSE NCount encoding-decoding |
| ****************************************************************/ |
| static U32 FSE_ctz(U32 val) |
| { |
| assert(val != 0); |
| { |
| # if defined(_MSC_VER) /* Visual */ |
| unsigned long r=0; |
| return _BitScanForward(&r, val) ? (unsigned)r : 0; |
| # elif defined(__GNUC__) && (__GNUC__ >= 3) /* GCC Intrinsic */ |
| return __builtin_ctz(val); |
| # elif defined(__ICCARM__) /* IAR Intrinsic */ |
| return __CTZ(val); |
| # else /* Software version */ |
| U32 count = 0; |
| while ((val & 1) == 0) { |
| val >>= 1; |
| ++count; |
| } |
| return count; |
| # endif |
| } |
| } |
| |
| FORCE_INLINE_TEMPLATE |
| size_t FSE_readNCount_body(short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr, |
| const void* headerBuffer, size_t hbSize) |
| { |
| const BYTE* const istart = (const BYTE*) headerBuffer; |
| const BYTE* const iend = istart + hbSize; |
| const BYTE* ip = istart; |
| int nbBits; |
| int remaining; |
| int threshold; |
| U32 bitStream; |
| int bitCount; |
| unsigned charnum = 0; |
| unsigned const maxSV1 = *maxSVPtr + 1; |
| int previous0 = 0; |
| |
| if (hbSize < 8) { |
| /* This function only works when hbSize >= 8 */ |
| char buffer[8] = {0}; |
| ZSTD_memcpy(buffer, headerBuffer, hbSize); |
| { size_t const countSize = FSE_readNCount(normalizedCounter, maxSVPtr, tableLogPtr, |
| buffer, sizeof(buffer)); |
| if (FSE_isError(countSize)) return countSize; |
| if (countSize > hbSize) return ERROR(corruption_detected); |
| return countSize; |
| } } |
| assert(hbSize >= 8); |
| |
| /* init */ |
| ZSTD_memset(normalizedCounter, 0, (*maxSVPtr+1) * sizeof(normalizedCounter[0])); /* all symbols not present in NCount have a frequency of 0 */ |
| bitStream = MEM_readLE32(ip); |
| nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */ |
| if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge); |
| bitStream >>= 4; |
| bitCount = 4; |
| *tableLogPtr = nbBits; |
| remaining = (1<<nbBits)+1; |
| threshold = 1<<nbBits; |
| nbBits++; |
| |
| for (;;) { |
| if (previous0) { |
| /* Count the number of repeats. Each time the |
| * 2-bit repeat code is 0b11 there is another |
| * repeat. |
| * Avoid UB by setting the high bit to 1. |
| */ |
| int repeats = FSE_ctz(~bitStream | 0x80000000) >> 1; |
| while (repeats >= 12) { |
| charnum += 3 * 12; |
| if (LIKELY(ip <= iend-7)) { |
| ip += 3; |
| } else { |
| bitCount -= (int)(8 * (iend - 7 - ip)); |
| bitCount &= 31; |
| ip = iend - 4; |
| } |
| bitStream = MEM_readLE32(ip) >> bitCount; |
| repeats = FSE_ctz(~bitStream | 0x80000000) >> 1; |
| } |
| charnum += 3 * repeats; |
| bitStream >>= 2 * repeats; |
| bitCount += 2 * repeats; |
| |
| /* Add the final repeat which isn't 0b11. */ |
| assert((bitStream & 3) < 3); |
| charnum += bitStream & 3; |
| bitCount += 2; |
| |
| /* This is an error, but break and return an error |
| * at the end, because returning out of a loop makes |
| * it harder for the compiler to optimize. |
| */ |
| if (charnum >= maxSV1) break; |
| |
| /* We don't need to set the normalized count to 0 |
| * because we already memset the whole buffer to 0. |
| */ |
| |
| if (LIKELY(ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { |
| assert((bitCount >> 3) <= 3); /* For first condition to work */ |
| ip += bitCount>>3; |
| bitCount &= 7; |
| } else { |
| bitCount -= (int)(8 * (iend - 4 - ip)); |
| bitCount &= 31; |
| ip = iend - 4; |
| } |
| bitStream = MEM_readLE32(ip) >> bitCount; |
| } |
| { |
| int const max = (2*threshold-1) - remaining; |
| int count; |
| |
| if ((bitStream & (threshold-1)) < (U32)max) { |
| count = bitStream & (threshold-1); |
| bitCount += nbBits-1; |
| } else { |
| count = bitStream & (2*threshold-1); |
| if (count >= threshold) count -= max; |
| bitCount += nbBits; |
| } |
| |
| count--; /* extra accuracy */ |
| /* When it matters (small blocks), this is a |
| * predictable branch, because we don't use -1. |
| */ |
| if (count >= 0) { |
| remaining -= count; |
| } else { |
| assert(count == -1); |
| remaining += count; |
| } |
| normalizedCounter[charnum++] = (short)count; |
| previous0 = !count; |
| |
| assert(threshold > 1); |
| if (remaining < threshold) { |
| /* This branch can be folded into the |
| * threshold update condition because we |
| * know that threshold > 1. |
| */ |
| if (remaining <= 1) break; |
| nbBits = BIT_highbit32(remaining) + 1; |
| threshold = 1 << (nbBits - 1); |
| } |
| if (charnum >= maxSV1) break; |
| |
| if (LIKELY(ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { |
| ip += bitCount>>3; |
| bitCount &= 7; |
| } else { |
| bitCount -= (int)(8 * (iend - 4 - ip)); |
| bitCount &= 31; |
| ip = iend - 4; |
| } |
| bitStream = MEM_readLE32(ip) >> bitCount; |
| } } |
| if (remaining != 1) return ERROR(corruption_detected); |
| /* Only possible when there are too many zeros. */ |
| if (charnum > maxSV1) return ERROR(maxSymbolValue_tooSmall); |
| if (bitCount > 32) return ERROR(corruption_detected); |
| *maxSVPtr = charnum-1; |
| |
| ip += (bitCount+7)>>3; |
| return ip-istart; |
| } |
| |
| /* Avoids the FORCE_INLINE of the _body() function. */ |
| static size_t FSE_readNCount_body_default( |
| short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr, |
| const void* headerBuffer, size_t hbSize) |
| { |
| return FSE_readNCount_body(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize); |
| } |
| |
| #if DYNAMIC_BMI2 |
| TARGET_ATTRIBUTE("bmi2") static size_t FSE_readNCount_body_bmi2( |
| short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr, |
| const void* headerBuffer, size_t hbSize) |
| { |
| return FSE_readNCount_body(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize); |
| } |
| #endif |
| |
| size_t FSE_readNCount_bmi2( |
| short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr, |
| const void* headerBuffer, size_t hbSize, int bmi2) |
| { |
| #if DYNAMIC_BMI2 |
| if (bmi2) { |
| return FSE_readNCount_body_bmi2(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize); |
| } |
| #endif |
| (void)bmi2; |
| return FSE_readNCount_body_default(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize); |
| } |
| |
| size_t FSE_readNCount( |
| short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr, |
| const void* headerBuffer, size_t hbSize) |
| { |
| return FSE_readNCount_bmi2(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize, /* bmi2 */ 0); |
| } |
| |
| |
| /*! HUF_readStats() : |
| Read compact Huffman tree, saved by HUF_writeCTable(). |
| `huffWeight` is destination buffer. |
| `rankStats` is assumed to be a table of at least HUF_TABLELOG_MAX U32. |
| @return : size read from `src` , or an error Code . |
| Note : Needed by HUF_readCTable() and HUF_readDTableX?() . |
| */ |
| size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats, |
| U32* nbSymbolsPtr, U32* tableLogPtr, |
| const void* src, size_t srcSize) |
| { |
| U32 wksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; |
| return HUF_readStats_wksp(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, wksp, sizeof(wksp), /* bmi2 */ 0); |
| } |
| |
| FORCE_INLINE_TEMPLATE size_t |
| HUF_readStats_body(BYTE* huffWeight, size_t hwSize, U32* rankStats, |
| U32* nbSymbolsPtr, U32* tableLogPtr, |
| const void* src, size_t srcSize, |
| void* workSpace, size_t wkspSize, |
| int bmi2) |
| { |
| U32 weightTotal; |
| const BYTE* ip = (const BYTE*) src; |
| size_t iSize; |
| size_t oSize; |
| |
| if (!srcSize) return ERROR(srcSize_wrong); |
| iSize = ip[0]; |
| /* ZSTD_memset(huffWeight, 0, hwSize); *//* is not necessary, even though some analyzer complain ... */ |
| |
| if (iSize >= 128) { /* special header */ |
| oSize = iSize - 127; |
| iSize = ((oSize+1)/2); |
| if (iSize+1 > srcSize) return ERROR(srcSize_wrong); |
| if (oSize >= hwSize) return ERROR(corruption_detected); |
| ip += 1; |
| { U32 n; |
| for (n=0; n<oSize; n+=2) { |
| huffWeight[n] = ip[n/2] >> 4; |
| huffWeight[n+1] = ip[n/2] & 15; |
| } } } |
| else { /* header compressed with FSE (normal case) */ |
| if (iSize+1 > srcSize) return ERROR(srcSize_wrong); |
| /* max (hwSize-1) values decoded, as last one is implied */ |
| oSize = FSE_decompress_wksp_bmi2(huffWeight, hwSize-1, ip+1, iSize, 6, workSpace, wkspSize, bmi2); |
| if (FSE_isError(oSize)) return oSize; |
| } |
| |
| /* collect weight stats */ |
| ZSTD_memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32)); |
| weightTotal = 0; |
| { U32 n; for (n=0; n<oSize; n++) { |
| if (huffWeight[n] >= HUF_TABLELOG_MAX) return ERROR(corruption_detected); |
| rankStats[huffWeight[n]]++; |
| weightTotal += (1 << huffWeight[n]) >> 1; |
| } } |
| if (weightTotal == 0) return ERROR(corruption_detected); |
| |
| /* get last non-null symbol weight (implied, total must be 2^n) */ |
| { U32 const tableLog = BIT_highbit32(weightTotal) + 1; |
| if (tableLog > HUF_TABLELOG_MAX) return ERROR(corruption_detected); |
| *tableLogPtr = tableLog; |
| /* determine last weight */ |
| { U32 const total = 1 << tableLog; |
| U32 const rest = total - weightTotal; |
| U32 const verif = 1 << BIT_highbit32(rest); |
| U32 const lastWeight = BIT_highbit32(rest) + 1; |
| if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */ |
| huffWeight[oSize] = (BYTE)lastWeight; |
| rankStats[lastWeight]++; |
| } } |
| |
| /* check tree construction validity */ |
| if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */ |
| |
| /* results */ |
| *nbSymbolsPtr = (U32)(oSize+1); |
| return iSize+1; |
| } |
| |
| /* Avoids the FORCE_INLINE of the _body() function. */ |
| static size_t HUF_readStats_body_default(BYTE* huffWeight, size_t hwSize, U32* rankStats, |
| U32* nbSymbolsPtr, U32* tableLogPtr, |
| const void* src, size_t srcSize, |
| void* workSpace, size_t wkspSize) |
| { |
| return HUF_readStats_body(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize, 0); |
| } |
| |
| #if DYNAMIC_BMI2 |
| static TARGET_ATTRIBUTE("bmi2") size_t HUF_readStats_body_bmi2(BYTE* huffWeight, size_t hwSize, U32* rankStats, |
| U32* nbSymbolsPtr, U32* tableLogPtr, |
| const void* src, size_t srcSize, |
| void* workSpace, size_t wkspSize) |
| { |
| return HUF_readStats_body(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize, 1); |
| } |
| #endif |
| |
| size_t HUF_readStats_wksp(BYTE* huffWeight, size_t hwSize, U32* rankStats, |
| U32* nbSymbolsPtr, U32* tableLogPtr, |
| const void* src, size_t srcSize, |
| void* workSpace, size_t wkspSize, |
| int bmi2) |
| { |
| #if DYNAMIC_BMI2 |
| if (bmi2) { |
| return HUF_readStats_body_bmi2(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize); |
| } |
| #endif |
| (void)bmi2; |
| return HUF_readStats_body_default(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize); |
| } |
| /**** ended inlining common/entropy_common.c ****/ |
| /**** start inlining common/error_private.c ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| /* The purpose of this file is to have a single list of error strings embedded in binary */ |
| |
| /**** skipping file: error_private.h ****/ |
| |
| const char* ERR_getErrorString(ERR_enum code) |
| { |
| #ifdef ZSTD_STRIP_ERROR_STRINGS |
| (void)code; |
| return "Error strings stripped"; |
| #else |
| static const char* const notErrorCode = "Unspecified error code"; |
| switch( code ) |
| { |
| case PREFIX(no_error): return "No error detected"; |
| case PREFIX(GENERIC): return "Error (generic)"; |
| case PREFIX(prefix_unknown): return "Unknown frame descriptor"; |
| case PREFIX(version_unsupported): return "Version not supported"; |
| case PREFIX(frameParameter_unsupported): return "Unsupported frame parameter"; |
| case PREFIX(frameParameter_windowTooLarge): return "Frame requires too much memory for decoding"; |
| case PREFIX(corruption_detected): return "Corrupted block detected"; |
| case PREFIX(checksum_wrong): return "Restored data doesn't match checksum"; |
| case PREFIX(parameter_unsupported): return "Unsupported parameter"; |
| case PREFIX(parameter_outOfBound): return "Parameter is out of bound"; |
| case PREFIX(init_missing): return "Context should be init first"; |
| case PREFIX(memory_allocation): return "Allocation error : not enough memory"; |
| case PREFIX(workSpace_tooSmall): return "workSpace buffer is not large enough"; |
| case PREFIX(stage_wrong): return "Operation not authorized at current processing stage"; |
| case PREFIX(tableLog_tooLarge): return "tableLog requires too much memory : unsupported"; |
| case PREFIX(maxSymbolValue_tooLarge): return "Unsupported max Symbol Value : too large"; |
| case PREFIX(maxSymbolValue_tooSmall): return "Specified maxSymbolValue is too small"; |
| case PREFIX(dictionary_corrupted): return "Dictionary is corrupted"; |
| case PREFIX(dictionary_wrong): return "Dictionary mismatch"; |
| case PREFIX(dictionaryCreation_failed): return "Cannot create Dictionary from provided samples"; |
| case PREFIX(dstSize_tooSmall): return "Destination buffer is too small"; |
| case PREFIX(srcSize_wrong): return "Src size is incorrect"; |
| case PREFIX(dstBuffer_null): return "Operation on NULL destination buffer"; |
| /* following error codes are not stable and may be removed or changed in a future version */ |
| case PREFIX(frameIndex_tooLarge): return "Frame index is too large"; |
| case PREFIX(seekableIO): return "An I/O error occurred when reading/seeking"; |
| case PREFIX(dstBuffer_wrong): return "Destination buffer is wrong"; |
| case PREFIX(srcBuffer_wrong): return "Source buffer is wrong"; |
| case PREFIX(maxCode): |
| default: return notErrorCode; |
| } |
| #endif |
| } |
| /**** ended inlining common/error_private.c ****/ |
| /**** start inlining common/fse_decompress.c ****/ |
| /* ****************************************************************** |
| * FSE : Finite State Entropy decoder |
| * Copyright (c) 2013-2021, Yann Collet, Facebook, Inc. |
| * |
| * You can contact the author at : |
| * - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| * - Public forum : https://groups.google.com/forum/#!forum/lz4c |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| ****************************************************************** */ |
| |
| |
| /* ************************************************************** |
| * Includes |
| ****************************************************************/ |
| /**** skipping file: debug.h ****/ |
| /**** skipping file: bitstream.h ****/ |
| /**** skipping file: compiler.h ****/ |
| #define FSE_STATIC_LINKING_ONLY |
| /**** skipping file: fse.h ****/ |
| /**** skipping file: error_private.h ****/ |
| #define ZSTD_DEPS_NEED_MALLOC |
| /**** skipping file: zstd_deps.h ****/ |
| |
| |
| /* ************************************************************** |
| * Error Management |
| ****************************************************************/ |
| #define FSE_isError ERR_isError |
| #define FSE_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */ |
| |
| |
| /* ************************************************************** |
| * Templates |
| ****************************************************************/ |
| /* |
| designed to be included |
| for type-specific functions (template emulation in C) |
| Objective is to write these functions only once, for improved maintenance |
| */ |
| |
| /* safety checks */ |
| #ifndef FSE_FUNCTION_EXTENSION |
| # error "FSE_FUNCTION_EXTENSION must be defined" |
| #endif |
| #ifndef FSE_FUNCTION_TYPE |
| # error "FSE_FUNCTION_TYPE must be defined" |
| #endif |
| |
| /* Function names */ |
| #define FSE_CAT(X,Y) X##Y |
| #define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y) |
| #define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y) |
| |
| |
| /* Function templates */ |
| FSE_DTable* FSE_createDTable (unsigned tableLog) |
| { |
| if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX; |
| return (FSE_DTable*)ZSTD_malloc( FSE_DTABLE_SIZE_U32(tableLog) * sizeof (U32) ); |
| } |
| |
| void FSE_freeDTable (FSE_DTable* dt) |
| { |
| ZSTD_free(dt); |
| } |
| |
| static size_t FSE_buildDTable_internal(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize) |
| { |
| void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */ |
| FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr); |
| U16* symbolNext = (U16*)workSpace; |
| BYTE* spread = (BYTE*)(symbolNext + maxSymbolValue + 1); |
| |
| U32 const maxSV1 = maxSymbolValue + 1; |
| U32 const tableSize = 1 << tableLog; |
| U32 highThreshold = tableSize-1; |
| |
| /* Sanity Checks */ |
| if (FSE_BUILD_DTABLE_WKSP_SIZE(tableLog, maxSymbolValue) > wkspSize) return ERROR(maxSymbolValue_tooLarge); |
| if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge); |
| if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); |
| |
| /* Init, lay down lowprob symbols */ |
| { FSE_DTableHeader DTableH; |
| DTableH.tableLog = (U16)tableLog; |
| DTableH.fastMode = 1; |
| { S16 const largeLimit= (S16)(1 << (tableLog-1)); |
| U32 s; |
| for (s=0; s<maxSV1; s++) { |
| if (normalizedCounter[s]==-1) { |
| tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s; |
| symbolNext[s] = 1; |
| } else { |
| if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0; |
| symbolNext[s] = normalizedCounter[s]; |
| } } } |
| ZSTD_memcpy(dt, &DTableH, sizeof(DTableH)); |
| } |
| |
| /* Spread symbols */ |
| if (highThreshold == tableSize - 1) { |
| size_t const tableMask = tableSize-1; |
| size_t const step = FSE_TABLESTEP(tableSize); |
| /* First lay down the symbols in order. |
| * We use a uint64_t to lay down 8 bytes at a time. This reduces branch |
| * misses since small blocks generally have small table logs, so nearly |
| * all symbols have counts <= 8. We ensure we have 8 bytes at the end of |
| * our buffer to handle the over-write. |
| */ |
| { |
| U64 const add = 0x0101010101010101ull; |
| size_t pos = 0; |
| U64 sv = 0; |
| U32 s; |
| for (s=0; s<maxSV1; ++s, sv += add) { |
| int i; |
| int const n = normalizedCounter[s]; |
| MEM_write64(spread + pos, sv); |
| for (i = 8; i < n; i += 8) { |
| MEM_write64(spread + pos + i, sv); |
| } |
| pos += n; |
| } |
| } |
| /* Now we spread those positions across the table. |
| * The benefit of doing it in two stages is that we avoid the the |
| * variable size inner loop, which caused lots of branch misses. |
| * Now we can run through all the positions without any branch misses. |
| * We unroll the loop twice, since that is what emperically worked best. |
| */ |
| { |
| size_t position = 0; |
| size_t s; |
| size_t const unroll = 2; |
| assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */ |
| for (s = 0; s < (size_t)tableSize; s += unroll) { |
| size_t u; |
| for (u = 0; u < unroll; ++u) { |
| size_t const uPosition = (position + (u * step)) & tableMask; |
| tableDecode[uPosition].symbol = spread[s + u]; |
| } |
| position = (position + (unroll * step)) & tableMask; |
| } |
| assert(position == 0); |
| } |
| } else { |
| U32 const tableMask = tableSize-1; |
| U32 const step = FSE_TABLESTEP(tableSize); |
| U32 s, position = 0; |
| for (s=0; s<maxSV1; s++) { |
| int i; |
| for (i=0; i<normalizedCounter[s]; i++) { |
| tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s; |
| position = (position + step) & tableMask; |
| while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */ |
| } } |
| if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */ |
| } |
| |
| /* Build Decoding table */ |
| { U32 u; |
| for (u=0; u<tableSize; u++) { |
| FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol); |
| U32 const nextState = symbolNext[symbol]++; |
| tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) ); |
| tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize); |
| } } |
| |
| return 0; |
| } |
| |
| size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize) |
| { |
| return FSE_buildDTable_internal(dt, normalizedCounter, maxSymbolValue, tableLog, workSpace, wkspSize); |
| } |
| |
| |
| #ifndef FSE_COMMONDEFS_ONLY |
| |
| /*-******************************************************* |
| * Decompression (Byte symbols) |
| *********************************************************/ |
| size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue) |
| { |
| void* ptr = dt; |
| FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; |
| void* dPtr = dt + 1; |
| FSE_decode_t* const cell = (FSE_decode_t*)dPtr; |
| |
| DTableH->tableLog = 0; |
| DTableH->fastMode = 0; |
| |
| cell->newState = 0; |
| cell->symbol = symbolValue; |
| cell->nbBits = 0; |
| |
| return 0; |
| } |
| |
| |
| size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits) |
| { |
| void* ptr = dt; |
| FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; |
| void* dPtr = dt + 1; |
| FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr; |
| const unsigned tableSize = 1 << nbBits; |
| const unsigned tableMask = tableSize - 1; |
| const unsigned maxSV1 = tableMask+1; |
| unsigned s; |
| |
| /* Sanity checks */ |
| if (nbBits < 1) return ERROR(GENERIC); /* min size */ |
| |
| /* Build Decoding Table */ |
| DTableH->tableLog = (U16)nbBits; |
| DTableH->fastMode = 1; |
| for (s=0; s<maxSV1; s++) { |
| dinfo[s].newState = 0; |
| dinfo[s].symbol = (BYTE)s; |
| dinfo[s].nbBits = (BYTE)nbBits; |
| } |
| |
| return 0; |
| } |
| |
| FORCE_INLINE_TEMPLATE size_t FSE_decompress_usingDTable_generic( |
| void* dst, size_t maxDstSize, |
| const void* cSrc, size_t cSrcSize, |
| const FSE_DTable* dt, const unsigned fast) |
| { |
| BYTE* const ostart = (BYTE*) dst; |
| BYTE* op = ostart; |
| BYTE* const omax = op + maxDstSize; |
| BYTE* const olimit = omax-3; |
| |
| BIT_DStream_t bitD; |
| FSE_DState_t state1; |
| FSE_DState_t state2; |
| |
| /* Init */ |
| CHECK_F(BIT_initDStream(&bitD, cSrc, cSrcSize)); |
| |
| FSE_initDState(&state1, &bitD, dt); |
| FSE_initDState(&state2, &bitD, dt); |
| |
| #define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD) |
| |
| /* 4 symbols per loop */ |
| for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) & (op<olimit) ; op+=4) { |
| op[0] = FSE_GETSYMBOL(&state1); |
| |
| if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ |
| BIT_reloadDStream(&bitD); |
| |
| op[1] = FSE_GETSYMBOL(&state2); |
| |
| if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ |
| { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } } |
| |
| op[2] = FSE_GETSYMBOL(&state1); |
| |
| if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ |
| BIT_reloadDStream(&bitD); |
| |
| op[3] = FSE_GETSYMBOL(&state2); |
| } |
| |
| /* tail */ |
| /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */ |
| while (1) { |
| if (op>(omax-2)) return ERROR(dstSize_tooSmall); |
| *op++ = FSE_GETSYMBOL(&state1); |
| if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) { |
| *op++ = FSE_GETSYMBOL(&state2); |
| break; |
| } |
| |
| if (op>(omax-2)) return ERROR(dstSize_tooSmall); |
| *op++ = FSE_GETSYMBOL(&state2); |
| if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) { |
| *op++ = FSE_GETSYMBOL(&state1); |
| break; |
| } } |
| |
| return op-ostart; |
| } |
| |
| |
| size_t FSE_decompress_usingDTable(void* dst, size_t originalSize, |
| const void* cSrc, size_t cSrcSize, |
| const FSE_DTable* dt) |
| { |
| const void* ptr = dt; |
| const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr; |
| const U32 fastMode = DTableH->fastMode; |
| |
| /* select fast mode (static) */ |
| if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1); |
| return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0); |
| } |
| |
| |
| size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize) |
| { |
| return FSE_decompress_wksp_bmi2(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, /* bmi2 */ 0); |
| } |
| |
| FORCE_INLINE_TEMPLATE size_t FSE_decompress_wksp_body( |
| void* dst, size_t dstCapacity, |
| const void* cSrc, size_t cSrcSize, |
| unsigned maxLog, void* workSpace, size_t wkspSize, |
| int bmi2) |
| { |
| const BYTE* const istart = (const BYTE*)cSrc; |
| const BYTE* ip = istart; |
| short counting[FSE_MAX_SYMBOL_VALUE+1]; |
| unsigned tableLog; |
| unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE; |
| FSE_DTable* const dtable = (FSE_DTable*)workSpace; |
| |
| /* normal FSE decoding mode */ |
| size_t const NCountLength = FSE_readNCount_bmi2(counting, &maxSymbolValue, &tableLog, istart, cSrcSize, bmi2); |
| if (FSE_isError(NCountLength)) return NCountLength; |
| if (tableLog > maxLog) return ERROR(tableLog_tooLarge); |
| assert(NCountLength <= cSrcSize); |
| ip += NCountLength; |
| cSrcSize -= NCountLength; |
| |
| if (FSE_DECOMPRESS_WKSP_SIZE(tableLog, maxSymbolValue) > wkspSize) return ERROR(tableLog_tooLarge); |
| workSpace = dtable + FSE_DTABLE_SIZE_U32(tableLog); |
| wkspSize -= FSE_DTABLE_SIZE(tableLog); |
| |
| CHECK_F( FSE_buildDTable_internal(dtable, counting, maxSymbolValue, tableLog, workSpace, wkspSize) ); |
| |
| { |
| const void* ptr = dtable; |
| const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr; |
| const U32 fastMode = DTableH->fastMode; |
| |
| /* select fast mode (static) */ |
| if (fastMode) return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, dtable, 1); |
| return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, dtable, 0); |
| } |
| } |
| |
| /* Avoids the FORCE_INLINE of the _body() function. */ |
| static size_t FSE_decompress_wksp_body_default(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize) |
| { |
| return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 0); |
| } |
| |
| #if DYNAMIC_BMI2 |
| TARGET_ATTRIBUTE("bmi2") static size_t FSE_decompress_wksp_body_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize) |
| { |
| return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 1); |
| } |
| #endif |
| |
| size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2) |
| { |
| #if DYNAMIC_BMI2 |
| if (bmi2) { |
| return FSE_decompress_wksp_body_bmi2(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize); |
| } |
| #endif |
| (void)bmi2; |
| return FSE_decompress_wksp_body_default(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize); |
| } |
| |
| |
| typedef FSE_DTable DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)]; |
| |
| #ifndef ZSTD_NO_UNUSED_FUNCTIONS |
| size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) { |
| U32 wksp[FSE_BUILD_DTABLE_WKSP_SIZE_U32(FSE_TABLELOG_ABSOLUTE_MAX, FSE_MAX_SYMBOL_VALUE)]; |
| return FSE_buildDTable_wksp(dt, normalizedCounter, maxSymbolValue, tableLog, wksp, sizeof(wksp)); |
| } |
| |
| size_t FSE_decompress(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize) |
| { |
| /* Static analyzer seems unable to understand this table will be properly initialized later */ |
| U32 wksp[FSE_DECOMPRESS_WKSP_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)]; |
| return FSE_decompress_wksp(dst, dstCapacity, cSrc, cSrcSize, FSE_MAX_TABLELOG, wksp, sizeof(wksp)); |
| } |
| #endif |
| |
| |
| #endif /* FSE_COMMONDEFS_ONLY */ |
| /**** ended inlining common/fse_decompress.c ****/ |
| /**** start inlining common/zstd_common.c ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| |
| |
| /*-************************************* |
| * Dependencies |
| ***************************************/ |
| #define ZSTD_DEPS_NEED_MALLOC |
| /**** skipping file: zstd_deps.h ****/ |
| /**** skipping file: error_private.h ****/ |
| /**** start inlining zstd_internal.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| #ifndef ZSTD_CCOMMON_H_MODULE |
| #define ZSTD_CCOMMON_H_MODULE |
| |
| /* this module contains definitions which must be identical |
| * across compression, decompression and dictBuilder. |
| * It also contains a few functions useful to at least 2 of them |
| * and which benefit from being inlined */ |
| |
| /*-************************************* |
| * Dependencies |
| ***************************************/ |
| #if !defined(ZSTD_NO_INTRINSICS) && defined(__ARM_NEON) |
| #include <arm_neon.h> |
| #endif |
| /**** skipping file: compiler.h ****/ |
| /**** skipping file: mem.h ****/ |
| /**** skipping file: debug.h ****/ |
| /**** skipping file: error_private.h ****/ |
| #define ZSTD_STATIC_LINKING_ONLY |
| /**** start inlining ../zstd.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| #ifndef ZSTD_H_235446 |
| #define ZSTD_H_235446 |
| |
| /* ====== Dependency ======*/ |
| #include <limits.h> /* INT_MAX */ |
| #include <stddef.h> /* size_t */ |
| |
| |
| /* ===== ZSTDLIB_API : control library symbols visibility ===== */ |
| #ifndef ZSTDLIB_VISIBILITY |
| # if defined(__GNUC__) && (__GNUC__ >= 4) |
| # define ZSTDLIB_VISIBILITY __attribute__ ((visibility ("default"))) |
| # else |
| # define ZSTDLIB_VISIBILITY |
| # endif |
| #endif |
| #if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1) |
| # define ZSTDLIB_API __declspec(dllexport) ZSTDLIB_VISIBILITY |
| #elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1) |
| # define ZSTDLIB_API __declspec(dllimport) ZSTDLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ |
| #else |
| # define ZSTDLIB_API ZSTDLIB_VISIBILITY |
| #endif |
| |
| |
| /******************************************************************************* |
| Introduction |
| |
| zstd, short for Zstandard, is a fast lossless compression algorithm, targeting |
| real-time compression scenarios at zlib-level and better compression ratios. |
| The zstd compression library provides in-memory compression and decompression |
| functions. |
| |
| The library supports regular compression levels from 1 up to ZSTD_maxCLevel(), |
| which is currently 22. Levels >= 20, labeled `--ultra`, should be used with |
| caution, as they require more memory. The library also offers negative |
| compression levels, which extend the range of speed vs. ratio preferences. |
| The lower the level, the faster the speed (at the cost of compression). |
| |
| Compression can be done in: |
| - a single step (described as Simple API) |
| - a single step, reusing a context (described as Explicit context) |
| - unbounded multiple steps (described as Streaming compression) |
| |
| The compression ratio achievable on small data can be highly improved using |
| a dictionary. Dictionary compression can be performed in: |
| - a single step (described as Simple dictionary API) |
| - a single step, reusing a dictionary (described as Bulk-processing |
| dictionary API) |
| |
| Advanced experimental functions can be accessed using |
| `#define ZSTD_STATIC_LINKING_ONLY` before including zstd.h. |
| |
| Advanced experimental APIs should never be used with a dynamically-linked |
| library. They are not "stable"; their definitions or signatures may change in |
| the future. Only static linking is allowed. |
| *******************************************************************************/ |
| |
| /*------ Version ------*/ |
| #define ZSTD_VERSION_MAJOR 1 |
| #define ZSTD_VERSION_MINOR 4 |
| #define ZSTD_VERSION_RELEASE 9 |
| #define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE) |
| |
| /*! ZSTD_versionNumber() : |
| * Return runtime library version, the value is (MAJOR*100*100 + MINOR*100 + RELEASE). */ |
| ZSTDLIB_API unsigned ZSTD_versionNumber(void); |
| |
| #define ZSTD_LIB_VERSION ZSTD_VERSION_MAJOR.ZSTD_VERSION_MINOR.ZSTD_VERSION_RELEASE |
| #define ZSTD_QUOTE(str) #str |
| #define ZSTD_EXPAND_AND_QUOTE(str) ZSTD_QUOTE(str) |
| #define ZSTD_VERSION_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_LIB_VERSION) |
| |
| /*! ZSTD_versionString() : |
| * Return runtime library version, like "1.4.5". Requires v1.3.0+. */ |
| ZSTDLIB_API const char* ZSTD_versionString(void); |
| |
| /* ************************************* |
| * Default constant |
| ***************************************/ |
| #ifndef ZSTD_CLEVEL_DEFAULT |
| # define ZSTD_CLEVEL_DEFAULT 3 |
| #endif |
| |
| /* ************************************* |
| * Constants |
| ***************************************/ |
| |
| /* All magic numbers are supposed read/written to/from files/memory using little-endian convention */ |
| #define ZSTD_MAGICNUMBER 0xFD2FB528 /* valid since v0.8.0 */ |
| #define ZSTD_MAGIC_DICTIONARY 0xEC30A437 /* valid since v0.7.0 */ |
| #define ZSTD_MAGIC_SKIPPABLE_START 0x184D2A50 /* all 16 values, from 0x184D2A50 to 0x184D2A5F, signal the beginning of a skippable frame */ |
| #define ZSTD_MAGIC_SKIPPABLE_MASK 0xFFFFFFF0 |
| |
| #define ZSTD_BLOCKSIZELOG_MAX 17 |
| #define ZSTD_BLOCKSIZE_MAX (1<<ZSTD_BLOCKSIZELOG_MAX) |
| |
| |
| |
| /*************************************** |
| * Simple API |
| ***************************************/ |
| /*! ZSTD_compress() : |
| * Compresses `src` content as a single zstd compressed frame into already allocated `dst`. |
| * Hint : compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`. |
| * @return : compressed size written into `dst` (<= `dstCapacity), |
| * or an error code if it fails (which can be tested using ZSTD_isError()). */ |
| ZSTDLIB_API size_t ZSTD_compress( void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| int compressionLevel); |
| |
| /*! ZSTD_decompress() : |
| * `compressedSize` : must be the _exact_ size of some number of compressed and/or skippable frames. |
| * `dstCapacity` is an upper bound of originalSize to regenerate. |
| * If user cannot imply a maximum upper bound, it's better to use streaming mode to decompress data. |
| * @return : the number of bytes decompressed into `dst` (<= `dstCapacity`), |
| * or an errorCode if it fails (which can be tested using ZSTD_isError()). */ |
| ZSTDLIB_API size_t ZSTD_decompress( void* dst, size_t dstCapacity, |
| const void* src, size_t compressedSize); |
| |
| /*! ZSTD_getFrameContentSize() : requires v1.3.0+ |
| * `src` should point to the start of a ZSTD encoded frame. |
| * `srcSize` must be at least as large as the frame header. |
| * hint : any size >= `ZSTD_frameHeaderSize_max` is large enough. |
| * @return : - decompressed size of `src` frame content, if known |
| * - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined |
| * - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small) |
| * note 1 : a 0 return value means the frame is valid but "empty". |
| * note 2 : decompressed size is an optional field, it may not be present, typically in streaming mode. |
| * When `return==ZSTD_CONTENTSIZE_UNKNOWN`, data to decompress could be any size. |
| * In which case, it's necessary to use streaming mode to decompress data. |
| * Optionally, application can rely on some implicit limit, |
| * as ZSTD_decompress() only needs an upper bound of decompressed size. |
| * (For example, data could be necessarily cut into blocks <= 16 KB). |
| * note 3 : decompressed size is always present when compression is completed using single-pass functions, |
| * such as ZSTD_compress(), ZSTD_compressCCtx() ZSTD_compress_usingDict() or ZSTD_compress_usingCDict(). |
| * note 4 : decompressed size can be very large (64-bits value), |
| * potentially larger than what local system can handle as a single memory segment. |
| * In which case, it's necessary to use streaming mode to decompress data. |
| * note 5 : If source is untrusted, decompressed size could be wrong or intentionally modified. |
| * Always ensure return value fits within application's authorized limits. |
| * Each application can set its own limits. |
| * note 6 : This function replaces ZSTD_getDecompressedSize() */ |
| #define ZSTD_CONTENTSIZE_UNKNOWN (0ULL - 1) |
| #define ZSTD_CONTENTSIZE_ERROR (0ULL - 2) |
| ZSTDLIB_API unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize); |
| |
| /*! ZSTD_getDecompressedSize() : |
| * NOTE: This function is now obsolete, in favor of ZSTD_getFrameContentSize(). |
| * Both functions work the same way, but ZSTD_getDecompressedSize() blends |
| * "empty", "unknown" and "error" results to the same return value (0), |
| * while ZSTD_getFrameContentSize() gives them separate return values. |
| * @return : decompressed size of `src` frame content _if known and not empty_, 0 otherwise. */ |
| ZSTDLIB_API unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize); |
| |
| /*! ZSTD_findFrameCompressedSize() : |
| * `src` should point to the start of a ZSTD frame or skippable frame. |
| * `srcSize` must be >= first frame size |
| * @return : the compressed size of the first frame starting at `src`, |
| * suitable to pass as `srcSize` to `ZSTD_decompress` or similar, |
| * or an error code if input is invalid */ |
| ZSTDLIB_API size_t ZSTD_findFrameCompressedSize(const void* src, size_t srcSize); |
| |
| |
| /*====== Helper functions ======*/ |
| #define ZSTD_COMPRESSBOUND(srcSize) ((srcSize) + ((srcSize)>>8) + (((srcSize) < (128<<10)) ? (((128<<10) - (srcSize)) >> 11) /* margin, from 64 to 0 */ : 0)) /* this formula ensures that bound(A) + bound(B) <= bound(A+B) as long as A and B >= 128 KB */ |
| ZSTDLIB_API size_t ZSTD_compressBound(size_t srcSize); /*!< maximum compressed size in worst case single-pass scenario */ |
| ZSTDLIB_API unsigned ZSTD_isError(size_t code); /*!< tells if a `size_t` function result is an error code */ |
| ZSTDLIB_API const char* ZSTD_getErrorName(size_t code); /*!< provides readable string from an error code */ |
| ZSTDLIB_API int ZSTD_minCLevel(void); /*!< minimum negative compression level allowed */ |
| ZSTDLIB_API int ZSTD_maxCLevel(void); /*!< maximum compression level available */ |
| |
| |
| /*************************************** |
| * Explicit context |
| ***************************************/ |
| /*= Compression context |
| * When compressing many times, |
| * it is recommended to allocate a context just once, |
| * and re-use it for each successive compression operation. |
| * This will make workload friendlier for system's memory. |
| * Note : re-using context is just a speed / resource optimization. |
| * It doesn't change the compression ratio, which remains identical. |
| * Note 2 : In multi-threaded environments, |
| * use one different context per thread for parallel execution. |
| */ |
| typedef struct ZSTD_CCtx_s ZSTD_CCtx; |
| ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx(void); |
| ZSTDLIB_API size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx); |
| |
| /*! ZSTD_compressCCtx() : |
| * Same as ZSTD_compress(), using an explicit ZSTD_CCtx. |
| * Important : in order to behave similarly to `ZSTD_compress()`, |
| * this function compresses at requested compression level, |
| * __ignoring any other parameter__ . |
| * If any advanced parameter was set using the advanced API, |
| * they will all be reset. Only `compressionLevel` remains. |
| */ |
| ZSTDLIB_API size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| int compressionLevel); |
| |
| /*= Decompression context |
| * When decompressing many times, |
| * it is recommended to allocate a context only once, |
| * and re-use it for each successive compression operation. |
| * This will make workload friendlier for system's memory. |
| * Use one context per thread for parallel execution. */ |
| typedef struct ZSTD_DCtx_s ZSTD_DCtx; |
| ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx(void); |
| ZSTDLIB_API size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx); |
| |
| /*! ZSTD_decompressDCtx() : |
| * Same as ZSTD_decompress(), |
| * requires an allocated ZSTD_DCtx. |
| * Compatible with sticky parameters. |
| */ |
| ZSTDLIB_API size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize); |
| |
| |
| /*************************************** |
| * Advanced compression API |
| ***************************************/ |
| |
| /* API design : |
| * Parameters are pushed one by one into an existing context, |
| * using ZSTD_CCtx_set*() functions. |
| * Pushed parameters are sticky : they are valid for next compressed frame, and any subsequent frame. |
| * "sticky" parameters are applicable to `ZSTD_compress2()` and `ZSTD_compressStream*()` ! |
| * __They do not apply to "simple" one-shot variants such as ZSTD_compressCCtx()__ . |
| * |
| * It's possible to reset all parameters to "default" using ZSTD_CCtx_reset(). |
| * |
| * This API supercedes all other "advanced" API entry points in the experimental section. |
| * In the future, we expect to remove from experimental API entry points which are redundant with this API. |
| */ |
| |
| |
| /* Compression strategies, listed from fastest to strongest */ |
| typedef enum { ZSTD_fast=1, |
| ZSTD_dfast=2, |
| ZSTD_greedy=3, |
| ZSTD_lazy=4, |
| ZSTD_lazy2=5, |
| ZSTD_btlazy2=6, |
| ZSTD_btopt=7, |
| ZSTD_btultra=8, |
| ZSTD_btultra2=9 |
| /* note : new strategies _might_ be added in the future. |
| Only the order (from fast to strong) is guaranteed */ |
| } ZSTD_strategy; |
| |
| |
| typedef enum { |
| |
| /* compression parameters |
| * Note: When compressing with a ZSTD_CDict these parameters are superseded |
| * by the parameters used to construct the ZSTD_CDict. |
| * See ZSTD_CCtx_refCDict() for more info (superseded-by-cdict). */ |
| ZSTD_c_compressionLevel=100, /* Set compression parameters according to pre-defined cLevel table. |
| * Note that exact compression parameters are dynamically determined, |
| * depending on both compression level and srcSize (when known). |
| * Default level is ZSTD_CLEVEL_DEFAULT==3. |
| * Special: value 0 means default, which is controlled by ZSTD_CLEVEL_DEFAULT. |
| * Note 1 : it's possible to pass a negative compression level. |
| * Note 2 : setting a level does not automatically set all other compression parameters |
| * to default. Setting this will however eventually dynamically impact the compression |
| * parameters which have not been manually set. The manually set |
| * ones will 'stick'. */ |
| /* Advanced compression parameters : |
| * It's possible to pin down compression parameters to some specific values. |
| * In which case, these values are no longer dynamically selected by the compressor */ |
| ZSTD_c_windowLog=101, /* Maximum allowed back-reference distance, expressed as power of 2. |
| * This will set a memory budget for streaming decompression, |
| * with larger values requiring more memory |
| * and typically compressing more. |
| * Must be clamped between ZSTD_WINDOWLOG_MIN and ZSTD_WINDOWLOG_MAX. |
| * Special: value 0 means "use default windowLog". |
| * Note: Using a windowLog greater than ZSTD_WINDOWLOG_LIMIT_DEFAULT |
| * requires explicitly allowing such size at streaming decompression stage. */ |
| ZSTD_c_hashLog=102, /* Size of the initial probe table, as a power of 2. |
| * Resulting memory usage is (1 << (hashLog+2)). |
| * Must be clamped between ZSTD_HASHLOG_MIN and ZSTD_HASHLOG_MAX. |
| * Larger tables improve compression ratio of strategies <= dFast, |
| * and improve speed of strategies > dFast. |
| * Special: value 0 means "use default hashLog". */ |
| ZSTD_c_chainLog=103, /* Size of the multi-probe search table, as a power of 2. |
| * Resulting memory usage is (1 << (chainLog+2)). |
| * Must be clamped between ZSTD_CHAINLOG_MIN and ZSTD_CHAINLOG_MAX. |
| * Larger tables result in better and slower compression. |
| * This parameter is useless for "fast" strategy. |
| * It's still useful when using "dfast" strategy, |
| * in which case it defines a secondary probe table. |
| * Special: value 0 means "use default chainLog". */ |
| ZSTD_c_searchLog=104, /* Number of search attempts, as a power of 2. |
| * More attempts result in better and slower compression. |
| * This parameter is useless for "fast" and "dFast" strategies. |
| * Special: value 0 means "use default searchLog". */ |
| ZSTD_c_minMatch=105, /* Minimum size of searched matches. |
| * Note that Zstandard can still find matches of smaller size, |
| * it just tweaks its search algorithm to look for this size and larger. |
| * Larger values increase compression and decompression speed, but decrease ratio. |
| * Must be clamped between ZSTD_MINMATCH_MIN and ZSTD_MINMATCH_MAX. |
| * Note that currently, for all strategies < btopt, effective minimum is 4. |
| * , for all strategies > fast, effective maximum is 6. |
| * Special: value 0 means "use default minMatchLength". */ |
| ZSTD_c_targetLength=106, /* Impact of this field depends on strategy. |
| * For strategies btopt, btultra & btultra2: |
| * Length of Match considered "good enough" to stop search. |
| * Larger values make compression stronger, and slower. |
| * For strategy fast: |
| * Distance between match sampling. |
| * Larger values make compression faster, and weaker. |
| * Special: value 0 means "use default targetLength". */ |
| ZSTD_c_strategy=107, /* See ZSTD_strategy enum definition. |
| * The higher the value of selected strategy, the more complex it is, |
| * resulting in stronger and slower compression. |
| * Special: value 0 means "use default strategy". */ |
| |
| /* LDM mode parameters */ |
| ZSTD_c_enableLongDistanceMatching=160, /* Enable long distance matching. |
| * This parameter is designed to improve compression ratio |
| * for large inputs, by finding large matches at long distance. |
| * It increases memory usage and window size. |
| * Note: enabling this parameter increases default ZSTD_c_windowLog to 128 MB |
| * except when expressly set to a different value. |
| * Note: will be enabled by default if ZSTD_c_windowLog >= 128 MB and |
| * compression strategy >= ZSTD_btopt (== compression level 16+) */ |
| ZSTD_c_ldmHashLog=161, /* Size of the table for long distance matching, as a power of 2. |
| * Larger values increase memory usage and compression ratio, |
| * but decrease compression speed. |
| * Must be clamped between ZSTD_HASHLOG_MIN and ZSTD_HASHLOG_MAX |
| * default: windowlog - 7. |
| * Special: value 0 means "automatically determine hashlog". */ |
| ZSTD_c_ldmMinMatch=162, /* Minimum match size for long distance matcher. |
| * Larger/too small values usually decrease compression ratio. |
| * Must be clamped between ZSTD_LDM_MINMATCH_MIN and ZSTD_LDM_MINMATCH_MAX. |
| * Special: value 0 means "use default value" (default: 64). */ |
| ZSTD_c_ldmBucketSizeLog=163, /* Log size of each bucket in the LDM hash table for collision resolution. |
| * Larger values improve collision resolution but decrease compression speed. |
| * The maximum value is ZSTD_LDM_BUCKETSIZELOG_MAX. |
| * Special: value 0 means "use default value" (default: 3). */ |
| ZSTD_c_ldmHashRateLog=164, /* Frequency of inserting/looking up entries into the LDM hash table. |
| * Must be clamped between 0 and (ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN). |
| * Default is MAX(0, (windowLog - ldmHashLog)), optimizing hash table usage. |
| * Larger values improve compression speed. |
| * Deviating far from default value will likely result in a compression ratio decrease. |
| * Special: value 0 means "automatically determine hashRateLog". */ |
| |
| /* frame parameters */ |
| ZSTD_c_contentSizeFlag=200, /* Content size will be written into frame header _whenever known_ (default:1) |
| * Content size must be known at the beginning of compression. |
| * This is automatically the case when using ZSTD_compress2(), |
| * For streaming scenarios, content size must be provided with ZSTD_CCtx_setPledgedSrcSize() */ |
| ZSTD_c_checksumFlag=201, /* A 32-bits checksum of content is written at end of frame (default:0) */ |
| ZSTD_c_dictIDFlag=202, /* When applicable, dictionary's ID is written into frame header (default:1) */ |
| |
| /* multi-threading parameters */ |
| /* These parameters are only active if multi-threading is enabled (compiled with build macro ZSTD_MULTITHREAD). |
| * Otherwise, trying to set any other value than default (0) will be a no-op and return an error. |
| * In a situation where it's unknown if the linked library supports multi-threading or not, |
| * setting ZSTD_c_nbWorkers to any value >= 1 and consulting the return value provides a quick way to check this property. |
| */ |
| ZSTD_c_nbWorkers=400, /* Select how many threads will be spawned to compress in parallel. |
| * When nbWorkers >= 1, triggers asynchronous mode when invoking ZSTD_compressStream*() : |
| * ZSTD_compressStream*() consumes input and flush output if possible, but immediately gives back control to caller, |
| * while compression is performed in parallel, within worker thread(s). |
| * (note : a strong exception to this rule is when first invocation of ZSTD_compressStream2() sets ZSTD_e_end : |
| * in which case, ZSTD_compressStream2() delegates to ZSTD_compress2(), which is always a blocking call). |
| * More workers improve speed, but also increase memory usage. |
| * Default value is `0`, aka "single-threaded mode" : no worker is spawned, |
| * compression is performed inside Caller's thread, and all invocations are blocking */ |
| ZSTD_c_jobSize=401, /* Size of a compression job. This value is enforced only when nbWorkers >= 1. |
| * Each compression job is completed in parallel, so this value can indirectly impact the nb of active threads. |
| * 0 means default, which is dynamically determined based on compression parameters. |
| * Job size must be a minimum of overlap size, or 1 MB, whichever is largest. |
| * The minimum size is automatically and transparently enforced. */ |
| ZSTD_c_overlapLog=402, /* Control the overlap size, as a fraction of window size. |
| * The overlap size is an amount of data reloaded from previous job at the beginning of a new job. |
| * It helps preserve compression ratio, while each job is compressed in parallel. |
| * This value is enforced only when nbWorkers >= 1. |
| * Larger values increase compression ratio, but decrease speed. |
| * Possible values range from 0 to 9 : |
| * - 0 means "default" : value will be determined by the library, depending on strategy |
| * - 1 means "no overlap" |
| * - 9 means "full overlap", using a full window size. |
| * Each intermediate rank increases/decreases load size by a factor 2 : |
| * 9: full window; 8: w/2; 7: w/4; 6: w/8; 5:w/16; 4: w/32; 3:w/64; 2:w/128; 1:no overlap; 0:default |
| * default value varies between 6 and 9, depending on strategy */ |
| |
| /* note : additional experimental parameters are also available |
| * within the experimental section of the API. |
| * At the time of this writing, they include : |
| * ZSTD_c_rsyncable |
| * ZSTD_c_format |
| * ZSTD_c_forceMaxWindow |
| * ZSTD_c_forceAttachDict |
| * ZSTD_c_literalCompressionMode |
| * ZSTD_c_targetCBlockSize |
| * ZSTD_c_srcSizeHint |
| * ZSTD_c_enableDedicatedDictSearch |
| * ZSTD_c_stableInBuffer |
| * ZSTD_c_stableOutBuffer |
| * ZSTD_c_blockDelimiters |
| * ZSTD_c_validateSequences |
| * Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them. |
| * note : never ever use experimentalParam? names directly; |
| * also, the enums values themselves are unstable and can still change. |
| */ |
| ZSTD_c_experimentalParam1=500, |
| ZSTD_c_experimentalParam2=10, |
| ZSTD_c_experimentalParam3=1000, |
| ZSTD_c_experimentalParam4=1001, |
| ZSTD_c_experimentalParam5=1002, |
| ZSTD_c_experimentalParam6=1003, |
| ZSTD_c_experimentalParam7=1004, |
| ZSTD_c_experimentalParam8=1005, |
| ZSTD_c_experimentalParam9=1006, |
| ZSTD_c_experimentalParam10=1007, |
| ZSTD_c_experimentalParam11=1008, |
| ZSTD_c_experimentalParam12=1009 |
| } ZSTD_cParameter; |
| |
| typedef struct { |
| size_t error; |
| int lowerBound; |
| int upperBound; |
| } ZSTD_bounds; |
| |
| /*! ZSTD_cParam_getBounds() : |
| * All parameters must belong to an interval with lower and upper bounds, |
| * otherwise they will either trigger an error or be automatically clamped. |
| * @return : a structure, ZSTD_bounds, which contains |
| * - an error status field, which must be tested using ZSTD_isError() |
| * - lower and upper bounds, both inclusive |
| */ |
| ZSTDLIB_API ZSTD_bounds ZSTD_cParam_getBounds(ZSTD_cParameter cParam); |
| |
| /*! ZSTD_CCtx_setParameter() : |
| * Set one compression parameter, selected by enum ZSTD_cParameter. |
| * All parameters have valid bounds. Bounds can be queried using ZSTD_cParam_getBounds(). |
| * Providing a value beyond bound will either clamp it, or trigger an error (depending on parameter). |
| * Setting a parameter is generally only possible during frame initialization (before starting compression). |
| * Exception : when using multi-threading mode (nbWorkers >= 1), |
| * the following parameters can be updated _during_ compression (within same frame): |
| * => compressionLevel, hashLog, chainLog, searchLog, minMatch, targetLength and strategy. |
| * new parameters will be active for next job only (after a flush()). |
| * @return : an error code (which can be tested using ZSTD_isError()). |
| */ |
| ZSTDLIB_API size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int value); |
| |
| /*! ZSTD_CCtx_setPledgedSrcSize() : |
| * Total input data size to be compressed as a single frame. |
| * Value will be written in frame header, unless if explicitly forbidden using ZSTD_c_contentSizeFlag. |
| * This value will also be controlled at end of frame, and trigger an error if not respected. |
| * @result : 0, or an error code (which can be tested with ZSTD_isError()). |
| * Note 1 : pledgedSrcSize==0 actually means zero, aka an empty frame. |
| * In order to mean "unknown content size", pass constant ZSTD_CONTENTSIZE_UNKNOWN. |
| * ZSTD_CONTENTSIZE_UNKNOWN is default value for any new frame. |
| * Note 2 : pledgedSrcSize is only valid once, for the next frame. |
| * It's discarded at the end of the frame, and replaced by ZSTD_CONTENTSIZE_UNKNOWN. |
| * Note 3 : Whenever all input data is provided and consumed in a single round, |
| * for example with ZSTD_compress2(), |
| * or invoking immediately ZSTD_compressStream2(,,,ZSTD_e_end), |
| * this value is automatically overridden by srcSize instead. |
| */ |
| ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize); |
| |
| typedef enum { |
| ZSTD_reset_session_only = 1, |
| ZSTD_reset_parameters = 2, |
| ZSTD_reset_session_and_parameters = 3 |
| } ZSTD_ResetDirective; |
| |
| /*! ZSTD_CCtx_reset() : |
| * There are 2 different things that can be reset, independently or jointly : |
| * - The session : will stop compressing current frame, and make CCtx ready to start a new one. |
| * Useful after an error, or to interrupt any ongoing compression. |
| * Any internal data not yet flushed is cancelled. |
| * Compression parameters and dictionary remain unchanged. |
| * They will be used to compress next frame. |
| * Resetting session never fails. |
| * - The parameters : changes all parameters back to "default". |
| * This removes any reference to any dictionary too. |
| * Parameters can only be changed between 2 sessions (i.e. no compression is currently ongoing) |
| * otherwise the reset fails, and function returns an error value (which can be tested using ZSTD_isError()) |
| * - Both : similar to resetting the session, followed by resetting parameters. |
| */ |
| ZSTDLIB_API size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset); |
| |
| /*! ZSTD_compress2() : |
| * Behave the same as ZSTD_compressCCtx(), but compression parameters are set using the advanced API. |
| * ZSTD_compress2() always starts a new frame. |
| * Should cctx hold data from a previously unfinished frame, everything about it is forgotten. |
| * - Compression parameters are pushed into CCtx before starting compression, using ZSTD_CCtx_set*() |
| * - The function is always blocking, returns when compression is completed. |
| * Hint : compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`. |
| * @return : compressed size written into `dst` (<= `dstCapacity), |
| * or an error code if it fails (which can be tested using ZSTD_isError()). |
| */ |
| ZSTDLIB_API size_t ZSTD_compress2( ZSTD_CCtx* cctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize); |
| |
| |
| /*************************************** |
| * Advanced decompression API |
| ***************************************/ |
| |
| /* The advanced API pushes parameters one by one into an existing DCtx context. |
| * Parameters are sticky, and remain valid for all following frames |
| * using the same DCtx context. |
| * It's possible to reset parameters to default values using ZSTD_DCtx_reset(). |
| * Note : This API is compatible with existing ZSTD_decompressDCtx() and ZSTD_decompressStream(). |
| * Therefore, no new decompression function is necessary. |
| */ |
| |
| typedef enum { |
| |
| ZSTD_d_windowLogMax=100, /* Select a size limit (in power of 2) beyond which |
| * the streaming API will refuse to allocate memory buffer |
| * in order to protect the host from unreasonable memory requirements. |
| * This parameter is only useful in streaming mode, since no internal buffer is allocated in single-pass mode. |
| * By default, a decompression context accepts window sizes <= (1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT). |
| * Special: value 0 means "use default maximum windowLog". */ |
| |
| /* note : additional experimental parameters are also available |
| * within the experimental section of the API. |
| * At the time of this writing, they include : |
| * ZSTD_d_format |
| * ZSTD_d_stableOutBuffer |
| * ZSTD_d_forceIgnoreChecksum |
| * ZSTD_d_refMultipleDDicts |
| * Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them. |
| * note : never ever use experimentalParam? names directly |
| */ |
| ZSTD_d_experimentalParam1=1000, |
| ZSTD_d_experimentalParam2=1001, |
| ZSTD_d_experimentalParam3=1002, |
| ZSTD_d_experimentalParam4=1003 |
| |
| } ZSTD_dParameter; |
| |
| /*! ZSTD_dParam_getBounds() : |
| * All parameters must belong to an interval with lower and upper bounds, |
| * otherwise they will either trigger an error or be automatically clamped. |
| * @return : a structure, ZSTD_bounds, which contains |
| * - an error status field, which must be tested using ZSTD_isError() |
| * - both lower and upper bounds, inclusive |
| */ |
| ZSTDLIB_API ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam); |
| |
| /*! ZSTD_DCtx_setParameter() : |
| * Set one compression parameter, selected by enum ZSTD_dParameter. |
| * All parameters have valid bounds. Bounds can be queried using ZSTD_dParam_getBounds(). |
| * Providing a value beyond bound will either clamp it, or trigger an error (depending on parameter). |
| * Setting a parameter is only possible during frame initialization (before starting decompression). |
| * @return : 0, or an error code (which can be tested using ZSTD_isError()). |
| */ |
| ZSTDLIB_API size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int value); |
| |
| /*! ZSTD_DCtx_reset() : |
| * Return a DCtx to clean state. |
| * Session and parameters can be reset jointly or separately. |
| * Parameters can only be reset when no active frame is being decompressed. |
| * @return : 0, or an error code, which can be tested with ZSTD_isError() |
| */ |
| ZSTDLIB_API size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset); |
| |
| |
| /**************************** |
| * Streaming |
| ****************************/ |
| |
| typedef struct ZSTD_inBuffer_s { |
| const void* src; /**< start of input buffer */ |
| size_t size; /**< size of input buffer */ |
| size_t pos; /**< position where reading stopped. Will be updated. Necessarily 0 <= pos <= size */ |
| } ZSTD_inBuffer; |
| |
| typedef struct ZSTD_outBuffer_s { |
| void* dst; /**< start of output buffer */ |
| size_t size; /**< size of output buffer */ |
| size_t pos; /**< position where writing stopped. Will be updated. Necessarily 0 <= pos <= size */ |
| } ZSTD_outBuffer; |
| |
| |
| |
| /*-*********************************************************************** |
| * Streaming compression - HowTo |
| * |
| * A ZSTD_CStream object is required to track streaming operation. |
| * Use ZSTD_createCStream() and ZSTD_freeCStream() to create/release resources. |
| * ZSTD_CStream objects can be reused multiple times on consecutive compression operations. |
| * It is recommended to re-use ZSTD_CStream since it will play nicer with system's memory, by re-using already allocated memory. |
| * |
| * For parallel execution, use one separate ZSTD_CStream per thread. |
| * |
| * note : since v1.3.0, ZSTD_CStream and ZSTD_CCtx are the same thing. |
| * |
| * Parameters are sticky : when starting a new compression on the same context, |
| * it will re-use the same sticky parameters as previous compression session. |
| * When in doubt, it's recommended to fully initialize the context before usage. |
| * Use ZSTD_CCtx_reset() to reset the context and ZSTD_CCtx_setParameter(), |
| * ZSTD_CCtx_setPledgedSrcSize(), or ZSTD_CCtx_loadDictionary() and friends to |
| * set more specific parameters, the pledged source size, or load a dictionary. |
| * |
| * Use ZSTD_compressStream2() with ZSTD_e_continue as many times as necessary to |
| * consume input stream. The function will automatically update both `pos` |
| * fields within `input` and `output`. |
| * Note that the function may not consume the entire input, for example, because |
| * the output buffer is already full, in which case `input.pos < input.size`. |
| * The caller must check if input has been entirely consumed. |
| * If not, the caller must make some room to receive more compressed data, |
| * and then present again remaining input data. |
| * note: ZSTD_e_continue is guaranteed to make some forward progress when called, |
| * but doesn't guarantee maximal forward progress. This is especially relevant |
| * when compressing with multiple threads. The call won't block if it can |
| * consume some input, but if it can't it will wait for some, but not all, |
| * output to be flushed. |
| * @return : provides a minimum amount of data remaining to be flushed from internal buffers |
| * or an error code, which can be tested using ZSTD_isError(). |
| * |
| * At any moment, it's possible to flush whatever data might remain stuck within internal buffer, |
| * using ZSTD_compressStream2() with ZSTD_e_flush. `output->pos` will be updated. |
| * Note that, if `output->size` is too small, a single invocation with ZSTD_e_flush might not be enough (return code > 0). |
| * In which case, make some room to receive more compressed data, and call again ZSTD_compressStream2() with ZSTD_e_flush. |
| * You must continue calling ZSTD_compressStream2() with ZSTD_e_flush until it returns 0, at which point you can change the |
| * operation. |
| * note: ZSTD_e_flush will flush as much output as possible, meaning when compressing with multiple threads, it will |
| * block until the flush is complete or the output buffer is full. |
| * @return : 0 if internal buffers are entirely flushed, |
| * >0 if some data still present within internal buffer (the value is minimal estimation of remaining size), |
| * or an error code, which can be tested using ZSTD_isError(). |
| * |
| * Calling ZSTD_compressStream2() with ZSTD_e_end instructs to finish a frame. |
| * It will perform a flush and write frame epilogue. |
| * The epilogue is required for decoders to consider a frame completed. |
| * flush operation is the same, and follows same rules as calling ZSTD_compressStream2() with ZSTD_e_flush. |
| * You must continue calling ZSTD_compressStream2() with ZSTD_e_end until it returns 0, at which point you are free to |
| * start a new frame. |
| * note: ZSTD_e_end will flush as much output as possible, meaning when compressing with multiple threads, it will |
| * block until the flush is complete or the output buffer is full. |
| * @return : 0 if frame fully completed and fully flushed, |
| * >0 if some data still present within internal buffer (the value is minimal estimation of remaining size), |
| * or an error code, which can be tested using ZSTD_isError(). |
| * |
| * *******************************************************************/ |
| |
| typedef ZSTD_CCtx ZSTD_CStream; /**< CCtx and CStream are now effectively same object (>= v1.3.0) */ |
| /* Continue to distinguish them for compatibility with older versions <= v1.2.0 */ |
| /*===== ZSTD_CStream management functions =====*/ |
| ZSTDLIB_API ZSTD_CStream* ZSTD_createCStream(void); |
| ZSTDLIB_API size_t ZSTD_freeCStream(ZSTD_CStream* zcs); |
| |
| /*===== Streaming compression functions =====*/ |
| typedef enum { |
| ZSTD_e_continue=0, /* collect more data, encoder decides when to output compressed result, for optimal compression ratio */ |
| ZSTD_e_flush=1, /* flush any data provided so far, |
| * it creates (at least) one new block, that can be decoded immediately on reception; |
| * frame will continue: any future data can still reference previously compressed data, improving compression. |
| * note : multithreaded compression will block to flush as much output as possible. */ |
| ZSTD_e_end=2 /* flush any remaining data _and_ close current frame. |
| * note that frame is only closed after compressed data is fully flushed (return value == 0). |
| * After that point, any additional data starts a new frame. |
| * note : each frame is independent (does not reference any content from previous frame). |
| : note : multithreaded compression will block to flush as much output as possible. */ |
| } ZSTD_EndDirective; |
| |
| /*! ZSTD_compressStream2() : |
| * Behaves about the same as ZSTD_compressStream, with additional control on end directive. |
| * - Compression parameters are pushed into CCtx before starting compression, using ZSTD_CCtx_set*() |
| * - Compression parameters cannot be changed once compression is started (save a list of exceptions in multi-threading mode) |
| * - output->pos must be <= dstCapacity, input->pos must be <= srcSize |
| * - output->pos and input->pos will be updated. They are guaranteed to remain below their respective limit. |
| * - endOp must be a valid directive |
| * - When nbWorkers==0 (default), function is blocking : it completes its job before returning to caller. |
| * - When nbWorkers>=1, function is non-blocking : it copies a portion of input, distributes jobs to internal worker threads, flush to output whatever is available, |
| * and then immediately returns, just indicating that there is some data remaining to be flushed. |
| * The function nonetheless guarantees forward progress : it will return only after it reads or write at least 1+ byte. |
| * - Exception : if the first call requests a ZSTD_e_end directive and provides enough dstCapacity, the function delegates to ZSTD_compress2() which is always blocking. |
| * - @return provides a minimum amount of data remaining to be flushed from internal buffers |
| * or an error code, which can be tested using ZSTD_isError(). |
| * if @return != 0, flush is not fully completed, there is still some data left within internal buffers. |
| * This is useful for ZSTD_e_flush, since in this case more flushes are necessary to empty all buffers. |
| * For ZSTD_e_end, @return == 0 when internal buffers are fully flushed and frame is completed. |
| * - after a ZSTD_e_end directive, if internal buffer is not fully flushed (@return != 0), |
| * only ZSTD_e_end or ZSTD_e_flush operations are allowed. |
| * Before starting a new compression job, or changing compression parameters, |
| * it is required to fully flush internal buffers. |
| */ |
| ZSTDLIB_API size_t ZSTD_compressStream2( ZSTD_CCtx* cctx, |
| ZSTD_outBuffer* output, |
| ZSTD_inBuffer* input, |
| ZSTD_EndDirective endOp); |
| |
| |
| /* These buffer sizes are softly recommended. |
| * They are not required : ZSTD_compressStream*() happily accepts any buffer size, for both input and output. |
| * Respecting the recommended size just makes it a bit easier for ZSTD_compressStream*(), |
| * reducing the amount of memory shuffling and buffering, resulting in minor performance savings. |
| * |
| * However, note that these recommendations are from the perspective of a C caller program. |
| * If the streaming interface is invoked from some other language, |
| * especially managed ones such as Java or Go, through a foreign function interface such as jni or cgo, |
| * a major performance rule is to reduce crossing such interface to an absolute minimum. |
| * It's not rare that performance ends being spent more into the interface, rather than compression itself. |
| * In which cases, prefer using large buffers, as large as practical, |
| * for both input and output, to reduce the nb of roundtrips. |
| */ |
| ZSTDLIB_API size_t ZSTD_CStreamInSize(void); /**< recommended size for input buffer */ |
| ZSTDLIB_API size_t ZSTD_CStreamOutSize(void); /**< recommended size for output buffer. Guarantee to successfully flush at least one complete compressed block. */ |
| |
| |
| /* ***************************************************************************** |
| * This following is a legacy streaming API. |
| * It can be replaced by ZSTD_CCtx_reset() and ZSTD_compressStream2(). |
| * It is redundant, but remains fully supported. |
| * Advanced parameters and dictionary compression can only be used through the |
| * new API. |
| ******************************************************************************/ |
| |
| /*! |
| * Equivalent to: |
| * |
| * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); |
| * ZSTD_CCtx_refCDict(zcs, NULL); // clear the dictionary (if any) |
| * ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel); |
| */ |
| ZSTDLIB_API size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel); |
| /*! |
| * Alternative for ZSTD_compressStream2(zcs, output, input, ZSTD_e_continue). |
| * NOTE: The return value is different. ZSTD_compressStream() returns a hint for |
| * the next read size (if non-zero and not an error). ZSTD_compressStream2() |
| * returns the minimum nb of bytes left to flush (if non-zero and not an error). |
| */ |
| ZSTDLIB_API size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input); |
| /*! Equivalent to ZSTD_compressStream2(zcs, output, &emptyInput, ZSTD_e_flush). */ |
| ZSTDLIB_API size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output); |
| /*! Equivalent to ZSTD_compressStream2(zcs, output, &emptyInput, ZSTD_e_end). */ |
| ZSTDLIB_API size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output); |
| |
| |
| /*-*************************************************************************** |
| * Streaming decompression - HowTo |
| * |
| * A ZSTD_DStream object is required to track streaming operations. |
| * Use ZSTD_createDStream() and ZSTD_freeDStream() to create/release resources. |
| * ZSTD_DStream objects can be re-used multiple times. |
| * |
| * Use ZSTD_initDStream() to start a new decompression operation. |
| * @return : recommended first input size |
| * Alternatively, use advanced API to set specific properties. |
| * |
| * Use ZSTD_decompressStream() repetitively to consume your input. |
| * The function will update both `pos` fields. |
| * If `input.pos < input.size`, some input has not been consumed. |
| * It's up to the caller to present again remaining data. |
| * The function tries to flush all data decoded immediately, respecting output buffer size. |
| * If `output.pos < output.size`, decoder has flushed everything it could. |
| * But if `output.pos == output.size`, there might be some data left within internal buffers., |
| * In which case, call ZSTD_decompressStream() again to flush whatever remains in the buffer. |
| * Note : with no additional input provided, amount of data flushed is necessarily <= ZSTD_BLOCKSIZE_MAX. |
| * @return : 0 when a frame is completely decoded and fully flushed, |
| * or an error code, which can be tested using ZSTD_isError(), |
| * or any other value > 0, which means there is still some decoding or flushing to do to complete current frame : |
| * the return value is a suggested next input size (just a hint for better latency) |
| * that will never request more than the remaining frame size. |
| * *******************************************************************************/ |
| |
| typedef ZSTD_DCtx ZSTD_DStream; /**< DCtx and DStream are now effectively same object (>= v1.3.0) */ |
| /* For compatibility with versions <= v1.2.0, prefer differentiating them. */ |
| /*===== ZSTD_DStream management functions =====*/ |
| ZSTDLIB_API ZSTD_DStream* ZSTD_createDStream(void); |
| ZSTDLIB_API size_t ZSTD_freeDStream(ZSTD_DStream* zds); |
| |
| /*===== Streaming decompression functions =====*/ |
| |
| /* This function is redundant with the advanced API and equivalent to: |
| * |
| * ZSTD_DCtx_reset(zds, ZSTD_reset_session_only); |
| * ZSTD_DCtx_refDDict(zds, NULL); |
| */ |
| ZSTDLIB_API size_t ZSTD_initDStream(ZSTD_DStream* zds); |
| |
| ZSTDLIB_API size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input); |
| |
| ZSTDLIB_API size_t ZSTD_DStreamInSize(void); /*!< recommended size for input buffer */ |
| ZSTDLIB_API size_t ZSTD_DStreamOutSize(void); /*!< recommended size for output buffer. Guarantee to successfully flush at least one complete block in all circumstances. */ |
| |
| |
| /************************** |
| * Simple dictionary API |
| ***************************/ |
| /*! ZSTD_compress_usingDict() : |
| * Compression at an explicit compression level using a Dictionary. |
| * A dictionary can be any arbitrary data segment (also called a prefix), |
| * or a buffer with specified information (see dictBuilder/zdict.h). |
| * Note : This function loads the dictionary, resulting in significant startup delay. |
| * It's intended for a dictionary used only once. |
| * Note 2 : When `dict == NULL || dictSize < 8` no dictionary is used. */ |
| ZSTDLIB_API size_t ZSTD_compress_usingDict(ZSTD_CCtx* ctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const void* dict,size_t dictSize, |
| int compressionLevel); |
| |
| /*! ZSTD_decompress_usingDict() : |
| * Decompression using a known Dictionary. |
| * Dictionary must be identical to the one used during compression. |
| * Note : This function loads the dictionary, resulting in significant startup delay. |
| * It's intended for a dictionary used only once. |
| * Note : When `dict == NULL || dictSize < 8` no dictionary is used. */ |
| ZSTDLIB_API size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const void* dict,size_t dictSize); |
| |
| |
| /*********************************** |
| * Bulk processing dictionary API |
| **********************************/ |
| typedef struct ZSTD_CDict_s ZSTD_CDict; |
| |
| /*! ZSTD_createCDict() : |
| * When compressing multiple messages or blocks using the same dictionary, |
| * it's recommended to digest the dictionary only once, since it's a costly operation. |
| * ZSTD_createCDict() will create a state from digesting a dictionary. |
| * The resulting state can be used for future compression operations with very limited startup cost. |
| * ZSTD_CDict can be created once and shared by multiple threads concurrently, since its usage is read-only. |
| * @dictBuffer can be released after ZSTD_CDict creation, because its content is copied within CDict. |
| * Note 1 : Consider experimental function `ZSTD_createCDict_byReference()` if you prefer to not duplicate @dictBuffer content. |
| * Note 2 : A ZSTD_CDict can be created from an empty @dictBuffer, |
| * in which case the only thing that it transports is the @compressionLevel. |
| * This can be useful in a pipeline featuring ZSTD_compress_usingCDict() exclusively, |
| * expecting a ZSTD_CDict parameter with any data, including those without a known dictionary. */ |
| ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict(const void* dictBuffer, size_t dictSize, |
| int compressionLevel); |
| |
| /*! ZSTD_freeCDict() : |
| * Function frees memory allocated by ZSTD_createCDict(). */ |
| ZSTDLIB_API size_t ZSTD_freeCDict(ZSTD_CDict* CDict); |
| |
| /*! ZSTD_compress_usingCDict() : |
| * Compression using a digested Dictionary. |
| * Recommended when same dictionary is used multiple times. |
| * Note : compression level is _decided at dictionary creation time_, |
| * and frame parameters are hardcoded (dictID=yes, contentSize=yes, checksum=no) */ |
| ZSTDLIB_API size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const ZSTD_CDict* cdict); |
| |
| |
| typedef struct ZSTD_DDict_s ZSTD_DDict; |
| |
| /*! ZSTD_createDDict() : |
| * Create a digested dictionary, ready to start decompression operation without startup delay. |
| * dictBuffer can be released after DDict creation, as its content is copied inside DDict. */ |
| ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict(const void* dictBuffer, size_t dictSize); |
| |
| /*! ZSTD_freeDDict() : |
| * Function frees memory allocated with ZSTD_createDDict() */ |
| ZSTDLIB_API size_t ZSTD_freeDDict(ZSTD_DDict* ddict); |
| |
| /*! ZSTD_decompress_usingDDict() : |
| * Decompression using a digested Dictionary. |
| * Recommended when same dictionary is used multiple times. */ |
| ZSTDLIB_API size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const ZSTD_DDict* ddict); |
| |
| |
| /******************************** |
| * Dictionary helper functions |
| *******************************/ |
| |
| /*! ZSTD_getDictID_fromDict() : |
| * Provides the dictID stored within dictionary. |
| * if @return == 0, the dictionary is not conformant with Zstandard specification. |
| * It can still be loaded, but as a content-only dictionary. */ |
| ZSTDLIB_API unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize); |
| |
| /*! ZSTD_getDictID_fromDDict() : |
| * Provides the dictID of the dictionary loaded into `ddict`. |
| * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty. |
| * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */ |
| ZSTDLIB_API unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict); |
| |
| /*! ZSTD_getDictID_fromFrame() : |
| * Provides the dictID required to decompressed the frame stored within `src`. |
| * If @return == 0, the dictID could not be decoded. |
| * This could for one of the following reasons : |
| * - The frame does not require a dictionary to be decoded (most common case). |
| * - The frame was built with dictID intentionally removed. Whatever dictionary is necessary is a hidden information. |
| * Note : this use case also happens when using a non-conformant dictionary. |
| * - `srcSize` is too small, and as a result, the frame header could not be decoded (only possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`). |
| * - This is not a Zstandard frame. |
| * When identifying the exact failure cause, it's possible to use ZSTD_getFrameHeader(), which will provide a more precise error code. */ |
| ZSTDLIB_API unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize); |
| |
| |
| /******************************************************************************* |
| * Advanced dictionary and prefix API |
| * |
| * This API allows dictionaries to be used with ZSTD_compress2(), |
| * ZSTD_compressStream2(), and ZSTD_decompress(). Dictionaries are sticky, and |
| * only reset with the context is reset with ZSTD_reset_parameters or |
| * ZSTD_reset_session_and_parameters. Prefixes are single-use. |
| ******************************************************************************/ |
| |
| |
| /*! ZSTD_CCtx_loadDictionary() : |
| * Create an internal CDict from `dict` buffer. |
| * Decompression will have to use same dictionary. |
| * @result : 0, or an error code (which can be tested with ZSTD_isError()). |
| * Special: Loading a NULL (or 0-size) dictionary invalidates previous dictionary, |
| * meaning "return to no-dictionary mode". |
| * Note 1 : Dictionary is sticky, it will be used for all future compressed frames. |
| * To return to "no-dictionary" situation, load a NULL dictionary (or reset parameters). |
| * Note 2 : Loading a dictionary involves building tables. |
| * It's also a CPU consuming operation, with non-negligible impact on latency. |
| * Tables are dependent on compression parameters, and for this reason, |
| * compression parameters can no longer be changed after loading a dictionary. |
| * Note 3 :`dict` content will be copied internally. |
| * Use experimental ZSTD_CCtx_loadDictionary_byReference() to reference content instead. |
| * In such a case, dictionary buffer must outlive its users. |
| * Note 4 : Use ZSTD_CCtx_loadDictionary_advanced() |
| * to precisely select how dictionary content must be interpreted. */ |
| ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize); |
| |
| /*! ZSTD_CCtx_refCDict() : |
| * Reference a prepared dictionary, to be used for all next compressed frames. |
| * Note that compression parameters are enforced from within CDict, |
| * and supersede any compression parameter previously set within CCtx. |
| * The parameters ignored are labelled as "superseded-by-cdict" in the ZSTD_cParameter enum docs. |
| * The ignored parameters will be used again if the CCtx is returned to no-dictionary mode. |
| * The dictionary will remain valid for future compressed frames using same CCtx. |
| * @result : 0, or an error code (which can be tested with ZSTD_isError()). |
| * Special : Referencing a NULL CDict means "return to no-dictionary mode". |
| * Note 1 : Currently, only one dictionary can be managed. |
| * Referencing a new dictionary effectively "discards" any previous one. |
| * Note 2 : CDict is just referenced, its lifetime must outlive its usage within CCtx. */ |
| ZSTDLIB_API size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict); |
| |
| /*! ZSTD_CCtx_refPrefix() : |
| * Reference a prefix (single-usage dictionary) for next compressed frame. |
| * A prefix is **only used once**. Tables are discarded at end of frame (ZSTD_e_end). |
| * Decompression will need same prefix to properly regenerate data. |
| * Compressing with a prefix is similar in outcome as performing a diff and compressing it, |
| * but performs much faster, especially during decompression (compression speed is tunable with compression level). |
| * @result : 0, or an error code (which can be tested with ZSTD_isError()). |
| * Special: Adding any prefix (including NULL) invalidates any previous prefix or dictionary |
| * Note 1 : Prefix buffer is referenced. It **must** outlive compression. |
| * Its content must remain unmodified during compression. |
| * Note 2 : If the intention is to diff some large src data blob with some prior version of itself, |
| * ensure that the window size is large enough to contain the entire source. |
| * See ZSTD_c_windowLog. |
| * Note 3 : Referencing a prefix involves building tables, which are dependent on compression parameters. |
| * It's a CPU consuming operation, with non-negligible impact on latency. |
| * If there is a need to use the same prefix multiple times, consider loadDictionary instead. |
| * Note 4 : By default, the prefix is interpreted as raw content (ZSTD_dct_rawContent). |
| * Use experimental ZSTD_CCtx_refPrefix_advanced() to alter dictionary interpretation. */ |
| ZSTDLIB_API size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, |
| const void* prefix, size_t prefixSize); |
| |
| /*! ZSTD_DCtx_loadDictionary() : |
| * Create an internal DDict from dict buffer, |
| * to be used to decompress next frames. |
| * The dictionary remains valid for all future frames, until explicitly invalidated. |
| * @result : 0, or an error code (which can be tested with ZSTD_isError()). |
| * Special : Adding a NULL (or 0-size) dictionary invalidates any previous dictionary, |
| * meaning "return to no-dictionary mode". |
| * Note 1 : Loading a dictionary involves building tables, |
| * which has a non-negligible impact on CPU usage and latency. |
| * It's recommended to "load once, use many times", to amortize the cost |
| * Note 2 :`dict` content will be copied internally, so `dict` can be released after loading. |
| * Use ZSTD_DCtx_loadDictionary_byReference() to reference dictionary content instead. |
| * Note 3 : Use ZSTD_DCtx_loadDictionary_advanced() to take control of |
| * how dictionary content is loaded and interpreted. |
| */ |
| ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize); |
| |
| /*! ZSTD_DCtx_refDDict() : |
| * Reference a prepared dictionary, to be used to decompress next frames. |
| * The dictionary remains active for decompression of future frames using same DCtx. |
| * |
| * If called with ZSTD_d_refMultipleDDicts enabled, repeated calls of this function |
| * will store the DDict references in a table, and the DDict used for decompression |
| * will be determined at decompression time, as per the dict ID in the frame. |
| * The memory for the table is allocated on the first call to refDDict, and can be |
| * freed with ZSTD_freeDCtx(). |
| * |
| * @result : 0, or an error code (which can be tested with ZSTD_isError()). |
| * Note 1 : Currently, only one dictionary can be managed. |
| * Referencing a new dictionary effectively "discards" any previous one. |
| * Special: referencing a NULL DDict means "return to no-dictionary mode". |
| * Note 2 : DDict is just referenced, its lifetime must outlive its usage from DCtx. |
| */ |
| ZSTDLIB_API size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict); |
| |
| /*! ZSTD_DCtx_refPrefix() : |
| * Reference a prefix (single-usage dictionary) to decompress next frame. |
| * This is the reverse operation of ZSTD_CCtx_refPrefix(), |
| * and must use the same prefix as the one used during compression. |
| * Prefix is **only used once**. Reference is discarded at end of frame. |
| * End of frame is reached when ZSTD_decompressStream() returns 0. |
| * @result : 0, or an error code (which can be tested with ZSTD_isError()). |
| * Note 1 : Adding any prefix (including NULL) invalidates any previously set prefix or dictionary |
| * Note 2 : Prefix buffer is referenced. It **must** outlive decompression. |
| * Prefix buffer must remain unmodified up to the end of frame, |
| * reached when ZSTD_decompressStream() returns 0. |
| * Note 3 : By default, the prefix is treated as raw content (ZSTD_dct_rawContent). |
| * Use ZSTD_CCtx_refPrefix_advanced() to alter dictMode (Experimental section) |
| * Note 4 : Referencing a raw content prefix has almost no cpu nor memory cost. |
| * A full dictionary is more costly, as it requires building tables. |
| */ |
| ZSTDLIB_API size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, |
| const void* prefix, size_t prefixSize); |
| |
| /* === Memory management === */ |
| |
| /*! ZSTD_sizeof_*() : |
| * These functions give the _current_ memory usage of selected object. |
| * Note that object memory usage can evolve (increase or decrease) over time. */ |
| ZSTDLIB_API size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx); |
| ZSTDLIB_API size_t ZSTD_sizeof_DCtx(const ZSTD_DCtx* dctx); |
| ZSTDLIB_API size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs); |
| ZSTDLIB_API size_t ZSTD_sizeof_DStream(const ZSTD_DStream* zds); |
| ZSTDLIB_API size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict); |
| ZSTDLIB_API size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict); |
| |
| #endif /* ZSTD_H_235446 */ |
| |
| |
| /* ************************************************************************************** |
| * ADVANCED AND EXPERIMENTAL FUNCTIONS |
| **************************************************************************************** |
| * The definitions in the following section are considered experimental. |
| * They are provided for advanced scenarios. |
| * They should never be used with a dynamic library, as prototypes may change in the future. |
| * Use them only in association with static linking. |
| * ***************************************************************************************/ |
| |
| #if defined(ZSTD_STATIC_LINKING_ONLY) && !defined(ZSTD_H_ZSTD_STATIC_LINKING_ONLY) |
| #define ZSTD_H_ZSTD_STATIC_LINKING_ONLY |
| |
| /**************************************************************************************** |
| * experimental API (static linking only) |
| **************************************************************************************** |
| * The following symbols and constants |
| * are not planned to join "stable API" status in the near future. |
| * They can still change in future versions. |
| * Some of them are planned to remain in the static_only section indefinitely. |
| * Some of them might be removed in the future (especially when redundant with existing stable functions) |
| * ***************************************************************************************/ |
| |
| #define ZSTD_FRAMEHEADERSIZE_PREFIX(format) ((format) == ZSTD_f_zstd1 ? 5 : 1) /* minimum input size required to query frame header size */ |
| #define ZSTD_FRAMEHEADERSIZE_MIN(format) ((format) == ZSTD_f_zstd1 ? 6 : 2) |
| #define ZSTD_FRAMEHEADERSIZE_MAX 18 /* can be useful for static allocation */ |
| #define ZSTD_SKIPPABLEHEADERSIZE 8 |
| |
| /* compression parameter bounds */ |
| #define ZSTD_WINDOWLOG_MAX_32 30 |
| #define ZSTD_WINDOWLOG_MAX_64 31 |
| #define ZSTD_WINDOWLOG_MAX ((int)(sizeof(size_t) == 4 ? ZSTD_WINDOWLOG_MAX_32 : ZSTD_WINDOWLOG_MAX_64)) |
| #define ZSTD_WINDOWLOG_MIN 10 |
| #define ZSTD_HASHLOG_MAX ((ZSTD_WINDOWLOG_MAX < 30) ? ZSTD_WINDOWLOG_MAX : 30) |
| #define ZSTD_HASHLOG_MIN 6 |
| #define ZSTD_CHAINLOG_MAX_32 29 |
| #define ZSTD_CHAINLOG_MAX_64 30 |
| #define ZSTD_CHAINLOG_MAX ((int)(sizeof(size_t) == 4 ? ZSTD_CHAINLOG_MAX_32 : ZSTD_CHAINLOG_MAX_64)) |
| #define ZSTD_CHAINLOG_MIN ZSTD_HASHLOG_MIN |
| #define ZSTD_SEARCHLOG_MAX (ZSTD_WINDOWLOG_MAX-1) |
| #define ZSTD_SEARCHLOG_MIN 1 |
| #define ZSTD_MINMATCH_MAX 7 /* only for ZSTD_fast, other strategies are limited to 6 */ |
| #define ZSTD_MINMATCH_MIN 3 /* only for ZSTD_btopt+, faster strategies are limited to 4 */ |
| #define ZSTD_TARGETLENGTH_MAX ZSTD_BLOCKSIZE_MAX |
| #define ZSTD_TARGETLENGTH_MIN 0 /* note : comparing this constant to an unsigned results in a tautological test */ |
| #define ZSTD_STRATEGY_MIN ZSTD_fast |
| #define ZSTD_STRATEGY_MAX ZSTD_btultra2 |
| |
| |
| #define ZSTD_OVERLAPLOG_MIN 0 |
| #define ZSTD_OVERLAPLOG_MAX 9 |
| |
| #define ZSTD_WINDOWLOG_LIMIT_DEFAULT 27 /* by default, the streaming decoder will refuse any frame |
| * requiring larger than (1<<ZSTD_WINDOWLOG_LIMIT_DEFAULT) window size, |
| * to preserve host's memory from unreasonable requirements. |
| * This limit can be overridden using ZSTD_DCtx_setParameter(,ZSTD_d_windowLogMax,). |
| * The limit does not apply for one-pass decoders (such as ZSTD_decompress()), since no additional memory is allocated */ |
| |
| |
| /* LDM parameter bounds */ |
| #define ZSTD_LDM_HASHLOG_MIN ZSTD_HASHLOG_MIN |
| #define ZSTD_LDM_HASHLOG_MAX ZSTD_HASHLOG_MAX |
| #define ZSTD_LDM_MINMATCH_MIN 4 |
| #define ZSTD_LDM_MINMATCH_MAX 4096 |
| #define ZSTD_LDM_BUCKETSIZELOG_MIN 1 |
| #define ZSTD_LDM_BUCKETSIZELOG_MAX 8 |
| #define ZSTD_LDM_HASHRATELOG_MIN 0 |
| #define ZSTD_LDM_HASHRATELOG_MAX (ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN) |
| |
| /* Advanced parameter bounds */ |
| #define ZSTD_TARGETCBLOCKSIZE_MIN 64 |
| #define ZSTD_TARGETCBLOCKSIZE_MAX ZSTD_BLOCKSIZE_MAX |
| #define ZSTD_SRCSIZEHINT_MIN 0 |
| #define ZSTD_SRCSIZEHINT_MAX INT_MAX |
| |
| /* internal */ |
| #define ZSTD_HASHLOG3_MAX 17 |
| |
| |
| /* --- Advanced types --- */ |
| |
| typedef struct ZSTD_CCtx_params_s ZSTD_CCtx_params; |
| |
| typedef struct { |
| unsigned int offset; /* The offset of the match. (NOT the same as the offset code) |
| * If offset == 0 and matchLength == 0, this sequence represents the last |
| * literals in the block of litLength size. |
| */ |
| |
| unsigned int litLength; /* Literal length of the sequence. */ |
| unsigned int matchLength; /* Match length of the sequence. */ |
| |
| /* Note: Users of this API may provide a sequence with matchLength == litLength == offset == 0. |
| * In this case, we will treat the sequence as a marker for a block boundary. |
| */ |
| |
| unsigned int rep; /* Represents which repeat offset is represented by the field 'offset'. |
| * Ranges from [0, 3]. |
| * |
| * Repeat offsets are essentially previous offsets from previous sequences sorted in |
| * recency order. For more detail, see doc/zstd_compression_format.md |
| * |
| * If rep == 0, then 'offset' does not contain a repeat offset. |
| * If rep > 0: |
| * If litLength != 0: |
| * rep == 1 --> offset == repeat_offset_1 |
| * rep == 2 --> offset == repeat_offset_2 |
| * rep == 3 --> offset == repeat_offset_3 |
| * If litLength == 0: |
| * rep == 1 --> offset == repeat_offset_2 |
| * rep == 2 --> offset == repeat_offset_3 |
| * rep == 3 --> offset == repeat_offset_1 - 1 |
| * |
| * Note: This field is optional. ZSTD_generateSequences() will calculate the value of |
| * 'rep', but repeat offsets do not necessarily need to be calculated from an external |
| * sequence provider's perspective. For example, ZSTD_compressSequences() does not |
| * use this 'rep' field at all (as of now). |
| */ |
| } ZSTD_Sequence; |
| |
| typedef struct { |
| unsigned windowLog; /**< largest match distance : larger == more compression, more memory needed during decompression */ |
| unsigned chainLog; /**< fully searched segment : larger == more compression, slower, more memory (useless for fast) */ |
| unsigned hashLog; /**< dispatch table : larger == faster, more memory */ |
| unsigned searchLog; /**< nb of searches : larger == more compression, slower */ |
| unsigned minMatch; /**< match length searched : larger == faster decompression, sometimes less compression */ |
| unsigned targetLength; /**< acceptable match size for optimal parser (only) : larger == more compression, slower */ |
| ZSTD_strategy strategy; /**< see ZSTD_strategy definition above */ |
| } ZSTD_compressionParameters; |
| |
| typedef struct { |
| int contentSizeFlag; /**< 1: content size will be in frame header (when known) */ |
| int checksumFlag; /**< 1: generate a 32-bits checksum using XXH64 algorithm at end of frame, for error detection */ |
| int noDictIDFlag; /**< 1: no dictID will be saved into frame header (dictID is only useful for dictionary compression) */ |
| } ZSTD_frameParameters; |
| |
| typedef struct { |
| ZSTD_compressionParameters cParams; |
| ZSTD_frameParameters fParams; |
| } ZSTD_parameters; |
| |
| typedef enum { |
| ZSTD_dct_auto = 0, /* dictionary is "full" when starting with ZSTD_MAGIC_DICTIONARY, otherwise it is "rawContent" */ |
| ZSTD_dct_rawContent = 1, /* ensures dictionary is always loaded as rawContent, even if it starts with ZSTD_MAGIC_DICTIONARY */ |
| ZSTD_dct_fullDict = 2 /* refuses to load a dictionary if it does not respect Zstandard's specification, starting with ZSTD_MAGIC_DICTIONARY */ |
| } ZSTD_dictContentType_e; |
| |
| typedef enum { |
| ZSTD_dlm_byCopy = 0, /**< Copy dictionary content internally */ |
| ZSTD_dlm_byRef = 1 /**< Reference dictionary content -- the dictionary buffer must outlive its users. */ |
| } ZSTD_dictLoadMethod_e; |
| |
| typedef enum { |
| ZSTD_f_zstd1 = 0, /* zstd frame format, specified in zstd_compression_format.md (default) */ |
| ZSTD_f_zstd1_magicless = 1 /* Variant of zstd frame format, without initial 4-bytes magic number. |
| * Useful to save 4 bytes per generated frame. |
| * Decoder cannot recognise automatically this format, requiring this instruction. */ |
| } ZSTD_format_e; |
| |
| typedef enum { |
| /* Note: this enum controls ZSTD_d_forceIgnoreChecksum */ |
| ZSTD_d_validateChecksum = 0, |
| ZSTD_d_ignoreChecksum = 1 |
| } ZSTD_forceIgnoreChecksum_e; |
| |
| typedef enum { |
| /* Note: this enum controls ZSTD_d_refMultipleDDicts */ |
| ZSTD_rmd_refSingleDDict = 0, |
| ZSTD_rmd_refMultipleDDicts = 1 |
| } ZSTD_refMultipleDDicts_e; |
| |
| typedef enum { |
| /* Note: this enum and the behavior it controls are effectively internal |
| * implementation details of the compressor. They are expected to continue |
| * to evolve and should be considered only in the context of extremely |
| * advanced performance tuning. |
| * |
| * Zstd currently supports the use of a CDict in three ways: |
| * |
| * - The contents of the CDict can be copied into the working context. This |
| * means that the compression can search both the dictionary and input |
| * while operating on a single set of internal tables. This makes |
| * the compression faster per-byte of input. However, the initial copy of |
| * the CDict's tables incurs a fixed cost at the beginning of the |
| * compression. For small compressions (< 8 KB), that copy can dominate |
| * the cost of the compression. |
| * |
| * - The CDict's tables can be used in-place. In this model, compression is |
| * slower per input byte, because the compressor has to search two sets of |
| * tables. However, this model incurs no start-up cost (as long as the |
| * working context's tables can be reused). For small inputs, this can be |
| * faster than copying the CDict's tables. |
| * |
| * - The CDict's tables are not used at all, and instead we use the working |
| * context alone to reload the dictionary and use params based on the source |
| * size. See ZSTD_compress_insertDictionary() and ZSTD_compress_usingDict(). |
| * This method is effective when the dictionary sizes are very small relative |
| * to the input size, and the input size is fairly large to begin with. |
| * |
| * Zstd has a simple internal heuristic that selects which strategy to use |
| * at the beginning of a compression. However, if experimentation shows that |
| * Zstd is making poor choices, it is possible to override that choice with |
| * this enum. |
| */ |
| ZSTD_dictDefaultAttach = 0, /* Use the default heuristic. */ |
| ZSTD_dictForceAttach = 1, /* Never copy the dictionary. */ |
| ZSTD_dictForceCopy = 2, /* Always copy the dictionary. */ |
| ZSTD_dictForceLoad = 3 /* Always reload the dictionary */ |
| } ZSTD_dictAttachPref_e; |
| |
| typedef enum { |
| ZSTD_lcm_auto = 0, /**< Automatically determine the compression mode based on the compression level. |
| * Negative compression levels will be uncompressed, and positive compression |
| * levels will be compressed. */ |
| ZSTD_lcm_huffman = 1, /**< Always attempt Huffman compression. Uncompressed literals will still be |
| * emitted if Huffman compression is not profitable. */ |
| ZSTD_lcm_uncompressed = 2 /**< Always emit uncompressed literals. */ |
| } ZSTD_literalCompressionMode_e; |
| |
| |
| /*************************************** |
| * Frame size functions |
| ***************************************/ |
| |
| /*! ZSTD_findDecompressedSize() : |
| * `src` should point to the start of a series of ZSTD encoded and/or skippable frames |
| * `srcSize` must be the _exact_ size of this series |
| * (i.e. there should be a frame boundary at `src + srcSize`) |
| * @return : - decompressed size of all data in all successive frames |
| * - if the decompressed size cannot be determined: ZSTD_CONTENTSIZE_UNKNOWN |
| * - if an error occurred: ZSTD_CONTENTSIZE_ERROR |
| * |
| * note 1 : decompressed size is an optional field, that may not be present, especially in streaming mode. |
| * When `return==ZSTD_CONTENTSIZE_UNKNOWN`, data to decompress could be any size. |
| * In which case, it's necessary to use streaming mode to decompress data. |
| * note 2 : decompressed size is always present when compression is done with ZSTD_compress() |
| * note 3 : decompressed size can be very large (64-bits value), |
| * potentially larger than what local system can handle as a single memory segment. |
| * In which case, it's necessary to use streaming mode to decompress data. |
| * note 4 : If source is untrusted, decompressed size could be wrong or intentionally modified. |
| * Always ensure result fits within application's authorized limits. |
| * Each application can set its own limits. |
| * note 5 : ZSTD_findDecompressedSize handles multiple frames, and so it must traverse the input to |
| * read each contained frame header. This is fast as most of the data is skipped, |
| * however it does mean that all frame data must be present and valid. */ |
| ZSTDLIB_API unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize); |
| |
| /*! ZSTD_decompressBound() : |
| * `src` should point to the start of a series of ZSTD encoded and/or skippable frames |
| * `srcSize` must be the _exact_ size of this series |
| * (i.e. there should be a frame boundary at `src + srcSize`) |
| * @return : - upper-bound for the decompressed size of all data in all successive frames |
| * - if an error occurred: ZSTD_CONTENTSIZE_ERROR |
| * |
| * note 1 : an error can occur if `src` contains an invalid or incorrectly formatted frame. |
| * note 2 : the upper-bound is exact when the decompressed size field is available in every ZSTD encoded frame of `src`. |
| * in this case, `ZSTD_findDecompressedSize` and `ZSTD_decompressBound` return the same value. |
| * note 3 : when the decompressed size field isn't available, the upper-bound for that frame is calculated by: |
| * upper-bound = # blocks * min(128 KB, Window_Size) |
| */ |
| ZSTDLIB_API unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize); |
| |
| /*! ZSTD_frameHeaderSize() : |
| * srcSize must be >= ZSTD_FRAMEHEADERSIZE_PREFIX. |
| * @return : size of the Frame Header, |
| * or an error code (if srcSize is too small) */ |
| ZSTDLIB_API size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize); |
| |
| typedef enum { |
| ZSTD_sf_noBlockDelimiters = 0, /* Representation of ZSTD_Sequence has no block delimiters, sequences only */ |
| ZSTD_sf_explicitBlockDelimiters = 1 /* Representation of ZSTD_Sequence contains explicit block delimiters */ |
| } ZSTD_sequenceFormat_e; |
| |
| /*! ZSTD_generateSequences() : |
| * Generate sequences using ZSTD_compress2, given a source buffer. |
| * |
| * Each block will end with a dummy sequence |
| * with offset == 0, matchLength == 0, and litLength == length of last literals. |
| * litLength may be == 0, and if so, then the sequence of (of: 0 ml: 0 ll: 0) |
| * simply acts as a block delimiter. |
| * |
| * zc can be used to insert custom compression params. |
| * This function invokes ZSTD_compress2 |
| * |
| * The output of this function can be fed into ZSTD_compressSequences() with CCtx |
| * setting of ZSTD_c_blockDelimiters as ZSTD_sf_explicitBlockDelimiters |
| * @return : number of sequences generated |
| */ |
| |
| ZSTDLIB_API size_t ZSTD_generateSequences(ZSTD_CCtx* zc, ZSTD_Sequence* outSeqs, |
| size_t outSeqsSize, const void* src, size_t srcSize); |
| |
| /*! ZSTD_mergeBlockDelimiters() : |
| * Given an array of ZSTD_Sequence, remove all sequences that represent block delimiters/last literals |
| * by merging them into into the literals of the next sequence. |
| * |
| * As such, the final generated result has no explicit representation of block boundaries, |
| * and the final last literals segment is not represented in the sequences. |
| * |
| * The output of this function can be fed into ZSTD_compressSequences() with CCtx |
| * setting of ZSTD_c_blockDelimiters as ZSTD_sf_noBlockDelimiters |
| * @return : number of sequences left after merging |
| */ |
| ZSTDLIB_API size_t ZSTD_mergeBlockDelimiters(ZSTD_Sequence* sequences, size_t seqsSize); |
| |
| /*! ZSTD_compressSequences() : |
| * Compress an array of ZSTD_Sequence, generated from the original source buffer, into dst. |
| * If a dictionary is included, then the cctx should reference the dict. (see: ZSTD_CCtx_refCDict(), ZSTD_CCtx_loadDictionary(), etc.) |
| * The entire source is compressed into a single frame. |
| * |
| * The compression behavior changes based on cctx params. In particular: |
| * If ZSTD_c_blockDelimiters == ZSTD_sf_noBlockDelimiters, the array of ZSTD_Sequence is expected to contain |
| * no block delimiters (defined in ZSTD_Sequence). Block boundaries are roughly determined based on |
| * the block size derived from the cctx, and sequences may be split. This is the default setting. |
| * |
| * If ZSTD_c_blockDelimiters == ZSTD_sf_explicitBlockDelimiters, the array of ZSTD_Sequence is expected to contain |
| * block delimiters (defined in ZSTD_Sequence). Behavior is undefined if no block delimiters are provided. |
| * |
| * If ZSTD_c_validateSequences == 0, this function will blindly accept the sequences provided. Invalid sequences cause undefined |
| * behavior. If ZSTD_c_validateSequences == 1, then if sequence is invalid (see doc/zstd_compression_format.md for |
| * specifics regarding offset/matchlength requirements) then the function will bail out and return an error. |
| * |
| * In addition to the two adjustable experimental params, there are other important cctx params. |
| * - ZSTD_c_minMatch MUST be set as less than or equal to the smallest match generated by the match finder. It has a minimum value of ZSTD_MINMATCH_MIN. |
| * - ZSTD_c_compressionLevel accordingly adjusts the strength of the entropy coder, as it would in typical compression. |
| * - ZSTD_c_windowLog affects offset validation: this function will return an error at higher debug levels if a provided offset |
| * is larger than what the spec allows for a given window log and dictionary (if present). See: doc/zstd_compression_format.md |
| * |
| * Note: Repcodes are, as of now, always re-calculated within this function, so ZSTD_Sequence::rep is unused. |
| * Note 2: Once we integrate ability to ingest repcodes, the explicit block delims mode must respect those repcodes exactly, |
| * and cannot emit an RLE block that disagrees with the repcode history |
| * @return : final compressed size or a ZSTD error. |
| */ |
| ZSTDLIB_API size_t ZSTD_compressSequences(ZSTD_CCtx* const cctx, void* dst, size_t dstSize, |
| const ZSTD_Sequence* inSeqs, size_t inSeqsSize, |
| const void* src, size_t srcSize); |
| |
| |
| /*! ZSTD_writeSkippableFrame() : |
| * Generates a zstd skippable frame containing data given by src, and writes it to dst buffer. |
| * |
| * Skippable frames begin with a a 4-byte magic number. There are 16 possible choices of magic number, |
| * ranging from ZSTD_MAGIC_SKIPPABLE_START to ZSTD_MAGIC_SKIPPABLE_START+15. |
| * As such, the parameter magicVariant controls the exact skippable frame magic number variant used, so |
| * the magic number used will be ZSTD_MAGIC_SKIPPABLE_START + magicVariant. |
| * |
| * Returns an error if destination buffer is not large enough, if the source size is not representable |
| * with a 4-byte unsigned int, or if the parameter magicVariant is greater than 15 (and therefore invalid). |
| * |
| * @return : number of bytes written or a ZSTD error. |
| */ |
| ZSTDLIB_API size_t ZSTD_writeSkippableFrame(void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, unsigned magicVariant); |
| |
| |
| /*************************************** |
| * Memory management |
| ***************************************/ |
| |
| /*! ZSTD_estimate*() : |
| * These functions make it possible to estimate memory usage |
| * of a future {D,C}Ctx, before its creation. |
| * |
| * ZSTD_estimateCCtxSize() will provide a memory budget large enough |
| * for any compression level up to selected one. |
| * Note : Unlike ZSTD_estimateCStreamSize*(), this estimate |
| * does not include space for a window buffer. |
| * Therefore, the estimation is only guaranteed for single-shot compressions, not streaming. |
| * The estimate will assume the input may be arbitrarily large, |
| * which is the worst case. |
| * |
| * When srcSize can be bound by a known and rather "small" value, |
| * this fact can be used to provide a tighter estimation |
| * because the CCtx compression context will need less memory. |
| * This tighter estimation can be provided by more advanced functions |
| * ZSTD_estimateCCtxSize_usingCParams(), which can be used in tandem with ZSTD_getCParams(), |
| * and ZSTD_estimateCCtxSize_usingCCtxParams(), which can be used in tandem with ZSTD_CCtxParams_setParameter(). |
| * Both can be used to estimate memory using custom compression parameters and arbitrary srcSize limits. |
| * |
| * Note 2 : only single-threaded compression is supported. |
| * ZSTD_estimateCCtxSize_usingCCtxParams() will return an error code if ZSTD_c_nbWorkers is >= 1. |
| */ |
| ZSTDLIB_API size_t ZSTD_estimateCCtxSize(int compressionLevel); |
| ZSTDLIB_API size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams); |
| ZSTDLIB_API size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params); |
| ZSTDLIB_API size_t ZSTD_estimateDCtxSize(void); |
| |
| /*! ZSTD_estimateCStreamSize() : |
| * ZSTD_estimateCStreamSize() will provide a budget large enough for any compression level up to selected one. |
| * It will also consider src size to be arbitrarily "large", which is worst case. |
| * If srcSize is known to always be small, ZSTD_estimateCStreamSize_usingCParams() can provide a tighter estimation. |
| * ZSTD_estimateCStreamSize_usingCParams() can be used in tandem with ZSTD_getCParams() to create cParams from compressionLevel. |
| * ZSTD_estimateCStreamSize_usingCCtxParams() can be used in tandem with ZSTD_CCtxParams_setParameter(). Only single-threaded compression is supported. This function will return an error code if ZSTD_c_nbWorkers is >= 1. |
| * Note : CStream size estimation is only correct for single-threaded compression. |
| * ZSTD_DStream memory budget depends on window Size. |
| * This information can be passed manually, using ZSTD_estimateDStreamSize, |
| * or deducted from a valid frame Header, using ZSTD_estimateDStreamSize_fromFrame(); |
| * Note : if streaming is init with function ZSTD_init?Stream_usingDict(), |
| * an internal ?Dict will be created, which additional size is not estimated here. |
| * In this case, get total size by adding ZSTD_estimate?DictSize */ |
| ZSTDLIB_API size_t ZSTD_estimateCStreamSize(int compressionLevel); |
| ZSTDLIB_API size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams); |
| ZSTDLIB_API size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params); |
| ZSTDLIB_API size_t ZSTD_estimateDStreamSize(size_t windowSize); |
| ZSTDLIB_API size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize); |
| |
| /*! ZSTD_estimate?DictSize() : |
| * ZSTD_estimateCDictSize() will bet that src size is relatively "small", and content is copied, like ZSTD_createCDict(). |
| * ZSTD_estimateCDictSize_advanced() makes it possible to control compression parameters precisely, like ZSTD_createCDict_advanced(). |
| * Note : dictionaries created by reference (`ZSTD_dlm_byRef`) are logically smaller. |
| */ |
| ZSTDLIB_API size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel); |
| ZSTDLIB_API size_t ZSTD_estimateCDictSize_advanced(size_t dictSize, ZSTD_compressionParameters cParams, ZSTD_dictLoadMethod_e dictLoadMethod); |
| ZSTDLIB_API size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod); |
| |
| /*! ZSTD_initStatic*() : |
| * Initialize an object using a pre-allocated fixed-size buffer. |
| * workspace: The memory area to emplace the object into. |
| * Provided pointer *must be 8-bytes aligned*. |
| * Buffer must outlive object. |
| * workspaceSize: Use ZSTD_estimate*Size() to determine |
| * how large workspace must be to support target scenario. |
| * @return : pointer to object (same address as workspace, just different type), |
| * or NULL if error (size too small, incorrect alignment, etc.) |
| * Note : zstd will never resize nor malloc() when using a static buffer. |
| * If the object requires more memory than available, |
| * zstd will just error out (typically ZSTD_error_memory_allocation). |
| * Note 2 : there is no corresponding "free" function. |
| * Since workspace is allocated externally, it must be freed externally too. |
| * Note 3 : cParams : use ZSTD_getCParams() to convert a compression level |
| * into its associated cParams. |
| * Limitation 1 : currently not compatible with internal dictionary creation, triggered by |
| * ZSTD_CCtx_loadDictionary(), ZSTD_initCStream_usingDict() or ZSTD_initDStream_usingDict(). |
| * Limitation 2 : static cctx currently not compatible with multi-threading. |
| * Limitation 3 : static dctx is incompatible with legacy support. |
| */ |
| ZSTDLIB_API ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize); |
| ZSTDLIB_API ZSTD_CStream* ZSTD_initStaticCStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticCCtx() */ |
| |
| ZSTDLIB_API ZSTD_DCtx* ZSTD_initStaticDCtx(void* workspace, size_t workspaceSize); |
| ZSTDLIB_API ZSTD_DStream* ZSTD_initStaticDStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticDCtx() */ |
| |
| ZSTDLIB_API const ZSTD_CDict* ZSTD_initStaticCDict( |
| void* workspace, size_t workspaceSize, |
| const void* dict, size_t dictSize, |
| ZSTD_dictLoadMethod_e dictLoadMethod, |
| ZSTD_dictContentType_e dictContentType, |
| ZSTD_compressionParameters cParams); |
| |
| ZSTDLIB_API const ZSTD_DDict* ZSTD_initStaticDDict( |
| void* workspace, size_t workspaceSize, |
| const void* dict, size_t dictSize, |
| ZSTD_dictLoadMethod_e dictLoadMethod, |
| ZSTD_dictContentType_e dictContentType); |
| |
| |
| /*! Custom memory allocation : |
| * These prototypes make it possible to pass your own allocation/free functions. |
| * ZSTD_customMem is provided at creation time, using ZSTD_create*_advanced() variants listed below. |
| * All allocation/free operations will be completed using these custom variants instead of regular <stdlib.h> ones. |
| */ |
| typedef void* (*ZSTD_allocFunction) (void* opaque, size_t size); |
| typedef void (*ZSTD_freeFunction) (void* opaque, void* address); |
| typedef struct { ZSTD_allocFunction customAlloc; ZSTD_freeFunction customFree; void* opaque; } ZSTD_customMem; |
| static |
| #ifdef __GNUC__ |
| __attribute__((__unused__)) |
| #endif |
| ZSTD_customMem const ZSTD_defaultCMem = { NULL, NULL, NULL }; /**< this constant defers to stdlib's functions */ |
| |
| ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem); |
| ZSTDLIB_API ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem); |
| ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem); |
| ZSTDLIB_API ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem); |
| |
| ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictSize, |
| ZSTD_dictLoadMethod_e dictLoadMethod, |
| ZSTD_dictContentType_e dictContentType, |
| ZSTD_compressionParameters cParams, |
| ZSTD_customMem customMem); |
| |
| /* ! Thread pool : |
| * These prototypes make it possible to share a thread pool among multiple compression contexts. |
| * This can limit resources for applications with multiple threads where each one uses |
| * a threaded compression mode (via ZSTD_c_nbWorkers parameter). |
| * ZSTD_createThreadPool creates a new thread pool with a given number of threads. |
| * Note that the lifetime of such pool must exist while being used. |
| * ZSTD_CCtx_refThreadPool assigns a thread pool to a context (use NULL argument value |
| * to use an internal thread pool). |
| * ZSTD_freeThreadPool frees a thread pool. |
| */ |
| typedef struct POOL_ctx_s ZSTD_threadPool; |
| ZSTDLIB_API ZSTD_threadPool* ZSTD_createThreadPool(size_t numThreads); |
| ZSTDLIB_API void ZSTD_freeThreadPool (ZSTD_threadPool* pool); |
| ZSTDLIB_API size_t ZSTD_CCtx_refThreadPool(ZSTD_CCtx* cctx, ZSTD_threadPool* pool); |
| |
| |
| /* |
| * This API is temporary and is expected to change or disappear in the future! |
| */ |
| ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced2( |
| const void* dict, size_t dictSize, |
| ZSTD_dictLoadMethod_e dictLoadMethod, |
| ZSTD_dictContentType_e dictContentType, |
| const ZSTD_CCtx_params* cctxParams, |
| ZSTD_customMem customMem); |
| |
| ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_advanced( |
| const void* dict, size_t dictSize, |
| ZSTD_dictLoadMethod_e dictLoadMethod, |
| ZSTD_dictContentType_e dictContentType, |
| ZSTD_customMem customMem); |
| |
| |
| /*************************************** |
| * Advanced compression functions |
| ***************************************/ |
| |
| /*! ZSTD_createCDict_byReference() : |
| * Create a digested dictionary for compression |
| * Dictionary content is just referenced, not duplicated. |
| * As a consequence, `dictBuffer` **must** outlive CDict, |
| * and its content must remain unmodified throughout the lifetime of CDict. |
| * note: equivalent to ZSTD_createCDict_advanced(), with dictLoadMethod==ZSTD_dlm_byRef */ |
| ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_byReference(const void* dictBuffer, size_t dictSize, int compressionLevel); |
| |
| /*! ZSTD_getDictID_fromCDict() : |
| * Provides the dictID of the dictionary loaded into `cdict`. |
| * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty. |
| * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */ |
| ZSTDLIB_API unsigned ZSTD_getDictID_fromCDict(const ZSTD_CDict* cdict); |
| |
| /*! ZSTD_getCParams() : |
| * @return ZSTD_compressionParameters structure for a selected compression level and estimated srcSize. |
| * `estimatedSrcSize` value is optional, select 0 if not known */ |
| ZSTDLIB_API ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize); |
| |
| /*! ZSTD_getParams() : |
| * same as ZSTD_getCParams(), but @return a full `ZSTD_parameters` object instead of sub-component `ZSTD_compressionParameters`. |
| * All fields of `ZSTD_frameParameters` are set to default : contentSize=1, checksum=0, noDictID=0 */ |
| ZSTDLIB_API ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize); |
| |
| /*! ZSTD_checkCParams() : |
| * Ensure param values remain within authorized range. |
| * @return 0 on success, or an error code (can be checked with ZSTD_isError()) */ |
| ZSTDLIB_API size_t ZSTD_checkCParams(ZSTD_compressionParameters params); |
| |
| /*! ZSTD_adjustCParams() : |
| * optimize params for a given `srcSize` and `dictSize`. |
| * `srcSize` can be unknown, in which case use ZSTD_CONTENTSIZE_UNKNOWN. |
| * `dictSize` must be `0` when there is no dictionary. |
| * cPar can be invalid : all parameters will be clamped within valid range in the @return struct. |
| * This function never fails (wide contract) */ |
| ZSTDLIB_API ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize); |
| |
| /*! ZSTD_compress_advanced() : |
| * Note : this function is now DEPRECATED. |
| * It can be replaced by ZSTD_compress2(), in combination with ZSTD_CCtx_setParameter() and other parameter setters. |
| * This prototype will be marked as deprecated and generate compilation warning on reaching v1.5.x */ |
| ZSTDLIB_API size_t ZSTD_compress_advanced(ZSTD_CCtx* cctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const void* dict,size_t dictSize, |
| ZSTD_parameters params); |
| |
| /*! ZSTD_compress_usingCDict_advanced() : |
| * Note : this function is now REDUNDANT. |
| * It can be replaced by ZSTD_compress2(), in combination with ZSTD_CCtx_loadDictionary() and other parameter setters. |
| * This prototype will be marked as deprecated and generate compilation warning in some future version */ |
| ZSTDLIB_API size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const ZSTD_CDict* cdict, |
| ZSTD_frameParameters fParams); |
| |
| |
| /*! ZSTD_CCtx_loadDictionary_byReference() : |
| * Same as ZSTD_CCtx_loadDictionary(), but dictionary content is referenced, instead of being copied into CCtx. |
| * It saves some memory, but also requires that `dict` outlives its usage within `cctx` */ |
| ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_byReference(ZSTD_CCtx* cctx, const void* dict, size_t dictSize); |
| |
| /*! ZSTD_CCtx_loadDictionary_advanced() : |
| * Same as ZSTD_CCtx_loadDictionary(), but gives finer control over |
| * how to load the dictionary (by copy ? by reference ?) |
| * and how to interpret it (automatic ? force raw mode ? full mode only ?) */ |
| ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType); |
| |
| /*! ZSTD_CCtx_refPrefix_advanced() : |
| * Same as ZSTD_CCtx_refPrefix(), but gives finer control over |
| * how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?) */ |
| ZSTDLIB_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType); |
| |
| /* === experimental parameters === */ |
| /* these parameters can be used with ZSTD_setParameter() |
| * they are not guaranteed to remain supported in the future */ |
| |
| /* Enables rsyncable mode, |
| * which makes compressed files more rsync friendly |
| * by adding periodic synchronization points to the compressed data. |
| * The target average block size is ZSTD_c_jobSize / 2. |
| * It's possible to modify the job size to increase or decrease |
| * the granularity of the synchronization point. |
| * Once the jobSize is smaller than the window size, |
| * it will result in compression ratio degradation. |
| * NOTE 1: rsyncable mode only works when multithreading is enabled. |
| * NOTE 2: rsyncable performs poorly in combination with long range mode, |
| * since it will decrease the effectiveness of synchronization points, |
| * though mileage may vary. |
| * NOTE 3: Rsyncable mode limits maximum compression speed to ~400 MB/s. |
| * If the selected compression level is already running significantly slower, |
| * the overall speed won't be significantly impacted. |
| */ |
| #define ZSTD_c_rsyncable ZSTD_c_experimentalParam1 |
| |
| /* Select a compression format. |
| * The value must be of type ZSTD_format_e. |
| * See ZSTD_format_e enum definition for details */ |
| #define ZSTD_c_format ZSTD_c_experimentalParam2 |
| |
| /* Force back-reference distances to remain < windowSize, |
| * even when referencing into Dictionary content (default:0) */ |
| #define ZSTD_c_forceMaxWindow ZSTD_c_experimentalParam3 |
| |
| /* Controls whether the contents of a CDict |
| * are used in place, or copied into the working context. |
| * Accepts values from the ZSTD_dictAttachPref_e enum. |
| * See the comments on that enum for an explanation of the feature. */ |
| #define ZSTD_c_forceAttachDict ZSTD_c_experimentalParam4 |
| |
| /* Controls how the literals are compressed (default is auto). |
| * The value must be of type ZSTD_literalCompressionMode_e. |
| * See ZSTD_literalCompressionMode_t enum definition for details. |
| */ |
| #define ZSTD_c_literalCompressionMode ZSTD_c_experimentalParam5 |
| |
| /* Tries to fit compressed block size to be around targetCBlockSize. |
| * No target when targetCBlockSize == 0. |
| * There is no guarantee on compressed block size (default:0) */ |
| #define ZSTD_c_targetCBlockSize ZSTD_c_experimentalParam6 |
| |
| /* User's best guess of source size. |
| * Hint is not valid when srcSizeHint == 0. |
| * There is no guarantee that hint is close to actual source size, |
| * but compression ratio may regress significantly if guess considerably underestimates */ |
| #define ZSTD_c_srcSizeHint ZSTD_c_experimentalParam7 |
| |
| /* Controls whether the new and experimental "dedicated dictionary search |
| * structure" can be used. This feature is still rough around the edges, be |
| * prepared for surprising behavior! |
| * |
| * How to use it: |
| * |
| * When using a CDict, whether to use this feature or not is controlled at |
| * CDict creation, and it must be set in a CCtxParams set passed into that |
| * construction (via ZSTD_createCDict_advanced2()). A compression will then |
| * use the feature or not based on how the CDict was constructed; the value of |
| * this param, set in the CCtx, will have no effect. |
| * |
| * However, when a dictionary buffer is passed into a CCtx, such as via |
| * ZSTD_CCtx_loadDictionary(), this param can be set on the CCtx to control |
| * whether the CDict that is created internally can use the feature or not. |
| * |
| * What it does: |
| * |
| * Normally, the internal data structures of the CDict are analogous to what |
| * would be stored in a CCtx after compressing the contents of a dictionary. |
| * To an approximation, a compression using a dictionary can then use those |
| * data structures to simply continue what is effectively a streaming |
| * compression where the simulated compression of the dictionary left off. |
| * Which is to say, the search structures in the CDict are normally the same |
| * format as in the CCtx. |
| * |
| * It is possible to do better, since the CDict is not like a CCtx: the search |
| * structures are written once during CDict creation, and then are only read |
| * after that, while the search structures in the CCtx are both read and |
| * written as the compression goes along. This means we can choose a search |
| * structure for the dictionary that is read-optimized. |
| * |
| * This feature enables the use of that different structure. |
| * |
| * Note that some of the members of the ZSTD_compressionParameters struct have |
| * different semantics and constraints in the dedicated search structure. It is |
| * highly recommended that you simply set a compression level in the CCtxParams |
| * you pass into the CDict creation call, and avoid messing with the cParams |
| * directly. |
| * |
| * Effects: |
| * |
| * This will only have any effect when the selected ZSTD_strategy |
| * implementation supports this feature. Currently, that's limited to |
| * ZSTD_greedy, ZSTD_lazy, and ZSTD_lazy2. |
| * |
| * Note that this means that the CDict tables can no longer be copied into the |
| * CCtx, so the dict attachment mode ZSTD_dictForceCopy will no longer be |
| * useable. The dictionary can only be attached or reloaded. |
| * |
| * In general, you should expect compression to be faster--sometimes very much |
| * so--and CDict creation to be slightly slower. Eventually, we will probably |
| * make this mode the default. |
| */ |
| #define ZSTD_c_enableDedicatedDictSearch ZSTD_c_experimentalParam8 |
| |
| /* ZSTD_c_stableInBuffer |
| * Experimental parameter. |
| * Default is 0 == disabled. Set to 1 to enable. |
| * |
| * Tells the compressor that the ZSTD_inBuffer will ALWAYS be the same |
| * between calls, except for the modifications that zstd makes to pos (the |
| * caller must not modify pos). This is checked by the compressor, and |
| * compression will fail if it ever changes. This means the only flush |
| * mode that makes sense is ZSTD_e_end, so zstd will error if ZSTD_e_end |
| * is not used. The data in the ZSTD_inBuffer in the range [src, src + pos) |
| * MUST not be modified during compression or you will get data corruption. |
| * |
| * When this flag is enabled zstd won't allocate an input window buffer, |
| * because the user guarantees it can reference the ZSTD_inBuffer until |
| * the frame is complete. But, it will still allocate an output buffer |
| * large enough to fit a block (see ZSTD_c_stableOutBuffer). This will also |
| * avoid the memcpy() from the input buffer to the input window buffer. |
| * |
| * NOTE: ZSTD_compressStream2() will error if ZSTD_e_end is not used. |
| * That means this flag cannot be used with ZSTD_compressStream(). |
| * |
| * NOTE: So long as the ZSTD_inBuffer always points to valid memory, using |
| * this flag is ALWAYS memory safe, and will never access out-of-bounds |
| * memory. However, compression WILL fail if you violate the preconditions. |
| * |
| * WARNING: The data in the ZSTD_inBuffer in the range [dst, dst + pos) MUST |
| * not be modified during compression or you will get data corruption. This |
| * is because zstd needs to reference data in the ZSTD_inBuffer to find |
| * matches. Normally zstd maintains its own window buffer for this purpose, |
| * but passing this flag tells zstd to use the user provided buffer. |
| */ |
| #define ZSTD_c_stableInBuffer ZSTD_c_experimentalParam9 |
| |
| /* ZSTD_c_stableOutBuffer |
| * Experimental parameter. |
| * Default is 0 == disabled. Set to 1 to enable. |
| * |
| * Tells he compressor that the ZSTD_outBuffer will not be resized between |
| * calls. Specifically: (out.size - out.pos) will never grow. This gives the |
| * compressor the freedom to say: If the compressed data doesn't fit in the |
| * output buffer then return ZSTD_error_dstSizeTooSmall. This allows us to |
| * always decompress directly into the output buffer, instead of decompressing |
| * into an internal buffer and copying to the output buffer. |
| * |
| * When this flag is enabled zstd won't allocate an output buffer, because |
| * it can write directly to the ZSTD_outBuffer. It will still allocate the |
| * input window buffer (see ZSTD_c_stableInBuffer). |
| * |
| * Zstd will check that (out.size - out.pos) never grows and return an error |
| * if it does. While not strictly necessary, this should prevent surprises. |
| */ |
| #define ZSTD_c_stableOutBuffer ZSTD_c_experimentalParam10 |
| |
| /* ZSTD_c_blockDelimiters |
| * Default is 0 == ZSTD_sf_noBlockDelimiters. |
| * |
| * For use with sequence compression API: ZSTD_compressSequences(). |
| * |
| * Designates whether or not the given array of ZSTD_Sequence contains block delimiters |
| * and last literals, which are defined as sequences with offset == 0 and matchLength == 0. |
| * See the definition of ZSTD_Sequence for more specifics. |
| */ |
| #define ZSTD_c_blockDelimiters ZSTD_c_experimentalParam11 |
| |
| /* ZSTD_c_validateSequences |
| * Default is 0 == disabled. Set to 1 to enable sequence validation. |
| * |
| * For use with sequence compression API: ZSTD_compressSequences(). |
| * Designates whether or not we validate sequences provided to ZSTD_compressSequences() |
| * during function execution. |
| * |
| * Without validation, providing a sequence that does not conform to the zstd spec will cause |
| * undefined behavior, and may produce a corrupted block. |
| * |
| * With validation enabled, a if sequence is invalid (see doc/zstd_compression_format.md for |
| * specifics regarding offset/matchlength requirements) then the function will bail out and |
| * return an error. |
| * |
| */ |
| #define ZSTD_c_validateSequences ZSTD_c_experimentalParam12 |
| |
| /*! ZSTD_CCtx_getParameter() : |
| * Get the requested compression parameter value, selected by enum ZSTD_cParameter, |
| * and store it into int* value. |
| * @return : 0, or an error code (which can be tested with ZSTD_isError()). |
| */ |
| ZSTDLIB_API size_t ZSTD_CCtx_getParameter(const ZSTD_CCtx* cctx, ZSTD_cParameter param, int* value); |
| |
| |
| /*! ZSTD_CCtx_params : |
| * Quick howto : |
| * - ZSTD_createCCtxParams() : Create a ZSTD_CCtx_params structure |
| * - ZSTD_CCtxParams_setParameter() : Push parameters one by one into |
| * an existing ZSTD_CCtx_params structure. |
| * This is similar to |
| * ZSTD_CCtx_setParameter(). |
| * - ZSTD_CCtx_setParametersUsingCCtxParams() : Apply parameters to |
| * an existing CCtx. |
| * These parameters will be applied to |
| * all subsequent frames. |
| * - ZSTD_compressStream2() : Do compression using the CCtx. |
| * - ZSTD_freeCCtxParams() : Free the memory. |
| * |
| * This can be used with ZSTD_estimateCCtxSize_advanced_usingCCtxParams() |
| * for static allocation of CCtx for single-threaded compression. |
| */ |
| ZSTDLIB_API ZSTD_CCtx_params* ZSTD_createCCtxParams(void); |
| ZSTDLIB_API size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params); |
| |
| /*! ZSTD_CCtxParams_reset() : |
| * Reset params to default values. |
| */ |
| ZSTDLIB_API size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params); |
| |
| /*! ZSTD_CCtxParams_init() : |
| * Initializes the compression parameters of cctxParams according to |
| * compression level. All other parameters are reset to their default values. |
| */ |
| ZSTDLIB_API size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel); |
| |
| /*! ZSTD_CCtxParams_init_advanced() : |
| * Initializes the compression and frame parameters of cctxParams according to |
| * params. All other parameters are reset to their default values. |
| */ |
| ZSTDLIB_API size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params); |
| |
| /*! ZSTD_CCtxParams_setParameter() : |
| * Similar to ZSTD_CCtx_setParameter. |
| * Set one compression parameter, selected by enum ZSTD_cParameter. |
| * Parameters must be applied to a ZSTD_CCtx using |
| * ZSTD_CCtx_setParametersUsingCCtxParams(). |
| * @result : a code representing success or failure (which can be tested with |
| * ZSTD_isError()). |
| */ |
| ZSTDLIB_API size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, int value); |
| |
| /*! ZSTD_CCtxParams_getParameter() : |
| * Similar to ZSTD_CCtx_getParameter. |
| * Get the requested value of one compression parameter, selected by enum ZSTD_cParameter. |
| * @result : 0, or an error code (which can be tested with ZSTD_isError()). |
| */ |
| ZSTDLIB_API size_t ZSTD_CCtxParams_getParameter(const ZSTD_CCtx_params* params, ZSTD_cParameter param, int* value); |
| |
| /*! ZSTD_CCtx_setParametersUsingCCtxParams() : |
| * Apply a set of ZSTD_CCtx_params to the compression context. |
| * This can be done even after compression is started, |
| * if nbWorkers==0, this will have no impact until a new compression is started. |
| * if nbWorkers>=1, new parameters will be picked up at next job, |
| * with a few restrictions (windowLog, pledgedSrcSize, nbWorkers, jobSize, and overlapLog are not updated). |
| */ |
| ZSTDLIB_API size_t ZSTD_CCtx_setParametersUsingCCtxParams( |
| ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params); |
| |
| /*! ZSTD_compressStream2_simpleArgs() : |
| * Same as ZSTD_compressStream2(), |
| * but using only integral types as arguments. |
| * This variant might be helpful for binders from dynamic languages |
| * which have troubles handling structures containing memory pointers. |
| */ |
| ZSTDLIB_API size_t ZSTD_compressStream2_simpleArgs ( |
| ZSTD_CCtx* cctx, |
| void* dst, size_t dstCapacity, size_t* dstPos, |
| const void* src, size_t srcSize, size_t* srcPos, |
| ZSTD_EndDirective endOp); |
| |
| |
| /*************************************** |
| * Advanced decompression functions |
| ***************************************/ |
| |
| /*! ZSTD_isFrame() : |
| * Tells if the content of `buffer` starts with a valid Frame Identifier. |
| * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0. |
| * Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled. |
| * Note 3 : Skippable Frame Identifiers are considered valid. */ |
| ZSTDLIB_API unsigned ZSTD_isFrame(const void* buffer, size_t size); |
| |
| /*! ZSTD_createDDict_byReference() : |
| * Create a digested dictionary, ready to start decompression operation without startup delay. |
| * Dictionary content is referenced, and therefore stays in dictBuffer. |
| * It is important that dictBuffer outlives DDict, |
| * it must remain read accessible throughout the lifetime of DDict */ |
| ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize); |
| |
| /*! ZSTD_DCtx_loadDictionary_byReference() : |
| * Same as ZSTD_DCtx_loadDictionary(), |
| * but references `dict` content instead of copying it into `dctx`. |
| * This saves memory if `dict` remains around., |
| * However, it's imperative that `dict` remains accessible (and unmodified) while being used, so it must outlive decompression. */ |
| ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize); |
| |
| /*! ZSTD_DCtx_loadDictionary_advanced() : |
| * Same as ZSTD_DCtx_loadDictionary(), |
| * but gives direct control over |
| * how to load the dictionary (by copy ? by reference ?) |
| * and how to interpret it (automatic ? force raw mode ? full mode only ?). */ |
| ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType); |
| |
| /*! ZSTD_DCtx_refPrefix_advanced() : |
| * Same as ZSTD_DCtx_refPrefix(), but gives finer control over |
| * how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?) */ |
| ZSTDLIB_API size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType); |
| |
| /*! ZSTD_DCtx_setMaxWindowSize() : |
| * Refuses allocating internal buffers for frames requiring a window size larger than provided limit. |
| * This protects a decoder context from reserving too much memory for itself (potential attack scenario). |
| * This parameter is only useful in streaming mode, since no internal buffer is allocated in single-pass mode. |
| * By default, a decompression context accepts all window sizes <= (1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT) |
| * @return : 0, or an error code (which can be tested using ZSTD_isError()). |
| */ |
| ZSTDLIB_API size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize); |
| |
| /*! ZSTD_DCtx_getParameter() : |
| * Get the requested decompression parameter value, selected by enum ZSTD_dParameter, |
| * and store it into int* value. |
| * @return : 0, or an error code (which can be tested with ZSTD_isError()). |
| */ |
| ZSTDLIB_API size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value); |
| |
| /* ZSTD_d_format |
| * experimental parameter, |
| * allowing selection between ZSTD_format_e input compression formats |
| */ |
| #define ZSTD_d_format ZSTD_d_experimentalParam1 |
| /* ZSTD_d_stableOutBuffer |
| * Experimental parameter. |
| * Default is 0 == disabled. Set to 1 to enable. |
| * |
| * Tells the decompressor that the ZSTD_outBuffer will ALWAYS be the same |
| * between calls, except for the modifications that zstd makes to pos (the |
| * caller must not modify pos). This is checked by the decompressor, and |
| * decompression will fail if it ever changes. Therefore the ZSTD_outBuffer |
| * MUST be large enough to fit the entire decompressed frame. This will be |
| * checked when the frame content size is known. The data in the ZSTD_outBuffer |
| * in the range [dst, dst + pos) MUST not be modified during decompression |
| * or you will get data corruption. |
| * |
| * When this flags is enabled zstd won't allocate an output buffer, because |
| * it can write directly to the ZSTD_outBuffer, but it will still allocate |
| * an input buffer large enough to fit any compressed block. This will also |
| * avoid the memcpy() from the internal output buffer to the ZSTD_outBuffer. |
| * If you need to avoid the input buffer allocation use the buffer-less |
| * streaming API. |
| * |
| * NOTE: So long as the ZSTD_outBuffer always points to valid memory, using |
| * this flag is ALWAYS memory safe, and will never access out-of-bounds |
| * memory. However, decompression WILL fail if you violate the preconditions. |
| * |
| * WARNING: The data in the ZSTD_outBuffer in the range [dst, dst + pos) MUST |
| * not be modified during decompression or you will get data corruption. This |
| * is because zstd needs to reference data in the ZSTD_outBuffer to regenerate |
| * matches. Normally zstd maintains its own buffer for this purpose, but passing |
| * this flag tells zstd to use the user provided buffer. |
| */ |
| #define ZSTD_d_stableOutBuffer ZSTD_d_experimentalParam2 |
| |
| /* ZSTD_d_forceIgnoreChecksum |
| * Experimental parameter. |
| * Default is 0 == disabled. Set to 1 to enable |
| * |
| * Tells the decompressor to skip checksum validation during decompression, regardless |
| * of whether checksumming was specified during compression. This offers some |
| * slight performance benefits, and may be useful for debugging. |
| * Param has values of type ZSTD_forceIgnoreChecksum_e |
| */ |
| #define ZSTD_d_forceIgnoreChecksum ZSTD_d_experimentalParam3 |
| |
| /* ZSTD_d_refMultipleDDicts |
| * Experimental parameter. |
| * Default is 0 == disabled. Set to 1 to enable |
| * |
| * If enabled and dctx is allocated on the heap, then additional memory will be allocated |
| * to store references to multiple ZSTD_DDict. That is, multiple calls of ZSTD_refDDict() |
| * using a given ZSTD_DCtx, rather than overwriting the previous DDict reference, will instead |
| * store all references. At decompression time, the appropriate dictID is selected |
| * from the set of DDicts based on the dictID in the frame. |
| * |
| * Usage is simply calling ZSTD_refDDict() on multiple dict buffers. |
| * |
| * Param has values of byte ZSTD_refMultipleDDicts_e |
| * |
| * WARNING: Enabling this parameter and calling ZSTD_DCtx_refDDict(), will trigger memory |
| * allocation for the hash table. ZSTD_freeDCtx() also frees this memory. |
| * Memory is allocated as per ZSTD_DCtx::customMem. |
| * |
| * Although this function allocates memory for the table, the user is still responsible for |
| * memory management of the underlying ZSTD_DDict* themselves. |
| */ |
| #define ZSTD_d_refMultipleDDicts ZSTD_d_experimentalParam4 |
| |
| |
| /*! ZSTD_DCtx_setFormat() : |
| * Instruct the decoder context about what kind of data to decode next. |
| * This instruction is mandatory to decode data without a fully-formed header, |
| * such ZSTD_f_zstd1_magicless for example. |
| * @return : 0, or an error code (which can be tested using ZSTD_isError()). */ |
| ZSTDLIB_API size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format); |
| |
| /*! ZSTD_decompressStream_simpleArgs() : |
| * Same as ZSTD_decompressStream(), |
| * but using only integral types as arguments. |
| * This can be helpful for binders from dynamic languages |
| * which have troubles handling structures containing memory pointers. |
| */ |
| ZSTDLIB_API size_t ZSTD_decompressStream_simpleArgs ( |
| ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, size_t* dstPos, |
| const void* src, size_t srcSize, size_t* srcPos); |
| |
| |
| /******************************************************************** |
| * Advanced streaming functions |
| * Warning : most of these functions are now redundant with the Advanced API. |
| * Once Advanced API reaches "stable" status, |
| * redundant functions will be deprecated, and then at some point removed. |
| ********************************************************************/ |
| |
| /*===== Advanced Streaming compression functions =====*/ |
| |
| /*! ZSTD_initCStream_srcSize() : |
| * This function is deprecated, and equivalent to: |
| * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); |
| * ZSTD_CCtx_refCDict(zcs, NULL); // clear the dictionary (if any) |
| * ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel); |
| * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize); |
| * |
| * pledgedSrcSize must be correct. If it is not known at init time, use |
| * ZSTD_CONTENTSIZE_UNKNOWN. Note that, for compatibility with older programs, |
| * "0" also disables frame content size field. It may be enabled in the future. |
| * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x |
| */ |
| ZSTDLIB_API size_t |
| ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, |
| int compressionLevel, |
| unsigned long long pledgedSrcSize); |
| |
| /*! ZSTD_initCStream_usingDict() : |
| * This function is deprecated, and is equivalent to: |
| * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); |
| * ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel); |
| * ZSTD_CCtx_loadDictionary(zcs, dict, dictSize); |
| * |
| * Creates of an internal CDict (incompatible with static CCtx), except if |
| * dict == NULL or dictSize < 8, in which case no dict is used. |
| * Note: dict is loaded with ZSTD_dct_auto (treated as a full zstd dictionary if |
| * it begins with ZSTD_MAGIC_DICTIONARY, else as raw content) and ZSTD_dlm_byCopy. |
| * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x |
| */ |
| ZSTDLIB_API size_t |
| ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, |
| const void* dict, size_t dictSize, |
| int compressionLevel); |
| |
| /*! ZSTD_initCStream_advanced() : |
| * This function is deprecated, and is approximately equivalent to: |
| * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); |
| * // Pseudocode: Set each zstd parameter and leave the rest as-is. |
| * for ((param, value) : params) { |
| * ZSTD_CCtx_setParameter(zcs, param, value); |
| * } |
| * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize); |
| * ZSTD_CCtx_loadDictionary(zcs, dict, dictSize); |
| * |
| * dict is loaded with ZSTD_dct_auto and ZSTD_dlm_byCopy. |
| * pledgedSrcSize must be correct. |
| * If srcSize is not known at init time, use value ZSTD_CONTENTSIZE_UNKNOWN. |
| * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x |
| */ |
| ZSTDLIB_API size_t |
| ZSTD_initCStream_advanced(ZSTD_CStream* zcs, |
| const void* dict, size_t dictSize, |
| ZSTD_parameters params, |
| unsigned long long pledgedSrcSize); |
| |
| /*! ZSTD_initCStream_usingCDict() : |
| * This function is deprecated, and equivalent to: |
| * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); |
| * ZSTD_CCtx_refCDict(zcs, cdict); |
| * |
| * note : cdict will just be referenced, and must outlive compression session |
| * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x |
| */ |
| ZSTDLIB_API size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict); |
| |
| /*! ZSTD_initCStream_usingCDict_advanced() : |
| * This function is DEPRECATED, and is approximately equivalent to: |
| * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); |
| * // Pseudocode: Set each zstd frame parameter and leave the rest as-is. |
| * for ((fParam, value) : fParams) { |
| * ZSTD_CCtx_setParameter(zcs, fParam, value); |
| * } |
| * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize); |
| * ZSTD_CCtx_refCDict(zcs, cdict); |
| * |
| * same as ZSTD_initCStream_usingCDict(), with control over frame parameters. |
| * pledgedSrcSize must be correct. If srcSize is not known at init time, use |
| * value ZSTD_CONTENTSIZE_UNKNOWN. |
| * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x |
| */ |
| ZSTDLIB_API size_t |
| ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs, |
| const ZSTD_CDict* cdict, |
| ZSTD_frameParameters fParams, |
| unsigned long long pledgedSrcSize); |
| |
| /*! ZSTD_resetCStream() : |
| * This function is deprecated, and is equivalent to: |
| * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); |
| * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize); |
| * |
| * start a new frame, using same parameters from previous frame. |
| * This is typically useful to skip dictionary loading stage, since it will re-use it in-place. |
| * Note that zcs must be init at least once before using ZSTD_resetCStream(). |
| * If pledgedSrcSize is not known at reset time, use macro ZSTD_CONTENTSIZE_UNKNOWN. |
| * If pledgedSrcSize > 0, its value must be correct, as it will be written in header, and controlled at the end. |
| * For the time being, pledgedSrcSize==0 is interpreted as "srcSize unknown" for compatibility with older programs, |
| * but it will change to mean "empty" in future version, so use macro ZSTD_CONTENTSIZE_UNKNOWN instead. |
| * @return : 0, or an error code (which can be tested using ZSTD_isError()) |
| * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x |
| */ |
| ZSTDLIB_API size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize); |
| |
| |
| typedef struct { |
| unsigned long long ingested; /* nb input bytes read and buffered */ |
| unsigned long long consumed; /* nb input bytes actually compressed */ |
| unsigned long long produced; /* nb of compressed bytes generated and buffered */ |
| unsigned long long flushed; /* nb of compressed bytes flushed : not provided; can be tracked from caller side */ |
| unsigned currentJobID; /* MT only : latest started job nb */ |
| unsigned nbActiveWorkers; /* MT only : nb of workers actively compressing at probe time */ |
| } ZSTD_frameProgression; |
| |
| /* ZSTD_getFrameProgression() : |
| * tells how much data has been ingested (read from input) |
| * consumed (input actually compressed) and produced (output) for current frame. |
| * Note : (ingested - consumed) is amount of input data buffered internally, not yet compressed. |
| * Aggregates progression inside active worker threads. |
| */ |
| ZSTDLIB_API ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx); |
| |
| /*! ZSTD_toFlushNow() : |
| * Tell how many bytes are ready to be flushed immediately. |
| * Useful for multithreading scenarios (nbWorkers >= 1). |
| * Probe the oldest active job, defined as oldest job not yet entirely flushed, |
| * and check its output buffer. |
| * @return : amount of data stored in oldest job and ready to be flushed immediately. |
| * if @return == 0, it means either : |
| * + there is no active job (could be checked with ZSTD_frameProgression()), or |
| * + oldest job is still actively compressing data, |
| * but everything it has produced has also been flushed so far, |
| * therefore flush speed is limited by production speed of oldest job |
| * irrespective of the speed of concurrent (and newer) jobs. |
| */ |
| ZSTDLIB_API size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx); |
| |
| |
| /*===== Advanced Streaming decompression functions =====*/ |
| |
| /*! |
| * This function is deprecated, and is equivalent to: |
| * |
| * ZSTD_DCtx_reset(zds, ZSTD_reset_session_only); |
| * ZSTD_DCtx_loadDictionary(zds, dict, dictSize); |
| * |
| * note: no dictionary will be used if dict == NULL or dictSize < 8 |
| * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x |
| */ |
| ZSTDLIB_API size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize); |
| |
| /*! |
| * This function is deprecated, and is equivalent to: |
| * |
| * ZSTD_DCtx_reset(zds, ZSTD_reset_session_only); |
| * ZSTD_DCtx_refDDict(zds, ddict); |
| * |
| * note : ddict is referenced, it must outlive decompression session |
| * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x |
| */ |
| ZSTDLIB_API size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDict* ddict); |
| |
| /*! |
| * This function is deprecated, and is equivalent to: |
| * |
| * ZSTD_DCtx_reset(zds, ZSTD_reset_session_only); |
| * |
| * re-use decompression parameters from previous init; saves dictionary loading |
| * Note : this prototype will be marked as deprecated and generate compilation warnings on reaching v1.5.x |
| */ |
| ZSTDLIB_API size_t ZSTD_resetDStream(ZSTD_DStream* zds); |
| |
| |
| /********************************************************************* |
| * Buffer-less and synchronous inner streaming functions |
| * |
| * This is an advanced API, giving full control over buffer management, for users which need direct control over memory. |
| * But it's also a complex one, with several restrictions, documented below. |
| * Prefer normal streaming API for an easier experience. |
| ********************************************************************* */ |
| |
| /** |
| Buffer-less streaming compression (synchronous mode) |
| |
| A ZSTD_CCtx object is required to track streaming operations. |
| Use ZSTD_createCCtx() / ZSTD_freeCCtx() to manage resource. |
| ZSTD_CCtx object can be re-used multiple times within successive compression operations. |
| |
| Start by initializing a context. |
| Use ZSTD_compressBegin(), or ZSTD_compressBegin_usingDict() for dictionary compression, |
| or ZSTD_compressBegin_advanced(), for finer parameter control. |
| It's also possible to duplicate a reference context which has already been initialized, using ZSTD_copyCCtx() |
| |
| Then, consume your input using ZSTD_compressContinue(). |
| There are some important considerations to keep in mind when using this advanced function : |
| - ZSTD_compressContinue() has no internal buffer. It uses externally provided buffers only. |
| - Interface is synchronous : input is consumed entirely and produces 1+ compressed blocks. |
| - Caller must ensure there is enough space in `dst` to store compressed data under worst case scenario. |
| Worst case evaluation is provided by ZSTD_compressBound(). |
| ZSTD_compressContinue() doesn't guarantee recover after a failed compression. |
| - ZSTD_compressContinue() presumes prior input ***is still accessible and unmodified*** (up to maximum distance size, see WindowLog). |
| It remembers all previous contiguous blocks, plus one separated memory segment (which can itself consists of multiple contiguous blocks) |
| - ZSTD_compressContinue() detects that prior input has been overwritten when `src` buffer overlaps. |
| In which case, it will "discard" the relevant memory section from its history. |
| |
| Finish a frame with ZSTD_compressEnd(), which will write the last block(s) and optional checksum. |
| It's possible to use srcSize==0, in which case, it will write a final empty block to end the frame. |
| Without last block mark, frames are considered unfinished (hence corrupted) by compliant decoders. |
| |
| `ZSTD_CCtx` object can be re-used (ZSTD_compressBegin()) to compress again. |
| */ |
| |
| /*===== Buffer-less streaming compression functions =====*/ |
| ZSTDLIB_API size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel); |
| ZSTDLIB_API size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel); |
| ZSTDLIB_API size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize); /**< pledgedSrcSize : If srcSize is not known at init time, use ZSTD_CONTENTSIZE_UNKNOWN */ |
| ZSTDLIB_API size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict); /**< note: fails if cdict==NULL */ |
| ZSTDLIB_API size_t ZSTD_compressBegin_usingCDict_advanced(ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict, ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize); /* compression parameters are already set within cdict. pledgedSrcSize must be correct. If srcSize is not known, use macro ZSTD_CONTENTSIZE_UNKNOWN */ |
| ZSTDLIB_API size_t ZSTD_copyCCtx(ZSTD_CCtx* cctx, const ZSTD_CCtx* preparedCCtx, unsigned long long pledgedSrcSize); /**< note: if pledgedSrcSize is not known, use ZSTD_CONTENTSIZE_UNKNOWN */ |
| |
| ZSTDLIB_API size_t ZSTD_compressContinue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); |
| ZSTDLIB_API size_t ZSTD_compressEnd(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); |
| |
| |
| /** |
| Buffer-less streaming decompression (synchronous mode) |
| |
| A ZSTD_DCtx object is required to track streaming operations. |
| Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it. |
| A ZSTD_DCtx object can be re-used multiple times. |
| |
| First typical operation is to retrieve frame parameters, using ZSTD_getFrameHeader(). |
| Frame header is extracted from the beginning of compressed frame, so providing only the frame's beginning is enough. |
| Data fragment must be large enough to ensure successful decoding. |
| `ZSTD_frameHeaderSize_max` bytes is guaranteed to always be large enough. |
| @result : 0 : successful decoding, the `ZSTD_frameHeader` structure is correctly filled. |
| >0 : `srcSize` is too small, please provide at least @result bytes on next attempt. |
| errorCode, which can be tested using ZSTD_isError(). |
| |
| It fills a ZSTD_frameHeader structure with important information to correctly decode the frame, |
| such as the dictionary ID, content size, or maximum back-reference distance (`windowSize`). |
| Note that these values could be wrong, either because of data corruption, or because a 3rd party deliberately spoofs false information. |
| As a consequence, check that values remain within valid application range. |
| For example, do not allocate memory blindly, check that `windowSize` is within expectation. |
| Each application can set its own limits, depending on local restrictions. |
| For extended interoperability, it is recommended to support `windowSize` of at least 8 MB. |
| |
| ZSTD_decompressContinue() needs previous data blocks during decompression, up to `windowSize` bytes. |
| ZSTD_decompressContinue() is very sensitive to contiguity, |
| if 2 blocks don't follow each other, make sure that either the compressor breaks contiguity at the same place, |
| or that previous contiguous segment is large enough to properly handle maximum back-reference distance. |
| There are multiple ways to guarantee this condition. |
| |
| The most memory efficient way is to use a round buffer of sufficient size. |
| Sufficient size is determined by invoking ZSTD_decodingBufferSize_min(), |
| which can @return an error code if required value is too large for current system (in 32-bits mode). |
| In a round buffer methodology, ZSTD_decompressContinue() decompresses each block next to previous one, |
| up to the moment there is not enough room left in the buffer to guarantee decoding another full block, |
| which maximum size is provided in `ZSTD_frameHeader` structure, field `blockSizeMax`. |
| At which point, decoding can resume from the beginning of the buffer. |
| Note that already decoded data stored in the buffer should be flushed before being overwritten. |
| |
| There are alternatives possible, for example using two or more buffers of size `windowSize` each, though they consume more memory. |
| |
| Finally, if you control the compression process, you can also ignore all buffer size rules, |
| as long as the encoder and decoder progress in "lock-step", |
| aka use exactly the same buffer sizes, break contiguity at the same place, etc. |
| |
| Once buffers are setup, start decompression, with ZSTD_decompressBegin(). |
| If decompression requires a dictionary, use ZSTD_decompressBegin_usingDict() or ZSTD_decompressBegin_usingDDict(). |
| |
| Then use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue() alternatively. |
| ZSTD_nextSrcSizeToDecompress() tells how many bytes to provide as 'srcSize' to ZSTD_decompressContinue(). |
| ZSTD_decompressContinue() requires this _exact_ amount of bytes, or it will fail. |
| |
| @result of ZSTD_decompressContinue() is the number of bytes regenerated within 'dst' (necessarily <= dstCapacity). |
| It can be zero : it just means ZSTD_decompressContinue() has decoded some metadata item. |
| It can also be an error code, which can be tested with ZSTD_isError(). |
| |
| A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero. |
| Context can then be reset to start a new decompression. |
| |
| Note : it's possible to know if next input to present is a header or a block, using ZSTD_nextInputType(). |
| This information is not required to properly decode a frame. |
| |
| == Special case : skippable frames == |
| |
| Skippable frames allow integration of user-defined data into a flow of concatenated frames. |
| Skippable frames will be ignored (skipped) by decompressor. |
| The format of skippable frames is as follows : |
| a) Skippable frame ID - 4 Bytes, Little endian format, any value from 0x184D2A50 to 0x184D2A5F |
| b) Frame Size - 4 Bytes, Little endian format, unsigned 32-bits |
| c) Frame Content - any content (User Data) of length equal to Frame Size |
| For skippable frames ZSTD_getFrameHeader() returns zfhPtr->frameType==ZSTD_skippableFrame. |
| For skippable frames ZSTD_decompressContinue() always returns 0 : it only skips the content. |
| */ |
| |
| /*===== Buffer-less streaming decompression functions =====*/ |
| typedef enum { ZSTD_frame, ZSTD_skippableFrame } ZSTD_frameType_e; |
| typedef struct { |
| unsigned long long frameContentSize; /* if == ZSTD_CONTENTSIZE_UNKNOWN, it means this field is not available. 0 means "empty" */ |
| unsigned long long windowSize; /* can be very large, up to <= frameContentSize */ |
| unsigned blockSizeMax; |
| ZSTD_frameType_e frameType; /* if == ZSTD_skippableFrame, frameContentSize is the size of skippable content */ |
| unsigned headerSize; |
| unsigned dictID; |
| unsigned checksumFlag; |
| } ZSTD_frameHeader; |
| |
| /*! ZSTD_getFrameHeader() : |
| * decode Frame Header, or requires larger `srcSize`. |
| * @return : 0, `zfhPtr` is correctly filled, |
| * >0, `srcSize` is too small, value is wanted `srcSize` amount, |
| * or an error code, which can be tested using ZSTD_isError() */ |
| ZSTDLIB_API size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize); /**< doesn't consume input */ |
| /*! ZSTD_getFrameHeader_advanced() : |
| * same as ZSTD_getFrameHeader(), |
| * with added capability to select a format (like ZSTD_f_zstd1_magicless) */ |
| ZSTDLIB_API size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format); |
| ZSTDLIB_API size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize); /**< when frame content size is not known, pass in frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN */ |
| |
| ZSTDLIB_API size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx); |
| ZSTDLIB_API size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize); |
| ZSTDLIB_API size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict); |
| |
| ZSTDLIB_API size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx); |
| ZSTDLIB_API size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); |
| |
| /* misc */ |
| ZSTDLIB_API void ZSTD_copyDCtx(ZSTD_DCtx* dctx, const ZSTD_DCtx* preparedDCtx); |
| typedef enum { ZSTDnit_frameHeader, ZSTDnit_blockHeader, ZSTDnit_block, ZSTDnit_lastBlock, ZSTDnit_checksum, ZSTDnit_skippableFrame } ZSTD_nextInputType_e; |
| ZSTDLIB_API ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx); |
| |
| |
| |
| |
| /* ============================ */ |
| /** Block level API */ |
| /* ============================ */ |
| |
| /*! |
| Block functions produce and decode raw zstd blocks, without frame metadata. |
| Frame metadata cost is typically ~12 bytes, which can be non-negligible for very small blocks (< 100 bytes). |
| But users will have to take in charge needed metadata to regenerate data, such as compressed and content sizes. |
| |
| A few rules to respect : |
| - Compressing and decompressing require a context structure |
| + Use ZSTD_createCCtx() and ZSTD_createDCtx() |
| - It is necessary to init context before starting |
| + compression : any ZSTD_compressBegin*() variant, including with dictionary |
| + decompression : any ZSTD_decompressBegin*() variant, including with dictionary |
| + copyCCtx() and copyDCtx() can be used too |
| - Block size is limited, it must be <= ZSTD_getBlockSize() <= ZSTD_BLOCKSIZE_MAX == 128 KB |
| + If input is larger than a block size, it's necessary to split input data into multiple blocks |
| + For inputs larger than a single block, consider using regular ZSTD_compress() instead. |
| Frame metadata is not that costly, and quickly becomes negligible as source size grows larger than a block. |
| - When a block is considered not compressible enough, ZSTD_compressBlock() result will be 0 (zero) ! |
| ===> In which case, nothing is produced into `dst` ! |
| + User __must__ test for such outcome and deal directly with uncompressed data |
| + A block cannot be declared incompressible if ZSTD_compressBlock() return value was != 0. |
| Doing so would mess up with statistics history, leading to potential data corruption. |
| + ZSTD_decompressBlock() _doesn't accept uncompressed data as input_ !! |
| + In case of multiple successive blocks, should some of them be uncompressed, |
| decoder must be informed of their existence in order to follow proper history. |
| Use ZSTD_insertBlock() for such a case. |
| */ |
| |
| /*===== Raw zstd block functions =====*/ |
| ZSTDLIB_API size_t ZSTD_getBlockSize (const ZSTD_CCtx* cctx); |
| ZSTDLIB_API size_t ZSTD_compressBlock (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); |
| ZSTDLIB_API size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); |
| ZSTDLIB_API size_t ZSTD_insertBlock (ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize); /**< insert uncompressed block into `dctx` history. Useful for multi-blocks decompression. */ |
| |
| |
| #endif /* ZSTD_H_ZSTD_STATIC_LINKING_ONLY */ |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| /**** ended inlining ../zstd.h ****/ |
| #define FSE_STATIC_LINKING_ONLY |
| /**** skipping file: fse.h ****/ |
| #define HUF_STATIC_LINKING_ONLY |
| /**** skipping file: huf.h ****/ |
| #ifndef XXH_STATIC_LINKING_ONLY |
| # define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */ |
| #endif |
| /**** start inlining xxhash.h ****/ |
| /* |
| * xxHash - Extremely Fast Hash algorithm |
| * Header File |
| * Copyright (c) 2012-2021, Yann Collet, Facebook, Inc. |
| * |
| * You can contact the author at : |
| * - xxHash source repository : https://github.com/Cyan4973/xxHash |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| /* Notice extracted from xxHash homepage : |
| |
| xxHash is an extremely fast Hash algorithm, running at RAM speed limits. |
| It also successfully passes all tests from the SMHasher suite. |
| |
| Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz) |
| |
| Name Speed Q.Score Author |
| xxHash 5.4 GB/s 10 |
| CrapWow 3.2 GB/s 2 Andrew |
| MumurHash 3a 2.7 GB/s 10 Austin Appleby |
| SpookyHash 2.0 GB/s 10 Bob Jenkins |
| SBox 1.4 GB/s 9 Bret Mulvey |
| Lookup3 1.2 GB/s 9 Bob Jenkins |
| SuperFastHash 1.2 GB/s 1 Paul Hsieh |
| CityHash64 1.05 GB/s 10 Pike & Alakuijala |
| FNV 0.55 GB/s 5 Fowler, Noll, Vo |
| CRC32 0.43 GB/s 9 |
| MD5-32 0.33 GB/s 10 Ronald L. Rivest |
| SHA1-32 0.28 GB/s 10 |
| |
| Q.Score is a measure of quality of the hash function. |
| It depends on successfully passing SMHasher test set. |
| 10 is a perfect score. |
| |
| A 64-bits version, named XXH64, is available since r35. |
| It offers much better speed, but for 64-bits applications only. |
| Name Speed on 64 bits Speed on 32 bits |
| XXH64 13.8 GB/s 1.9 GB/s |
| XXH32 6.8 GB/s 6.0 GB/s |
| */ |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| #ifndef XXHASH_H_5627135585666179 |
| #define XXHASH_H_5627135585666179 1 |
| |
| |
| /* **************************** |
| * Definitions |
| ******************************/ |
| /**** skipping file: zstd_deps.h ****/ |
| typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode; |
| |
| |
| /* **************************** |
| * API modifier |
| ******************************/ |
| /** XXH_PRIVATE_API |
| * This is useful if you want to include xxhash functions in `static` mode |
| * in order to inline them, and remove their symbol from the public list. |
| * Methodology : |
| * #define XXH_PRIVATE_API |
| * #include "xxhash.h" |
| * `xxhash.c` is automatically included. |
| * It's not useful to compile and link it as a separate module anymore. |
| */ |
| #ifdef XXH_PRIVATE_API |
| # ifndef XXH_STATIC_LINKING_ONLY |
| # define XXH_STATIC_LINKING_ONLY |
| # endif |
| # if defined(__GNUC__) |
| # define XXH_PUBLIC_API static __inline __attribute__((unused)) |
| # elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
| # define XXH_PUBLIC_API static inline |
| # elif defined(_MSC_VER) |
| # define XXH_PUBLIC_API static __inline |
| # else |
| # define XXH_PUBLIC_API static /* this version may generate warnings for unused static functions; disable the relevant warning */ |
| # endif |
| #else |
| # define XXH_PUBLIC_API /* do nothing */ |
| #endif /* XXH_PRIVATE_API */ |
| |
| /*!XXH_NAMESPACE, aka Namespace Emulation : |
| |
| If you want to include _and expose_ xxHash functions from within your own library, |
| but also want to avoid symbol collisions with another library which also includes xxHash, |
| |
| you can use XXH_NAMESPACE, to automatically prefix any public symbol from xxhash library |
| with the value of XXH_NAMESPACE (so avoid to keep it NULL and avoid numeric values). |
| |
| Note that no change is required within the calling program as long as it includes `xxhash.h` : |
| regular symbol name will be automatically translated by this header. |
| */ |
| #ifdef XXH_NAMESPACE |
| # define XXH_CAT(A,B) A##B |
| # define XXH_NAME2(A,B) XXH_CAT(A,B) |
| # define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) |
| # define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) |
| # define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) |
| # define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) |
| # define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) |
| # define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) |
| # define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) |
| # define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) |
| # define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) |
| # define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) |
| # define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) |
| # define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) |
| # define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) |
| # define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) |
| # define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) |
| # define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) |
| # define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) |
| # define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) |
| # define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) |
| #endif |
| |
| |
| /* ************************************* |
| * Version |
| ***************************************/ |
| #define XXH_VERSION_MAJOR 0 |
| #define XXH_VERSION_MINOR 6 |
| #define XXH_VERSION_RELEASE 2 |
| #define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE) |
| XXH_PUBLIC_API unsigned XXH_versionNumber (void); |
| |
| |
| /* **************************** |
| * Simple Hash Functions |
| ******************************/ |
| typedef unsigned int XXH32_hash_t; |
| typedef unsigned long long XXH64_hash_t; |
| |
| XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, unsigned int seed); |
| XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, unsigned long long seed); |
| |
| /*! |
| XXH32() : |
| Calculate the 32-bits hash of sequence "length" bytes stored at memory address "input". |
| The memory between input & input+length must be valid (allocated and read-accessible). |
| "seed" can be used to alter the result predictably. |
| Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s |
| XXH64() : |
| Calculate the 64-bits hash of sequence of length "len" stored at memory address "input". |
| "seed" can be used to alter the result predictably. |
| This function runs 2x faster on 64-bits systems, but slower on 32-bits systems (see benchmark). |
| */ |
| |
| |
| /* **************************** |
| * Streaming Hash Functions |
| ******************************/ |
| typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */ |
| typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ |
| |
| /*! State allocation, compatible with dynamic libraries */ |
| |
| XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void); |
| XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr); |
| |
| XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void); |
| XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr); |
| |
| |
| /* hash streaming */ |
| |
| XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, unsigned int seed); |
| XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length); |
| XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr); |
| |
| XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, unsigned long long seed); |
| XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length); |
| XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr); |
| |
| /* |
| These functions generate the xxHash of an input provided in multiple segments. |
| Note that, for small input, they are slower than single-call functions, due to state management. |
| For small input, prefer `XXH32()` and `XXH64()` . |
| |
| XXH state must first be allocated, using XXH*_createState() . |
| |
| Start a new hash by initializing state with a seed, using XXH*_reset(). |
| |
| Then, feed the hash state by calling XXH*_update() as many times as necessary. |
| Obviously, input must be allocated and read accessible. |
| The function returns an error code, with 0 meaning OK, and any other value meaning there is an error. |
| |
| Finally, a hash value can be produced anytime, by using XXH*_digest(). |
| This function returns the nn-bits hash as an int or long long. |
| |
| It's still possible to continue inserting input into the hash state after a digest, |
| and generate some new hashes later on, by calling again XXH*_digest(). |
| |
| When done, free XXH state space if it was allocated dynamically. |
| */ |
| |
| |
| /* ************************** |
| * Utils |
| ****************************/ |
| #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* ! C99 */ |
| # define restrict /* disable restrict */ |
| #endif |
| |
| XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dst_state, const XXH32_state_t* restrict src_state); |
| XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dst_state, const XXH64_state_t* restrict src_state); |
| |
| |
| /* ************************** |
| * Canonical representation |
| ****************************/ |
| /* Default result type for XXH functions are primitive unsigned 32 and 64 bits. |
| * The canonical representation uses human-readable write convention, aka big-endian (large digits first). |
| * These functions allow transformation of hash result into and from its canonical format. |
| * This way, hash values can be written into a file / memory, and remain comparable on different systems and programs. |
| */ |
| typedef struct { unsigned char digest[4]; } XXH32_canonical_t; |
| typedef struct { unsigned char digest[8]; } XXH64_canonical_t; |
| |
| XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash); |
| XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash); |
| |
| XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src); |
| XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src); |
| |
| #endif /* XXHASH_H_5627135585666179 */ |
| |
| |
| |
| /* ================================================================================================ |
| This section contains definitions which are not guaranteed to remain stable. |
| They may change in future versions, becoming incompatible with a different version of the library. |
| They shall only be used with static linking. |
| Never use these definitions in association with dynamic linking ! |
| =================================================================================================== */ |
| #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXH_STATIC_H_3543687687345) |
| #define XXH_STATIC_H_3543687687345 |
| |
| /* These definitions are only meant to allow allocation of XXH state |
| statically, on stack, or in a struct for example. |
| Do not use members directly. */ |
| |
| struct XXH32_state_s { |
| unsigned total_len_32; |
| unsigned large_len; |
| unsigned v1; |
| unsigned v2; |
| unsigned v3; |
| unsigned v4; |
| unsigned mem32[4]; /* buffer defined as U32 for alignment */ |
| unsigned memsize; |
| unsigned reserved; /* never read nor write, will be removed in a future version */ |
| }; /* typedef'd to XXH32_state_t */ |
| |
| struct XXH64_state_s { |
| unsigned long long total_len; |
| unsigned long long v1; |
| unsigned long long v2; |
| unsigned long long v3; |
| unsigned long long v4; |
| unsigned long long mem64[4]; /* buffer defined as U64 for alignment */ |
| unsigned memsize; |
| unsigned reserved[2]; /* never read nor write, will be removed in a future version */ |
| }; /* typedef'd to XXH64_state_t */ |
| |
| |
| # ifdef XXH_PRIVATE_API |
| /**** start inlining xxhash.c ****/ |
| /* |
| * xxHash - Fast Hash algorithm |
| * Copyright (c) 2012-2021, Yann Collet, Facebook, Inc. |
| * |
| * You can contact the author at : |
| * - xxHash homepage: http://www.xxhash.com |
| * - xxHash source repository : https://github.com/Cyan4973/xxHash |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| |
| /* ************************************* |
| * Tuning parameters |
| ***************************************/ |
| /*!XXH_FORCE_MEMORY_ACCESS : |
| * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. |
| * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. |
| * The below switch allow to select different access method for improved performance. |
| * Method 0 (default) : use `memcpy()`. Safe and portable. |
| * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). |
| * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. |
| * Method 2 : direct access. This method doesn't depend on compiler but violate C standard. |
| * It can generate buggy code on targets which do not support unaligned memory accesses. |
| * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) |
| * See http://stackoverflow.com/a/32095106/646947 for details. |
| * Prefer these methods in priority order (0 > 1 > 2) |
| */ |
| #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
| # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) |
| # define XXH_FORCE_MEMORY_ACCESS 2 |
| # elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \ |
| (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) || \ |
| defined(__ICCARM__) |
| # define XXH_FORCE_MEMORY_ACCESS 1 |
| # endif |
| #endif |
| |
| /*!XXH_ACCEPT_NULL_INPUT_POINTER : |
| * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer. |
| * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input. |
| * By default, this option is disabled. To enable it, uncomment below define : |
| */ |
| /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */ |
| |
| /*!XXH_FORCE_NATIVE_FORMAT : |
| * By default, xxHash library provides endian-independent Hash values, based on little-endian convention. |
| * Results are therefore identical for little-endian and big-endian CPU. |
| * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. |
| * Should endian-independence be of no importance for your application, you may set the #define below to 1, |
| * to improve speed for Big-endian CPU. |
| * This option has no impact on Little_Endian CPU. |
| */ |
| #ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */ |
| # define XXH_FORCE_NATIVE_FORMAT 0 |
| #endif |
| |
| /*!XXH_FORCE_ALIGN_CHECK : |
| * This is a minor performance trick, only useful with lots of very small keys. |
| * It means : check for aligned/unaligned input. |
| * The check costs one initial branch per hash; set to 0 when the input data |
| * is guaranteed to be aligned. |
| */ |
| #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ |
| # if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) |
| # define XXH_FORCE_ALIGN_CHECK 0 |
| # else |
| # define XXH_FORCE_ALIGN_CHECK 1 |
| # endif |
| #endif |
| |
| |
| /* ************************************* |
| * Includes & Memory related functions |
| ***************************************/ |
| /* Modify the local functions below should you wish to use some other memory routines */ |
| /* for ZSTD_malloc(), ZSTD_free() */ |
| #define ZSTD_DEPS_NEED_MALLOC |
| /**** skipping file: zstd_deps.h ****/ |
| static void* XXH_malloc(size_t s) { return ZSTD_malloc(s); } |
| static void XXH_free (void* p) { ZSTD_free(p); } |
| static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_memcpy(dest,src,size); } |
| |
| #ifndef XXH_STATIC_LINKING_ONLY |
| # define XXH_STATIC_LINKING_ONLY |
| #endif |
| /**** skipping file: xxhash.h ****/ |
| |
| |
| /* ************************************* |
| * Compiler Specific Options |
| ***************************************/ |
| /**** skipping file: compiler.h ****/ |
| |
| |
| /* ************************************* |
| * Basic Types |
| ***************************************/ |
| /**** skipping file: mem.h ****/ |
| |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
| |
| /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
| static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; } |
| static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; } |
| |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
| |
| /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ |
| /* currently only defined for gcc and icc */ |
| typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign; |
| |
| static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } |
| static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; } |
| |
| #else |
| |
| /* portable and safe solution. Generally efficient. |
| * see : http://stackoverflow.com/a/32095106/646947 |
| */ |
| |
| static U32 XXH_read32(const void* memPtr) |
| { |
| U32 val; |
| ZSTD_memcpy(&val, memPtr, sizeof(val)); |
| return val; |
| } |
| |
| static U64 XXH_read64(const void* memPtr) |
| { |
| U64 val; |
| ZSTD_memcpy(&val, memPtr, sizeof(val)); |
| return val; |
| } |
| |
| #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
| |
| |
| /* **************************************** |
| * Compiler-specific Functions and Macros |
| ******************************************/ |
| #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
| |
| /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */ |
| #if defined(_MSC_VER) |
| # define XXH_rotl32(x,r) _rotl(x,r) |
| # define XXH_rotl64(x,r) _rotl64(x,r) |
| #else |
| #if defined(__ICCARM__) |
| # include <intrinsics.h> |
| # define XXH_rotl32(x,r) __ROR(x,(32 - r)) |
| #else |
| # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) |
| #endif |
| # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r))) |
| #endif |
| |
| #if defined(_MSC_VER) /* Visual Studio */ |
| # define XXH_swap32 _byteswap_ulong |
| # define XXH_swap64 _byteswap_uint64 |
| #elif GCC_VERSION >= 403 |
| # define XXH_swap32 __builtin_bswap32 |
| # define XXH_swap64 __builtin_bswap64 |
| #else |
| static U32 XXH_swap32 (U32 x) |
| { |
| return ((x << 24) & 0xff000000 ) | |
| ((x << 8) & 0x00ff0000 ) | |
| ((x >> 8) & 0x0000ff00 ) | |
| ((x >> 24) & 0x000000ff ); |
| } |
| static U64 XXH_swap64 (U64 x) |
| { |
| return ((x << 56) & 0xff00000000000000ULL) | |
| ((x << 40) & 0x00ff000000000000ULL) | |
| ((x << 24) & 0x0000ff0000000000ULL) | |
| ((x << 8) & 0x000000ff00000000ULL) | |
| ((x >> 8) & 0x00000000ff000000ULL) | |
| ((x >> 24) & 0x0000000000ff0000ULL) | |
| ((x >> 40) & 0x000000000000ff00ULL) | |
| ((x >> 56) & 0x00000000000000ffULL); |
| } |
| #endif |
| |
| |
| /* ************************************* |
| * Architecture Macros |
| ***************************************/ |
| typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; |
| |
| /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */ |
| #ifndef XXH_CPU_LITTLE_ENDIAN |
| static const int g_one = 1; |
| # define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one)) |
| #endif |
| |
| |
| /* *************************** |
| * Memory reads |
| *****************************/ |
| typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; |
| |
| FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align) |
| { |
| if (align==XXH_unaligned) |
| return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); |
| else |
| return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr); |
| } |
| |
| FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian) |
| { |
| return XXH_readLE32_align(ptr, endian, XXH_unaligned); |
| } |
| |
| static U32 XXH_readBE32(const void* ptr) |
| { |
| return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); |
| } |
| |
| FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align) |
| { |
| if (align==XXH_unaligned) |
| return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); |
| else |
| return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr); |
| } |
| |
| FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian) |
| { |
| return XXH_readLE64_align(ptr, endian, XXH_unaligned); |
| } |
| |
| static U64 XXH_readBE64(const void* ptr) |
| { |
| return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); |
| } |
| |
| |
| /* ************************************* |
| * Macros |
| ***************************************/ |
| #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ |
| |
| |
| /* ************************************* |
| * Constants |
| ***************************************/ |
| static const U32 PRIME32_1 = 2654435761U; |
| static const U32 PRIME32_2 = 2246822519U; |
| static const U32 PRIME32_3 = 3266489917U; |
| static const U32 PRIME32_4 = 668265263U; |
| static const U32 PRIME32_5 = 374761393U; |
| |
| static const U64 PRIME64_1 = 11400714785074694791ULL; |
| static const U64 PRIME64_2 = 14029467366897019727ULL; |
| static const U64 PRIME64_3 = 1609587929392839161ULL; |
| static const U64 PRIME64_4 = 9650029242287828579ULL; |
| static const U64 PRIME64_5 = 2870177450012600261ULL; |
| |
| XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } |
| |
| |
| /* ************************** |
| * Utils |
| ****************************/ |
| XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState) |
| { |
| ZSTD_memcpy(dstState, srcState, sizeof(*dstState)); |
| } |
| |
| XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState) |
| { |
| ZSTD_memcpy(dstState, srcState, sizeof(*dstState)); |
| } |
| |
| |
| /* *************************** |
| * Simple Hash Functions |
| *****************************/ |
| |
| static U32 XXH32_round(U32 seed, U32 input) |
| { |
| seed += input * PRIME32_2; |
| seed = XXH_rotl32(seed, 13); |
| seed *= PRIME32_1; |
| return seed; |
| } |
| |
| FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align) |
| { |
| const BYTE* p = (const BYTE*)input; |
| const BYTE* bEnd = p + len; |
| U32 h32; |
| #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align) |
| |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
| if (p==NULL) { |
| len=0; |
| bEnd=p=(const BYTE*)(size_t)16; |
| } |
| #endif |
| |
| if (len>=16) { |
| const BYTE* const limit = bEnd - 16; |
| U32 v1 = seed + PRIME32_1 + PRIME32_2; |
| U32 v2 = seed + PRIME32_2; |
| U32 v3 = seed + 0; |
| U32 v4 = seed - PRIME32_1; |
| |
| do { |
| v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4; |
| v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4; |
| v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4; |
| v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4; |
| } while (p<=limit); |
| |
| h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); |
| } else { |
| h32 = seed + PRIME32_5; |
| } |
| |
| h32 += (U32) len; |
| |
| while (p+4<=bEnd) { |
| h32 += XXH_get32bits(p) * PRIME32_3; |
| h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; |
| p+=4; |
| } |
| |
| while (p<bEnd) { |
| h32 += (*p) * PRIME32_5; |
| h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; |
| p++; |
| } |
| |
| h32 ^= h32 >> 15; |
| h32 *= PRIME32_2; |
| h32 ^= h32 >> 13; |
| h32 *= PRIME32_3; |
| h32 ^= h32 >> 16; |
| |
| return h32; |
| } |
| |
| |
| XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed) |
| { |
| #if 0 |
| /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
| XXH32_CREATESTATE_STATIC(state); |
| XXH32_reset(state, seed); |
| XXH32_update(state, input, len); |
| return XXH32_digest(state); |
| #else |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if (XXH_FORCE_ALIGN_CHECK) { |
| if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
| else |
| return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
| } } |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); |
| else |
| return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
| #endif |
| } |
| |
| |
| static U64 XXH64_round(U64 acc, U64 input) |
| { |
| acc += input * PRIME64_2; |
| acc = XXH_rotl64(acc, 31); |
| acc *= PRIME64_1; |
| return acc; |
| } |
| |
| static U64 XXH64_mergeRound(U64 acc, U64 val) |
| { |
| val = XXH64_round(0, val); |
| acc ^= val; |
| acc = acc * PRIME64_1 + PRIME64_4; |
| return acc; |
| } |
| |
| FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align) |
| { |
| const BYTE* p = (const BYTE*)input; |
| const BYTE* const bEnd = p + len; |
| U64 h64; |
| #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align) |
| |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
| if (p==NULL) { |
| len=0; |
| bEnd=p=(const BYTE*)(size_t)32; |
| } |
| #endif |
| |
| if (len>=32) { |
| const BYTE* const limit = bEnd - 32; |
| U64 v1 = seed + PRIME64_1 + PRIME64_2; |
| U64 v2 = seed + PRIME64_2; |
| U64 v3 = seed + 0; |
| U64 v4 = seed - PRIME64_1; |
| |
| do { |
| v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8; |
| v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8; |
| v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8; |
| v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8; |
| } while (p<=limit); |
| |
| h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
| h64 = XXH64_mergeRound(h64, v1); |
| h64 = XXH64_mergeRound(h64, v2); |
| h64 = XXH64_mergeRound(h64, v3); |
| h64 = XXH64_mergeRound(h64, v4); |
| |
| } else { |
| h64 = seed + PRIME64_5; |
| } |
| |
| h64 += (U64) len; |
| |
| while (p+8<=bEnd) { |
| U64 const k1 = XXH64_round(0, XXH_get64bits(p)); |
| h64 ^= k1; |
| h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; |
| p+=8; |
| } |
| |
| if (p+4<=bEnd) { |
| h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; |
| h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
| p+=4; |
| } |
| |
| while (p<bEnd) { |
| h64 ^= (*p) * PRIME64_5; |
| h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
| p++; |
| } |
| |
| h64 ^= h64 >> 33; |
| h64 *= PRIME64_2; |
| h64 ^= h64 >> 29; |
| h64 *= PRIME64_3; |
| h64 ^= h64 >> 32; |
| |
| return h64; |
| } |
| |
| |
| XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed) |
| { |
| #if 0 |
| /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
| XXH64_CREATESTATE_STATIC(state); |
| XXH64_reset(state, seed); |
| XXH64_update(state, input, len); |
| return XXH64_digest(state); |
| #else |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if (XXH_FORCE_ALIGN_CHECK) { |
| if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
| else |
| return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
| } } |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); |
| else |
| return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
| #endif |
| } |
| |
| |
| /* ************************************************** |
| * Advanced Hash Functions |
| ****************************************************/ |
| |
| XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) |
| { |
| return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); |
| } |
| XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) |
| { |
| XXH_free(statePtr); |
| return XXH_OK; |
| } |
| |
| XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) |
| { |
| return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); |
| } |
| XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) |
| { |
| XXH_free(statePtr); |
| return XXH_OK; |
| } |
| |
| |
| /*** Hash feed ***/ |
| |
| XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed) |
| { |
| XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
| ZSTD_memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */ |
| state.v1 = seed + PRIME32_1 + PRIME32_2; |
| state.v2 = seed + PRIME32_2; |
| state.v3 = seed + 0; |
| state.v4 = seed - PRIME32_1; |
| ZSTD_memcpy(statePtr, &state, sizeof(state)); |
| return XXH_OK; |
| } |
| |
| |
| XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed) |
| { |
| XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
| ZSTD_memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */ |
| state.v1 = seed + PRIME64_1 + PRIME64_2; |
| state.v2 = seed + PRIME64_2; |
| state.v3 = seed + 0; |
| state.v4 = seed - PRIME64_1; |
| ZSTD_memcpy(statePtr, &state, sizeof(state)); |
| return XXH_OK; |
| } |
| |
| |
| FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian) |
| { |
| const BYTE* p = (const BYTE*)input; |
| const BYTE* const bEnd = p + len; |
| |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
| if (input==NULL) return XXH_ERROR; |
| #endif |
| |
| state->total_len_32 += (unsigned)len; |
| state->large_len |= (len>=16) | (state->total_len_32>=16); |
| |
| if (state->memsize + len < 16) { /* fill in tmp buffer */ |
| XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len); |
| state->memsize += (unsigned)len; |
| return XXH_OK; |
| } |
| |
| if (state->memsize) { /* some data left from previous update */ |
| XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize); |
| { const U32* p32 = state->mem32; |
| state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++; |
| state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++; |
| state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++; |
| state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++; |
| } |
| p += 16-state->memsize; |
| state->memsize = 0; |
| } |
| |
| if (p <= bEnd-16) { |
| const BYTE* const limit = bEnd - 16; |
| U32 v1 = state->v1; |
| U32 v2 = state->v2; |
| U32 v3 = state->v3; |
| U32 v4 = state->v4; |
| |
| do { |
| v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4; |
| v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4; |
| v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4; |
| v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4; |
| } while (p<=limit); |
| |
| state->v1 = v1; |
| state->v2 = v2; |
| state->v3 = v3; |
| state->v4 = v4; |
| } |
| |
| if (p < bEnd) { |
| XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); |
| state->memsize = (unsigned)(bEnd-p); |
| } |
| |
| return XXH_OK; |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len) |
| { |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH32_update_endian(state_in, input, len, XXH_littleEndian); |
| else |
| return XXH32_update_endian(state_in, input, len, XXH_bigEndian); |
| } |
| |
| |
| |
| FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian) |
| { |
| const BYTE * p = (const BYTE*)state->mem32; |
| const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize; |
| U32 h32; |
| |
| if (state->large_len) { |
| h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); |
| } else { |
| h32 = state->v3 /* == seed */ + PRIME32_5; |
| } |
| |
| h32 += state->total_len_32; |
| |
| while (p+4<=bEnd) { |
| h32 += XXH_readLE32(p, endian) * PRIME32_3; |
| h32 = XXH_rotl32(h32, 17) * PRIME32_4; |
| p+=4; |
| } |
| |
| while (p<bEnd) { |
| h32 += (*p) * PRIME32_5; |
| h32 = XXH_rotl32(h32, 11) * PRIME32_1; |
| p++; |
| } |
| |
| h32 ^= h32 >> 15; |
| h32 *= PRIME32_2; |
| h32 ^= h32 >> 13; |
| h32 *= PRIME32_3; |
| h32 ^= h32 >> 16; |
| |
| return h32; |
| } |
| |
| |
| XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in) |
| { |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH32_digest_endian(state_in, XXH_littleEndian); |
| else |
| return XXH32_digest_endian(state_in, XXH_bigEndian); |
| } |
| |
| |
| |
| /* **** XXH64 **** */ |
| |
| FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian) |
| { |
| const BYTE* p = (const BYTE*)input; |
| const BYTE* const bEnd = p + len; |
| |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
| if (input==NULL) return XXH_ERROR; |
| #endif |
| |
| state->total_len += len; |
| |
| if (state->memsize + len < 32) { /* fill in tmp buffer */ |
| if (input != NULL) { |
| XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len); |
| } |
| state->memsize += (U32)len; |
| return XXH_OK; |
| } |
| |
| if (state->memsize) { /* tmp buffer is full */ |
| XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize); |
| state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian)); |
| state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian)); |
| state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian)); |
| state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian)); |
| p += 32-state->memsize; |
| state->memsize = 0; |
| } |
| |
| if (p+32 <= bEnd) { |
| const BYTE* const limit = bEnd - 32; |
| U64 v1 = state->v1; |
| U64 v2 = state->v2; |
| U64 v3 = state->v3; |
| U64 v4 = state->v4; |
| |
| do { |
| v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8; |
| v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8; |
| v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8; |
| v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8; |
| } while (p<=limit); |
| |
| state->v1 = v1; |
| state->v2 = v2; |
| state->v3 = v3; |
| state->v4 = v4; |
| } |
| |
| if (p < bEnd) { |
| XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); |
| state->memsize = (unsigned)(bEnd-p); |
| } |
| |
| return XXH_OK; |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len) |
| { |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH64_update_endian(state_in, input, len, XXH_littleEndian); |
| else |
| return XXH64_update_endian(state_in, input, len, XXH_bigEndian); |
| } |
| |
| |
| |
| FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian) |
| { |
| const BYTE * p = (const BYTE*)state->mem64; |
| const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize; |
| U64 h64; |
| |
| if (state->total_len >= 32) { |
| U64 const v1 = state->v1; |
| U64 const v2 = state->v2; |
| U64 const v3 = state->v3; |
| U64 const v4 = state->v4; |
| |
| h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
| h64 = XXH64_mergeRound(h64, v1); |
| h64 = XXH64_mergeRound(h64, v2); |
| h64 = XXH64_mergeRound(h64, v3); |
| h64 = XXH64_mergeRound(h64, v4); |
| } else { |
| h64 = state->v3 + PRIME64_5; |
| } |
| |
| h64 += (U64) state->total_len; |
| |
| while (p+8<=bEnd) { |
| U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian)); |
| h64 ^= k1; |
| h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; |
| p+=8; |
| } |
| |
| if (p+4<=bEnd) { |
| h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1; |
| h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
| p+=4; |
| } |
| |
| while (p<bEnd) { |
| h64 ^= (*p) * PRIME64_5; |
| h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
| p++; |
| } |
| |
| h64 ^= h64 >> 33; |
| h64 *= PRIME64_2; |
| h64 ^= h64 >> 29; |
| h64 *= PRIME64_3; |
| h64 ^= h64 >> 32; |
| |
| return h64; |
| } |
| |
| |
| XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in) |
| { |
| XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
| |
| if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
| return XXH64_digest_endian(state_in, XXH_littleEndian); |
| else |
| return XXH64_digest_endian(state_in, XXH_bigEndian); |
| } |
| |
| |
| /* ************************** |
| * Canonical representation |
| ****************************/ |
| |
| /*! Default XXH result types are basic unsigned 32 and 64 bits. |
| * The canonical representation follows human-readable write convention, aka big-endian (large digits first). |
| * These functions allow transformation of hash result into and from its canonical format. |
| * This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs. |
| */ |
| |
| XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) |
| { |
| XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); |
| if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); |
| ZSTD_memcpy(dst, &hash, sizeof(*dst)); |
| } |
| |
| XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) |
| { |
| XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); |
| if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); |
| ZSTD_memcpy(dst, &hash, sizeof(*dst)); |
| } |
| |
| XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) |
| { |
| return XXH_readBE32(src); |
| } |
| |
| XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) |
| { |
| return XXH_readBE64(src); |
| } |
| /**** ended inlining xxhash.c ****/ |
| # endif |
| |
| #endif /* XXH_STATIC_LINKING_ONLY && XXH_STATIC_H_3543687687345 */ |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| /**** ended inlining xxhash.h ****/ |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /* ---- static assert (debug) --- */ |
| #define ZSTD_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) |
| #define ZSTD_isError ERR_isError /* for inlining */ |
| #define FSE_isError ERR_isError |
| #define HUF_isError ERR_isError |
| |
| |
| /*-************************************* |
| * shared macros |
| ***************************************/ |
| #undef MIN |
| #undef MAX |
| #define MIN(a,b) ((a)<(b) ? (a) : (b)) |
| #define MAX(a,b) ((a)>(b) ? (a) : (b)) |
| |
| /** |
| * Ignore: this is an internal helper. |
| * |
| * This is a helper function to help force C99-correctness during compilation. |
| * Under strict compilation modes, variadic macro arguments can't be empty. |
| * However, variadic function arguments can be. Using a function therefore lets |
| * us statically check that at least one (string) argument was passed, |
| * independent of the compilation flags. |
| */ |
| static INLINE_KEYWORD UNUSED_ATTR |
| void _force_has_format_string(const char *format, ...) { |
| (void)format; |
| } |
| |
| /** |
| * Ignore: this is an internal helper. |
| * |
| * We want to force this function invocation to be syntactically correct, but |
| * we don't want to force runtime evaluation of its arguments. |
| */ |
| #define _FORCE_HAS_FORMAT_STRING(...) \ |
| if (0) { \ |
| _force_has_format_string(__VA_ARGS__); \ |
| } |
| |
| /** |
| * Return the specified error if the condition evaluates to true. |
| * |
| * In debug modes, prints additional information. |
| * In order to do that (particularly, printing the conditional that failed), |
| * this can't just wrap RETURN_ERROR(). |
| */ |
| #define RETURN_ERROR_IF(cond, err, ...) \ |
| if (cond) { \ |
| RAWLOG(3, "%s:%d: ERROR!: check %s failed, returning %s", \ |
| __FILE__, __LINE__, ZSTD_QUOTE(cond), ZSTD_QUOTE(ERROR(err))); \ |
| _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \ |
| RAWLOG(3, ": " __VA_ARGS__); \ |
| RAWLOG(3, "\n"); \ |
| return ERROR(err); \ |
| } |
| |
| /** |
| * Unconditionally return the specified error. |
| * |
| * In debug modes, prints additional information. |
| */ |
| #define RETURN_ERROR(err, ...) \ |
| do { \ |
| RAWLOG(3, "%s:%d: ERROR!: unconditional check failed, returning %s", \ |
| __FILE__, __LINE__, ZSTD_QUOTE(ERROR(err))); \ |
| _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \ |
| RAWLOG(3, ": " __VA_ARGS__); \ |
| RAWLOG(3, "\n"); \ |
| return ERROR(err); \ |
| } while(0); |
| |
| /** |
| * If the provided expression evaluates to an error code, returns that error code. |
| * |
| * In debug modes, prints additional information. |
| */ |
| #define FORWARD_IF_ERROR(err, ...) \ |
| do { \ |
| size_t const err_code = (err); \ |
| if (ERR_isError(err_code)) { \ |
| RAWLOG(3, "%s:%d: ERROR!: forwarding error in %s: %s", \ |
| __FILE__, __LINE__, ZSTD_QUOTE(err), ERR_getErrorName(err_code)); \ |
| _FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \ |
| RAWLOG(3, ": " __VA_ARGS__); \ |
| RAWLOG(3, "\n"); \ |
| return err_code; \ |
| } \ |
| } while(0); |
| |
| |
| /*-************************************* |
| * Common constants |
| ***************************************/ |
| #define ZSTD_OPT_NUM (1<<12) |
| |
| #define ZSTD_REP_NUM 3 /* number of repcodes */ |
| #define ZSTD_REP_MOVE (ZSTD_REP_NUM-1) |
| static UNUSED_ATTR const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 }; |
| |
| #define KB *(1 <<10) |
| #define MB *(1 <<20) |
| #define GB *(1U<<30) |
| |
| #define BIT7 128 |
| #define BIT6 64 |
| #define BIT5 32 |
| #define BIT4 16 |
| #define BIT1 2 |
| #define BIT0 1 |
| |
| #define ZSTD_WINDOWLOG_ABSOLUTEMIN 10 |
| static UNUSED_ATTR const size_t ZSTD_fcs_fieldSize[4] = { 0, 2, 4, 8 }; |
| static UNUSED_ATTR const size_t ZSTD_did_fieldSize[4] = { 0, 1, 2, 4 }; |
| |
| #define ZSTD_FRAMEIDSIZE 4 /* magic number size */ |
| |
| #define ZSTD_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */ |
| static UNUSED_ATTR const size_t ZSTD_blockHeaderSize = ZSTD_BLOCKHEADERSIZE; |
| typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e; |
| |
| #define ZSTD_FRAMECHECKSUMSIZE 4 |
| |
| #define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */ |
| #define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */ |
| |
| #define HufLog 12 |
| typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingType_e; |
| |
| #define LONGNBSEQ 0x7F00 |
| |
| #define MINMATCH 3 |
| |
| #define Litbits 8 |
| #define MaxLit ((1<<Litbits) - 1) |
| #define MaxML 52 |
| #define MaxLL 35 |
| #define DefaultMaxOff 28 |
| #define MaxOff 31 |
| #define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */ |
| #define MLFSELog 9 |
| #define LLFSELog 9 |
| #define OffFSELog 8 |
| #define MaxFSELog MAX(MAX(MLFSELog, LLFSELog), OffFSELog) |
| |
| #define ZSTD_MAX_HUF_HEADER_SIZE 128 /* header + <= 127 byte tree description */ |
| /* Each table cannot take more than #symbols * FSELog bits */ |
| #define ZSTD_MAX_FSE_HEADERS_SIZE (((MaxML + 1) * MLFSELog + (MaxLL + 1) * LLFSELog + (MaxOff + 1) * OffFSELog + 7) / 8) |
| |
| static UNUSED_ATTR const U32 LL_bits[MaxLL+1] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 1, 1, 1, 1, 2, 2, 3, 3, |
| 4, 6, 7, 8, 9,10,11,12, |
| 13,14,15,16 |
| }; |
| static UNUSED_ATTR const S16 LL_defaultNorm[MaxLL+1] = { |
| 4, 3, 2, 2, 2, 2, 2, 2, |
| 2, 2, 2, 2, 2, 1, 1, 1, |
| 2, 2, 2, 2, 2, 2, 2, 2, |
| 2, 3, 2, 1, 1, 1, 1, 1, |
| -1,-1,-1,-1 |
| }; |
| #define LL_DEFAULTNORMLOG 6 /* for static allocation */ |
| static UNUSED_ATTR const U32 LL_defaultNormLog = LL_DEFAULTNORMLOG; |
| |
| static UNUSED_ATTR const U32 ML_bits[MaxML+1] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, |
| 1, 1, 1, 1, 2, 2, 3, 3, |
| 4, 4, 5, 7, 8, 9,10,11, |
| 12,13,14,15,16 |
| }; |
| static UNUSED_ATTR const S16 ML_defaultNorm[MaxML+1] = { |
| 1, 4, 3, 2, 2, 2, 2, 2, |
| 2, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1,-1,-1, |
| -1,-1,-1,-1,-1 |
| }; |
| #define ML_DEFAULTNORMLOG 6 /* for static allocation */ |
| static UNUSED_ATTR const U32 ML_defaultNormLog = ML_DEFAULTNORMLOG; |
| |
| static UNUSED_ATTR const S16 OF_defaultNorm[DefaultMaxOff+1] = { |
| 1, 1, 1, 1, 1, 1, 2, 2, |
| 2, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, |
| -1,-1,-1,-1,-1 |
| }; |
| #define OF_DEFAULTNORMLOG 5 /* for static allocation */ |
| static UNUSED_ATTR const U32 OF_defaultNormLog = OF_DEFAULTNORMLOG; |
| |
| |
| /*-******************************************* |
| * Shared functions to include for inlining |
| *********************************************/ |
| static void ZSTD_copy8(void* dst, const void* src) { |
| #if !defined(ZSTD_NO_INTRINSICS) && defined(__ARM_NEON) |
| vst1_u8((uint8_t*)dst, vld1_u8((const uint8_t*)src)); |
| #else |
| ZSTD_memcpy(dst, src, 8); |
| #endif |
| } |
| |
| #define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; } |
| static void ZSTD_copy16(void* dst, const void* src) { |
| #if !defined(ZSTD_NO_INTRINSICS) && defined(__ARM_NEON) |
| vst1q_u8((uint8_t*)dst, vld1q_u8((const uint8_t*)src)); |
| #else |
| ZSTD_memcpy(dst, src, 16); |
| #endif |
| } |
| #define COPY16(d,s) { ZSTD_copy16(d,s); d+=16; s+=16; } |
| |
| #define WILDCOPY_OVERLENGTH 32 |
| #define WILDCOPY_VECLEN 16 |
| |
| typedef enum { |
| ZSTD_no_overlap, |
| ZSTD_overlap_src_before_dst |
| /* ZSTD_overlap_dst_before_src, */ |
| } ZSTD_overlap_e; |
| |
| /*! ZSTD_wildcopy() : |
| * Custom version of ZSTD_memcpy(), can over read/write up to WILDCOPY_OVERLENGTH bytes (if length==0) |
| * @param ovtype controls the overlap detection |
| * - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart. |
| * - ZSTD_overlap_src_before_dst: The src and dst may overlap, but they MUST be at least 8 bytes apart. |
| * The src buffer must be before the dst buffer. |
| */ |
| MEM_STATIC FORCE_INLINE_ATTR |
| void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length, ZSTD_overlap_e const ovtype) |
| { |
| ptrdiff_t diff = (BYTE*)dst - (const BYTE*)src; |
| const BYTE* ip = (const BYTE*)src; |
| BYTE* op = (BYTE*)dst; |
| BYTE* const oend = op + length; |
| |
| assert(diff >= 8 || (ovtype == ZSTD_no_overlap && diff <= -WILDCOPY_VECLEN)); |
| |
| if (ovtype == ZSTD_overlap_src_before_dst && diff < WILDCOPY_VECLEN) { |
| /* Handle short offset copies. */ |
| do { |
| COPY8(op, ip) |
| } while (op < oend); |
| } else { |
| assert(diff >= WILDCOPY_VECLEN || diff <= -WILDCOPY_VECLEN); |
| /* Separate out the first COPY16() call because the copy length is |
| * almost certain to be short, so the branches have different |
| * probabilities. Since it is almost certain to be short, only do |
| * one COPY16() in the first call. Then, do two calls per loop since |
| * at that point it is more likely to have a high trip count. |
| */ |
| #ifdef __aarch64__ |
| do { |
| COPY16(op, ip); |
| } |
| while (op < oend); |
| #else |
| ZSTD_copy16(op, ip); |
| if (16 >= length) return; |
| op += 16; |
| ip += 16; |
| do { |
| COPY16(op, ip); |
| COPY16(op, ip); |
| } |
| while (op < oend); |
| #endif |
| } |
| } |
| |
| MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize) |
| { |
| size_t const length = MIN(dstCapacity, srcSize); |
| if (length > 0) { |
| ZSTD_memcpy(dst, src, length); |
| } |
| return length; |
| } |
| |
| /* define "workspace is too large" as this number of times larger than needed */ |
| #define ZSTD_WORKSPACETOOLARGE_FACTOR 3 |
| |
| /* when workspace is continuously too large |
| * during at least this number of times, |
| * context's memory usage is considered wasteful, |
| * because it's sized to handle a worst case scenario which rarely happens. |
| * In which case, resize it down to free some memory */ |
| #define ZSTD_WORKSPACETOOLARGE_MAXDURATION 128 |
| |
| /* Controls whether the input/output buffer is buffered or stable. */ |
| typedef enum { |
| ZSTD_bm_buffered = 0, /* Buffer the input/output */ |
| ZSTD_bm_stable = 1 /* ZSTD_inBuffer/ZSTD_outBuffer is stable */ |
| } ZSTD_bufferMode_e; |
| |
| |
| /*-******************************************* |
| * Private declarations |
| *********************************************/ |
| typedef struct seqDef_s { |
| U32 offset; /* Offset code of the sequence */ |
| U16 litLength; |
| U16 matchLength; |
| } seqDef; |
| |
| typedef struct { |
| seqDef* sequencesStart; |
| seqDef* sequences; /* ptr to end of sequences */ |
| BYTE* litStart; |
| BYTE* lit; /* ptr to end of literals */ |
| BYTE* llCode; |
| BYTE* mlCode; |
| BYTE* ofCode; |
| size_t maxNbSeq; |
| size_t maxNbLit; |
| |
| /* longLengthPos and longLengthID to allow us to represent either a single litLength or matchLength |
| * in the seqStore that has a value larger than U16 (if it exists). To do so, we increment |
| * the existing value of the litLength or matchLength by 0x10000. |
| */ |
| U32 longLengthID; /* 0 == no longLength; 1 == Represent the long literal; 2 == Represent the long match; */ |
| U32 longLengthPos; /* Index of the sequence to apply long length modification to */ |
| } seqStore_t; |
| |
| typedef struct { |
| U32 litLength; |
| U32 matchLength; |
| } ZSTD_sequenceLength; |
| |
| /** |
| * Returns the ZSTD_sequenceLength for the given sequences. It handles the decoding of long sequences |
| * indicated by longLengthPos and longLengthID, and adds MINMATCH back to matchLength. |
| */ |
| MEM_STATIC ZSTD_sequenceLength ZSTD_getSequenceLength(seqStore_t const* seqStore, seqDef const* seq) |
| { |
| ZSTD_sequenceLength seqLen; |
| seqLen.litLength = seq->litLength; |
| seqLen.matchLength = seq->matchLength + MINMATCH; |
| if (seqStore->longLengthPos == (U32)(seq - seqStore->sequencesStart)) { |
| if (seqStore->longLengthID == 1) { |
| seqLen.litLength += 0xFFFF; |
| } |
| if (seqStore->longLengthID == 2) { |
| seqLen.matchLength += 0xFFFF; |
| } |
| } |
| return seqLen; |
| } |
| |
| /** |
| * Contains the compressed frame size and an upper-bound for the decompressed frame size. |
| * Note: before using `compressedSize`, check for errors using ZSTD_isError(). |
| * similarly, before using `decompressedBound`, check for errors using: |
| * `decompressedBound != ZSTD_CONTENTSIZE_ERROR` |
| */ |
| typedef struct { |
| size_t compressedSize; |
| unsigned long long decompressedBound; |
| } ZSTD_frameSizeInfo; /* decompress & legacy */ |
| |
| const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx); /* compress & dictBuilder */ |
| void ZSTD_seqToCodes(const seqStore_t* seqStorePtr); /* compress, dictBuilder, decodeCorpus (shouldn't get its definition from here) */ |
| |
| /* custom memory allocation functions */ |
| void* ZSTD_customMalloc(size_t size, ZSTD_customMem customMem); |
| void* ZSTD_customCalloc(size_t size, ZSTD_customMem customMem); |
| void ZSTD_customFree(void* ptr, ZSTD_customMem customMem); |
| |
| |
| MEM_STATIC U32 ZSTD_highbit32(U32 val) /* compress, dictBuilder, decodeCorpus */ |
| { |
| assert(val != 0); |
| { |
| # if defined(_MSC_VER) /* Visual */ |
| # if STATIC_BMI2 == 1 |
| return _lzcnt_u32(val)^31; |
| # else |
| unsigned long r=0; |
| return _BitScanReverse(&r, val) ? (unsigned)r : 0; |
| # endif |
| # elif defined(__GNUC__) && (__GNUC__ >= 3) /* GCC Intrinsic */ |
| return __builtin_clz (val) ^ 31; |
| # elif defined(__ICCARM__) /* IAR Intrinsic */ |
| return 31 - __CLZ(val); |
| # else /* Software version */ |
| static const U32 DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; |
| U32 v = val; |
| v |= v >> 1; |
| v |= v >> 2; |
| v |= v >> 4; |
| v |= v >> 8; |
| v |= v >> 16; |
| return DeBruijnClz[(v * 0x07C4ACDDU) >> 27]; |
| # endif |
| } |
| } |
| |
| |
| /* ZSTD_invalidateRepCodes() : |
| * ensures next compression will not use repcodes from previous block. |
| * Note : only works with regular variant; |
| * do not use with extDict variant ! */ |
| void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx); /* zstdmt, adaptive_compression (shouldn't get this definition from here) */ |
| |
| |
| typedef struct { |
| blockType_e blockType; |
| U32 lastBlock; |
| U32 origSize; |
| } blockProperties_t; /* declared here for decompress and fullbench */ |
| |
| /*! ZSTD_getcBlockSize() : |
| * Provides the size of compressed block from block header `src` */ |
| /* Used by: decompress, fullbench (does not get its definition from here) */ |
| size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, |
| blockProperties_t* bpPtr); |
| |
| /*! ZSTD_decodeSeqHeaders() : |
| * decode sequence header from src */ |
| /* Used by: decompress, fullbench (does not get its definition from here) */ |
| size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr, |
| const void* src, size_t srcSize); |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* ZSTD_CCOMMON_H_MODULE */ |
| /**** ended inlining zstd_internal.h ****/ |
| |
| |
| /*-**************************************** |
| * Version |
| ******************************************/ |
| unsigned ZSTD_versionNumber(void) { return ZSTD_VERSION_NUMBER; } |
| |
| const char* ZSTD_versionString(void) { return ZSTD_VERSION_STRING; } |
| |
| |
| /*-**************************************** |
| * ZSTD Error Management |
| ******************************************/ |
| #undef ZSTD_isError /* defined within zstd_internal.h */ |
| /*! ZSTD_isError() : |
| * tells if a return value is an error code |
| * symbol is required for external callers */ |
| unsigned ZSTD_isError(size_t code) { return ERR_isError(code); } |
| |
| /*! ZSTD_getErrorName() : |
| * provides error code string from function result (useful for debugging) */ |
| const char* ZSTD_getErrorName(size_t code) { return ERR_getErrorName(code); } |
| |
| /*! ZSTD_getError() : |
| * convert a `size_t` function result into a proper ZSTD_errorCode enum */ |
| ZSTD_ErrorCode ZSTD_getErrorCode(size_t code) { return ERR_getErrorCode(code); } |
| |
| /*! ZSTD_getErrorString() : |
| * provides error code string from enum */ |
| const char* ZSTD_getErrorString(ZSTD_ErrorCode code) { return ERR_getErrorString(code); } |
| |
| |
| |
| /*=************************************************************** |
| * Custom allocator |
| ****************************************************************/ |
| void* ZSTD_customMalloc(size_t size, ZSTD_customMem customMem) |
| { |
| if (customMem.customAlloc) |
| return customMem.customAlloc(customMem.opaque, size); |
| return ZSTD_malloc(size); |
| } |
| |
| void* ZSTD_customCalloc(size_t size, ZSTD_customMem customMem) |
| { |
| if (customMem.customAlloc) { |
| /* calloc implemented as malloc+memset; |
| * not as efficient as calloc, but next best guess for custom malloc */ |
| void* const ptr = customMem.customAlloc(customMem.opaque, size); |
| ZSTD_memset(ptr, 0, size); |
| return ptr; |
| } |
| return ZSTD_calloc(1, size); |
| } |
| |
| void ZSTD_customFree(void* ptr, ZSTD_customMem customMem) |
| { |
| if (ptr!=NULL) { |
| if (customMem.customFree) |
| customMem.customFree(customMem.opaque, ptr); |
| else |
| ZSTD_free(ptr); |
| } |
| } |
| /**** ended inlining common/zstd_common.c ****/ |
| |
| /**** start inlining decompress/huf_decompress.c ****/ |
| /* ****************************************************************** |
| * huff0 huffman decoder, |
| * part of Finite State Entropy library |
| * Copyright (c) 2013-2021, Yann Collet, Facebook, Inc. |
| * |
| * You can contact the author at : |
| * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| ****************************************************************** */ |
| |
| /* ************************************************************** |
| * Dependencies |
| ****************************************************************/ |
| /**** skipping file: ../common/zstd_deps.h ****/ |
| /**** skipping file: ../common/compiler.h ****/ |
| /**** skipping file: ../common/bitstream.h ****/ |
| /**** skipping file: ../common/fse.h ****/ |
| #define HUF_STATIC_LINKING_ONLY |
| /**** skipping file: ../common/huf.h ****/ |
| /**** skipping file: ../common/error_private.h ****/ |
| |
| /* ************************************************************** |
| * Macros |
| ****************************************************************/ |
| |
| /* These two optional macros force the use one way or another of the two |
| * Huffman decompression implementations. You can't force in both directions |
| * at the same time. |
| */ |
| #if defined(HUF_FORCE_DECOMPRESS_X1) && \ |
| defined(HUF_FORCE_DECOMPRESS_X2) |
| #error "Cannot force the use of the X1 and X2 decoders at the same time!" |
| #endif |
| |
| |
| /* ************************************************************** |
| * Error Management |
| ****************************************************************/ |
| #define HUF_isError ERR_isError |
| |
| |
| /* ************************************************************** |
| * Byte alignment for workSpace management |
| ****************************************************************/ |
| #define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1) |
| #define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask)) |
| |
| |
| /* ************************************************************** |
| * BMI2 Variant Wrappers |
| ****************************************************************/ |
| #if DYNAMIC_BMI2 |
| |
| #define HUF_DGEN(fn) \ |
| \ |
| static size_t fn##_default( \ |
| void* dst, size_t dstSize, \ |
| const void* cSrc, size_t cSrcSize, \ |
| const HUF_DTable* DTable) \ |
| { \ |
| return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
| } \ |
| \ |
| static TARGET_ATTRIBUTE("bmi2") size_t fn##_bmi2( \ |
| void* dst, size_t dstSize, \ |
| const void* cSrc, size_t cSrcSize, \ |
| const HUF_DTable* DTable) \ |
| { \ |
| return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
| } \ |
| \ |
| static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ |
| size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \ |
| { \ |
| if (bmi2) { \ |
| return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \ |
| } \ |
| return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \ |
| } |
| |
| #else |
| |
| #define HUF_DGEN(fn) \ |
| static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ |
| size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \ |
| { \ |
| (void)bmi2; \ |
| return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
| } |
| |
| #endif |
| |
| |
| /*-***************************/ |
| /* generic DTableDesc */ |
| /*-***************************/ |
| typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc; |
| |
| static DTableDesc HUF_getDTableDesc(const HUF_DTable* table) |
| { |
| DTableDesc dtd; |
| ZSTD_memcpy(&dtd, table, sizeof(dtd)); |
| return dtd; |
| } |
| |
| |
| #ifndef HUF_FORCE_DECOMPRESS_X2 |
| |
| /*-***************************/ |
| /* single-symbol decoding */ |
| /*-***************************/ |
| typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX1; /* single-symbol decoding */ |
| |
| /** |
| * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at |
| * a time. |
| */ |
| static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) { |
| U64 D4; |
| if (MEM_isLittleEndian()) { |
| D4 = symbol + (nbBits << 8); |
| } else { |
| D4 = (symbol << 8) + nbBits; |
| } |
| D4 *= 0x0001000100010001ULL; |
| return D4; |
| } |
| |
| typedef struct { |
| U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; |
| U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1]; |
| U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; |
| BYTE symbols[HUF_SYMBOLVALUE_MAX + 1]; |
| BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; |
| } HUF_ReadDTableX1_Workspace; |
| |
| |
| size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize) |
| { |
| return HUF_readDTableX1_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0); |
| } |
| |
| size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2) |
| { |
| U32 tableLog = 0; |
| U32 nbSymbols = 0; |
| size_t iSize; |
| void* const dtPtr = DTable + 1; |
| HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr; |
| HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace; |
| |
| DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp)); |
| if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge); |
| |
| DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable)); |
| /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */ |
| |
| iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), bmi2); |
| if (HUF_isError(iSize)) return iSize; |
| |
| /* Table header */ |
| { DTableDesc dtd = HUF_getDTableDesc(DTable); |
| if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */ |
| dtd.tableType = 0; |
| dtd.tableLog = (BYTE)tableLog; |
| ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); |
| } |
| |
| /* Compute symbols and rankStart given rankVal: |
| * |
| * rankVal already contains the number of values of each weight. |
| * |
| * symbols contains the symbols ordered by weight. First are the rankVal[0] |
| * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on. |
| * symbols[0] is filled (but unused) to avoid a branch. |
| * |
| * rankStart contains the offset where each rank belongs in the DTable. |
| * rankStart[0] is not filled because there are no entries in the table for |
| * weight 0. |
| */ |
| { |
| int n; |
| int nextRankStart = 0; |
| int const unroll = 4; |
| int const nLimit = (int)nbSymbols - unroll + 1; |
| for (n=0; n<(int)tableLog+1; n++) { |
| U32 const curr = nextRankStart; |
| nextRankStart += wksp->rankVal[n]; |
| wksp->rankStart[n] = curr; |
| } |
| for (n=0; n < nLimit; n += unroll) { |
| int u; |
| for (u=0; u < unroll; ++u) { |
| size_t const w = wksp->huffWeight[n+u]; |
| wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u); |
| } |
| } |
| for (; n < (int)nbSymbols; ++n) { |
| size_t const w = wksp->huffWeight[n]; |
| wksp->symbols[wksp->rankStart[w]++] = (BYTE)n; |
| } |
| } |
| |
| /* fill DTable |
| * We fill all entries of each weight in order. |
| * That way length is a constant for each iteration of the outter loop. |
| * We can switch based on the length to a different inner loop which is |
| * optimized for that particular case. |
| */ |
| { |
| U32 w; |
| int symbol=wksp->rankVal[0]; |
| int rankStart=0; |
| for (w=1; w<tableLog+1; ++w) { |
| int const symbolCount = wksp->rankVal[w]; |
| int const length = (1 << w) >> 1; |
| int uStart = rankStart; |
| BYTE const nbBits = (BYTE)(tableLog + 1 - w); |
| int s; |
| int u; |
| switch (length) { |
| case 1: |
| for (s=0; s<symbolCount; ++s) { |
| HUF_DEltX1 D; |
| D.byte = wksp->symbols[symbol + s]; |
| D.nbBits = nbBits; |
| dt[uStart] = D; |
| uStart += 1; |
| } |
| break; |
| case 2: |
| for (s=0; s<symbolCount; ++s) { |
| HUF_DEltX1 D; |
| D.byte = wksp->symbols[symbol + s]; |
| D.nbBits = nbBits; |
| dt[uStart+0] = D; |
| dt[uStart+1] = D; |
| uStart += 2; |
| } |
| break; |
| case 4: |
| for (s=0; s<symbolCount; ++s) { |
| U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
| MEM_write64(dt + uStart, D4); |
| uStart += 4; |
| } |
| break; |
| case 8: |
| for (s=0; s<symbolCount; ++s) { |
| U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
| MEM_write64(dt + uStart, D4); |
| MEM_write64(dt + uStart + 4, D4); |
| uStart += 8; |
| } |
| break; |
| default: |
| for (s=0; s<symbolCount; ++s) { |
| U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
| for (u=0; u < length; u += 16) { |
| MEM_write64(dt + uStart + u + 0, D4); |
| MEM_write64(dt + uStart + u + 4, D4); |
| MEM_write64(dt + uStart + u + 8, D4); |
| MEM_write64(dt + uStart + u + 12, D4); |
| } |
| assert(u == length); |
| uStart += length; |
| } |
| break; |
| } |
| symbol += symbolCount; |
| rankStart += symbolCount * length; |
| } |
| } |
| return iSize; |
| } |
| |
| FORCE_INLINE_TEMPLATE BYTE |
| HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog) |
| { |
| size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ |
| BYTE const c = dt[val].byte; |
| BIT_skipBits(Dstream, dt[val].nbBits); |
| return c; |
| } |
| |
| #define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \ |
| *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog) |
| |
| #define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \ |
| if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ |
| HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) |
| |
| #define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \ |
| if (MEM_64bits()) \ |
| HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) |
| |
| HINT_INLINE size_t |
| HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog) |
| { |
| BYTE* const pStart = p; |
| |
| /* up to 4 symbols at a time */ |
| while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) { |
| HUF_DECODE_SYMBOLX1_2(p, bitDPtr); |
| HUF_DECODE_SYMBOLX1_1(p, bitDPtr); |
| HUF_DECODE_SYMBOLX1_2(p, bitDPtr); |
| HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
| } |
| |
| /* [0-3] symbols remaining */ |
| if (MEM_32bits()) |
| while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd)) |
| HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
| |
| /* no more data to retrieve from bitstream, no need to reload */ |
| while (p < pEnd) |
| HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
| |
| return pEnd-pStart; |
| } |
| |
| FORCE_INLINE_TEMPLATE size_t |
| HUF_decompress1X1_usingDTable_internal_body( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| BYTE* op = (BYTE*)dst; |
| BYTE* const oend = op + dstSize; |
| const void* dtPtr = DTable + 1; |
| const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; |
| BIT_DStream_t bitD; |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| U32 const dtLog = dtd.tableLog; |
| |
| CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); |
| |
| HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog); |
| |
| if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); |
| |
| return dstSize; |
| } |
| |
| FORCE_INLINE_TEMPLATE size_t |
| HUF_decompress4X1_usingDTable_internal_body( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| /* Check */ |
| if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ |
| |
| { const BYTE* const istart = (const BYTE*) cSrc; |
| BYTE* const ostart = (BYTE*) dst; |
| BYTE* const oend = ostart + dstSize; |
| BYTE* const olimit = oend - 3; |
| const void* const dtPtr = DTable + 1; |
| const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; |
| |
| /* Init */ |
| BIT_DStream_t bitD1; |
| BIT_DStream_t bitD2; |
| BIT_DStream_t bitD3; |
| BIT_DStream_t bitD4; |
| size_t const length1 = MEM_readLE16(istart); |
| size_t const length2 = MEM_readLE16(istart+2); |
| size_t const length3 = MEM_readLE16(istart+4); |
| size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); |
| const BYTE* const istart1 = istart + 6; /* jumpTable */ |
| const BYTE* const istart2 = istart1 + length1; |
| const BYTE* const istart3 = istart2 + length2; |
| const BYTE* const istart4 = istart3 + length3; |
| const size_t segmentSize = (dstSize+3) / 4; |
| BYTE* const opStart2 = ostart + segmentSize; |
| BYTE* const opStart3 = opStart2 + segmentSize; |
| BYTE* const opStart4 = opStart3 + segmentSize; |
| BYTE* op1 = ostart; |
| BYTE* op2 = opStart2; |
| BYTE* op3 = opStart3; |
| BYTE* op4 = opStart4; |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| U32 const dtLog = dtd.tableLog; |
| U32 endSignal = 1; |
| |
| if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ |
| CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); |
| CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); |
| CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); |
| CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); |
| |
| /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */ |
| for ( ; (endSignal) & (op4 < olimit) ; ) { |
| HUF_DECODE_SYMBOLX1_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX1_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX1_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX1_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX1_1(op1, &bitD1); |
| HUF_DECODE_SYMBOLX1_1(op2, &bitD2); |
| HUF_DECODE_SYMBOLX1_1(op3, &bitD3); |
| HUF_DECODE_SYMBOLX1_1(op4, &bitD4); |
| HUF_DECODE_SYMBOLX1_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX1_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX1_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX1_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX1_0(op1, &bitD1); |
| HUF_DECODE_SYMBOLX1_0(op2, &bitD2); |
| HUF_DECODE_SYMBOLX1_0(op3, &bitD3); |
| HUF_DECODE_SYMBOLX1_0(op4, &bitD4); |
| endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; |
| endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; |
| endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; |
| endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; |
| } |
| |
| /* check corruption */ |
| /* note : should not be necessary : op# advance in lock step, and we control op4. |
| * but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */ |
| if (op1 > opStart2) return ERROR(corruption_detected); |
| if (op2 > opStart3) return ERROR(corruption_detected); |
| if (op3 > opStart4) return ERROR(corruption_detected); |
| /* note : op4 supposed already verified within main loop */ |
| |
| /* finish bitStreams one by one */ |
| HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog); |
| HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog); |
| HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog); |
| HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog); |
| |
| /* check */ |
| { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); |
| if (!endCheck) return ERROR(corruption_detected); } |
| |
| /* decoded size */ |
| return dstSize; |
| } |
| } |
| |
| |
| typedef size_t (*HUF_decompress_usingDTable_t)(void *dst, size_t dstSize, |
| const void *cSrc, |
| size_t cSrcSize, |
| const HUF_DTable *DTable); |
| |
| HUF_DGEN(HUF_decompress1X1_usingDTable_internal) |
| HUF_DGEN(HUF_decompress4X1_usingDTable_internal) |
| |
| |
| |
| size_t HUF_decompress1X1_usingDTable( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| DTableDesc dtd = HUF_getDTableDesc(DTable); |
| if (dtd.tableType != 0) return ERROR(GENERIC); |
| return HUF_decompress1X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| } |
| |
| size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| void* workSpace, size_t wkspSize) |
| { |
| const BYTE* ip = (const BYTE*) cSrc; |
| |
| size_t const hSize = HUF_readDTableX1_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize); |
| if (HUF_isError(hSize)) return hSize; |
| if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| ip += hSize; cSrcSize -= hSize; |
| |
| return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0); |
| } |
| |
| |
| size_t HUF_decompress4X1_usingDTable( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| DTableDesc dtd = HUF_getDTableDesc(DTable); |
| if (dtd.tableType != 0) return ERROR(GENERIC); |
| return HUF_decompress4X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| } |
| |
| static size_t HUF_decompress4X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| void* workSpace, size_t wkspSize, int bmi2) |
| { |
| const BYTE* ip = (const BYTE*) cSrc; |
| |
| size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2); |
| if (HUF_isError(hSize)) return hSize; |
| if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| ip += hSize; cSrcSize -= hSize; |
| |
| return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2); |
| } |
| |
| size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| void* workSpace, size_t wkspSize) |
| { |
| return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, 0); |
| } |
| |
| |
| #endif /* HUF_FORCE_DECOMPRESS_X2 */ |
| |
| |
| #ifndef HUF_FORCE_DECOMPRESS_X1 |
| |
| /* *************************/ |
| /* double-symbols decoding */ |
| /* *************************/ |
| |
| typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */ |
| typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t; |
| typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1]; |
| typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX]; |
| |
| |
| /* HUF_fillDTableX2Level2() : |
| * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */ |
| static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 sizeLog, const U32 consumed, |
| const U32* rankValOrigin, const int minWeight, |
| const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, |
| U32 nbBitsBaseline, U16 baseSeq) |
| { |
| HUF_DEltX2 DElt; |
| U32 rankVal[HUF_TABLELOG_MAX + 1]; |
| |
| /* get pre-calculated rankVal */ |
| ZSTD_memcpy(rankVal, rankValOrigin, sizeof(rankVal)); |
| |
| /* fill skipped values */ |
| if (minWeight>1) { |
| U32 i, skipSize = rankVal[minWeight]; |
| MEM_writeLE16(&(DElt.sequence), baseSeq); |
| DElt.nbBits = (BYTE)(consumed); |
| DElt.length = 1; |
| for (i = 0; i < skipSize; i++) |
| DTable[i] = DElt; |
| } |
| |
| /* fill DTable */ |
| { U32 s; for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */ |
| const U32 symbol = sortedSymbols[s].symbol; |
| const U32 weight = sortedSymbols[s].weight; |
| const U32 nbBits = nbBitsBaseline - weight; |
| const U32 length = 1 << (sizeLog-nbBits); |
| const U32 start = rankVal[weight]; |
| U32 i = start; |
| const U32 end = start + length; |
| |
| MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8))); |
| DElt.nbBits = (BYTE)(nbBits + consumed); |
| DElt.length = 2; |
| do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */ |
| |
| rankVal[weight] += length; |
| } } |
| } |
| |
| |
| static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog, |
| const sortedSymbol_t* sortedList, const U32 sortedListSize, |
| const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight, |
| const U32 nbBitsBaseline) |
| { |
| U32 rankVal[HUF_TABLELOG_MAX + 1]; |
| const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ |
| const U32 minBits = nbBitsBaseline - maxWeight; |
| U32 s; |
| |
| ZSTD_memcpy(rankVal, rankValOrigin, sizeof(rankVal)); |
| |
| /* fill DTable */ |
| for (s=0; s<sortedListSize; s++) { |
| const U16 symbol = sortedList[s].symbol; |
| const U32 weight = sortedList[s].weight; |
| const U32 nbBits = nbBitsBaseline - weight; |
| const U32 start = rankVal[weight]; |
| const U32 length = 1 << (targetLog-nbBits); |
| |
| if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */ |
| U32 sortedRank; |
| int minWeight = nbBits + scaleLog; |
| if (minWeight < 1) minWeight = 1; |
| sortedRank = rankStart[minWeight]; |
| HUF_fillDTableX2Level2(DTable+start, targetLog-nbBits, nbBits, |
| rankValOrigin[nbBits], minWeight, |
| sortedList+sortedRank, sortedListSize-sortedRank, |
| nbBitsBaseline, symbol); |
| } else { |
| HUF_DEltX2 DElt; |
| MEM_writeLE16(&(DElt.sequence), symbol); |
| DElt.nbBits = (BYTE)(nbBits); |
| DElt.length = 1; |
| { U32 const end = start + length; |
| U32 u; |
| for (u = start; u < end; u++) DTable[u] = DElt; |
| } } |
| rankVal[weight] += length; |
| } |
| } |
| |
| size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, |
| const void* src, size_t srcSize, |
| void* workSpace, size_t wkspSize) |
| { |
| U32 tableLog, maxW, sizeOfSort, nbSymbols; |
| DTableDesc dtd = HUF_getDTableDesc(DTable); |
| U32 const maxTableLog = dtd.maxTableLog; |
| size_t iSize; |
| void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */ |
| HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr; |
| U32 *rankStart; |
| |
| rankValCol_t* rankVal; |
| U32* rankStats; |
| U32* rankStart0; |
| sortedSymbol_t* sortedSymbol; |
| BYTE* weightList; |
| size_t spaceUsed32 = 0; |
| |
| rankVal = (rankValCol_t *)((U32 *)workSpace + spaceUsed32); |
| spaceUsed32 += (sizeof(rankValCol_t) * HUF_TABLELOG_MAX) >> 2; |
| rankStats = (U32 *)workSpace + spaceUsed32; |
| spaceUsed32 += HUF_TABLELOG_MAX + 1; |
| rankStart0 = (U32 *)workSpace + spaceUsed32; |
| spaceUsed32 += HUF_TABLELOG_MAX + 2; |
| sortedSymbol = (sortedSymbol_t *)workSpace + (spaceUsed32 * sizeof(U32)) / sizeof(sortedSymbol_t); |
| spaceUsed32 += HUF_ALIGN(sizeof(sortedSymbol_t) * (HUF_SYMBOLVALUE_MAX + 1), sizeof(U32)) >> 2; |
| weightList = (BYTE *)((U32 *)workSpace + spaceUsed32); |
| spaceUsed32 += HUF_ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2; |
| |
| if ((spaceUsed32 << 2) > wkspSize) return ERROR(tableLog_tooLarge); |
| |
| rankStart = rankStart0 + 1; |
| ZSTD_memset(rankStats, 0, sizeof(U32) * (2 * HUF_TABLELOG_MAX + 2 + 1)); |
| |
| DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */ |
| if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); |
| /* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */ |
| |
| iSize = HUF_readStats(weightList, HUF_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize); |
| if (HUF_isError(iSize)) return iSize; |
| |
| /* check result */ |
| if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ |
| |
| /* find maxWeight */ |
| for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */ |
| |
| /* Get start index of each weight */ |
| { U32 w, nextRankStart = 0; |
| for (w=1; w<maxW+1; w++) { |
| U32 curr = nextRankStart; |
| nextRankStart += rankStats[w]; |
| rankStart[w] = curr; |
| } |
| rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ |
| sizeOfSort = nextRankStart; |
| } |
| |
| /* sort symbols by weight */ |
| { U32 s; |
| for (s=0; s<nbSymbols; s++) { |
| U32 const w = weightList[s]; |
| U32 const r = rankStart[w]++; |
| sortedSymbol[r].symbol = (BYTE)s; |
| sortedSymbol[r].weight = (BYTE)w; |
| } |
| rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */ |
| } |
| |
| /* Build rankVal */ |
| { U32* const rankVal0 = rankVal[0]; |
| { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */ |
| U32 nextRankVal = 0; |
| U32 w; |
| for (w=1; w<maxW+1; w++) { |
| U32 curr = nextRankVal; |
| nextRankVal += rankStats[w] << (w+rescale); |
| rankVal0[w] = curr; |
| } } |
| { U32 const minBits = tableLog+1 - maxW; |
| U32 consumed; |
| for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) { |
| U32* const rankValPtr = rankVal[consumed]; |
| U32 w; |
| for (w = 1; w < maxW+1; w++) { |
| rankValPtr[w] = rankVal0[w] >> consumed; |
| } } } } |
| |
| HUF_fillDTableX2(dt, maxTableLog, |
| sortedSymbol, sizeOfSort, |
| rankStart0, rankVal, maxW, |
| tableLog+1); |
| |
| dtd.tableLog = (BYTE)maxTableLog; |
| dtd.tableType = 1; |
| ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); |
| return iSize; |
| } |
| |
| |
| FORCE_INLINE_TEMPLATE U32 |
| HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) |
| { |
| size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
| ZSTD_memcpy(op, dt+val, 2); |
| BIT_skipBits(DStream, dt[val].nbBits); |
| return dt[val].length; |
| } |
| |
| FORCE_INLINE_TEMPLATE U32 |
| HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) |
| { |
| size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
| ZSTD_memcpy(op, dt+val, 1); |
| if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits); |
| else { |
| if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) { |
| BIT_skipBits(DStream, dt[val].nbBits); |
| if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) |
| /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ |
| DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); |
| } } |
| return 1; |
| } |
| |
| #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ |
| ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) |
| |
| #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ |
| if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ |
| ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) |
| |
| #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ |
| if (MEM_64bits()) \ |
| ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) |
| |
| HINT_INLINE size_t |
| HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, |
| const HUF_DEltX2* const dt, const U32 dtLog) |
| { |
| BYTE* const pStart = p; |
| |
| /* up to 8 symbols at a time */ |
| while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) { |
| HUF_DECODE_SYMBOLX2_2(p, bitDPtr); |
| HUF_DECODE_SYMBOLX2_1(p, bitDPtr); |
| HUF_DECODE_SYMBOLX2_2(p, bitDPtr); |
| HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| } |
| |
| /* closer to end : up to 2 symbols at a time */ |
| while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2)) |
| HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
| |
| while (p <= pEnd-2) |
| HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ |
| |
| if (p < pEnd) |
| p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog); |
| |
| return p-pStart; |
| } |
| |
| FORCE_INLINE_TEMPLATE size_t |
| HUF_decompress1X2_usingDTable_internal_body( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| BIT_DStream_t bitD; |
| |
| /* Init */ |
| CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); |
| |
| /* decode */ |
| { BYTE* const ostart = (BYTE*) dst; |
| BYTE* const oend = ostart + dstSize; |
| const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */ |
| const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog); |
| } |
| |
| /* check */ |
| if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); |
| |
| /* decoded size */ |
| return dstSize; |
| } |
| |
| FORCE_INLINE_TEMPLATE size_t |
| HUF_decompress4X2_usingDTable_internal_body( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ |
| |
| { const BYTE* const istart = (const BYTE*) cSrc; |
| BYTE* const ostart = (BYTE*) dst; |
| BYTE* const oend = ostart + dstSize; |
| BYTE* const olimit = oend - (sizeof(size_t)-1); |
| const void* const dtPtr = DTable+1; |
| const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; |
| |
| /* Init */ |
| BIT_DStream_t bitD1; |
| BIT_DStream_t bitD2; |
| BIT_DStream_t bitD3; |
| BIT_DStream_t bitD4; |
| size_t const length1 = MEM_readLE16(istart); |
| size_t const length2 = MEM_readLE16(istart+2); |
| size_t const length3 = MEM_readLE16(istart+4); |
| size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); |
| const BYTE* const istart1 = istart + 6; /* jumpTable */ |
| const BYTE* const istart2 = istart1 + length1; |
| const BYTE* const istart3 = istart2 + length2; |
| const BYTE* const istart4 = istart3 + length3; |
| size_t const segmentSize = (dstSize+3) / 4; |
| BYTE* const opStart2 = ostart + segmentSize; |
| BYTE* const opStart3 = opStart2 + segmentSize; |
| BYTE* const opStart4 = opStart3 + segmentSize; |
| BYTE* op1 = ostart; |
| BYTE* op2 = opStart2; |
| BYTE* op3 = opStart3; |
| BYTE* op4 = opStart4; |
| U32 endSignal = 1; |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| U32 const dtLog = dtd.tableLog; |
| |
| if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ |
| CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); |
| CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); |
| CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); |
| CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); |
| |
| /* 16-32 symbols per loop (4-8 symbols per stream) */ |
| for ( ; (endSignal) & (op4 < olimit); ) { |
| #if defined(__clang__) && (defined(__x86_64__) || defined(__i386__)) |
| HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_1(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_0(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_1(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_0(op2, &bitD2); |
| endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; |
| endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; |
| HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_1(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_0(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX2_1(op4, &bitD4); |
| HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX2_0(op4, &bitD4); |
| endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; |
| endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; |
| #else |
| HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX2_1(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_1(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_1(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_1(op4, &bitD4); |
| HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
| HUF_DECODE_SYMBOLX2_0(op1, &bitD1); |
| HUF_DECODE_SYMBOLX2_0(op2, &bitD2); |
| HUF_DECODE_SYMBOLX2_0(op3, &bitD3); |
| HUF_DECODE_SYMBOLX2_0(op4, &bitD4); |
| endSignal = (U32)LIKELY( |
| (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished) |
| & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished) |
| & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished) |
| & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished)); |
| #endif |
| } |
| |
| /* check corruption */ |
| if (op1 > opStart2) return ERROR(corruption_detected); |
| if (op2 > opStart3) return ERROR(corruption_detected); |
| if (op3 > opStart4) return ERROR(corruption_detected); |
| /* note : op4 already verified within main loop */ |
| |
| /* finish bitStreams one by one */ |
| HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); |
| HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); |
| HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); |
| HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); |
| |
| /* check */ |
| { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); |
| if (!endCheck) return ERROR(corruption_detected); } |
| |
| /* decoded size */ |
| return dstSize; |
| } |
| } |
| |
| HUF_DGEN(HUF_decompress1X2_usingDTable_internal) |
| HUF_DGEN(HUF_decompress4X2_usingDTable_internal) |
| |
| size_t HUF_decompress1X2_usingDTable( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| DTableDesc dtd = HUF_getDTableDesc(DTable); |
| if (dtd.tableType != 1) return ERROR(GENERIC); |
| return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| } |
| |
| size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| void* workSpace, size_t wkspSize) |
| { |
| const BYTE* ip = (const BYTE*) cSrc; |
| |
| size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, |
| workSpace, wkspSize); |
| if (HUF_isError(hSize)) return hSize; |
| if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| ip += hSize; cSrcSize -= hSize; |
| |
| return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0); |
| } |
| |
| |
| size_t HUF_decompress4X2_usingDTable( |
| void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| DTableDesc dtd = HUF_getDTableDesc(DTable); |
| if (dtd.tableType != 1) return ERROR(GENERIC); |
| return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| } |
| |
| static size_t HUF_decompress4X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| void* workSpace, size_t wkspSize, int bmi2) |
| { |
| const BYTE* ip = (const BYTE*) cSrc; |
| |
| size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize, |
| workSpace, wkspSize); |
| if (HUF_isError(hSize)) return hSize; |
| if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| ip += hSize; cSrcSize -= hSize; |
| |
| return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2); |
| } |
| |
| size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| void* workSpace, size_t wkspSize) |
| { |
| return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, /* bmi2 */ 0); |
| } |
| |
| |
| #endif /* HUF_FORCE_DECOMPRESS_X1 */ |
| |
| |
| /* ***********************************/ |
| /* Universal decompression selectors */ |
| /* ***********************************/ |
| |
| size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)dtd; |
| assert(dtd.tableType == 0); |
| return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)dtd; |
| assert(dtd.tableType == 1); |
| return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| #else |
| return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) : |
| HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| #endif |
| } |
| |
| size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, |
| const void* cSrc, size_t cSrcSize, |
| const HUF_DTable* DTable) |
| { |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)dtd; |
| assert(dtd.tableType == 0); |
| return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)dtd; |
| assert(dtd.tableType == 1); |
| return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| #else |
| return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) : |
| HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); |
| #endif |
| } |
| |
| |
| #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2) |
| typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t; |
| static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] = |
| { |
| /* single, double, quad */ |
| {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */ |
| {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */ |
| {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */ |
| {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */ |
| {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */ |
| {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */ |
| {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */ |
| {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */ |
| {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */ |
| {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */ |
| {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */ |
| {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */ |
| {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */ |
| {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */ |
| {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */ |
| {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */ |
| }; |
| #endif |
| |
| /** HUF_selectDecoder() : |
| * Tells which decoder is likely to decode faster, |
| * based on a set of pre-computed metrics. |
| * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 . |
| * Assumption : 0 < dstSize <= 128 KB */ |
| U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize) |
| { |
| assert(dstSize > 0); |
| assert(dstSize <= 128*1024); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)dstSize; |
| (void)cSrcSize; |
| return 0; |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)dstSize; |
| (void)cSrcSize; |
| return 1; |
| #else |
| /* decoder timing evaluation */ |
| { U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */ |
| U32 const D256 = (U32)(dstSize >> 8); |
| U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256); |
| U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256); |
| DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, to reduce cache eviction */ |
| return DTime1 < DTime0; |
| } |
| #endif |
| } |
| |
| |
| size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, |
| size_t dstSize, const void* cSrc, |
| size_t cSrcSize, void* workSpace, |
| size_t wkspSize) |
| { |
| /* validation checks */ |
| if (dstSize == 0) return ERROR(dstSize_tooSmall); |
| if (cSrcSize == 0) return ERROR(corruption_detected); |
| |
| { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)algoNb; |
| assert(algoNb == 0); |
| return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)algoNb; |
| assert(algoNb == 1); |
| return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize); |
| #else |
| return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, |
| cSrcSize, workSpace, wkspSize): |
| HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize); |
| #endif |
| } |
| } |
| |
| size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize, |
| void* workSpace, size_t wkspSize) |
| { |
| /* validation checks */ |
| if (dstSize == 0) return ERROR(dstSize_tooSmall); |
| if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ |
| if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ |
| if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ |
| |
| { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)algoNb; |
| assert(algoNb == 0); |
| return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, |
| cSrcSize, workSpace, wkspSize); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)algoNb; |
| assert(algoNb == 1); |
| return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, |
| cSrcSize, workSpace, wkspSize); |
| #else |
| return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, |
| cSrcSize, workSpace, wkspSize): |
| HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, |
| cSrcSize, workSpace, wkspSize); |
| #endif |
| } |
| } |
| |
| |
| size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2) |
| { |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)dtd; |
| assert(dtd.tableType == 0); |
| return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)dtd; |
| assert(dtd.tableType == 1); |
| return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| #else |
| return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) : |
| HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| #endif |
| } |
| |
| #ifndef HUF_FORCE_DECOMPRESS_X2 |
| size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2) |
| { |
| const BYTE* ip = (const BYTE*) cSrc; |
| |
| size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2); |
| if (HUF_isError(hSize)) return hSize; |
| if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
| ip += hSize; cSrcSize -= hSize; |
| |
| return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2); |
| } |
| #endif |
| |
| size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2) |
| { |
| DTableDesc const dtd = HUF_getDTableDesc(DTable); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)dtd; |
| assert(dtd.tableType == 0); |
| return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)dtd; |
| assert(dtd.tableType == 1); |
| return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| #else |
| return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) : |
| HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); |
| #endif |
| } |
| |
| size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2) |
| { |
| /* validation checks */ |
| if (dstSize == 0) return ERROR(dstSize_tooSmall); |
| if (cSrcSize == 0) return ERROR(corruption_detected); |
| |
| { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)algoNb; |
| assert(algoNb == 0); |
| return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)algoNb; |
| assert(algoNb == 1); |
| return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2); |
| #else |
| return algoNb ? HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2) : |
| HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2); |
| #endif |
| } |
| } |
| |
| #ifndef ZSTD_NO_UNUSED_FUNCTIONS |
| #ifndef HUF_FORCE_DECOMPRESS_X2 |
| size_t HUF_readDTableX1(HUF_DTable* DTable, const void* src, size_t srcSize) |
| { |
| U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; |
| return HUF_readDTableX1_wksp(DTable, src, srcSize, |
| workSpace, sizeof(workSpace)); |
| } |
| |
| size_t HUF_decompress1X1_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize) |
| { |
| U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; |
| return HUF_decompress1X1_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize, |
| workSpace, sizeof(workSpace)); |
| } |
| |
| size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) |
| { |
| HUF_CREATE_STATIC_DTABLEX1(DTable, HUF_TABLELOG_MAX); |
| return HUF_decompress1X1_DCtx (DTable, dst, dstSize, cSrc, cSrcSize); |
| } |
| #endif |
| |
| #ifndef HUF_FORCE_DECOMPRESS_X1 |
| size_t HUF_readDTableX2(HUF_DTable* DTable, const void* src, size_t srcSize) |
| { |
| U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; |
| return HUF_readDTableX2_wksp(DTable, src, srcSize, |
| workSpace, sizeof(workSpace)); |
| } |
| |
| size_t HUF_decompress1X2_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize) |
| { |
| U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; |
| return HUF_decompress1X2_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize, |
| workSpace, sizeof(workSpace)); |
| } |
| |
| size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) |
| { |
| HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX); |
| return HUF_decompress1X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize); |
| } |
| #endif |
| |
| #ifndef HUF_FORCE_DECOMPRESS_X2 |
| size_t HUF_decompress4X1_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) |
| { |
| U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; |
| return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, |
| workSpace, sizeof(workSpace)); |
| } |
| size_t HUF_decompress4X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) |
| { |
| HUF_CREATE_STATIC_DTABLEX1(DTable, HUF_TABLELOG_MAX); |
| return HUF_decompress4X1_DCtx(DTable, dst, dstSize, cSrc, cSrcSize); |
| } |
| #endif |
| |
| #ifndef HUF_FORCE_DECOMPRESS_X1 |
| size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize) |
| { |
| U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; |
| return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, |
| workSpace, sizeof(workSpace)); |
| } |
| |
| size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) |
| { |
| HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX); |
| return HUF_decompress4X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize); |
| } |
| #endif |
| |
| typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); |
| |
| size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) |
| { |
| #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2) |
| static const decompressionAlgo decompress[2] = { HUF_decompress4X1, HUF_decompress4X2 }; |
| #endif |
| |
| /* validation checks */ |
| if (dstSize == 0) return ERROR(dstSize_tooSmall); |
| if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ |
| if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ |
| if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ |
| |
| { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)algoNb; |
| assert(algoNb == 0); |
| return HUF_decompress4X1(dst, dstSize, cSrc, cSrcSize); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)algoNb; |
| assert(algoNb == 1); |
| return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize); |
| #else |
| return decompress[algoNb](dst, dstSize, cSrc, cSrcSize); |
| #endif |
| } |
| } |
| |
| size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) |
| { |
| /* validation checks */ |
| if (dstSize == 0) return ERROR(dstSize_tooSmall); |
| if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ |
| if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ |
| if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ |
| |
| { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
| #if defined(HUF_FORCE_DECOMPRESS_X1) |
| (void)algoNb; |
| assert(algoNb == 0); |
| return HUF_decompress4X1_DCtx(dctx, dst, dstSize, cSrc, cSrcSize); |
| #elif defined(HUF_FORCE_DECOMPRESS_X2) |
| (void)algoNb; |
| assert(algoNb == 1); |
| return HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize); |
| #else |
| return algoNb ? HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) : |
| HUF_decompress4X1_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ; |
| #endif |
| } |
| } |
| |
| size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) |
| { |
| U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; |
| return HUF_decompress4X_hufOnly_wksp(dctx, dst, dstSize, cSrc, cSrcSize, |
| workSpace, sizeof(workSpace)); |
| } |
| |
| size_t HUF_decompress1X_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, |
| const void* cSrc, size_t cSrcSize) |
| { |
| U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; |
| return HUF_decompress1X_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, |
| workSpace, sizeof(workSpace)); |
| } |
| #endif |
| /**** ended inlining decompress/huf_decompress.c ****/ |
| /**** start inlining decompress/zstd_ddict.c ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| /* zstd_ddict.c : |
| * concentrates all logic that needs to know the internals of ZSTD_DDict object */ |
| |
| /*-******************************************************* |
| * Dependencies |
| *********************************************************/ |
| /**** skipping file: ../common/zstd_deps.h ****/ |
| /**** start inlining ../common/cpu.h ****/ |
| /* |
| * Copyright (c) 2018-2021, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| #ifndef ZSTD_COMMON_CPU_H |
| #define ZSTD_COMMON_CPU_H |
| |
| /** |
| * Implementation taken from folly/CpuId.h |
| * https://github.com/facebook/folly/blob/master/folly/CpuId.h |
| */ |
| |
| /**** skipping file: mem.h ****/ |
| |
| #ifdef _MSC_VER |
| #include <intrin.h> |
| #endif |
| |
| typedef struct { |
| U32 f1c; |
| U32 f1d; |
| U32 f7b; |
| U32 f7c; |
| } ZSTD_cpuid_t; |
| |
| MEM_STATIC ZSTD_cpuid_t ZSTD_cpuid(void) { |
| U32 f1c = 0; |
| U32 f1d = 0; |
| U32 f7b = 0; |
| U32 f7c = 0; |
| #if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) |
| int reg[4]; |
| __cpuid((int*)reg, 0); |
| { |
| int const n = reg[0]; |
| if (n >= 1) { |
| __cpuid((int*)reg, 1); |
| f1c = (U32)reg[2]; |
| f1d = (U32)reg[3]; |
| } |
| if (n >= 7) { |
| __cpuidex((int*)reg, 7, 0); |
| f7b = (U32)reg[1]; |
| f7c = (U32)reg[2]; |
| } |
| } |
| #elif defined(__i386__) && defined(__PIC__) && !defined(__clang__) && defined(__GNUC__) |
| /* The following block like the normal cpuid branch below, but gcc |
| * reserves ebx for use of its pic register so we must specially |
| * handle the save and restore to avoid clobbering the register |
| */ |
| U32 n; |
| __asm__( |
| "pushl %%ebx\n\t" |
| "cpuid\n\t" |
| "popl %%ebx\n\t" |
| : "=a"(n) |
| : "a"(0) |
| : "ecx", "edx"); |
| if (n >= 1) { |
| U32 f1a; |
| __asm__( |
| "pushl %%ebx\n\t" |
| "cpuid\n\t" |
| "popl %%ebx\n\t" |
| : "=a"(f1a), "=c"(f1c), "=d"(f1d) |
| : "a"(1)); |
| } |
| if (n >= 7) { |
| __asm__( |
| "pushl %%ebx\n\t" |
| "cpuid\n\t" |
| "movl %%ebx, %%eax\n\t" |
| "popl %%ebx" |
| : "=a"(f7b), "=c"(f7c) |
| : "a"(7), "c"(0) |
| : "edx"); |
| } |
| #elif defined(__x86_64__) || defined(_M_X64) || defined(__i386__) |
| U32 n; |
| __asm__("cpuid" : "=a"(n) : "a"(0) : "ebx", "ecx", "edx"); |
| if (n >= 1) { |
| U32 f1a; |
| __asm__("cpuid" : "=a"(f1a), "=c"(f1c), "=d"(f1d) : "a"(1) : "ebx"); |
| } |
| if (n >= 7) { |
| U32 f7a; |
| __asm__("cpuid" |
| : "=a"(f7a), "=b"(f7b), "=c"(f7c) |
| : "a"(7), "c"(0) |
| : "edx"); |
| } |
| #endif |
| { |
| ZSTD_cpuid_t cpuid; |
| cpuid.f1c = f1c; |
| cpuid.f1d = f1d; |
| cpuid.f7b = f7b; |
| cpuid.f7c = f7c; |
| return cpuid; |
| } |
| } |
| |
| #define X(name, r, bit) \ |
| MEM_STATIC int ZSTD_cpuid_##name(ZSTD_cpuid_t const cpuid) { \ |
| return ((cpuid.r) & (1U << bit)) != 0; \ |
| } |
| |
| /* cpuid(1): Processor Info and Feature Bits. */ |
| #define C(name, bit) X(name, f1c, bit) |
| C(sse3, 0) |
| C(pclmuldq, 1) |
| C(dtes64, 2) |
| C(monitor, 3) |
| C(dscpl, 4) |
| C(vmx, 5) |
| C(smx, 6) |
| C(eist, 7) |
| C(tm2, 8) |
| C(ssse3, 9) |
| C(cnxtid, 10) |
| C(fma, 12) |
| C(cx16, 13) |
| C(xtpr, 14) |
| C(pdcm, 15) |
| C(pcid, 17) |
| C(dca, 18) |
| C(sse41, 19) |
| C(sse42, 20) |
| C(x2apic, 21) |
| C(movbe, 22) |
| C(popcnt, 23) |
| C(tscdeadline, 24) |
| C(aes, 25) |
| C(xsave, 26) |
| C(osxsave, 27) |
| C(avx, 28) |
| C(f16c, 29) |
| C(rdrand, 30) |
| #undef C |
| #define D(name, bit) X(name, f1d, bit) |
| D(fpu, 0) |
| D(vme, 1) |
| D(de, 2) |
| D(pse, 3) |
| D(tsc, 4) |
| D(msr, 5) |
| D(pae, 6) |
| D(mce, 7) |
| D(cx8, 8) |
| D(apic, 9) |
| D(sep, 11) |
| D(mtrr, 12) |
| D(pge, 13) |
| D(mca, 14) |
| D(cmov, 15) |
| D(pat, 16) |
| D(pse36, 17) |
| D(psn, 18) |
| D(clfsh, 19) |
| D(ds, 21) |
| D(acpi, 22) |
| D(mmx, 23) |
| D(fxsr, 24) |
| D(sse, 25) |
| D(sse2, 26) |
| D(ss, 27) |
| D(htt, 28) |
| D(tm, 29) |
| D(pbe, 31) |
| #undef D |
| |
| /* cpuid(7): Extended Features. */ |
| #define B(name, bit) X(name, f7b, bit) |
| B(bmi1, 3) |
| B(hle, 4) |
| B(avx2, 5) |
| B(smep, 7) |
| B(bmi2, 8) |
| B(erms, 9) |
| B(invpcid, 10) |
| B(rtm, 11) |
| B(mpx, 14) |
| B(avx512f, 16) |
| B(avx512dq, 17) |
| B(rdseed, 18) |
| B(adx, 19) |
| B(smap, 20) |
| B(avx512ifma, 21) |
| B(pcommit, 22) |
| B(clflushopt, 23) |
| B(clwb, 24) |
| B(avx512pf, 26) |
| B(avx512er, 27) |
| B(avx512cd, 28) |
| B(sha, 29) |
| B(avx512bw, 30) |
| B(avx512vl, 31) |
| #undef B |
| #define C(name, bit) X(name, f7c, bit) |
| C(prefetchwt1, 0) |
| C(avx512vbmi, 1) |
| #undef C |
| |
| #undef X |
| |
| #endif /* ZSTD_COMMON_CPU_H */ |
| /**** ended inlining ../common/cpu.h ****/ |
| /**** skipping file: ../common/mem.h ****/ |
| #define FSE_STATIC_LINKING_ONLY |
| /**** skipping file: ../common/fse.h ****/ |
| #define HUF_STATIC_LINKING_ONLY |
| /**** skipping file: ../common/huf.h ****/ |
| /**** start inlining zstd_decompress_internal.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| |
| /* zstd_decompress_internal: |
| * objects and definitions shared within lib/decompress modules */ |
| |
| #ifndef ZSTD_DECOMPRESS_INTERNAL_H |
| #define ZSTD_DECOMPRESS_INTERNAL_H |
| |
| |
| /*-******************************************************* |
| * Dependencies |
| *********************************************************/ |
| /**** skipping file: ../common/mem.h ****/ |
| /**** skipping file: ../common/zstd_internal.h ****/ |
| /**** start inlining ../common/zstd_trace.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| #ifndef ZSTD_TRACE_H |
| #define ZSTD_TRACE_H |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| #include <stddef.h> |
| |
| /* weak symbol support */ |
| #if !defined(ZSTD_HAVE_WEAK_SYMBOLS) && defined(__GNUC__) && \ |
| !defined(__APPLE__) && !defined(_WIN32) && !defined(__MINGW32__) && \ |
| !defined(__CYGWIN__) |
| # define ZSTD_HAVE_WEAK_SYMBOLS 1 |
| #else |
| # define ZSTD_HAVE_WEAK_SYMBOLS 0 |
| #endif |
| #if ZSTD_HAVE_WEAK_SYMBOLS |
| # define ZSTD_WEAK_ATTR __attribute__((__weak__)) |
| #else |
| # define ZSTD_WEAK_ATTR |
| #endif |
| |
| /* Only enable tracing when weak symbols are available. */ |
| #ifndef ZSTD_TRACE |
| # define ZSTD_TRACE ZSTD_HAVE_WEAK_SYMBOLS |
| #endif |
| |
| #if ZSTD_TRACE |
| |
| struct ZSTD_CCtx_s; |
| struct ZSTD_DCtx_s; |
| struct ZSTD_CCtx_params_s; |
| |
| typedef struct { |
| /** |
| * ZSTD_VERSION_NUMBER |
| * |
| * This is guaranteed to be the first member of ZSTD_trace. |
| * Otherwise, this struct is not stable between versions. If |
| * the version number does not match your expectation, you |
| * should not interpret the rest of the struct. |
| */ |
| unsigned version; |
| /** |
| * Non-zero if streaming (de)compression is used. |
| */ |
| unsigned streaming; |
| /** |
| * The dictionary ID. |
| */ |
| unsigned dictionaryID; |
| /** |
| * Is the dictionary cold? |
| * Only set on decompression. |
| */ |
| unsigned dictionaryIsCold; |
| /** |
| * The dictionary size or zero if no dictionary. |
| */ |
| size_t dictionarySize; |
| /** |
| * The uncompressed size of the data. |
| */ |
| size_t uncompressedSize; |
| /** |
| * The compressed size of the data. |
| */ |
| size_t compressedSize; |
| /** |
| * The fully resolved CCtx parameters (NULL on decompression). |
| */ |
| struct ZSTD_CCtx_params_s const* params; |
| /** |
| * The ZSTD_CCtx pointer (NULL on decompression). |
| */ |
| struct ZSTD_CCtx_s const* cctx; |
| /** |
| * The ZSTD_DCtx pointer (NULL on compression). |
| */ |
| struct ZSTD_DCtx_s const* dctx; |
| } ZSTD_Trace; |
| |
| /** |
| * A tracing context. It must be 0 when tracing is disabled. |
| * Otherwise, any non-zero value returned by a tracing begin() |
| * function is presented to any subsequent calls to end(). |
| * |
| * Any non-zero value is treated as tracing is enabled and not |
| * interpreted by the library. |
| * |
| * Two possible uses are: |
| * * A timestamp for when the begin() function was called. |
| * * A unique key identifying the (de)compression, like the |
| * address of the [dc]ctx pointer if you need to track |
| * more information than just a timestamp. |
| */ |
| typedef unsigned long long ZSTD_TraceCtx; |
| |
| /** |
| * Trace the beginning of a compression call. |
| * @param cctx The dctx pointer for the compression. |
| * It can be used as a key to map begin() to end(). |
| * @returns Non-zero if tracing is enabled. The return value is |
| * passed to ZSTD_trace_compress_end(). |
| */ |
| ZSTD_TraceCtx ZSTD_trace_compress_begin(struct ZSTD_CCtx_s const* cctx); |
| |
| /** |
| * Trace the end of a compression call. |
| * @param ctx The return value of ZSTD_trace_compress_begin(). |
| * @param trace The zstd tracing info. |
| */ |
| void ZSTD_trace_compress_end( |
| ZSTD_TraceCtx ctx, |
| ZSTD_Trace const* trace); |
| |
| /** |
| * Trace the beginning of a decompression call. |
| * @param dctx The dctx pointer for the decompression. |
| * It can be used as a key to map begin() to end(). |
| * @returns Non-zero if tracing is enabled. The return value is |
| * passed to ZSTD_trace_compress_end(). |
| */ |
| ZSTD_TraceCtx ZSTD_trace_decompress_begin(struct ZSTD_DCtx_s const* dctx); |
| |
| /** |
| * Trace the end of a decompression call. |
| * @param ctx The return value of ZSTD_trace_decompress_begin(). |
| * @param trace The zstd tracing info. |
| */ |
| void ZSTD_trace_decompress_end( |
| ZSTD_TraceCtx ctx, |
| ZSTD_Trace const* trace); |
| |
| #endif /* ZSTD_TRACE */ |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* ZSTD_TRACE_H */ |
| /**** ended inlining ../common/zstd_trace.h ****/ |
| |
| |
| |
| /*-******************************************************* |
| * Constants |
| *********************************************************/ |
| static UNUSED_ATTR const U32 LL_base[MaxLL+1] = { |
| 0, 1, 2, 3, 4, 5, 6, 7, |
| 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 18, 20, 22, 24, 28, 32, 40, |
| 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, |
| 0x2000, 0x4000, 0x8000, 0x10000 }; |
| |
| static UNUSED_ATTR const U32 OF_base[MaxOff+1] = { |
| 0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D, |
| 0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD, |
| 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD, |
| 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD, 0x1FFFFFFD, 0x3FFFFFFD, 0x7FFFFFFD }; |
| |
| static UNUSED_ATTR const U32 OF_bits[MaxOff+1] = { |
| 0, 1, 2, 3, 4, 5, 6, 7, |
| 8, 9, 10, 11, 12, 13, 14, 15, |
| 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 28, 29, 30, 31 }; |
| |
| static UNUSED_ATTR const U32 ML_base[MaxML+1] = { |
| 3, 4, 5, 6, 7, 8, 9, 10, |
| 11, 12, 13, 14, 15, 16, 17, 18, |
| 19, 20, 21, 22, 23, 24, 25, 26, |
| 27, 28, 29, 30, 31, 32, 33, 34, |
| 35, 37, 39, 41, 43, 47, 51, 59, |
| 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803, |
| 0x1003, 0x2003, 0x4003, 0x8003, 0x10003 }; |
| |
| |
| /*-******************************************************* |
| * Decompression types |
| *********************************************************/ |
| typedef struct { |
| U32 fastMode; |
| U32 tableLog; |
| } ZSTD_seqSymbol_header; |
| |
| typedef struct { |
| U16 nextState; |
| BYTE nbAdditionalBits; |
| BYTE nbBits; |
| U32 baseValue; |
| } ZSTD_seqSymbol; |
| |
| #define SEQSYMBOL_TABLE_SIZE(log) (1 + (1 << (log))) |
| |
| #define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE (sizeof(S16) * (MaxSeq + 1) + (1u << MaxFSELog) + sizeof(U64)) |
| #define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32 ((ZSTD_BUILD_FSE_TABLE_WKSP_SIZE + sizeof(U32) - 1) / sizeof(U32)) |
| |
| typedef struct { |
| ZSTD_seqSymbol LLTable[SEQSYMBOL_TABLE_SIZE(LLFSELog)]; /* Note : Space reserved for FSE Tables */ |
| ZSTD_seqSymbol OFTable[SEQSYMBOL_TABLE_SIZE(OffFSELog)]; /* is also used as temporary workspace while building hufTable during DDict creation */ |
| ZSTD_seqSymbol MLTable[SEQSYMBOL_TABLE_SIZE(MLFSELog)]; /* and therefore must be at least HUF_DECOMPRESS_WORKSPACE_SIZE large */ |
| HUF_DTable hufTable[HUF_DTABLE_SIZE(HufLog)]; /* can accommodate HUF_decompress4X */ |
| U32 rep[ZSTD_REP_NUM]; |
| U32 workspace[ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32]; |
| } ZSTD_entropyDTables_t; |
| |
| typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader, |
| ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock, |
| ZSTDds_decompressLastBlock, ZSTDds_checkChecksum, |
| ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTD_dStage; |
| |
| typedef enum { zdss_init=0, zdss_loadHeader, |
| zdss_read, zdss_load, zdss_flush } ZSTD_dStreamStage; |
| |
| typedef enum { |
| ZSTD_use_indefinitely = -1, /* Use the dictionary indefinitely */ |
| ZSTD_dont_use = 0, /* Do not use the dictionary (if one exists free it) */ |
| ZSTD_use_once = 1 /* Use the dictionary once and set to ZSTD_dont_use */ |
| } ZSTD_dictUses_e; |
| |
| /* Hashset for storing references to multiple ZSTD_DDict within ZSTD_DCtx */ |
| typedef struct { |
| const ZSTD_DDict** ddictPtrTable; |
| size_t ddictPtrTableSize; |
| size_t ddictPtrCount; |
| } ZSTD_DDictHashSet; |
| |
| struct ZSTD_DCtx_s |
| { |
| const ZSTD_seqSymbol* LLTptr; |
| const ZSTD_seqSymbol* MLTptr; |
| const ZSTD_seqSymbol* OFTptr; |
| const HUF_DTable* HUFptr; |
| ZSTD_entropyDTables_t entropy; |
| U32 workspace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; /* space needed when building huffman tables */ |
| const void* previousDstEnd; /* detect continuity */ |
| const void* prefixStart; /* start of current segment */ |
| const void* virtualStart; /* virtual start of previous segment if it was just before current one */ |
| const void* dictEnd; /* end of previous segment */ |
| size_t expected; |
| ZSTD_frameHeader fParams; |
| U64 processedCSize; |
| U64 decodedSize; |
| blockType_e bType; /* used in ZSTD_decompressContinue(), store blockType between block header decoding and block decompression stages */ |
| ZSTD_dStage stage; |
| U32 litEntropy; |
| U32 fseEntropy; |
| XXH64_state_t xxhState; |
| size_t headerSize; |
| ZSTD_format_e format; |
| ZSTD_forceIgnoreChecksum_e forceIgnoreChecksum; /* User specified: if == 1, will ignore checksums in compressed frame. Default == 0 */ |
| U32 validateChecksum; /* if == 1, will validate checksum. Is == 1 if (fParams.checksumFlag == 1) and (forceIgnoreChecksum == 0). */ |
| const BYTE* litPtr; |
| ZSTD_customMem customMem; |
| size_t litSize; |
| size_t rleSize; |
| size_t staticSize; |
| int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */ |
| |
| /* dictionary */ |
| ZSTD_DDict* ddictLocal; |
| const ZSTD_DDict* ddict; /* set by ZSTD_initDStream_usingDDict(), or ZSTD_DCtx_refDDict() */ |
| U32 dictID; |
| int ddictIsCold; /* if == 1 : dictionary is "new" for working context, and presumed "cold" (not in cpu cache) */ |
| ZSTD_dictUses_e dictUses; |
| ZSTD_DDictHashSet* ddictSet; /* Hash set for multiple ddicts */ |
| ZSTD_refMultipleDDicts_e refMultipleDDicts; /* User specified: if == 1, will allow references to multiple DDicts. Default == 0 (disabled) */ |
| |
| /* streaming */ |
| ZSTD_dStreamStage streamStage; |
| char* inBuff; |
| size_t inBuffSize; |
| size_t inPos; |
| size_t maxWindowSize; |
| char* outBuff; |
| size_t outBuffSize; |
| size_t outStart; |
| size_t outEnd; |
| size_t lhSize; |
| void* legacyContext; |
| U32 previousLegacyVersion; |
| U32 legacyVersion; |
| U32 hostageByte; |
| int noForwardProgress; |
| ZSTD_bufferMode_e outBufferMode; |
| ZSTD_outBuffer expectedOutBuffer; |
| |
| /* workspace */ |
| BYTE litBuffer[ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH]; |
| BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX]; |
| |
| size_t oversizedDuration; |
| |
| #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| void const* dictContentBeginForFuzzing; |
| void const* dictContentEndForFuzzing; |
| #endif |
| |
| /* Tracing */ |
| #if ZSTD_TRACE |
| ZSTD_TraceCtx traceCtx; |
| #endif |
| }; /* typedef'd to ZSTD_DCtx within "zstd.h" */ |
| |
| |
| /*-******************************************************* |
| * Shared internal functions |
| *********************************************************/ |
| |
| /*! ZSTD_loadDEntropy() : |
| * dict : must point at beginning of a valid zstd dictionary. |
| * @return : size of dictionary header (size of magic number + dict ID + entropy tables) */ |
| size_t ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy, |
| const void* const dict, size_t const dictSize); |
| |
| /*! ZSTD_checkContinuity() : |
| * check if next `dst` follows previous position, where decompression ended. |
| * If yes, do nothing (continue on current segment). |
| * If not, classify previous segment as "external dictionary", and start a new segment. |
| * This function cannot fail. */ |
| void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize); |
| |
| |
| #endif /* ZSTD_DECOMPRESS_INTERNAL_H */ |
| /**** ended inlining zstd_decompress_internal.h ****/ |
| /**** start inlining zstd_ddict.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| |
| #ifndef ZSTD_DDICT_H |
| #define ZSTD_DDICT_H |
| |
| /*-******************************************************* |
| * Dependencies |
| *********************************************************/ |
| /**** skipping file: ../common/zstd_deps.h ****/ |
| /**** skipping file: ../zstd.h ****/ |
| |
| |
| /*-******************************************************* |
| * Interface |
| *********************************************************/ |
| |
| /* note: several prototypes are already published in `zstd.h` : |
| * ZSTD_createDDict() |
| * ZSTD_createDDict_byReference() |
| * ZSTD_createDDict_advanced() |
| * ZSTD_freeDDict() |
| * ZSTD_initStaticDDict() |
| * ZSTD_sizeof_DDict() |
| * ZSTD_estimateDDictSize() |
| * ZSTD_getDictID_fromDict() |
| */ |
| |
| const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict); |
| size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict); |
| |
| void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict); |
| |
| |
| |
| #endif /* ZSTD_DDICT_H */ |
| /**** ended inlining zstd_ddict.h ****/ |
| |
| #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) |
| /**** start inlining ../legacy/zstd_legacy.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| #ifndef ZSTD_LEGACY_H |
| #define ZSTD_LEGACY_H |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /* ************************************* |
| * Includes |
| ***************************************/ |
| /**** skipping file: ../common/mem.h ****/ |
| /**** skipping file: ../common/error_private.h ****/ |
| /**** skipping file: ../common/zstd_internal.h ****/ |
| |
| #if !defined (ZSTD_LEGACY_SUPPORT) || (ZSTD_LEGACY_SUPPORT == 0) |
| # undef ZSTD_LEGACY_SUPPORT |
| # define ZSTD_LEGACY_SUPPORT 8 |
| #endif |
| |
| #if (ZSTD_LEGACY_SUPPORT <= 1) |
| /**** start inlining zstd_v01.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| #ifndef ZSTD_V01_H_28739879432 |
| #define ZSTD_V01_H_28739879432 |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /* ************************************* |
| * Includes |
| ***************************************/ |
| #include <stddef.h> /* size_t */ |
| |
| |
| /* ************************************* |
| * Simple one-step function |
| ***************************************/ |
| /** |
| ZSTDv01_decompress() : decompress ZSTD frames compliant with v0.1.x format |
| compressedSize : is the exact source size |
| maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated. |
| It must be equal or larger than originalSize, otherwise decompression will fail. |
| return : the number of bytes decompressed into destination buffer (originalSize) |
| or an errorCode if it fails (which can be tested using ZSTDv01_isError()) |
| */ |
| size_t ZSTDv01_decompress( void* dst, size_t maxOriginalSize, |
| const void* src, size_t compressedSize); |
| |
| /** |
| ZSTDv01_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.1.x format |
| srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src' |
| cSize (output parameter) : the number of bytes that would be read to decompress this frame |
| or an error code if it fails (which can be tested using ZSTDv01_isError()) |
| dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame |
| or ZSTD_CONTENTSIZE_ERROR if an error occurs |
| |
| note : assumes `cSize` and `dBound` are _not_ NULL. |
| */ |
| void ZSTDv01_findFrameSizeInfoLegacy(const void *src, size_t srcSize, |
| size_t* cSize, unsigned long long* dBound); |
| |
| /** |
| ZSTDv01_isError() : tells if the result of ZSTDv01_decompress() is an error |
| */ |
| unsigned ZSTDv01_isError(size_t code); |
| |
| |
| /* ************************************* |
| * Advanced functions |
| ***************************************/ |
| typedef struct ZSTDv01_Dctx_s ZSTDv01_Dctx; |
| ZSTDv01_Dctx* ZSTDv01_createDCtx(void); |
| size_t ZSTDv01_freeDCtx(ZSTDv01_Dctx* dctx); |
| |
| size_t ZSTDv01_decompressDCtx(void* ctx, |
| void* dst, size_t maxOriginalSize, |
| const void* src, size_t compressedSize); |
| |
| /* ************************************* |
| * Streaming functions |
| ***************************************/ |
| size_t ZSTDv01_resetDCtx(ZSTDv01_Dctx* dctx); |
| |
| size_t ZSTDv01_nextSrcSizeToDecompress(ZSTDv01_Dctx* dctx); |
| size_t ZSTDv01_decompressContinue(ZSTDv01_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize); |
| /** |
| Use above functions alternatively. |
| ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue(). |
| ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block. |
| Result is the number of bytes regenerated within 'dst'. |
| It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header. |
| */ |
| |
| /* ************************************* |
| * Prefix - version detection |
| ***************************************/ |
| #define ZSTDv01_magicNumber 0xFD2FB51E /* Big Endian version */ |
| #define ZSTDv01_magicNumberLE 0x1EB52FFD /* Little Endian version */ |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* ZSTD_V01_H_28739879432 */ |
| /**** ended inlining zstd_v01.h ****/ |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 2) |
| /**** start inlining zstd_v02.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| #ifndef ZSTD_V02_H_4174539423 |
| #define ZSTD_V02_H_4174539423 |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /* ************************************* |
| * Includes |
| ***************************************/ |
| #include <stddef.h> /* size_t */ |
| |
| |
| /* ************************************* |
| * Simple one-step function |
| ***************************************/ |
| /** |
| ZSTDv02_decompress() : decompress ZSTD frames compliant with v0.2.x format |
| compressedSize : is the exact source size |
| maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated. |
| It must be equal or larger than originalSize, otherwise decompression will fail. |
| return : the number of bytes decompressed into destination buffer (originalSize) |
| or an errorCode if it fails (which can be tested using ZSTDv01_isError()) |
| */ |
| size_t ZSTDv02_decompress( void* dst, size_t maxOriginalSize, |
| const void* src, size_t compressedSize); |
| |
| /** |
| ZSTDv02_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.2.x format |
| srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src' |
| cSize (output parameter) : the number of bytes that would be read to decompress this frame |
| or an error code if it fails (which can be tested using ZSTDv01_isError()) |
| dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame |
| or ZSTD_CONTENTSIZE_ERROR if an error occurs |
| |
| note : assumes `cSize` and `dBound` are _not_ NULL. |
| */ |
| void ZSTDv02_findFrameSizeInfoLegacy(const void *src, size_t srcSize, |
| size_t* cSize, unsigned long long* dBound); |
| |
| /** |
| ZSTDv02_isError() : tells if the result of ZSTDv02_decompress() is an error |
| */ |
| unsigned ZSTDv02_isError(size_t code); |
| |
| |
| /* ************************************* |
| * Advanced functions |
| ***************************************/ |
| typedef struct ZSTDv02_Dctx_s ZSTDv02_Dctx; |
| ZSTDv02_Dctx* ZSTDv02_createDCtx(void); |
| size_t ZSTDv02_freeDCtx(ZSTDv02_Dctx* dctx); |
| |
| size_t ZSTDv02_decompressDCtx(void* ctx, |
| void* dst, size_t maxOriginalSize, |
| const void* src, size_t compressedSize); |
| |
| /* ************************************* |
| * Streaming functions |
| ***************************************/ |
| size_t ZSTDv02_resetDCtx(ZSTDv02_Dctx* dctx); |
| |
| size_t ZSTDv02_nextSrcSizeToDecompress(ZSTDv02_Dctx* dctx); |
| size_t ZSTDv02_decompressContinue(ZSTDv02_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize); |
| /** |
| Use above functions alternatively. |
| ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue(). |
| ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block. |
| Result is the number of bytes regenerated within 'dst'. |
| It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header. |
| */ |
| |
| /* ************************************* |
| * Prefix - version detection |
| ***************************************/ |
| #define ZSTDv02_magicNumber 0xFD2FB522 /* v0.2 */ |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* ZSTD_V02_H_4174539423 */ |
| /**** ended inlining zstd_v02.h ****/ |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 3) |
| /**** start inlining zstd_v03.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| #ifndef ZSTD_V03_H_298734209782 |
| #define ZSTD_V03_H_298734209782 |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /* ************************************* |
| * Includes |
| ***************************************/ |
| #include <stddef.h> /* size_t */ |
| |
| |
| /* ************************************* |
| * Simple one-step function |
| ***************************************/ |
| /** |
| ZSTDv03_decompress() : decompress ZSTD frames compliant with v0.3.x format |
| compressedSize : is the exact source size |
| maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated. |
| It must be equal or larger than originalSize, otherwise decompression will fail. |
| return : the number of bytes decompressed into destination buffer (originalSize) |
| or an errorCode if it fails (which can be tested using ZSTDv01_isError()) |
| */ |
| size_t ZSTDv03_decompress( void* dst, size_t maxOriginalSize, |
| const void* src, size_t compressedSize); |
| |
| /** |
| ZSTDv03_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.3.x format |
| srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src' |
| cSize (output parameter) : the number of bytes that would be read to decompress this frame |
| or an error code if it fails (which can be tested using ZSTDv01_isError()) |
| dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame |
| or ZSTD_CONTENTSIZE_ERROR if an error occurs |
| |
| note : assumes `cSize` and `dBound` are _not_ NULL. |
| */ |
| void ZSTDv03_findFrameSizeInfoLegacy(const void *src, size_t srcSize, |
| size_t* cSize, unsigned long long* dBound); |
| |
| /** |
| ZSTDv03_isError() : tells if the result of ZSTDv03_decompress() is an error |
| */ |
| unsigned ZSTDv03_isError(size_t code); |
| |
| |
| /* ************************************* |
| * Advanced functions |
| ***************************************/ |
| typedef struct ZSTDv03_Dctx_s ZSTDv03_Dctx; |
| ZSTDv03_Dctx* ZSTDv03_createDCtx(void); |
| size_t ZSTDv03_freeDCtx(ZSTDv03_Dctx* dctx); |
| |
| size_t ZSTDv03_decompressDCtx(void* ctx, |
| void* dst, size_t maxOriginalSize, |
| const void* src, size_t compressedSize); |
| |
| /* ************************************* |
| * Streaming functions |
| ***************************************/ |
| size_t ZSTDv03_resetDCtx(ZSTDv03_Dctx* dctx); |
| |
| size_t ZSTDv03_nextSrcSizeToDecompress(ZSTDv03_Dctx* dctx); |
| size_t ZSTDv03_decompressContinue(ZSTDv03_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize); |
| /** |
| Use above functions alternatively. |
| ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue(). |
| ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block. |
| Result is the number of bytes regenerated within 'dst'. |
| It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header. |
| */ |
| |
| /* ************************************* |
| * Prefix - version detection |
| ***************************************/ |
| #define ZSTDv03_magicNumber 0xFD2FB523 /* v0.3 */ |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* ZSTD_V03_H_298734209782 */ |
| /**** ended inlining zstd_v03.h ****/ |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 4) |
| /**** start inlining zstd_v04.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| #ifndef ZSTD_V04_H_91868324769238 |
| #define ZSTD_V04_H_91868324769238 |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /* ************************************* |
| * Includes |
| ***************************************/ |
| #include <stddef.h> /* size_t */ |
| |
| |
| /* ************************************* |
| * Simple one-step function |
| ***************************************/ |
| /** |
| ZSTDv04_decompress() : decompress ZSTD frames compliant with v0.4.x format |
| compressedSize : is the exact source size |
| maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated. |
| It must be equal or larger than originalSize, otherwise decompression will fail. |
| return : the number of bytes decompressed into destination buffer (originalSize) |
| or an errorCode if it fails (which can be tested using ZSTDv01_isError()) |
| */ |
| size_t ZSTDv04_decompress( void* dst, size_t maxOriginalSize, |
| const void* src, size_t compressedSize); |
| |
| /** |
| ZSTDv04_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.4.x format |
| srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src' |
| cSize (output parameter) : the number of bytes that would be read to decompress this frame |
| or an error code if it fails (which can be tested using ZSTDv01_isError()) |
| dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame |
| or ZSTD_CONTENTSIZE_ERROR if an error occurs |
| |
| note : assumes `cSize` and `dBound` are _not_ NULL. |
| */ |
| void ZSTDv04_findFrameSizeInfoLegacy(const void *src, size_t srcSize, |
| size_t* cSize, unsigned long long* dBound); |
| |
| /** |
| ZSTDv04_isError() : tells if the result of ZSTDv04_decompress() is an error |
| */ |
| unsigned ZSTDv04_isError(size_t code); |
| |
| |
| /* ************************************* |
| * Advanced functions |
| ***************************************/ |
| typedef struct ZSTDv04_Dctx_s ZSTDv04_Dctx; |
| ZSTDv04_Dctx* ZSTDv04_createDCtx(void); |
| size_t ZSTDv04_freeDCtx(ZSTDv04_Dctx* dctx); |
| |
| size_t ZSTDv04_decompressDCtx(ZSTDv04_Dctx* dctx, |
| void* dst, size_t maxOriginalSize, |
| const void* src, size_t compressedSize); |
| |
| |
| /* ************************************* |
| * Direct Streaming |
| ***************************************/ |
| size_t ZSTDv04_resetDCtx(ZSTDv04_Dctx* dctx); |
| |
| size_t ZSTDv04_nextSrcSizeToDecompress(ZSTDv04_Dctx* dctx); |
| size_t ZSTDv04_decompressContinue(ZSTDv04_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize); |
| /** |
| Use above functions alternatively. |
| ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue(). |
| ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block. |
| Result is the number of bytes regenerated within 'dst'. |
| It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header. |
| */ |
| |
| |
| /* ************************************* |
| * Buffered Streaming |
| ***************************************/ |
| typedef struct ZBUFFv04_DCtx_s ZBUFFv04_DCtx; |
| ZBUFFv04_DCtx* ZBUFFv04_createDCtx(void); |
| size_t ZBUFFv04_freeDCtx(ZBUFFv04_DCtx* dctx); |
| |
| size_t ZBUFFv04_decompressInit(ZBUFFv04_DCtx* dctx); |
| size_t ZBUFFv04_decompressWithDictionary(ZBUFFv04_DCtx* dctx, const void* dict, size_t dictSize); |
| |
| size_t ZBUFFv04_decompressContinue(ZBUFFv04_DCtx* dctx, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr); |
| |
| /** ************************************************ |
| * Streaming decompression |
| * |
| * A ZBUFF_DCtx object is required to track streaming operation. |
| * Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources. |
| * Use ZBUFF_decompressInit() to start a new decompression operation. |
| * ZBUFF_DCtx objects can be reused multiple times. |
| * |
| * Optionally, a reference to a static dictionary can be set, using ZBUFF_decompressWithDictionary() |
| * It must be the same content as the one set during compression phase. |
| * Dictionary content must remain accessible during the decompression process. |
| * |
| * Use ZBUFF_decompressContinue() repetitively to consume your input. |
| * *srcSizePtr and *maxDstSizePtr can be any size. |
| * The function will report how many bytes were read or written by modifying *srcSizePtr and *maxDstSizePtr. |
| * Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again. |
| * The content of dst will be overwritten (up to *maxDstSizePtr) at each function call, so save its content if it matters or change dst. |
| * @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency) |
| * or 0 when a frame is completely decoded |
| * or an error code, which can be tested using ZBUFF_isError(). |
| * |
| * Hint : recommended buffer sizes (not compulsory) : ZBUFF_recommendedDInSize / ZBUFF_recommendedDOutSize |
| * output : ZBUFF_recommendedDOutSize==128 KB block size is the internal unit, it ensures it's always possible to write a full block when it's decoded. |
| * input : ZBUFF_recommendedDInSize==128Kb+3; just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 . |
| * **************************************************/ |
| unsigned ZBUFFv04_isError(size_t errorCode); |
| const char* ZBUFFv04_getErrorName(size_t errorCode); |
| |
| |
| /** The below functions provide recommended buffer sizes for Compression or Decompression operations. |
| * These sizes are not compulsory, they just tend to offer better latency */ |
| size_t ZBUFFv04_recommendedDInSize(void); |
| size_t ZBUFFv04_recommendedDOutSize(void); |
| |
| |
| /* ************************************* |
| * Prefix - version detection |
| ***************************************/ |
| #define ZSTDv04_magicNumber 0xFD2FB524 /* v0.4 */ |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* ZSTD_V04_H_91868324769238 */ |
| /**** ended inlining zstd_v04.h ****/ |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 5) |
| /**** start inlining zstd_v05.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| #ifndef ZSTDv05_H |
| #define ZSTDv05_H |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /*-************************************* |
| * Dependencies |
| ***************************************/ |
| #include <stddef.h> /* size_t */ |
| /**** skipping file: ../common/mem.h ****/ |
| |
| |
| /* ************************************* |
| * Simple functions |
| ***************************************/ |
| /*! ZSTDv05_decompress() : |
| `compressedSize` : is the _exact_ size of the compressed blob, otherwise decompression will fail. |
| `dstCapacity` must be large enough, equal or larger than originalSize. |
| @return : the number of bytes decompressed into `dst` (<= `dstCapacity`), |
| or an errorCode if it fails (which can be tested using ZSTDv05_isError()) */ |
| size_t ZSTDv05_decompress( void* dst, size_t dstCapacity, |
| const void* src, size_t compressedSize); |
| |
| /** |
| ZSTDv05_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.5.x format |
| srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src' |
| cSize (output parameter) : the number of bytes that would be read to decompress this frame |
| or an error code if it fails (which can be tested using ZSTDv01_isError()) |
| dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame |
| or ZSTD_CONTENTSIZE_ERROR if an error occurs |
| |
| note : assumes `cSize` and `dBound` are _not_ NULL. |
| */ |
| void ZSTDv05_findFrameSizeInfoLegacy(const void *src, size_t srcSize, |
| size_t* cSize, unsigned long long* dBound); |
| |
| /* ************************************* |
| * Helper functions |
| ***************************************/ |
| /* Error Management */ |
| unsigned ZSTDv05_isError(size_t code); /*!< tells if a `size_t` function result is an error code */ |
| const char* ZSTDv05_getErrorName(size_t code); /*!< provides readable string for an error code */ |
| |
| |
| /* ************************************* |
| * Explicit memory management |
| ***************************************/ |
| /** Decompression context */ |
| typedef struct ZSTDv05_DCtx_s ZSTDv05_DCtx; |
| ZSTDv05_DCtx* ZSTDv05_createDCtx(void); |
| size_t ZSTDv05_freeDCtx(ZSTDv05_DCtx* dctx); /*!< @return : errorCode */ |
| |
| /** ZSTDv05_decompressDCtx() : |
| * Same as ZSTDv05_decompress(), but requires an already allocated ZSTDv05_DCtx (see ZSTDv05_createDCtx()) */ |
| size_t ZSTDv05_decompressDCtx(ZSTDv05_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); |
| |
| |
| /*-*********************** |
| * Simple Dictionary API |
| *************************/ |
| /*! ZSTDv05_decompress_usingDict() : |
| * Decompression using a pre-defined Dictionary content (see dictBuilder). |
| * Dictionary must be identical to the one used during compression, otherwise regenerated data will be corrupted. |
| * Note : dict can be NULL, in which case, it's equivalent to ZSTDv05_decompressDCtx() */ |
| size_t ZSTDv05_decompress_usingDict(ZSTDv05_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const void* dict,size_t dictSize); |
| |
| /*-************************ |
| * Advanced Streaming API |
| ***************************/ |
| typedef enum { ZSTDv05_fast, ZSTDv05_greedy, ZSTDv05_lazy, ZSTDv05_lazy2, ZSTDv05_btlazy2, ZSTDv05_opt, ZSTDv05_btopt } ZSTDv05_strategy; |
| typedef struct { |
| U64 srcSize; |
| U32 windowLog; /* the only useful information to retrieve */ |
| U32 contentLog; U32 hashLog; U32 searchLog; U32 searchLength; U32 targetLength; ZSTDv05_strategy strategy; |
| } ZSTDv05_parameters; |
| size_t ZSTDv05_getFrameParams(ZSTDv05_parameters* params, const void* src, size_t srcSize); |
| |
| size_t ZSTDv05_decompressBegin_usingDict(ZSTDv05_DCtx* dctx, const void* dict, size_t dictSize); |
| void ZSTDv05_copyDCtx(ZSTDv05_DCtx* dstDCtx, const ZSTDv05_DCtx* srcDCtx); |
| size_t ZSTDv05_nextSrcSizeToDecompress(ZSTDv05_DCtx* dctx); |
| size_t ZSTDv05_decompressContinue(ZSTDv05_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); |
| |
| |
| /*-*********************** |
| * ZBUFF API |
| *************************/ |
| typedef struct ZBUFFv05_DCtx_s ZBUFFv05_DCtx; |
| ZBUFFv05_DCtx* ZBUFFv05_createDCtx(void); |
| size_t ZBUFFv05_freeDCtx(ZBUFFv05_DCtx* dctx); |
| |
| size_t ZBUFFv05_decompressInit(ZBUFFv05_DCtx* dctx); |
| size_t ZBUFFv05_decompressInitDictionary(ZBUFFv05_DCtx* dctx, const void* dict, size_t dictSize); |
| |
| size_t ZBUFFv05_decompressContinue(ZBUFFv05_DCtx* dctx, |
| void* dst, size_t* dstCapacityPtr, |
| const void* src, size_t* srcSizePtr); |
| |
| /*-*************************************************************************** |
| * Streaming decompression |
| * |
| * A ZBUFFv05_DCtx object is required to track streaming operations. |
| * Use ZBUFFv05_createDCtx() and ZBUFFv05_freeDCtx() to create/release resources. |
| * Use ZBUFFv05_decompressInit() to start a new decompression operation, |
| * or ZBUFFv05_decompressInitDictionary() if decompression requires a dictionary. |
| * Note that ZBUFFv05_DCtx objects can be reused multiple times. |
| * |
| * Use ZBUFFv05_decompressContinue() repetitively to consume your input. |
| * *srcSizePtr and *dstCapacityPtr can be any size. |
| * The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr. |
| * Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again. |
| * The content of @dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters or change @dst. |
| * @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency) |
| * or 0 when a frame is completely decoded |
| * or an error code, which can be tested using ZBUFFv05_isError(). |
| * |
| * Hint : recommended buffer sizes (not compulsory) : ZBUFFv05_recommendedDInSize() / ZBUFFv05_recommendedDOutSize() |
| * output : ZBUFFv05_recommendedDOutSize==128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded. |
| * input : ZBUFFv05_recommendedDInSize==128Kb+3; just follow indications from ZBUFFv05_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 . |
| * *******************************************************************************/ |
| |
| |
| /* ************************************* |
| * Tool functions |
| ***************************************/ |
| unsigned ZBUFFv05_isError(size_t errorCode); |
| const char* ZBUFFv05_getErrorName(size_t errorCode); |
| |
| /** Functions below provide recommended buffer sizes for Compression or Decompression operations. |
| * These sizes are just hints, and tend to offer better latency */ |
| size_t ZBUFFv05_recommendedDInSize(void); |
| size_t ZBUFFv05_recommendedDOutSize(void); |
| |
| |
| |
| /*-************************************* |
| * Constants |
| ***************************************/ |
| #define ZSTDv05_MAGICNUMBER 0xFD2FB525 /* v0.5 */ |
| |
| |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* ZSTDv0505_H */ |
| /**** ended inlining zstd_v05.h ****/ |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 6) |
| /**** start inlining zstd_v06.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| #ifndef ZSTDv06_H |
| #define ZSTDv06_H |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /*====== Dependency ======*/ |
| #include <stddef.h> /* size_t */ |
| |
| |
| /*====== Export for Windows ======*/ |
| /*! |
| * ZSTDv06_DLL_EXPORT : |
| * Enable exporting of functions when building a Windows DLL |
| */ |
| #if defined(_WIN32) && defined(ZSTDv06_DLL_EXPORT) && (ZSTDv06_DLL_EXPORT==1) |
| # define ZSTDLIBv06_API __declspec(dllexport) |
| #else |
| # define ZSTDLIBv06_API |
| #endif |
| |
| |
| /* ************************************* |
| * Simple functions |
| ***************************************/ |
| /*! ZSTDv06_decompress() : |
| `compressedSize` : is the _exact_ size of the compressed blob, otherwise decompression will fail. |
| `dstCapacity` must be large enough, equal or larger than originalSize. |
| @return : the number of bytes decompressed into `dst` (<= `dstCapacity`), |
| or an errorCode if it fails (which can be tested using ZSTDv06_isError()) */ |
| ZSTDLIBv06_API size_t ZSTDv06_decompress( void* dst, size_t dstCapacity, |
| const void* src, size_t compressedSize); |
| |
| /** |
| ZSTDv06_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.6.x format |
| srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src' |
| cSize (output parameter) : the number of bytes that would be read to decompress this frame |
| or an error code if it fails (which can be tested using ZSTDv01_isError()) |
| dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame |
| or ZSTD_CONTENTSIZE_ERROR if an error occurs |
| |
| note : assumes `cSize` and `dBound` are _not_ NULL. |
| */ |
| void ZSTDv06_findFrameSizeInfoLegacy(const void *src, size_t srcSize, |
| size_t* cSize, unsigned long long* dBound); |
| |
| /* ************************************* |
| * Helper functions |
| ***************************************/ |
| ZSTDLIBv06_API size_t ZSTDv06_compressBound(size_t srcSize); /*!< maximum compressed size (worst case scenario) */ |
| |
| /* Error Management */ |
| ZSTDLIBv06_API unsigned ZSTDv06_isError(size_t code); /*!< tells if a `size_t` function result is an error code */ |
| ZSTDLIBv06_API const char* ZSTDv06_getErrorName(size_t code); /*!< provides readable string for an error code */ |
| |
| |
| /* ************************************* |
| * Explicit memory management |
| ***************************************/ |
| /** Decompression context */ |
| typedef struct ZSTDv06_DCtx_s ZSTDv06_DCtx; |
| ZSTDLIBv06_API ZSTDv06_DCtx* ZSTDv06_createDCtx(void); |
| ZSTDLIBv06_API size_t ZSTDv06_freeDCtx(ZSTDv06_DCtx* dctx); /*!< @return : errorCode */ |
| |
| /** ZSTDv06_decompressDCtx() : |
| * Same as ZSTDv06_decompress(), but requires an already allocated ZSTDv06_DCtx (see ZSTDv06_createDCtx()) */ |
| ZSTDLIBv06_API size_t ZSTDv06_decompressDCtx(ZSTDv06_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); |
| |
| |
| /*-*********************** |
| * Dictionary API |
| *************************/ |
| /*! ZSTDv06_decompress_usingDict() : |
| * Decompression using a pre-defined Dictionary content (see dictBuilder). |
| * Dictionary must be identical to the one used during compression, otherwise regenerated data will be corrupted. |
| * Note : dict can be NULL, in which case, it's equivalent to ZSTDv06_decompressDCtx() */ |
| ZSTDLIBv06_API size_t ZSTDv06_decompress_usingDict(ZSTDv06_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const void* dict,size_t dictSize); |
| |
| |
| /*-************************ |
| * Advanced Streaming API |
| ***************************/ |
| struct ZSTDv06_frameParams_s { unsigned long long frameContentSize; unsigned windowLog; }; |
| typedef struct ZSTDv06_frameParams_s ZSTDv06_frameParams; |
| |
| ZSTDLIBv06_API size_t ZSTDv06_getFrameParams(ZSTDv06_frameParams* fparamsPtr, const void* src, size_t srcSize); /**< doesn't consume input */ |
| ZSTDLIBv06_API size_t ZSTDv06_decompressBegin_usingDict(ZSTDv06_DCtx* dctx, const void* dict, size_t dictSize); |
| ZSTDLIBv06_API void ZSTDv06_copyDCtx(ZSTDv06_DCtx* dctx, const ZSTDv06_DCtx* preparedDCtx); |
| |
| ZSTDLIBv06_API size_t ZSTDv06_nextSrcSizeToDecompress(ZSTDv06_DCtx* dctx); |
| ZSTDLIBv06_API size_t ZSTDv06_decompressContinue(ZSTDv06_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); |
| |
| |
| |
| /* ************************************* |
| * ZBUFF API |
| ***************************************/ |
| |
| typedef struct ZBUFFv06_DCtx_s ZBUFFv06_DCtx; |
| ZSTDLIBv06_API ZBUFFv06_DCtx* ZBUFFv06_createDCtx(void); |
| ZSTDLIBv06_API size_t ZBUFFv06_freeDCtx(ZBUFFv06_DCtx* dctx); |
| |
| ZSTDLIBv06_API size_t ZBUFFv06_decompressInit(ZBUFFv06_DCtx* dctx); |
| ZSTDLIBv06_API size_t ZBUFFv06_decompressInitDictionary(ZBUFFv06_DCtx* dctx, const void* dict, size_t dictSize); |
| |
| ZSTDLIBv06_API size_t ZBUFFv06_decompressContinue(ZBUFFv06_DCtx* dctx, |
| void* dst, size_t* dstCapacityPtr, |
| const void* src, size_t* srcSizePtr); |
| |
| /*-*************************************************************************** |
| * Streaming decompression howto |
| * |
| * A ZBUFFv06_DCtx object is required to track streaming operations. |
| * Use ZBUFFv06_createDCtx() and ZBUFFv06_freeDCtx() to create/release resources. |
| * Use ZBUFFv06_decompressInit() to start a new decompression operation, |
| * or ZBUFFv06_decompressInitDictionary() if decompression requires a dictionary. |
| * Note that ZBUFFv06_DCtx objects can be re-init multiple times. |
| * |
| * Use ZBUFFv06_decompressContinue() repetitively to consume your input. |
| * *srcSizePtr and *dstCapacityPtr can be any size. |
| * The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr. |
| * Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again. |
| * The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`. |
| * @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency), |
| * or 0 when a frame is completely decoded, |
| * or an error code, which can be tested using ZBUFFv06_isError(). |
| * |
| * Hint : recommended buffer sizes (not compulsory) : ZBUFFv06_recommendedDInSize() and ZBUFFv06_recommendedDOutSize() |
| * output : ZBUFFv06_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded. |
| * input : ZBUFFv06_recommendedDInSize == 128KB + 3; |
| * just follow indications from ZBUFFv06_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 . |
| * *******************************************************************************/ |
| |
| |
| /* ************************************* |
| * Tool functions |
| ***************************************/ |
| ZSTDLIBv06_API unsigned ZBUFFv06_isError(size_t errorCode); |
| ZSTDLIBv06_API const char* ZBUFFv06_getErrorName(size_t errorCode); |
| |
| /** Functions below provide recommended buffer sizes for Compression or Decompression operations. |
| * These sizes are just hints, they tend to offer better latency */ |
| ZSTDLIBv06_API size_t ZBUFFv06_recommendedDInSize(void); |
| ZSTDLIBv06_API size_t ZBUFFv06_recommendedDOutSize(void); |
| |
| |
| /*-************************************* |
| * Constants |
| ***************************************/ |
| #define ZSTDv06_MAGICNUMBER 0xFD2FB526 /* v0.6 */ |
| |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* ZSTDv06_BUFFERED_H */ |
| /**** ended inlining zstd_v06.h ****/ |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 7) |
| /**** start inlining zstd_v07.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| #ifndef ZSTDv07_H_235446 |
| #define ZSTDv07_H_235446 |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| /*====== Dependency ======*/ |
| #include <stddef.h> /* size_t */ |
| |
| |
| /*====== Export for Windows ======*/ |
| /*! |
| * ZSTDv07_DLL_EXPORT : |
| * Enable exporting of functions when building a Windows DLL |
| */ |
| #if defined(_WIN32) && defined(ZSTDv07_DLL_EXPORT) && (ZSTDv07_DLL_EXPORT==1) |
| # define ZSTDLIBv07_API __declspec(dllexport) |
| #else |
| # define ZSTDLIBv07_API |
| #endif |
| |
| |
| /* ************************************* |
| * Simple API |
| ***************************************/ |
| /*! ZSTDv07_getDecompressedSize() : |
| * @return : decompressed size if known, 0 otherwise. |
| note 1 : if `0`, follow up with ZSTDv07_getFrameParams() to know precise failure cause. |
| note 2 : decompressed size could be wrong or intentionally modified ! |
| always ensure results fit within application's authorized limits */ |
| unsigned long long ZSTDv07_getDecompressedSize(const void* src, size_t srcSize); |
| |
| /*! ZSTDv07_decompress() : |
| `compressedSize` : must be _exact_ size of compressed input, otherwise decompression will fail. |
| `dstCapacity` must be equal or larger than originalSize. |
| @return : the number of bytes decompressed into `dst` (<= `dstCapacity`), |
| or an errorCode if it fails (which can be tested using ZSTDv07_isError()) */ |
| ZSTDLIBv07_API size_t ZSTDv07_decompress( void* dst, size_t dstCapacity, |
| const void* src, size_t compressedSize); |
| |
| /** |
| ZSTDv07_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.7.x format |
| srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src' |
| cSize (output parameter) : the number of bytes that would be read to decompress this frame |
| or an error code if it fails (which can be tested using ZSTDv01_isError()) |
| dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame |
| or ZSTD_CONTENTSIZE_ERROR if an error occurs |
| |
| note : assumes `cSize` and `dBound` are _not_ NULL. |
| */ |
| void ZSTDv07_findFrameSizeInfoLegacy(const void *src, size_t srcSize, |
| size_t* cSize, unsigned long long* dBound); |
| |
| /*====== Helper functions ======*/ |
| ZSTDLIBv07_API unsigned ZSTDv07_isError(size_t code); /*!< tells if a `size_t` function result is an error code */ |
| ZSTDLIBv07_API const char* ZSTDv07_getErrorName(size_t code); /*!< provides readable string from an error code */ |
| |
| |
| /*-************************************* |
| * Explicit memory management |
| ***************************************/ |
| /** Decompression context */ |
| typedef struct ZSTDv07_DCtx_s ZSTDv07_DCtx; |
| ZSTDLIBv07_API ZSTDv07_DCtx* ZSTDv07_createDCtx(void); |
| ZSTDLIBv07_API size_t ZSTDv07_freeDCtx(ZSTDv07_DCtx* dctx); /*!< @return : errorCode */ |
| |
| /** ZSTDv07_decompressDCtx() : |
| * Same as ZSTDv07_decompress(), requires an allocated ZSTDv07_DCtx (see ZSTDv07_createDCtx()) */ |
| ZSTDLIBv07_API size_t ZSTDv07_decompressDCtx(ZSTDv07_DCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); |
| |
| |
| /*-************************ |
| * Simple dictionary API |
| ***************************/ |
| /*! ZSTDv07_decompress_usingDict() : |
| * Decompression using a pre-defined Dictionary content (see dictBuilder). |
| * Dictionary must be identical to the one used during compression. |
| * Note : This function load the dictionary, resulting in a significant startup time */ |
| ZSTDLIBv07_API size_t ZSTDv07_decompress_usingDict(ZSTDv07_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const void* dict,size_t dictSize); |
| |
| |
| /*-************************** |
| * Advanced Dictionary API |
| ****************************/ |
| /*! ZSTDv07_createDDict() : |
| * Create a digested dictionary, ready to start decompression operation without startup delay. |
| * `dict` can be released after creation */ |
| typedef struct ZSTDv07_DDict_s ZSTDv07_DDict; |
| ZSTDLIBv07_API ZSTDv07_DDict* ZSTDv07_createDDict(const void* dict, size_t dictSize); |
| ZSTDLIBv07_API size_t ZSTDv07_freeDDict(ZSTDv07_DDict* ddict); |
| |
| /*! ZSTDv07_decompress_usingDDict() : |
| * Decompression using a pre-digested Dictionary |
| * Faster startup than ZSTDv07_decompress_usingDict(), recommended when same dictionary is used multiple times. */ |
| ZSTDLIBv07_API size_t ZSTDv07_decompress_usingDDict(ZSTDv07_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const ZSTDv07_DDict* ddict); |
| |
| typedef struct { |
| unsigned long long frameContentSize; |
| unsigned windowSize; |
| unsigned dictID; |
| unsigned checksumFlag; |
| } ZSTDv07_frameParams; |
| |
| ZSTDLIBv07_API size_t ZSTDv07_getFrameParams(ZSTDv07_frameParams* fparamsPtr, const void* src, size_t srcSize); /**< doesn't consume input */ |
| |
| |
| |
| |
| /* ************************************* |
| * Streaming functions |
| ***************************************/ |
| typedef struct ZBUFFv07_DCtx_s ZBUFFv07_DCtx; |
| ZSTDLIBv07_API ZBUFFv07_DCtx* ZBUFFv07_createDCtx(void); |
| ZSTDLIBv07_API size_t ZBUFFv07_freeDCtx(ZBUFFv07_DCtx* dctx); |
| |
| ZSTDLIBv07_API size_t ZBUFFv07_decompressInit(ZBUFFv07_DCtx* dctx); |
| ZSTDLIBv07_API size_t ZBUFFv07_decompressInitDictionary(ZBUFFv07_DCtx* dctx, const void* dict, size_t dictSize); |
| |
| ZSTDLIBv07_API size_t ZBUFFv07_decompressContinue(ZBUFFv07_DCtx* dctx, |
| void* dst, size_t* dstCapacityPtr, |
| const void* src, size_t* srcSizePtr); |
| |
| /*-*************************************************************************** |
| * Streaming decompression howto |
| * |
| * A ZBUFFv07_DCtx object is required to track streaming operations. |
| * Use ZBUFFv07_createDCtx() and ZBUFFv07_freeDCtx() to create/release resources. |
| * Use ZBUFFv07_decompressInit() to start a new decompression operation, |
| * or ZBUFFv07_decompressInitDictionary() if decompression requires a dictionary. |
| * Note that ZBUFFv07_DCtx objects can be re-init multiple times. |
| * |
| * Use ZBUFFv07_decompressContinue() repetitively to consume your input. |
| * *srcSizePtr and *dstCapacityPtr can be any size. |
| * The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr. |
| * Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again. |
| * The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`. |
| * @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency), |
| * or 0 when a frame is completely decoded, |
| * or an error code, which can be tested using ZBUFFv07_isError(). |
| * |
| * Hint : recommended buffer sizes (not compulsory) : ZBUFFv07_recommendedDInSize() and ZBUFFv07_recommendedDOutSize() |
| * output : ZBUFFv07_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded. |
| * input : ZBUFFv07_recommendedDInSize == 128KB + 3; |
| * just follow indications from ZBUFFv07_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 . |
| * *******************************************************************************/ |
| |
| |
| /* ************************************* |
| * Tool functions |
| ***************************************/ |
| ZSTDLIBv07_API unsigned ZBUFFv07_isError(size_t errorCode); |
| ZSTDLIBv07_API const char* ZBUFFv07_getErrorName(size_t errorCode); |
| |
| /** Functions below provide recommended buffer sizes for Compression or Decompression operations. |
| * These sizes are just hints, they tend to offer better latency */ |
| ZSTDLIBv07_API size_t ZBUFFv07_recommendedDInSize(void); |
| ZSTDLIBv07_API size_t ZBUFFv07_recommendedDOutSize(void); |
| |
| |
| /*-************************************* |
| * Constants |
| ***************************************/ |
| #define ZSTDv07_MAGICNUMBER 0xFD2FB527 /* v0.7 */ |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* ZSTDv07_H_235446 */ |
| /**** ended inlining zstd_v07.h ****/ |
| #endif |
| |
| /** ZSTD_isLegacy() : |
| @return : > 0 if supported by legacy decoder. 0 otherwise. |
| return value is the version. |
| */ |
| MEM_STATIC unsigned ZSTD_isLegacy(const void* src, size_t srcSize) |
| { |
| U32 magicNumberLE; |
| if (srcSize<4) return 0; |
| magicNumberLE = MEM_readLE32(src); |
| switch(magicNumberLE) |
| { |
| #if (ZSTD_LEGACY_SUPPORT <= 1) |
| case ZSTDv01_magicNumberLE:return 1; |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 2) |
| case ZSTDv02_magicNumber : return 2; |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 3) |
| case ZSTDv03_magicNumber : return 3; |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 4) |
| case ZSTDv04_magicNumber : return 4; |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 5) |
| case ZSTDv05_MAGICNUMBER : return 5; |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 6) |
| case ZSTDv06_MAGICNUMBER : return 6; |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 7) |
| case ZSTDv07_MAGICNUMBER : return 7; |
| #endif |
| default : return 0; |
| } |
| } |
| |
| |
| MEM_STATIC unsigned long long ZSTD_getDecompressedSize_legacy(const void* src, size_t srcSize) |
| { |
| U32 const version = ZSTD_isLegacy(src, srcSize); |
| if (version < 5) return 0; /* no decompressed size in frame header, or not a legacy format */ |
| #if (ZSTD_LEGACY_SUPPORT <= 5) |
| if (version==5) { |
| ZSTDv05_parameters fParams; |
| size_t const frResult = ZSTDv05_getFrameParams(&fParams, src, srcSize); |
| if (frResult != 0) return 0; |
| return fParams.srcSize; |
| } |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 6) |
| if (version==6) { |
| ZSTDv06_frameParams fParams; |
| size_t const frResult = ZSTDv06_getFrameParams(&fParams, src, srcSize); |
| if (frResult != 0) return 0; |
| return fParams.frameContentSize; |
| } |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 7) |
| if (version==7) { |
| ZSTDv07_frameParams fParams; |
| size_t const frResult = ZSTDv07_getFrameParams(&fParams, src, srcSize); |
| if (frResult != 0) return 0; |
| return fParams.frameContentSize; |
| } |
| #endif |
| return 0; /* should not be possible */ |
| } |
| |
| |
| MEM_STATIC size_t ZSTD_decompressLegacy( |
| void* dst, size_t dstCapacity, |
| const void* src, size_t compressedSize, |
| const void* dict,size_t dictSize) |
| { |
| U32 const version = ZSTD_isLegacy(src, compressedSize); |
| (void)dst; (void)dstCapacity; (void)dict; (void)dictSize; /* unused when ZSTD_LEGACY_SUPPORT >= 8 */ |
| switch(version) |
| { |
| #if (ZSTD_LEGACY_SUPPORT <= 1) |
| case 1 : |
| return ZSTDv01_decompress(dst, dstCapacity, src, compressedSize); |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 2) |
| case 2 : |
| return ZSTDv02_decompress(dst, dstCapacity, src, compressedSize); |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 3) |
| case 3 : |
| return ZSTDv03_decompress(dst, dstCapacity, src, compressedSize); |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 4) |
| case 4 : |
| return ZSTDv04_decompress(dst, dstCapacity, src, compressedSize); |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 5) |
| case 5 : |
| { size_t result; |
| ZSTDv05_DCtx* const zd = ZSTDv05_createDCtx(); |
| if (zd==NULL) return ERROR(memory_allocation); |
| result = ZSTDv05_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize); |
| ZSTDv05_freeDCtx(zd); |
| return result; |
| } |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 6) |
| case 6 : |
| { size_t result; |
| ZSTDv06_DCtx* const zd = ZSTDv06_createDCtx(); |
| if (zd==NULL) return ERROR(memory_allocation); |
| result = ZSTDv06_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize); |
| ZSTDv06_freeDCtx(zd); |
| return result; |
| } |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 7) |
| case 7 : |
| { size_t result; |
| ZSTDv07_DCtx* const zd = ZSTDv07_createDCtx(); |
| if (zd==NULL) return ERROR(memory_allocation); |
| result = ZSTDv07_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize); |
| ZSTDv07_freeDCtx(zd); |
| return result; |
| } |
| #endif |
| default : |
| return ERROR(prefix_unknown); |
| } |
| } |
| |
| MEM_STATIC ZSTD_frameSizeInfo ZSTD_findFrameSizeInfoLegacy(const void *src, size_t srcSize) |
| { |
| ZSTD_frameSizeInfo frameSizeInfo; |
| U32 const version = ZSTD_isLegacy(src, srcSize); |
| switch(version) |
| { |
| #if (ZSTD_LEGACY_SUPPORT <= 1) |
| case 1 : |
| ZSTDv01_findFrameSizeInfoLegacy(src, srcSize, |
| &frameSizeInfo.compressedSize, |
| &frameSizeInfo.decompressedBound); |
| break; |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 2) |
| case 2 : |
| ZSTDv02_findFrameSizeInfoLegacy(src, srcSize, |
| &frameSizeInfo.compressedSize, |
| &frameSizeInfo.decompressedBound); |
| break; |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 3) |
| case 3 : |
| ZSTDv03_findFrameSizeInfoLegacy(src, srcSize, |
| &frameSizeInfo.compressedSize, |
| &frameSizeInfo.decompressedBound); |
| break; |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 4) |
| case 4 : |
| ZSTDv04_findFrameSizeInfoLegacy(src, srcSize, |
| &frameSizeInfo.compressedSize, |
| &frameSizeInfo.decompressedBound); |
| break; |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 5) |
| case 5 : |
| ZSTDv05_findFrameSizeInfoLegacy(src, srcSize, |
| &frameSizeInfo.compressedSize, |
| &frameSizeInfo.decompressedBound); |
| break; |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 6) |
| case 6 : |
| ZSTDv06_findFrameSizeInfoLegacy(src, srcSize, |
| &frameSizeInfo.compressedSize, |
| &frameSizeInfo.decompressedBound); |
| break; |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 7) |
| case 7 : |
| ZSTDv07_findFrameSizeInfoLegacy(src, srcSize, |
| &frameSizeInfo.compressedSize, |
| &frameSizeInfo.decompressedBound); |
| break; |
| #endif |
| default : |
| frameSizeInfo.compressedSize = ERROR(prefix_unknown); |
| frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR; |
| break; |
| } |
| if (!ZSTD_isError(frameSizeInfo.compressedSize) && frameSizeInfo.compressedSize > srcSize) { |
| frameSizeInfo.compressedSize = ERROR(srcSize_wrong); |
| frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR; |
| } |
| return frameSizeInfo; |
| } |
| |
| MEM_STATIC size_t ZSTD_findFrameCompressedSizeLegacy(const void *src, size_t srcSize) |
| { |
| ZSTD_frameSizeInfo frameSizeInfo = ZSTD_findFrameSizeInfoLegacy(src, srcSize); |
| return frameSizeInfo.compressedSize; |
| } |
| |
| MEM_STATIC size_t ZSTD_freeLegacyStreamContext(void* legacyContext, U32 version) |
| { |
| switch(version) |
| { |
| default : |
| case 1 : |
| case 2 : |
| case 3 : |
| (void)legacyContext; |
| return ERROR(version_unsupported); |
| #if (ZSTD_LEGACY_SUPPORT <= 4) |
| case 4 : return ZBUFFv04_freeDCtx((ZBUFFv04_DCtx*)legacyContext); |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 5) |
| case 5 : return ZBUFFv05_freeDCtx((ZBUFFv05_DCtx*)legacyContext); |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 6) |
| case 6 : return ZBUFFv06_freeDCtx((ZBUFFv06_DCtx*)legacyContext); |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 7) |
| case 7 : return ZBUFFv07_freeDCtx((ZBUFFv07_DCtx*)legacyContext); |
| #endif |
| } |
| } |
| |
| |
| MEM_STATIC size_t ZSTD_initLegacyStream(void** legacyContext, U32 prevVersion, U32 newVersion, |
| const void* dict, size_t dictSize) |
| { |
| DEBUGLOG(5, "ZSTD_initLegacyStream for v0.%u", newVersion); |
| if (prevVersion != newVersion) ZSTD_freeLegacyStreamContext(*legacyContext, prevVersion); |
| switch(newVersion) |
| { |
| default : |
| case 1 : |
| case 2 : |
| case 3 : |
| (void)dict; (void)dictSize; |
| return 0; |
| #if (ZSTD_LEGACY_SUPPORT <= 4) |
| case 4 : |
| { |
| ZBUFFv04_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv04_createDCtx() : (ZBUFFv04_DCtx*)*legacyContext; |
| if (dctx==NULL) return ERROR(memory_allocation); |
| ZBUFFv04_decompressInit(dctx); |
| ZBUFFv04_decompressWithDictionary(dctx, dict, dictSize); |
| *legacyContext = dctx; |
| return 0; |
| } |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 5) |
| case 5 : |
| { |
| ZBUFFv05_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv05_createDCtx() : (ZBUFFv05_DCtx*)*legacyContext; |
| if (dctx==NULL) return ERROR(memory_allocation); |
| ZBUFFv05_decompressInitDictionary(dctx, dict, dictSize); |
| *legacyContext = dctx; |
| return 0; |
| } |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 6) |
| case 6 : |
| { |
| ZBUFFv06_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv06_createDCtx() : (ZBUFFv06_DCtx*)*legacyContext; |
| if (dctx==NULL) return ERROR(memory_allocation); |
| ZBUFFv06_decompressInitDictionary(dctx, dict, dictSize); |
| *legacyContext = dctx; |
| return 0; |
| } |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 7) |
| case 7 : |
| { |
| ZBUFFv07_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv07_createDCtx() : (ZBUFFv07_DCtx*)*legacyContext; |
| if (dctx==NULL) return ERROR(memory_allocation); |
| ZBUFFv07_decompressInitDictionary(dctx, dict, dictSize); |
| *legacyContext = dctx; |
| return 0; |
| } |
| #endif |
| } |
| } |
| |
| |
| |
| MEM_STATIC size_t ZSTD_decompressLegacyStream(void* legacyContext, U32 version, |
| ZSTD_outBuffer* output, ZSTD_inBuffer* input) |
| { |
| DEBUGLOG(5, "ZSTD_decompressLegacyStream for v0.%u", version); |
| switch(version) |
| { |
| default : |
| case 1 : |
| case 2 : |
| case 3 : |
| (void)legacyContext; (void)output; (void)input; |
| return ERROR(version_unsupported); |
| #if (ZSTD_LEGACY_SUPPORT <= 4) |
| case 4 : |
| { |
| ZBUFFv04_DCtx* dctx = (ZBUFFv04_DCtx*) legacyContext; |
| const void* src = (const char*)input->src + input->pos; |
| size_t readSize = input->size - input->pos; |
| void* dst = (char*)output->dst + output->pos; |
| size_t decodedSize = output->size - output->pos; |
| size_t const hintSize = ZBUFFv04_decompressContinue(dctx, dst, &decodedSize, src, &readSize); |
| output->pos += decodedSize; |
| input->pos += readSize; |
| return hintSize; |
| } |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 5) |
| case 5 : |
| { |
| ZBUFFv05_DCtx* dctx = (ZBUFFv05_DCtx*) legacyContext; |
| const void* src = (const char*)input->src + input->pos; |
| size_t readSize = input->size - input->pos; |
| void* dst = (char*)output->dst + output->pos; |
| size_t decodedSize = output->size - output->pos; |
| size_t const hintSize = ZBUFFv05_decompressContinue(dctx, dst, &decodedSize, src, &readSize); |
| output->pos += decodedSize; |
| input->pos += readSize; |
| return hintSize; |
| } |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 6) |
| case 6 : |
| { |
| ZBUFFv06_DCtx* dctx = (ZBUFFv06_DCtx*) legacyContext; |
| const void* src = (const char*)input->src + input->pos; |
| size_t readSize = input->size - input->pos; |
| void* dst = (char*)output->dst + output->pos; |
| size_t decodedSize = output->size - output->pos; |
| size_t const hintSize = ZBUFFv06_decompressContinue(dctx, dst, &decodedSize, src, &readSize); |
| output->pos += decodedSize; |
| input->pos += readSize; |
| return hintSize; |
| } |
| #endif |
| #if (ZSTD_LEGACY_SUPPORT <= 7) |
| case 7 : |
| { |
| ZBUFFv07_DCtx* dctx = (ZBUFFv07_DCtx*) legacyContext; |
| const void* src = (const char*)input->src + input->pos; |
| size_t readSize = input->size - input->pos; |
| void* dst = (char*)output->dst + output->pos; |
| size_t decodedSize = output->size - output->pos; |
| size_t const hintSize = ZBUFFv07_decompressContinue(dctx, dst, &decodedSize, src, &readSize); |
| output->pos += decodedSize; |
| input->pos += readSize; |
| return hintSize; |
| } |
| #endif |
| } |
| } |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* ZSTD_LEGACY_H */ |
| /**** ended inlining ../legacy/zstd_legacy.h ****/ |
| #endif |
| |
| |
| |
| /*-******************************************************* |
| * Types |
| *********************************************************/ |
| struct ZSTD_DDict_s { |
| void* dictBuffer; |
| const void* dictContent; |
| size_t dictSize; |
| ZSTD_entropyDTables_t entropy; |
| U32 dictID; |
| U32 entropyPresent; |
| ZSTD_customMem cMem; |
| }; /* typedef'd to ZSTD_DDict within "zstd.h" */ |
| |
| const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict) |
| { |
| assert(ddict != NULL); |
| return ddict->dictContent; |
| } |
| |
| size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict) |
| { |
| assert(ddict != NULL); |
| return ddict->dictSize; |
| } |
| |
| void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict) |
| { |
| DEBUGLOG(4, "ZSTD_copyDDictParameters"); |
| assert(dctx != NULL); |
| assert(ddict != NULL); |
| dctx->dictID = ddict->dictID; |
| dctx->prefixStart = ddict->dictContent; |
| dctx->virtualStart = ddict->dictContent; |
| dctx->dictEnd = (const BYTE*)ddict->dictContent + ddict->dictSize; |
| dctx->previousDstEnd = dctx->dictEnd; |
| #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| dctx->dictContentBeginForFuzzing = dctx->prefixStart; |
| dctx->dictContentEndForFuzzing = dctx->previousDstEnd; |
| #endif |
| if (ddict->entropyPresent) { |
| dctx->litEntropy = 1; |
| dctx->fseEntropy = 1; |
| dctx->LLTptr = ddict->entropy.LLTable; |
| dctx->MLTptr = ddict->entropy.MLTable; |
| dctx->OFTptr = ddict->entropy.OFTable; |
| dctx->HUFptr = ddict->entropy.hufTable; |
| dctx->entropy.rep[0] = ddict->entropy.rep[0]; |
| dctx->entropy.rep[1] = ddict->entropy.rep[1]; |
| dctx->entropy.rep[2] = ddict->entropy.rep[2]; |
| } else { |
| dctx->litEntropy = 0; |
| dctx->fseEntropy = 0; |
| } |
| } |
| |
| |
| static size_t |
| ZSTD_loadEntropy_intoDDict(ZSTD_DDict* ddict, |
| ZSTD_dictContentType_e dictContentType) |
| { |
| ddict->dictID = 0; |
| ddict->entropyPresent = 0; |
| if (dictContentType == ZSTD_dct_rawContent) return 0; |
| |
| if (ddict->dictSize < 8) { |
| if (dictContentType == ZSTD_dct_fullDict) |
| return ERROR(dictionary_corrupted); /* only accept specified dictionaries */ |
| return 0; /* pure content mode */ |
| } |
| { U32 const magic = MEM_readLE32(ddict->dictContent); |
| if (magic != ZSTD_MAGIC_DICTIONARY) { |
| if (dictContentType == ZSTD_dct_fullDict) |
| return ERROR(dictionary_corrupted); /* only accept specified dictionaries */ |
| return 0; /* pure content mode */ |
| } |
| } |
| ddict->dictID = MEM_readLE32((const char*)ddict->dictContent + ZSTD_FRAMEIDSIZE); |
| |
| /* load entropy tables */ |
| RETURN_ERROR_IF(ZSTD_isError(ZSTD_loadDEntropy( |
| &ddict->entropy, ddict->dictContent, ddict->dictSize)), |
| dictionary_corrupted, ""); |
| ddict->entropyPresent = 1; |
| return 0; |
| } |
| |
| |
| static size_t ZSTD_initDDict_internal(ZSTD_DDict* ddict, |
| const void* dict, size_t dictSize, |
| ZSTD_dictLoadMethod_e dictLoadMethod, |
| ZSTD_dictContentType_e dictContentType) |
| { |
| if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dict) || (!dictSize)) { |
| ddict->dictBuffer = NULL; |
| ddict->dictContent = dict; |
| if (!dict) dictSize = 0; |
| } else { |
| void* const internalBuffer = ZSTD_customMalloc(dictSize, ddict->cMem); |
| ddict->dictBuffer = internalBuffer; |
| ddict->dictContent = internalBuffer; |
| if (!internalBuffer) return ERROR(memory_allocation); |
| ZSTD_memcpy(internalBuffer, dict, dictSize); |
| } |
| ddict->dictSize = dictSize; |
| ddict->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */ |
| |
| /* parse dictionary content */ |
| FORWARD_IF_ERROR( ZSTD_loadEntropy_intoDDict(ddict, dictContentType) , ""); |
| |
| return 0; |
| } |
| |
| ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize, |
| ZSTD_dictLoadMethod_e dictLoadMethod, |
| ZSTD_dictContentType_e dictContentType, |
| ZSTD_customMem customMem) |
| { |
| if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL; |
| |
| { ZSTD_DDict* const ddict = (ZSTD_DDict*) ZSTD_customMalloc(sizeof(ZSTD_DDict), customMem); |
| if (ddict == NULL) return NULL; |
| ddict->cMem = customMem; |
| { size_t const initResult = ZSTD_initDDict_internal(ddict, |
| dict, dictSize, |
| dictLoadMethod, dictContentType); |
| if (ZSTD_isError(initResult)) { |
| ZSTD_freeDDict(ddict); |
| return NULL; |
| } } |
| return ddict; |
| } |
| } |
| |
| /*! ZSTD_createDDict() : |
| * Create a digested dictionary, to start decompression without startup delay. |
| * `dict` content is copied inside DDict. |
| * Consequently, `dict` can be released after `ZSTD_DDict` creation */ |
| ZSTD_DDict* ZSTD_createDDict(const void* dict, size_t dictSize) |
| { |
| ZSTD_customMem const allocator = { NULL, NULL, NULL }; |
| return ZSTD_createDDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto, allocator); |
| } |
| |
| /*! ZSTD_createDDict_byReference() : |
| * Create a digested dictionary, to start decompression without startup delay. |
| * Dictionary content is simply referenced, it will be accessed during decompression. |
| * Warning : dictBuffer must outlive DDict (DDict must be freed before dictBuffer) */ |
| ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize) |
| { |
| ZSTD_customMem const allocator = { NULL, NULL, NULL }; |
| return ZSTD_createDDict_advanced(dictBuffer, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto, allocator); |
| } |
| |
| |
| const ZSTD_DDict* ZSTD_initStaticDDict( |
| void* sBuffer, size_t sBufferSize, |
| const void* dict, size_t dictSize, |
| ZSTD_dictLoadMethod_e dictLoadMethod, |
| ZSTD_dictContentType_e dictContentType) |
| { |
| size_t const neededSpace = sizeof(ZSTD_DDict) |
| + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize); |
| ZSTD_DDict* const ddict = (ZSTD_DDict*)sBuffer; |
| assert(sBuffer != NULL); |
| assert(dict != NULL); |
| if ((size_t)sBuffer & 7) return NULL; /* 8-aligned */ |
| if (sBufferSize < neededSpace) return NULL; |
| if (dictLoadMethod == ZSTD_dlm_byCopy) { |
| ZSTD_memcpy(ddict+1, dict, dictSize); /* local copy */ |
| dict = ddict+1; |
| } |
| if (ZSTD_isError( ZSTD_initDDict_internal(ddict, |
| dict, dictSize, |
| ZSTD_dlm_byRef, dictContentType) )) |
| return NULL; |
| return ddict; |
| } |
| |
| |
| size_t ZSTD_freeDDict(ZSTD_DDict* ddict) |
| { |
| if (ddict==NULL) return 0; /* support free on NULL */ |
| { ZSTD_customMem const cMem = ddict->cMem; |
| ZSTD_customFree(ddict->dictBuffer, cMem); |
| ZSTD_customFree(ddict, cMem); |
| return 0; |
| } |
| } |
| |
| /*! ZSTD_estimateDDictSize() : |
| * Estimate amount of memory that will be needed to create a dictionary for decompression. |
| * Note : dictionary created by reference using ZSTD_dlm_byRef are smaller */ |
| size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod) |
| { |
| return sizeof(ZSTD_DDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize); |
| } |
| |
| size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict) |
| { |
| if (ddict==NULL) return 0; /* support sizeof on NULL */ |
| return sizeof(*ddict) + (ddict->dictBuffer ? ddict->dictSize : 0) ; |
| } |
| |
| /*! ZSTD_getDictID_fromDDict() : |
| * Provides the dictID of the dictionary loaded into `ddict`. |
| * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty. |
| * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */ |
| unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict) |
| { |
| if (ddict==NULL) return 0; |
| return ZSTD_getDictID_fromDict(ddict->dictContent, ddict->dictSize); |
| } |
| /**** ended inlining decompress/zstd_ddict.c ****/ |
| /**** start inlining decompress/zstd_decompress.c ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| |
| /* *************************************************************** |
| * Tuning parameters |
| *****************************************************************/ |
| /*! |
| * HEAPMODE : |
| * Select how default decompression function ZSTD_decompress() allocates its context, |
| * on stack (0), or into heap (1, default; requires malloc()). |
| * Note that functions with explicit context such as ZSTD_decompressDCtx() are unaffected. |
| */ |
| #ifndef ZSTD_HEAPMODE |
| # define ZSTD_HEAPMODE 1 |
| #endif |
| |
| /*! |
| * LEGACY_SUPPORT : |
| * if set to 1+, ZSTD_decompress() can decode older formats (v0.1+) |
| */ |
| #ifndef ZSTD_LEGACY_SUPPORT |
| # define ZSTD_LEGACY_SUPPORT 0 |
| #endif |
| |
| /*! |
| * MAXWINDOWSIZE_DEFAULT : |
| * maximum window size accepted by DStream __by default__. |
| * Frames requiring more memory will be rejected. |
| * It's possible to set a different limit using ZSTD_DCtx_setMaxWindowSize(). |
| */ |
| #ifndef ZSTD_MAXWINDOWSIZE_DEFAULT |
| # define ZSTD_MAXWINDOWSIZE_DEFAULT (((U32)1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT) + 1) |
| #endif |
| |
| /*! |
| * NO_FORWARD_PROGRESS_MAX : |
| * maximum allowed nb of calls to ZSTD_decompressStream() |
| * without any forward progress |
| * (defined as: no byte read from input, and no byte flushed to output) |
| * before triggering an error. |
| */ |
| #ifndef ZSTD_NO_FORWARD_PROGRESS_MAX |
| # define ZSTD_NO_FORWARD_PROGRESS_MAX 16 |
| #endif |
| |
| |
| /*-******************************************************* |
| * Dependencies |
| *********************************************************/ |
| /**** skipping file: ../common/zstd_deps.h ****/ |
| /**** skipping file: ../common/cpu.h ****/ |
| /**** skipping file: ../common/mem.h ****/ |
| /**** skipping file: ../common/zstd_trace.h ****/ |
| #define FSE_STATIC_LINKING_ONLY |
| /**** skipping file: ../common/fse.h ****/ |
| #define HUF_STATIC_LINKING_ONLY |
| /**** skipping file: ../common/huf.h ****/ |
| /**** skipping file: ../common/xxhash.h ****/ |
| /**** skipping file: ../common/zstd_internal.h ****/ |
| /**** skipping file: zstd_decompress_internal.h ****/ |
| /**** skipping file: zstd_ddict.h ****/ |
| /**** start inlining zstd_decompress_block.h ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| |
| #ifndef ZSTD_DEC_BLOCK_H |
| #define ZSTD_DEC_BLOCK_H |
| |
| /*-******************************************************* |
| * Dependencies |
| *********************************************************/ |
| /**** skipping file: ../common/zstd_deps.h ****/ |
| /**** skipping file: ../zstd.h ****/ |
| /**** skipping file: ../common/zstd_internal.h ****/ |
| /**** skipping file: zstd_decompress_internal.h ****/ |
| |
| |
| /* === Prototypes === */ |
| |
| /* note: prototypes already published within `zstd.h` : |
| * ZSTD_decompressBlock() |
| */ |
| |
| /* note: prototypes already published within `zstd_internal.h` : |
| * ZSTD_getcBlockSize() |
| * ZSTD_decodeSeqHeaders() |
| */ |
| |
| |
| /* ZSTD_decompressBlock_internal() : |
| * decompress block, starting at `src`, |
| * into destination buffer `dst`. |
| * @return : decompressed block size, |
| * or an error code (which can be tested using ZSTD_isError()) |
| */ |
| size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, const int frame); |
| |
| /* ZSTD_buildFSETable() : |
| * generate FSE decoding table for one symbol (ll, ml or off) |
| * this function must be called with valid parameters only |
| * (dt is large enough, normalizedCounter distribution total is a power of 2, max is within range, etc.) |
| * in which case it cannot fail. |
| * The workspace must be 4-byte aligned and at least ZSTD_BUILD_FSE_TABLE_WKSP_SIZE bytes, which is |
| * defined in zstd_decompress_internal.h. |
| * Internal use only. |
| */ |
| void ZSTD_buildFSETable(ZSTD_seqSymbol* dt, |
| const short* normalizedCounter, unsigned maxSymbolValue, |
| const U32* baseValue, const U32* nbAdditionalBits, |
| unsigned tableLog, void* wksp, size_t wkspSize, |
| int bmi2); |
| |
| |
| #endif /* ZSTD_DEC_BLOCK_H */ |
| /**** ended inlining zstd_decompress_block.h ****/ |
| |
| #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) |
| /**** skipping file: ../legacy/zstd_legacy.h ****/ |
| #endif |
| |
| |
| |
| /************************************* |
| * Multiple DDicts Hashset internals * |
| *************************************/ |
| |
| #define DDICT_HASHSET_MAX_LOAD_FACTOR_COUNT_MULT 4 |
| #define DDICT_HASHSET_MAX_LOAD_FACTOR_SIZE_MULT 3 /* These two constants represent SIZE_MULT/COUNT_MULT load factor without using a float. |
| * Currently, that means a 0.75 load factor. |
| * So, if count * COUNT_MULT / size * SIZE_MULT != 0, then we've exceeded |
| * the load factor of the ddict hash set. |
| */ |
| |
| #define DDICT_HASHSET_TABLE_BASE_SIZE 64 |
| #define DDICT_HASHSET_RESIZE_FACTOR 2 |
| |
| /* Hash function to determine starting position of dict insertion within the table |
| * Returns an index between [0, hashSet->ddictPtrTableSize] |
| */ |
| static size_t ZSTD_DDictHashSet_getIndex(const ZSTD_DDictHashSet* hashSet, U32 dictID) { |
| const U64 hash = XXH64(&dictID, sizeof(U32), 0); |
| /* DDict ptr table size is a multiple of 2, use size - 1 as mask to get index within [0, hashSet->ddictPtrTableSize) */ |
| return hash & (hashSet->ddictPtrTableSize - 1); |
| } |
| |
| /* Adds DDict to a hashset without resizing it. |
| * If inserting a DDict with a dictID that already exists in the set, replaces the one in the set. |
| * Returns 0 if successful, or a zstd error code if something went wrong. |
| */ |
| static size_t ZSTD_DDictHashSet_emplaceDDict(ZSTD_DDictHashSet* hashSet, const ZSTD_DDict* ddict) { |
| const U32 dictID = ZSTD_getDictID_fromDDict(ddict); |
| size_t idx = ZSTD_DDictHashSet_getIndex(hashSet, dictID); |
| const size_t idxRangeMask = hashSet->ddictPtrTableSize - 1; |
| RETURN_ERROR_IF(hashSet->ddictPtrCount == hashSet->ddictPtrTableSize, GENERIC, "Hash set is full!"); |
| DEBUGLOG(4, "Hashed index: for dictID: %u is %zu", dictID, idx); |
| while (hashSet->ddictPtrTable[idx] != NULL) { |
| /* Replace existing ddict if inserting ddict with same dictID */ |
| if (ZSTD_getDictID_fromDDict(hashSet->ddictPtrTable[idx]) == dictID) { |
| DEBUGLOG(4, "DictID already exists, replacing rather than adding"); |
| hashSet->ddictPtrTable[idx] = ddict; |
| return 0; |
| } |
| idx &= idxRangeMask; |
| idx++; |
| } |
| DEBUGLOG(4, "Final idx after probing for dictID %u is: %zu", dictID, idx); |
| hashSet->ddictPtrTable[idx] = ddict; |
| hashSet->ddictPtrCount++; |
| return 0; |
| } |
| |
| /* Expands hash table by factor of DDICT_HASHSET_RESIZE_FACTOR and |
| * rehashes all values, allocates new table, frees old table. |
| * Returns 0 on success, otherwise a zstd error code. |
| */ |
| static size_t ZSTD_DDictHashSet_expand(ZSTD_DDictHashSet* hashSet, ZSTD_customMem customMem) { |
| size_t newTableSize = hashSet->ddictPtrTableSize * DDICT_HASHSET_RESIZE_FACTOR; |
| const ZSTD_DDict** newTable = (const ZSTD_DDict**)ZSTD_customCalloc(sizeof(ZSTD_DDict*) * newTableSize, customMem); |
| const ZSTD_DDict** oldTable = hashSet->ddictPtrTable; |
| size_t oldTableSize = hashSet->ddictPtrTableSize; |
| size_t i; |
| |
| DEBUGLOG(4, "Expanding DDict hash table! Old size: %zu new size: %zu", oldTableSize, newTableSize); |
| RETURN_ERROR_IF(!newTable, memory_allocation, "Expanded hashset allocation failed!"); |
| hashSet->ddictPtrTable = newTable; |
| hashSet->ddictPtrTableSize = newTableSize; |
| hashSet->ddictPtrCount = 0; |
| for (i = 0; i < oldTableSize; ++i) { |
| if (oldTable[i] != NULL) { |
| FORWARD_IF_ERROR(ZSTD_DDictHashSet_emplaceDDict(hashSet, oldTable[i]), ""); |
| } |
| } |
| ZSTD_customFree((void*)oldTable, customMem); |
| DEBUGLOG(4, "Finished re-hash"); |
| return 0; |
| } |
| |
| /* Fetches a DDict with the given dictID |
| * Returns the ZSTD_DDict* with the requested dictID. If it doesn't exist, then returns NULL. |
| */ |
| static const ZSTD_DDict* ZSTD_DDictHashSet_getDDict(ZSTD_DDictHashSet* hashSet, U32 dictID) { |
| size_t idx = ZSTD_DDictHashSet_getIndex(hashSet, dictID); |
| const size_t idxRangeMask = hashSet->ddictPtrTableSize - 1; |
| DEBUGLOG(4, "Hashed index: for dictID: %u is %zu", dictID, idx); |
| for (;;) { |
| size_t currDictID = ZSTD_getDictID_fromDDict(hashSet->ddictPtrTable[idx]); |
| if (currDictID == dictID || currDictID == 0) { |
| /* currDictID == 0 implies a NULL ddict entry */ |
| break; |
| } else { |
| idx &= idxRangeMask; /* Goes to start of table when we reach the end */ |
| idx++; |
| } |
| } |
| DEBUGLOG(4, "Final idx after probing for dictID %u is: %zu", dictID, idx); |
| return hashSet->ddictPtrTable[idx]; |
| } |
| |
| /* Allocates space for and returns a ddict hash set |
| * The hash set's ZSTD_DDict* table has all values automatically set to NULL to begin with. |
| * Returns NULL if allocation failed. |
| */ |
| static ZSTD_DDictHashSet* ZSTD_createDDictHashSet(ZSTD_customMem customMem) { |
| ZSTD_DDictHashSet* ret = (ZSTD_DDictHashSet*)ZSTD_customMalloc(sizeof(ZSTD_DDictHashSet), customMem); |
| DEBUGLOG(4, "Allocating new hash set"); |
| ret->ddictPtrTable = (const ZSTD_DDict**)ZSTD_customCalloc(DDICT_HASHSET_TABLE_BASE_SIZE * sizeof(ZSTD_DDict*), customMem); |
| ret->ddictPtrTableSize = DDICT_HASHSET_TABLE_BASE_SIZE; |
| ret->ddictPtrCount = 0; |
| if (!ret || !ret->ddictPtrTable) { |
| return NULL; |
| } |
| return ret; |
| } |
| |
| /* Frees the table of ZSTD_DDict* within a hashset, then frees the hashset itself. |
| * Note: The ZSTD_DDict* within the table are NOT freed. |
| */ |
| static void ZSTD_freeDDictHashSet(ZSTD_DDictHashSet* hashSet, ZSTD_customMem customMem) { |
| DEBUGLOG(4, "Freeing ddict hash set"); |
| if (hashSet && hashSet->ddictPtrTable) { |
| ZSTD_customFree((void*)hashSet->ddictPtrTable, customMem); |
| } |
| if (hashSet) { |
| ZSTD_customFree(hashSet, customMem); |
| } |
| } |
| |
| /* Public function: Adds a DDict into the ZSTD_DDictHashSet, possibly triggering a resize of the hash set. |
| * Returns 0 on success, or a ZSTD error. |
| */ |
| static size_t ZSTD_DDictHashSet_addDDict(ZSTD_DDictHashSet* hashSet, const ZSTD_DDict* ddict, ZSTD_customMem customMem) { |
| DEBUGLOG(4, "Adding dict ID: %u to hashset with - Count: %zu Tablesize: %zu", ZSTD_getDictID_fromDDict(ddict), hashSet->ddictPtrCount, hashSet->ddictPtrTableSize); |
| if (hashSet->ddictPtrCount * DDICT_HASHSET_MAX_LOAD_FACTOR_COUNT_MULT / hashSet->ddictPtrTableSize * DDICT_HASHSET_MAX_LOAD_FACTOR_SIZE_MULT != 0) { |
| FORWARD_IF_ERROR(ZSTD_DDictHashSet_expand(hashSet, customMem), ""); |
| } |
| FORWARD_IF_ERROR(ZSTD_DDictHashSet_emplaceDDict(hashSet, ddict), ""); |
| return 0; |
| } |
| |
| /*-************************************************************* |
| * Context management |
| ***************************************************************/ |
| size_t ZSTD_sizeof_DCtx (const ZSTD_DCtx* dctx) |
| { |
| if (dctx==NULL) return 0; /* support sizeof NULL */ |
| return sizeof(*dctx) |
| + ZSTD_sizeof_DDict(dctx->ddictLocal) |
| + dctx->inBuffSize + dctx->outBuffSize; |
| } |
| |
| size_t ZSTD_estimateDCtxSize(void) { return sizeof(ZSTD_DCtx); } |
| |
| |
| static size_t ZSTD_startingInputLength(ZSTD_format_e format) |
| { |
| size_t const startingInputLength = ZSTD_FRAMEHEADERSIZE_PREFIX(format); |
| /* only supports formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless */ |
| assert( (format == ZSTD_f_zstd1) || (format == ZSTD_f_zstd1_magicless) ); |
| return startingInputLength; |
| } |
| |
| static void ZSTD_DCtx_resetParameters(ZSTD_DCtx* dctx) |
| { |
| assert(dctx->streamStage == zdss_init); |
| dctx->format = ZSTD_f_zstd1; |
| dctx->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT; |
| dctx->outBufferMode = ZSTD_bm_buffered; |
| dctx->forceIgnoreChecksum = ZSTD_d_validateChecksum; |
| dctx->refMultipleDDicts = ZSTD_rmd_refSingleDDict; |
| } |
| |
| static void ZSTD_initDCtx_internal(ZSTD_DCtx* dctx) |
| { |
| dctx->staticSize = 0; |
| dctx->ddict = NULL; |
| dctx->ddictLocal = NULL; |
| dctx->dictEnd = NULL; |
| dctx->ddictIsCold = 0; |
| dctx->dictUses = ZSTD_dont_use; |
| dctx->inBuff = NULL; |
| dctx->inBuffSize = 0; |
| dctx->outBuffSize = 0; |
| dctx->streamStage = zdss_init; |
| dctx->legacyContext = NULL; |
| dctx->previousLegacyVersion = 0; |
| dctx->noForwardProgress = 0; |
| dctx->oversizedDuration = 0; |
| dctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid()); |
| dctx->ddictSet = NULL; |
| ZSTD_DCtx_resetParameters(dctx); |
| #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| dctx->dictContentEndForFuzzing = NULL; |
| #endif |
| } |
| |
| ZSTD_DCtx* ZSTD_initStaticDCtx(void *workspace, size_t workspaceSize) |
| { |
| ZSTD_DCtx* const dctx = (ZSTD_DCtx*) workspace; |
| |
| if ((size_t)workspace & 7) return NULL; /* 8-aligned */ |
| if (workspaceSize < sizeof(ZSTD_DCtx)) return NULL; /* minimum size */ |
| |
| ZSTD_initDCtx_internal(dctx); |
| dctx->staticSize = workspaceSize; |
| dctx->inBuff = (char*)(dctx+1); |
| return dctx; |
| } |
| |
| ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem) |
| { |
| if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL; |
| |
| { ZSTD_DCtx* const dctx = (ZSTD_DCtx*)ZSTD_customMalloc(sizeof(*dctx), customMem); |
| if (!dctx) return NULL; |
| dctx->customMem = customMem; |
| ZSTD_initDCtx_internal(dctx); |
| return dctx; |
| } |
| } |
| |
| ZSTD_DCtx* ZSTD_createDCtx(void) |
| { |
| DEBUGLOG(3, "ZSTD_createDCtx"); |
| return ZSTD_createDCtx_advanced(ZSTD_defaultCMem); |
| } |
| |
| static void ZSTD_clearDict(ZSTD_DCtx* dctx) |
| { |
| ZSTD_freeDDict(dctx->ddictLocal); |
| dctx->ddictLocal = NULL; |
| dctx->ddict = NULL; |
| dctx->dictUses = ZSTD_dont_use; |
| } |
| |
| size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx) |
| { |
| if (dctx==NULL) return 0; /* support free on NULL */ |
| RETURN_ERROR_IF(dctx->staticSize, memory_allocation, "not compatible with static DCtx"); |
| { ZSTD_customMem const cMem = dctx->customMem; |
| ZSTD_clearDict(dctx); |
| ZSTD_customFree(dctx->inBuff, cMem); |
| dctx->inBuff = NULL; |
| #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) |
| if (dctx->legacyContext) |
| ZSTD_freeLegacyStreamContext(dctx->legacyContext, dctx->previousLegacyVersion); |
| #endif |
| if (dctx->ddictSet) { |
| ZSTD_freeDDictHashSet(dctx->ddictSet, cMem); |
| dctx->ddictSet = NULL; |
| } |
| ZSTD_customFree(dctx, cMem); |
| return 0; |
| } |
| } |
| |
| /* no longer useful */ |
| void ZSTD_copyDCtx(ZSTD_DCtx* dstDCtx, const ZSTD_DCtx* srcDCtx) |
| { |
| size_t const toCopy = (size_t)((char*)(&dstDCtx->inBuff) - (char*)dstDCtx); |
| ZSTD_memcpy(dstDCtx, srcDCtx, toCopy); /* no need to copy workspace */ |
| } |
| |
| /* Given a dctx with a digested frame params, re-selects the correct ZSTD_DDict based on |
| * the requested dict ID from the frame. If there exists a reference to the correct ZSTD_DDict, then |
| * accordingly sets the ddict to be used to decompress the frame. |
| * |
| * If no DDict is found, then no action is taken, and the ZSTD_DCtx::ddict remains as-is. |
| * |
| * ZSTD_d_refMultipleDDicts must be enabled for this function to be called. |
| */ |
| static void ZSTD_DCtx_selectFrameDDict(ZSTD_DCtx* dctx) { |
| assert(dctx->refMultipleDDicts && dctx->ddictSet); |
| DEBUGLOG(4, "Adjusting DDict based on requested dict ID from frame"); |
| if (dctx->ddict) { |
| const ZSTD_DDict* frameDDict = ZSTD_DDictHashSet_getDDict(dctx->ddictSet, dctx->fParams.dictID); |
| if (frameDDict) { |
| DEBUGLOG(4, "DDict found!"); |
| ZSTD_clearDict(dctx); |
| dctx->dictID = dctx->fParams.dictID; |
| dctx->ddict = frameDDict; |
| dctx->dictUses = ZSTD_use_indefinitely; |
| } |
| } |
| } |
| |
| |
| /*-************************************************************* |
| * Frame header decoding |
| ***************************************************************/ |
| |
| /*! ZSTD_isFrame() : |
| * Tells if the content of `buffer` starts with a valid Frame Identifier. |
| * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0. |
| * Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled. |
| * Note 3 : Skippable Frame Identifiers are considered valid. */ |
| unsigned ZSTD_isFrame(const void* buffer, size_t size) |
| { |
| if (size < ZSTD_FRAMEIDSIZE) return 0; |
| { U32 const magic = MEM_readLE32(buffer); |
| if (magic == ZSTD_MAGICNUMBER) return 1; |
| if ((magic & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) return 1; |
| } |
| #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) |
| if (ZSTD_isLegacy(buffer, size)) return 1; |
| #endif |
| return 0; |
| } |
| |
| /** ZSTD_frameHeaderSize_internal() : |
| * srcSize must be large enough to reach header size fields. |
| * note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless. |
| * @return : size of the Frame Header |
| * or an error code, which can be tested with ZSTD_isError() */ |
| static size_t ZSTD_frameHeaderSize_internal(const void* src, size_t srcSize, ZSTD_format_e format) |
| { |
| size_t const minInputSize = ZSTD_startingInputLength(format); |
| RETURN_ERROR_IF(srcSize < minInputSize, srcSize_wrong, ""); |
| |
| { BYTE const fhd = ((const BYTE*)src)[minInputSize-1]; |
| U32 const dictID= fhd & 3; |
| U32 const singleSegment = (fhd >> 5) & 1; |
| U32 const fcsId = fhd >> 6; |
| return minInputSize + !singleSegment |
| + ZSTD_did_fieldSize[dictID] + ZSTD_fcs_fieldSize[fcsId] |
| + (singleSegment && !fcsId); |
| } |
| } |
| |
| /** ZSTD_frameHeaderSize() : |
| * srcSize must be >= ZSTD_frameHeaderSize_prefix. |
| * @return : size of the Frame Header, |
| * or an error code (if srcSize is too small) */ |
| size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize) |
| { |
| return ZSTD_frameHeaderSize_internal(src, srcSize, ZSTD_f_zstd1); |
| } |
| |
| |
| /** ZSTD_getFrameHeader_advanced() : |
| * decode Frame Header, or require larger `srcSize`. |
| * note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless |
| * @return : 0, `zfhPtr` is correctly filled, |
| * >0, `srcSize` is too small, value is wanted `srcSize` amount, |
| * or an error code, which can be tested using ZSTD_isError() */ |
| size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format) |
| { |
| const BYTE* ip = (const BYTE*)src; |
| size_t const minInputSize = ZSTD_startingInputLength(format); |
| |
| ZSTD_memset(zfhPtr, 0, sizeof(*zfhPtr)); /* not strictly necessary, but static analyzer do not understand that zfhPtr is only going to be read only if return value is zero, since they are 2 different signals */ |
| if (srcSize < minInputSize) return minInputSize; |
| RETURN_ERROR_IF(src==NULL, GENERIC, "invalid parameter"); |
| |
| if ( (format != ZSTD_f_zstd1_magicless) |
| && (MEM_readLE32(src) != ZSTD_MAGICNUMBER) ) { |
| if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { |
| /* skippable frame */ |
| if (srcSize < ZSTD_SKIPPABLEHEADERSIZE) |
| return ZSTD_SKIPPABLEHEADERSIZE; /* magic number + frame length */ |
| ZSTD_memset(zfhPtr, 0, sizeof(*zfhPtr)); |
| zfhPtr->frameContentSize = MEM_readLE32((const char *)src + ZSTD_FRAMEIDSIZE); |
| zfhPtr->frameType = ZSTD_skippableFrame; |
| return 0; |
| } |
| RETURN_ERROR(prefix_unknown, ""); |
| } |
| |
| /* ensure there is enough `srcSize` to fully read/decode frame header */ |
| { size_t const fhsize = ZSTD_frameHeaderSize_internal(src, srcSize, format); |
| if (srcSize < fhsize) return fhsize; |
| zfhPtr->headerSize = (U32)fhsize; |
| } |
| |
| { BYTE const fhdByte = ip[minInputSize-1]; |
| size_t pos = minInputSize; |
| U32 const dictIDSizeCode = fhdByte&3; |
| U32 const checksumFlag = (fhdByte>>2)&1; |
| U32 const singleSegment = (fhdByte>>5)&1; |
| U32 const fcsID = fhdByte>>6; |
| U64 windowSize = 0; |
| U32 dictID = 0; |
| U64 frameContentSize = ZSTD_CONTENTSIZE_UNKNOWN; |
| RETURN_ERROR_IF((fhdByte & 0x08) != 0, frameParameter_unsupported, |
| "reserved bits, must be zero"); |
| |
| if (!singleSegment) { |
| BYTE const wlByte = ip[pos++]; |
| U32 const windowLog = (wlByte >> 3) + ZSTD_WINDOWLOG_ABSOLUTEMIN; |
| RETURN_ERROR_IF(windowLog > ZSTD_WINDOWLOG_MAX, frameParameter_windowTooLarge, ""); |
| windowSize = (1ULL << windowLog); |
| windowSize += (windowSize >> 3) * (wlByte&7); |
| } |
| switch(dictIDSizeCode) |
| { |
| default: assert(0); /* impossible */ |
| case 0 : break; |
| case 1 : dictID = ip[pos]; pos++; break; |
| case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break; |
| case 3 : dictID = MEM_readLE32(ip+pos); pos+=4; break; |
| } |
| switch(fcsID) |
| { |
| default: assert(0); /* impossible */ |
| case 0 : if (singleSegment) frameContentSize = ip[pos]; break; |
| case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break; |
| case 2 : frameContentSize = MEM_readLE32(ip+pos); break; |
| case 3 : frameContentSize = MEM_readLE64(ip+pos); break; |
| } |
| if (singleSegment) windowSize = frameContentSize; |
| |
| zfhPtr->frameType = ZSTD_frame; |
| zfhPtr->frameContentSize = frameContentSize; |
| zfhPtr->windowSize = windowSize; |
| zfhPtr->blockSizeMax = (unsigned) MIN(windowSize, ZSTD_BLOCKSIZE_MAX); |
| zfhPtr->dictID = dictID; |
| zfhPtr->checksumFlag = checksumFlag; |
| } |
| return 0; |
| } |
| |
| /** ZSTD_getFrameHeader() : |
| * decode Frame Header, or require larger `srcSize`. |
| * note : this function does not consume input, it only reads it. |
| * @return : 0, `zfhPtr` is correctly filled, |
| * >0, `srcSize` is too small, value is wanted `srcSize` amount, |
| * or an error code, which can be tested using ZSTD_isError() */ |
| size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize) |
| { |
| return ZSTD_getFrameHeader_advanced(zfhPtr, src, srcSize, ZSTD_f_zstd1); |
| } |
| |
| |
| /** ZSTD_getFrameContentSize() : |
| * compatible with legacy mode |
| * @return : decompressed size of the single frame pointed to be `src` if known, otherwise |
| * - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined |
| * - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small) */ |
| unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize) |
| { |
| #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) |
| if (ZSTD_isLegacy(src, srcSize)) { |
| unsigned long long const ret = ZSTD_getDecompressedSize_legacy(src, srcSize); |
| return ret == 0 ? ZSTD_CONTENTSIZE_UNKNOWN : ret; |
| } |
| #endif |
| { ZSTD_frameHeader zfh; |
| if (ZSTD_getFrameHeader(&zfh, src, srcSize) != 0) |
| return ZSTD_CONTENTSIZE_ERROR; |
| if (zfh.frameType == ZSTD_skippableFrame) { |
| return 0; |
| } else { |
| return zfh.frameContentSize; |
| } } |
| } |
| |
| static size_t readSkippableFrameSize(void const* src, size_t srcSize) |
| { |
| size_t const skippableHeaderSize = ZSTD_SKIPPABLEHEADERSIZE; |
| U32 sizeU32; |
| |
| RETURN_ERROR_IF(srcSize < ZSTD_SKIPPABLEHEADERSIZE, srcSize_wrong, ""); |
| |
| sizeU32 = MEM_readLE32((BYTE const*)src + ZSTD_FRAMEIDSIZE); |
| RETURN_ERROR_IF((U32)(sizeU32 + ZSTD_SKIPPABLEHEADERSIZE) < sizeU32, |
| frameParameter_unsupported, ""); |
| { |
| size_t const skippableSize = skippableHeaderSize + sizeU32; |
| RETURN_ERROR_IF(skippableSize > srcSize, srcSize_wrong, ""); |
| return skippableSize; |
| } |
| } |
| |
| /** ZSTD_findDecompressedSize() : |
| * compatible with legacy mode |
| * `srcSize` must be the exact length of some number of ZSTD compressed and/or |
| * skippable frames |
| * @return : decompressed size of the frames contained */ |
| unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize) |
| { |
| unsigned long long totalDstSize = 0; |
| |
| while (srcSize >= ZSTD_startingInputLength(ZSTD_f_zstd1)) { |
| U32 const magicNumber = MEM_readLE32(src); |
| |
| if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { |
| size_t const skippableSize = readSkippableFrameSize(src, srcSize); |
| if (ZSTD_isError(skippableSize)) { |
| return ZSTD_CONTENTSIZE_ERROR; |
| } |
| assert(skippableSize <= srcSize); |
| |
| src = (const BYTE *)src + skippableSize; |
| srcSize -= skippableSize; |
| continue; |
| } |
| |
| { unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize); |
| if (ret >= ZSTD_CONTENTSIZE_ERROR) return ret; |
| |
| /* check for overflow */ |
| if (totalDstSize + ret < totalDstSize) return ZSTD_CONTENTSIZE_ERROR; |
| totalDstSize += ret; |
| } |
| { size_t const frameSrcSize = ZSTD_findFrameCompressedSize(src, srcSize); |
| if (ZSTD_isError(frameSrcSize)) { |
| return ZSTD_CONTENTSIZE_ERROR; |
| } |
| |
| src = (const BYTE *)src + frameSrcSize; |
| srcSize -= frameSrcSize; |
| } |
| } /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */ |
| |
| if (srcSize) return ZSTD_CONTENTSIZE_ERROR; |
| |
| return totalDstSize; |
| } |
| |
| /** ZSTD_getDecompressedSize() : |
| * compatible with legacy mode |
| * @return : decompressed size if known, 0 otherwise |
| note : 0 can mean any of the following : |
| - frame content is empty |
| - decompressed size field is not present in frame header |
| - frame header unknown / not supported |
| - frame header not complete (`srcSize` too small) */ |
| unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize) |
| { |
| unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize); |
| ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_ERROR < ZSTD_CONTENTSIZE_UNKNOWN); |
| return (ret >= ZSTD_CONTENTSIZE_ERROR) ? 0 : ret; |
| } |
| |
| |
| /** ZSTD_decodeFrameHeader() : |
| * `headerSize` must be the size provided by ZSTD_frameHeaderSize(). |
| * If multiple DDict references are enabled, also will choose the correct DDict to use. |
| * @return : 0 if success, or an error code, which can be tested using ZSTD_isError() */ |
| static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx* dctx, const void* src, size_t headerSize) |
| { |
| size_t const result = ZSTD_getFrameHeader_advanced(&(dctx->fParams), src, headerSize, dctx->format); |
| if (ZSTD_isError(result)) return result; /* invalid header */ |
| RETURN_ERROR_IF(result>0, srcSize_wrong, "headerSize too small"); |
| |
| /* Reference DDict requested by frame if dctx references multiple ddicts */ |
| if (dctx->refMultipleDDicts == ZSTD_rmd_refMultipleDDicts && dctx->ddictSet) { |
| ZSTD_DCtx_selectFrameDDict(dctx); |
| } |
| |
| #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| /* Skip the dictID check in fuzzing mode, because it makes the search |
| * harder. |
| */ |
| RETURN_ERROR_IF(dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID), |
| dictionary_wrong, ""); |
| #endif |
| dctx->validateChecksum = (dctx->fParams.checksumFlag && !dctx->forceIgnoreChecksum) ? 1 : 0; |
| if (dctx->validateChecksum) XXH64_reset(&dctx->xxhState, 0); |
| dctx->processedCSize += headerSize; |
| return 0; |
| } |
| |
| static ZSTD_frameSizeInfo ZSTD_errorFrameSizeInfo(size_t ret) |
| { |
| ZSTD_frameSizeInfo frameSizeInfo; |
| frameSizeInfo.compressedSize = ret; |
| frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR; |
| return frameSizeInfo; |
| } |
| |
| static ZSTD_frameSizeInfo ZSTD_findFrameSizeInfo(const void* src, size_t srcSize) |
| { |
| ZSTD_frameSizeInfo frameSizeInfo; |
| ZSTD_memset(&frameSizeInfo, 0, sizeof(ZSTD_frameSizeInfo)); |
| |
| #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) |
| if (ZSTD_isLegacy(src, srcSize)) |
| return ZSTD_findFrameSizeInfoLegacy(src, srcSize); |
| #endif |
| |
| if ((srcSize >= ZSTD_SKIPPABLEHEADERSIZE) |
| && (MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { |
| frameSizeInfo.compressedSize = readSkippableFrameSize(src, srcSize); |
| assert(ZSTD_isError(frameSizeInfo.compressedSize) || |
| frameSizeInfo.compressedSize <= srcSize); |
| return frameSizeInfo; |
| } else { |
| const BYTE* ip = (const BYTE*)src; |
| const BYTE* const ipstart = ip; |
| size_t remainingSize = srcSize; |
| size_t nbBlocks = 0; |
| ZSTD_frameHeader zfh; |
| |
| /* Extract Frame Header */ |
| { size_t const ret = ZSTD_getFrameHeader(&zfh, src, srcSize); |
| if (ZSTD_isError(ret)) |
| return ZSTD_errorFrameSizeInfo(ret); |
| if (ret > 0) |
| return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong)); |
| } |
| |
| ip += zfh.headerSize; |
| remainingSize -= zfh.headerSize; |
| |
| /* Iterate over each block */ |
| while (1) { |
| blockProperties_t blockProperties; |
| size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties); |
| if (ZSTD_isError(cBlockSize)) |
| return ZSTD_errorFrameSizeInfo(cBlockSize); |
| |
| if (ZSTD_blockHeaderSize + cBlockSize > remainingSize) |
| return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong)); |
| |
| ip += ZSTD_blockHeaderSize + cBlockSize; |
| remainingSize -= ZSTD_blockHeaderSize + cBlockSize; |
| nbBlocks++; |
| |
| if (blockProperties.lastBlock) break; |
| } |
| |
| /* Final frame content checksum */ |
| if (zfh.checksumFlag) { |
| if (remainingSize < 4) |
| return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong)); |
| ip += 4; |
| } |
| |
| frameSizeInfo.compressedSize = (size_t)(ip - ipstart); |
| frameSizeInfo.decompressedBound = (zfh.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) |
| ? zfh.frameContentSize |
| : nbBlocks * zfh.blockSizeMax; |
| return frameSizeInfo; |
| } |
| } |
| |
| /** ZSTD_findFrameCompressedSize() : |
| * compatible with legacy mode |
| * `src` must point to the start of a ZSTD frame, ZSTD legacy frame, or skippable frame |
| * `srcSize` must be at least as large as the frame contained |
| * @return : the compressed size of the frame starting at `src` */ |
| size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize) |
| { |
| ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize); |
| return frameSizeInfo.compressedSize; |
| } |
| |
| /** ZSTD_decompressBound() : |
| * compatible with legacy mode |
| * `src` must point to the start of a ZSTD frame or a skippeable frame |
| * `srcSize` must be at least as large as the frame contained |
| * @return : the maximum decompressed size of the compressed source |
| */ |
| unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize) |
| { |
| unsigned long long bound = 0; |
| /* Iterate over each frame */ |
| while (srcSize > 0) { |
| ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize); |
| size_t const compressedSize = frameSizeInfo.compressedSize; |
| unsigned long long const decompressedBound = frameSizeInfo.decompressedBound; |
| if (ZSTD_isError(compressedSize) || decompressedBound == ZSTD_CONTENTSIZE_ERROR) |
| return ZSTD_CONTENTSIZE_ERROR; |
| assert(srcSize >= compressedSize); |
| src = (const BYTE*)src + compressedSize; |
| srcSize -= compressedSize; |
| bound += decompressedBound; |
| } |
| return bound; |
| } |
| |
| |
| /*-************************************************************* |
| * Frame decoding |
| ***************************************************************/ |
| |
| /** ZSTD_insertBlock() : |
| * insert `src` block into `dctx` history. Useful to track uncompressed blocks. */ |
| size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize) |
| { |
| DEBUGLOG(5, "ZSTD_insertBlock: %u bytes", (unsigned)blockSize); |
| ZSTD_checkContinuity(dctx, blockStart, blockSize); |
| dctx->previousDstEnd = (const char*)blockStart + blockSize; |
| return blockSize; |
| } |
| |
| |
| static size_t ZSTD_copyRawBlock(void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize) |
| { |
| DEBUGLOG(5, "ZSTD_copyRawBlock"); |
| RETURN_ERROR_IF(srcSize > dstCapacity, dstSize_tooSmall, ""); |
| if (dst == NULL) { |
| if (srcSize == 0) return 0; |
| RETURN_ERROR(dstBuffer_null, ""); |
| } |
| ZSTD_memcpy(dst, src, srcSize); |
| return srcSize; |
| } |
| |
| static size_t ZSTD_setRleBlock(void* dst, size_t dstCapacity, |
| BYTE b, |
| size_t regenSize) |
| { |
| RETURN_ERROR_IF(regenSize > dstCapacity, dstSize_tooSmall, ""); |
| if (dst == NULL) { |
| if (regenSize == 0) return 0; |
| RETURN_ERROR(dstBuffer_null, ""); |
| } |
| ZSTD_memset(dst, b, regenSize); |
| return regenSize; |
| } |
| |
| static void ZSTD_DCtx_trace_end(ZSTD_DCtx const* dctx, U64 uncompressedSize, U64 compressedSize, unsigned streaming) |
| { |
| #if ZSTD_TRACE |
| if (dctx->traceCtx) { |
| ZSTD_Trace trace; |
| ZSTD_memset(&trace, 0, sizeof(trace)); |
| trace.version = ZSTD_VERSION_NUMBER; |
| trace.streaming = streaming; |
| if (dctx->ddict) { |
| trace.dictionaryID = ZSTD_getDictID_fromDDict(dctx->ddict); |
| trace.dictionarySize = ZSTD_DDict_dictSize(dctx->ddict); |
| trace.dictionaryIsCold = dctx->ddictIsCold; |
| } |
| trace.uncompressedSize = (size_t)uncompressedSize; |
| trace.compressedSize = (size_t)compressedSize; |
| trace.dctx = dctx; |
| ZSTD_trace_decompress_end(dctx->traceCtx, &trace); |
| } |
| #else |
| (void)dctx; |
| (void)uncompressedSize; |
| (void)compressedSize; |
| (void)streaming; |
| #endif |
| } |
| |
| |
| /*! ZSTD_decompressFrame() : |
| * @dctx must be properly initialized |
| * will update *srcPtr and *srcSizePtr, |
| * to make *srcPtr progress by one frame. */ |
| static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void** srcPtr, size_t *srcSizePtr) |
| { |
| const BYTE* const istart = (const BYTE*)(*srcPtr); |
| const BYTE* ip = istart; |
| BYTE* const ostart = (BYTE*)dst; |
| BYTE* const oend = dstCapacity != 0 ? ostart + dstCapacity : ostart; |
| BYTE* op = ostart; |
| size_t remainingSrcSize = *srcSizePtr; |
| |
| DEBUGLOG(4, "ZSTD_decompressFrame (srcSize:%i)", (int)*srcSizePtr); |
| |
| /* check */ |
| RETURN_ERROR_IF( |
| remainingSrcSize < ZSTD_FRAMEHEADERSIZE_MIN(dctx->format)+ZSTD_blockHeaderSize, |
| srcSize_wrong, ""); |
| |
| /* Frame Header */ |
| { size_t const frameHeaderSize = ZSTD_frameHeaderSize_internal( |
| ip, ZSTD_FRAMEHEADERSIZE_PREFIX(dctx->format), dctx->format); |
| if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize; |
| RETURN_ERROR_IF(remainingSrcSize < frameHeaderSize+ZSTD_blockHeaderSize, |
| srcSize_wrong, ""); |
| FORWARD_IF_ERROR( ZSTD_decodeFrameHeader(dctx, ip, frameHeaderSize) , ""); |
| ip += frameHeaderSize; remainingSrcSize -= frameHeaderSize; |
| } |
| |
| /* Loop on each block */ |
| while (1) { |
| size_t decodedSize; |
| blockProperties_t blockProperties; |
| size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSrcSize, &blockProperties); |
| if (ZSTD_isError(cBlockSize)) return cBlockSize; |
| |
| ip += ZSTD_blockHeaderSize; |
| remainingSrcSize -= ZSTD_blockHeaderSize; |
| RETURN_ERROR_IF(cBlockSize > remainingSrcSize, srcSize_wrong, ""); |
| |
| switch(blockProperties.blockType) |
| { |
| case bt_compressed: |
| decodedSize = ZSTD_decompressBlock_internal(dctx, op, (size_t)(oend-op), ip, cBlockSize, /* frame */ 1); |
| break; |
| case bt_raw : |
| decodedSize = ZSTD_copyRawBlock(op, (size_t)(oend-op), ip, cBlockSize); |
| break; |
| case bt_rle : |
| decodedSize = ZSTD_setRleBlock(op, (size_t)(oend-op), *ip, blockProperties.origSize); |
| break; |
| case bt_reserved : |
| default: |
| RETURN_ERROR(corruption_detected, "invalid block type"); |
| } |
| |
| if (ZSTD_isError(decodedSize)) return decodedSize; |
| if (dctx->validateChecksum) |
| XXH64_update(&dctx->xxhState, op, decodedSize); |
| if (decodedSize != 0) |
| op += decodedSize; |
| assert(ip != NULL); |
| ip += cBlockSize; |
| remainingSrcSize -= cBlockSize; |
| if (blockProperties.lastBlock) break; |
| } |
| |
| if (dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) { |
| RETURN_ERROR_IF((U64)(op-ostart) != dctx->fParams.frameContentSize, |
| corruption_detected, ""); |
| } |
| if (dctx->fParams.checksumFlag) { /* Frame content checksum verification */ |
| RETURN_ERROR_IF(remainingSrcSize<4, checksum_wrong, ""); |
| if (!dctx->forceIgnoreChecksum) { |
| U32 const checkCalc = (U32)XXH64_digest(&dctx->xxhState); |
| U32 checkRead; |
| checkRead = MEM_readLE32(ip); |
| RETURN_ERROR_IF(checkRead != checkCalc, checksum_wrong, ""); |
| } |
| ip += 4; |
| remainingSrcSize -= 4; |
| } |
| ZSTD_DCtx_trace_end(dctx, (U64)(op-ostart), (U64)(ip-istart), /* streaming */ 0); |
| /* Allow caller to get size read */ |
| *srcPtr = ip; |
| *srcSizePtr = remainingSrcSize; |
| return (size_t)(op-ostart); |
| } |
| |
| static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const void* dict, size_t dictSize, |
| const ZSTD_DDict* ddict) |
| { |
| void* const dststart = dst; |
| int moreThan1Frame = 0; |
| |
| DEBUGLOG(5, "ZSTD_decompressMultiFrame"); |
| assert(dict==NULL || ddict==NULL); /* either dict or ddict set, not both */ |
| |
| if (ddict) { |
| dict = ZSTD_DDict_dictContent(ddict); |
| dictSize = ZSTD_DDict_dictSize(ddict); |
| } |
| |
| while (srcSize >= ZSTD_startingInputLength(dctx->format)) { |
| |
| #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) |
| if (ZSTD_isLegacy(src, srcSize)) { |
| size_t decodedSize; |
| size_t const frameSize = ZSTD_findFrameCompressedSizeLegacy(src, srcSize); |
| if (ZSTD_isError(frameSize)) return frameSize; |
| RETURN_ERROR_IF(dctx->staticSize, memory_allocation, |
| "legacy support is not compatible with static dctx"); |
| |
| decodedSize = ZSTD_decompressLegacy(dst, dstCapacity, src, frameSize, dict, dictSize); |
| if (ZSTD_isError(decodedSize)) return decodedSize; |
| |
| assert(decodedSize <= dstCapacity); |
| dst = (BYTE*)dst + decodedSize; |
| dstCapacity -= decodedSize; |
| |
| src = (const BYTE*)src + frameSize; |
| srcSize -= frameSize; |
| |
| continue; |
| } |
| #endif |
| |
| { U32 const magicNumber = MEM_readLE32(src); |
| DEBUGLOG(4, "reading magic number %08X (expecting %08X)", |
| (unsigned)magicNumber, ZSTD_MAGICNUMBER); |
| if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { |
| size_t const skippableSize = readSkippableFrameSize(src, srcSize); |
| FORWARD_IF_ERROR(skippableSize, "readSkippableFrameSize failed"); |
| assert(skippableSize <= srcSize); |
| |
| src = (const BYTE *)src + skippableSize; |
| srcSize -= skippableSize; |
| continue; |
| } } |
| |
| if (ddict) { |
| /* we were called from ZSTD_decompress_usingDDict */ |
| FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(dctx, ddict), ""); |
| } else { |
| /* this will initialize correctly with no dict if dict == NULL, so |
| * use this in all cases but ddict */ |
| FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDict(dctx, dict, dictSize), ""); |
| } |
| ZSTD_checkContinuity(dctx, dst, dstCapacity); |
| |
| { const size_t res = ZSTD_decompressFrame(dctx, dst, dstCapacity, |
| &src, &srcSize); |
| RETURN_ERROR_IF( |
| (ZSTD_getErrorCode(res) == ZSTD_error_prefix_unknown) |
| && (moreThan1Frame==1), |
| srcSize_wrong, |
| "At least one frame successfully completed, " |
| "but following bytes are garbage: " |
| "it's more likely to be a srcSize error, " |
| "specifying more input bytes than size of frame(s). " |
| "Note: one could be unlucky, it might be a corruption error instead, " |
| "happening right at the place where we expect zstd magic bytes. " |
| "But this is _much_ less likely than a srcSize field error."); |
| if (ZSTD_isError(res)) return res; |
| assert(res <= dstCapacity); |
| if (res != 0) |
| dst = (BYTE*)dst + res; |
| dstCapacity -= res; |
| } |
| moreThan1Frame = 1; |
| } /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */ |
| |
| RETURN_ERROR_IF(srcSize, srcSize_wrong, "input not entirely consumed"); |
| |
| return (size_t)((BYTE*)dst - (BYTE*)dststart); |
| } |
| |
| size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const void* dict, size_t dictSize) |
| { |
| return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, dict, dictSize, NULL); |
| } |
| |
| |
| static ZSTD_DDict const* ZSTD_getDDict(ZSTD_DCtx* dctx) |
| { |
| switch (dctx->dictUses) { |
| default: |
| assert(0 /* Impossible */); |
| /* fall-through */ |
| case ZSTD_dont_use: |
| ZSTD_clearDict(dctx); |
| return NULL; |
| case ZSTD_use_indefinitely: |
| return dctx->ddict; |
| case ZSTD_use_once: |
| dctx->dictUses = ZSTD_dont_use; |
| return dctx->ddict; |
| } |
| } |
| |
| size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) |
| { |
| return ZSTD_decompress_usingDDict(dctx, dst, dstCapacity, src, srcSize, ZSTD_getDDict(dctx)); |
| } |
| |
| |
| size_t ZSTD_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize) |
| { |
| #if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE>=1) |
| size_t regenSize; |
| ZSTD_DCtx* const dctx = ZSTD_createDCtx(); |
| RETURN_ERROR_IF(dctx==NULL, memory_allocation, "NULL pointer!"); |
| regenSize = ZSTD_decompressDCtx(dctx, dst, dstCapacity, src, srcSize); |
| ZSTD_freeDCtx(dctx); |
| return regenSize; |
| #else /* stack mode */ |
| ZSTD_DCtx dctx; |
| ZSTD_initDCtx_internal(&dctx); |
| return ZSTD_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize); |
| #endif |
| } |
| |
| |
| /*-************************************** |
| * Advanced Streaming Decompression API |
| * Bufferless and synchronous |
| ****************************************/ |
| size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; } |
| |
| /** |
| * Similar to ZSTD_nextSrcSizeToDecompress(), but when when a block input can be streamed, |
| * we allow taking a partial block as the input. Currently only raw uncompressed blocks can |
| * be streamed. |
| * |
| * For blocks that can be streamed, this allows us to reduce the latency until we produce |
| * output, and avoid copying the input. |
| * |
| * @param inputSize - The total amount of input that the caller currently has. |
| */ |
| static size_t ZSTD_nextSrcSizeToDecompressWithInputSize(ZSTD_DCtx* dctx, size_t inputSize) { |
| if (!(dctx->stage == ZSTDds_decompressBlock || dctx->stage == ZSTDds_decompressLastBlock)) |
| return dctx->expected; |
| if (dctx->bType != bt_raw) |
| return dctx->expected; |
| return MIN(MAX(inputSize, 1), dctx->expected); |
| } |
| |
| ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) { |
| switch(dctx->stage) |
| { |
| default: /* should not happen */ |
| assert(0); |
| case ZSTDds_getFrameHeaderSize: |
| case ZSTDds_decodeFrameHeader: |
| return ZSTDnit_frameHeader; |
| case ZSTDds_decodeBlockHeader: |
| return ZSTDnit_blockHeader; |
| case ZSTDds_decompressBlock: |
| return ZSTDnit_block; |
| case ZSTDds_decompressLastBlock: |
| return ZSTDnit_lastBlock; |
| case ZSTDds_checkChecksum: |
| return ZSTDnit_checksum; |
| case ZSTDds_decodeSkippableHeader: |
| case ZSTDds_skipFrame: |
| return ZSTDnit_skippableFrame; |
| } |
| } |
| |
| static int ZSTD_isSkipFrame(ZSTD_DCtx* dctx) { return dctx->stage == ZSTDds_skipFrame; } |
| |
| /** ZSTD_decompressContinue() : |
| * srcSize : must be the exact nb of bytes expected (see ZSTD_nextSrcSizeToDecompress()) |
| * @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity) |
| * or an error code, which can be tested using ZSTD_isError() */ |
| size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) |
| { |
| DEBUGLOG(5, "ZSTD_decompressContinue (srcSize:%u)", (unsigned)srcSize); |
| /* Sanity check */ |
| RETURN_ERROR_IF(srcSize != ZSTD_nextSrcSizeToDecompressWithInputSize(dctx, srcSize), srcSize_wrong, "not allowed"); |
| ZSTD_checkContinuity(dctx, dst, dstCapacity); |
| |
| dctx->processedCSize += srcSize; |
| |
| switch (dctx->stage) |
| { |
| case ZSTDds_getFrameHeaderSize : |
| assert(src != NULL); |
| if (dctx->format == ZSTD_f_zstd1) { /* allows header */ |
| assert(srcSize >= ZSTD_FRAMEIDSIZE); /* to read skippable magic number */ |
| if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */ |
| ZSTD_memcpy(dctx->headerBuffer, src, srcSize); |
| dctx->expected = ZSTD_SKIPPABLEHEADERSIZE - srcSize; /* remaining to load to get full skippable frame header */ |
| dctx->stage = ZSTDds_decodeSkippableHeader; |
| return 0; |
| } } |
| dctx->headerSize = ZSTD_frameHeaderSize_internal(src, srcSize, dctx->format); |
| if (ZSTD_isError(dctx->headerSize)) return dctx->headerSize; |
| ZSTD_memcpy(dctx->headerBuffer, src, srcSize); |
| dctx->expected = dctx->headerSize - srcSize; |
| dctx->stage = ZSTDds_decodeFrameHeader; |
| return 0; |
| |
| case ZSTDds_decodeFrameHeader: |
| assert(src != NULL); |
| ZSTD_memcpy(dctx->headerBuffer + (dctx->headerSize - srcSize), src, srcSize); |
| FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize), ""); |
| dctx->expected = ZSTD_blockHeaderSize; |
| dctx->stage = ZSTDds_decodeBlockHeader; |
| return 0; |
| |
| case ZSTDds_decodeBlockHeader: |
| { blockProperties_t bp; |
| size_t const cBlockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp); |
| if (ZSTD_isError(cBlockSize)) return cBlockSize; |
| RETURN_ERROR_IF(cBlockSize > dctx->fParams.blockSizeMax, corruption_detected, "Block Size Exceeds Maximum"); |
| dctx->expected = cBlockSize; |
| dctx->bType = bp.blockType; |
| dctx->rleSize = bp.origSize; |
| if (cBlockSize) { |
| dctx->stage = bp.lastBlock ? ZSTDds_decompressLastBlock : ZSTDds_decompressBlock; |
| return 0; |
| } |
| /* empty block */ |
| if (bp.lastBlock) { |
| if (dctx->fParams.checksumFlag) { |
| dctx->expected = 4; |
| dctx->stage = ZSTDds_checkChecksum; |
| } else { |
| dctx->expected = 0; /* end of frame */ |
| dctx->stage = ZSTDds_getFrameHeaderSize; |
| } |
| } else { |
| dctx->expected = ZSTD_blockHeaderSize; /* jump to next header */ |
| dctx->stage = ZSTDds_decodeBlockHeader; |
| } |
| return 0; |
| } |
| |
| case ZSTDds_decompressLastBlock: |
| case ZSTDds_decompressBlock: |
| DEBUGLOG(5, "ZSTD_decompressContinue: case ZSTDds_decompressBlock"); |
| { size_t rSize; |
| switch(dctx->bType) |
| { |
| case bt_compressed: |
| DEBUGLOG(5, "ZSTD_decompressContinue: case bt_compressed"); |
| rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 1); |
| dctx->expected = 0; /* Streaming not supported */ |
| break; |
| case bt_raw : |
| assert(srcSize <= dctx->expected); |
| rSize = ZSTD_copyRawBlock(dst, dstCapacity, src, srcSize); |
| FORWARD_IF_ERROR(rSize, "ZSTD_copyRawBlock failed"); |
| assert(rSize == srcSize); |
| dctx->expected -= rSize; |
| break; |
| case bt_rle : |
| rSize = ZSTD_setRleBlock(dst, dstCapacity, *(const BYTE*)src, dctx->rleSize); |
| dctx->expected = 0; /* Streaming not supported */ |
| break; |
| case bt_reserved : /* should never happen */ |
| default: |
| RETURN_ERROR(corruption_detected, "invalid block type"); |
| } |
| FORWARD_IF_ERROR(rSize, ""); |
| RETURN_ERROR_IF(rSize > dctx->fParams.blockSizeMax, corruption_detected, "Decompressed Block Size Exceeds Maximum"); |
| DEBUGLOG(5, "ZSTD_decompressContinue: decoded size from block : %u", (unsigned)rSize); |
| dctx->decodedSize += rSize; |
| if (dctx->validateChecksum) XXH64_update(&dctx->xxhState, dst, rSize); |
| dctx->previousDstEnd = (char*)dst + rSize; |
| |
| /* Stay on the same stage until we are finished streaming the block. */ |
| if (dctx->expected > 0) { |
| return rSize; |
| } |
| |
| if (dctx->stage == ZSTDds_decompressLastBlock) { /* end of frame */ |
| DEBUGLOG(4, "ZSTD_decompressContinue: decoded size from frame : %u", (unsigned)dctx->decodedSize); |
| RETURN_ERROR_IF( |
| dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN |
| && dctx->decodedSize != dctx->fParams.frameContentSize, |
| corruption_detected, ""); |
| if (dctx->fParams.checksumFlag) { /* another round for frame checksum */ |
| dctx->expected = 4; |
| dctx->stage = ZSTDds_checkChecksum; |
| } else { |
| ZSTD_DCtx_trace_end(dctx, dctx->decodedSize, dctx->processedCSize, /* streaming */ 1); |
| dctx->expected = 0; /* ends here */ |
| dctx->stage = ZSTDds_getFrameHeaderSize; |
| } |
| } else { |
| dctx->stage = ZSTDds_decodeBlockHeader; |
| dctx->expected = ZSTD_blockHeaderSize; |
| } |
| return rSize; |
| } |
| |
| case ZSTDds_checkChecksum: |
| assert(srcSize == 4); /* guaranteed by dctx->expected */ |
| { |
| if (dctx->validateChecksum) { |
| U32 const h32 = (U32)XXH64_digest(&dctx->xxhState); |
| U32 const check32 = MEM_readLE32(src); |
| DEBUGLOG(4, "ZSTD_decompressContinue: checksum : calculated %08X :: %08X read", (unsigned)h32, (unsigned)check32); |
| RETURN_ERROR_IF(check32 != h32, checksum_wrong, ""); |
| } |
| ZSTD_DCtx_trace_end(dctx, dctx->decodedSize, dctx->processedCSize, /* streaming */ 1); |
| dctx->expected = 0; |
| dctx->stage = ZSTDds_getFrameHeaderSize; |
| return 0; |
| } |
| |
| case ZSTDds_decodeSkippableHeader: |
| assert(src != NULL); |
| assert(srcSize <= ZSTD_SKIPPABLEHEADERSIZE); |
| ZSTD_memcpy(dctx->headerBuffer + (ZSTD_SKIPPABLEHEADERSIZE - srcSize), src, srcSize); /* complete skippable header */ |
| dctx->expected = MEM_readLE32(dctx->headerBuffer + ZSTD_FRAMEIDSIZE); /* note : dctx->expected can grow seriously large, beyond local buffer size */ |
| dctx->stage = ZSTDds_skipFrame; |
| return 0; |
| |
| case ZSTDds_skipFrame: |
| dctx->expected = 0; |
| dctx->stage = ZSTDds_getFrameHeaderSize; |
| return 0; |
| |
| default: |
| assert(0); /* impossible */ |
| RETURN_ERROR(GENERIC, "impossible to reach"); /* some compiler require default to do something */ |
| } |
| } |
| |
| |
| static size_t ZSTD_refDictContent(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) |
| { |
| dctx->dictEnd = dctx->previousDstEnd; |
| dctx->virtualStart = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart)); |
| dctx->prefixStart = dict; |
| dctx->previousDstEnd = (const char*)dict + dictSize; |
| #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| dctx->dictContentBeginForFuzzing = dctx->prefixStart; |
| dctx->dictContentEndForFuzzing = dctx->previousDstEnd; |
| #endif |
| return 0; |
| } |
| |
| /*! ZSTD_loadDEntropy() : |
| * dict : must point at beginning of a valid zstd dictionary. |
| * @return : size of entropy tables read */ |
| size_t |
| ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy, |
| const void* const dict, size_t const dictSize) |
| { |
| const BYTE* dictPtr = (const BYTE*)dict; |
| const BYTE* const dictEnd = dictPtr + dictSize; |
| |
| RETURN_ERROR_IF(dictSize <= 8, dictionary_corrupted, "dict is too small"); |
| assert(MEM_readLE32(dict) == ZSTD_MAGIC_DICTIONARY); /* dict must be valid */ |
| dictPtr += 8; /* skip header = magic + dictID */ |
| |
| ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, OFTable) == offsetof(ZSTD_entropyDTables_t, LLTable) + sizeof(entropy->LLTable)); |
| ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, MLTable) == offsetof(ZSTD_entropyDTables_t, OFTable) + sizeof(entropy->OFTable)); |
| ZSTD_STATIC_ASSERT(sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable) >= HUF_DECOMPRESS_WORKSPACE_SIZE); |
| { void* const workspace = &entropy->LLTable; /* use fse tables as temporary workspace; implies fse tables are grouped together */ |
| size_t const workspaceSize = sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable); |
| #ifdef HUF_FORCE_DECOMPRESS_X1 |
| /* in minimal huffman, we always use X1 variants */ |
| size_t const hSize = HUF_readDTableX1_wksp(entropy->hufTable, |
| dictPtr, dictEnd - dictPtr, |
| workspace, workspaceSize); |
| #else |
| size_t const hSize = HUF_readDTableX2_wksp(entropy->hufTable, |
| dictPtr, (size_t)(dictEnd - dictPtr), |
| workspace, workspaceSize); |
| #endif |
| RETURN_ERROR_IF(HUF_isError(hSize), dictionary_corrupted, ""); |
| dictPtr += hSize; |
| } |
| |
| { short offcodeNCount[MaxOff+1]; |
| unsigned offcodeMaxValue = MaxOff, offcodeLog; |
| size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, (size_t)(dictEnd-dictPtr)); |
| RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted, ""); |
| RETURN_ERROR_IF(offcodeMaxValue > MaxOff, dictionary_corrupted, ""); |
| RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted, ""); |
| ZSTD_buildFSETable( entropy->OFTable, |
| offcodeNCount, offcodeMaxValue, |
| OF_base, OF_bits, |
| offcodeLog, |
| entropy->workspace, sizeof(entropy->workspace), |
| /* bmi2 */0); |
| dictPtr += offcodeHeaderSize; |
| } |
| |
| { short matchlengthNCount[MaxML+1]; |
| unsigned matchlengthMaxValue = MaxML, matchlengthLog; |
| size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, (size_t)(dictEnd-dictPtr)); |
| RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted, ""); |
| RETURN_ERROR_IF(matchlengthMaxValue > MaxML, dictionary_corrupted, ""); |
| RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted, ""); |
| ZSTD_buildFSETable( entropy->MLTable, |
| matchlengthNCount, matchlengthMaxValue, |
| ML_base, ML_bits, |
| matchlengthLog, |
| entropy->workspace, sizeof(entropy->workspace), |
| /* bmi2 */ 0); |
| dictPtr += matchlengthHeaderSize; |
| } |
| |
| { short litlengthNCount[MaxLL+1]; |
| unsigned litlengthMaxValue = MaxLL, litlengthLog; |
| size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, (size_t)(dictEnd-dictPtr)); |
| RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted, ""); |
| RETURN_ERROR_IF(litlengthMaxValue > MaxLL, dictionary_corrupted, ""); |
| RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted, ""); |
| ZSTD_buildFSETable( entropy->LLTable, |
| litlengthNCount, litlengthMaxValue, |
| LL_base, LL_bits, |
| litlengthLog, |
| entropy->workspace, sizeof(entropy->workspace), |
| /* bmi2 */ 0); |
| dictPtr += litlengthHeaderSize; |
| } |
| |
| RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted, ""); |
| { int i; |
| size_t const dictContentSize = (size_t)(dictEnd - (dictPtr+12)); |
| for (i=0; i<3; i++) { |
| U32 const rep = MEM_readLE32(dictPtr); dictPtr += 4; |
| RETURN_ERROR_IF(rep==0 || rep > dictContentSize, |
| dictionary_corrupted, ""); |
| entropy->rep[i] = rep; |
| } } |
| |
| return (size_t)(dictPtr - (const BYTE*)dict); |
| } |
| |
| static size_t ZSTD_decompress_insertDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) |
| { |
| if (dictSize < 8) return ZSTD_refDictContent(dctx, dict, dictSize); |
| { U32 const magic = MEM_readLE32(dict); |
| if (magic != ZSTD_MAGIC_DICTIONARY) { |
| return ZSTD_refDictContent(dctx, dict, dictSize); /* pure content mode */ |
| } } |
| dctx->dictID = MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE); |
| |
| /* load entropy tables */ |
| { size_t const eSize = ZSTD_loadDEntropy(&dctx->entropy, dict, dictSize); |
| RETURN_ERROR_IF(ZSTD_isError(eSize), dictionary_corrupted, ""); |
| dict = (const char*)dict + eSize; |
| dictSize -= eSize; |
| } |
| dctx->litEntropy = dctx->fseEntropy = 1; |
| |
| /* reference dictionary content */ |
| return ZSTD_refDictContent(dctx, dict, dictSize); |
| } |
| |
| size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx) |
| { |
| assert(dctx != NULL); |
| #if ZSTD_TRACE |
| dctx->traceCtx = ZSTD_trace_decompress_begin(dctx); |
| #endif |
| dctx->expected = ZSTD_startingInputLength(dctx->format); /* dctx->format must be properly set */ |
| dctx->stage = ZSTDds_getFrameHeaderSize; |
| dctx->processedCSize = 0; |
| dctx->decodedSize = 0; |
| dctx->previousDstEnd = NULL; |
| dctx->prefixStart = NULL; |
| dctx->virtualStart = NULL; |
| dctx->dictEnd = NULL; |
| dctx->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */ |
| dctx->litEntropy = dctx->fseEntropy = 0; |
| dctx->dictID = 0; |
| dctx->bType = bt_reserved; |
| ZSTD_STATIC_ASSERT(sizeof(dctx->entropy.rep) == sizeof(repStartValue)); |
| ZSTD_memcpy(dctx->entropy.rep, repStartValue, sizeof(repStartValue)); /* initial repcodes */ |
| dctx->LLTptr = dctx->entropy.LLTable; |
| dctx->MLTptr = dctx->entropy.MLTable; |
| dctx->OFTptr = dctx->entropy.OFTable; |
| dctx->HUFptr = dctx->entropy.hufTable; |
| return 0; |
| } |
| |
| size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) |
| { |
| FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) , ""); |
| if (dict && dictSize) |
| RETURN_ERROR_IF( |
| ZSTD_isError(ZSTD_decompress_insertDictionary(dctx, dict, dictSize)), |
| dictionary_corrupted, ""); |
| return 0; |
| } |
| |
| |
| /* ====== ZSTD_DDict ====== */ |
| |
| size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict) |
| { |
| DEBUGLOG(4, "ZSTD_decompressBegin_usingDDict"); |
| assert(dctx != NULL); |
| if (ddict) { |
| const char* const dictStart = (const char*)ZSTD_DDict_dictContent(ddict); |
| size_t const dictSize = ZSTD_DDict_dictSize(ddict); |
| const void* const dictEnd = dictStart + dictSize; |
| dctx->ddictIsCold = (dctx->dictEnd != dictEnd); |
| DEBUGLOG(4, "DDict is %s", |
| dctx->ddictIsCold ? "~cold~" : "hot!"); |
| } |
| FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) , ""); |
| if (ddict) { /* NULL ddict is equivalent to no dictionary */ |
| ZSTD_copyDDictParameters(dctx, ddict); |
| } |
| return 0; |
| } |
| |
| /*! ZSTD_getDictID_fromDict() : |
| * Provides the dictID stored within dictionary. |
| * if @return == 0, the dictionary is not conformant with Zstandard specification. |
| * It can still be loaded, but as a content-only dictionary. */ |
| unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize) |
| { |
| if (dictSize < 8) return 0; |
| if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) return 0; |
| return MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE); |
| } |
| |
| /*! ZSTD_getDictID_fromFrame() : |
| * Provides the dictID required to decompress frame stored within `src`. |
| * If @return == 0, the dictID could not be decoded. |
| * This could for one of the following reasons : |
| * - The frame does not require a dictionary (most common case). |
| * - The frame was built with dictID intentionally removed. |
| * Needed dictionary is a hidden information. |
| * Note : this use case also happens when using a non-conformant dictionary. |
| * - `srcSize` is too small, and as a result, frame header could not be decoded. |
| * Note : possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`. |
| * - This is not a Zstandard frame. |
| * When identifying the exact failure cause, it's possible to use |
| * ZSTD_getFrameHeader(), which will provide a more precise error code. */ |
| unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize) |
| { |
| ZSTD_frameHeader zfp = { 0, 0, 0, ZSTD_frame, 0, 0, 0 }; |
| size_t const hError = ZSTD_getFrameHeader(&zfp, src, srcSize); |
| if (ZSTD_isError(hError)) return 0; |
| return zfp.dictID; |
| } |
| |
| |
| /*! ZSTD_decompress_usingDDict() : |
| * Decompression using a pre-digested Dictionary |
| * Use dictionary without significant overhead. */ |
| size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const ZSTD_DDict* ddict) |
| { |
| /* pass content and size in case legacy frames are encountered */ |
| return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, |
| NULL, 0, |
| ddict); |
| } |
| |
| |
| /*===================================== |
| * Streaming decompression |
| *====================================*/ |
| |
| ZSTD_DStream* ZSTD_createDStream(void) |
| { |
| DEBUGLOG(3, "ZSTD_createDStream"); |
| return ZSTD_createDStream_advanced(ZSTD_defaultCMem); |
| } |
| |
| ZSTD_DStream* ZSTD_initStaticDStream(void *workspace, size_t workspaceSize) |
| { |
| return ZSTD_initStaticDCtx(workspace, workspaceSize); |
| } |
| |
| ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem) |
| { |
| return ZSTD_createDCtx_advanced(customMem); |
| } |
| |
| size_t ZSTD_freeDStream(ZSTD_DStream* zds) |
| { |
| return ZSTD_freeDCtx(zds); |
| } |
| |
| |
| /* *** Initialization *** */ |
| |
| size_t ZSTD_DStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX + ZSTD_blockHeaderSize; } |
| size_t ZSTD_DStreamOutSize(void) { return ZSTD_BLOCKSIZE_MAX; } |
| |
| size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, |
| const void* dict, size_t dictSize, |
| ZSTD_dictLoadMethod_e dictLoadMethod, |
| ZSTD_dictContentType_e dictContentType) |
| { |
| RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); |
| ZSTD_clearDict(dctx); |
| if (dict && dictSize != 0) { |
| dctx->ddictLocal = ZSTD_createDDict_advanced(dict, dictSize, dictLoadMethod, dictContentType, dctx->customMem); |
| RETURN_ERROR_IF(dctx->ddictLocal == NULL, memory_allocation, "NULL pointer!"); |
| dctx->ddict = dctx->ddictLocal; |
| dctx->dictUses = ZSTD_use_indefinitely; |
| } |
| return 0; |
| } |
| |
| size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) |
| { |
| return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto); |
| } |
| |
| size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) |
| { |
| return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto); |
| } |
| |
| size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType) |
| { |
| FORWARD_IF_ERROR(ZSTD_DCtx_loadDictionary_advanced(dctx, prefix, prefixSize, ZSTD_dlm_byRef, dictContentType), ""); |
| dctx->dictUses = ZSTD_use_once; |
| return 0; |
| } |
| |
| size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize) |
| { |
| return ZSTD_DCtx_refPrefix_advanced(dctx, prefix, prefixSize, ZSTD_dct_rawContent); |
| } |
| |
| |
| /* ZSTD_initDStream_usingDict() : |
| * return : expected size, aka ZSTD_startingInputLength(). |
| * this function cannot fail */ |
| size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize) |
| { |
| DEBUGLOG(4, "ZSTD_initDStream_usingDict"); |
| FORWARD_IF_ERROR( ZSTD_DCtx_reset(zds, ZSTD_reset_session_only) , ""); |
| FORWARD_IF_ERROR( ZSTD_DCtx_loadDictionary(zds, dict, dictSize) , ""); |
| return ZSTD_startingInputLength(zds->format); |
| } |
| |
| /* note : this variant can't fail */ |
| size_t ZSTD_initDStream(ZSTD_DStream* zds) |
| { |
| DEBUGLOG(4, "ZSTD_initDStream"); |
| return ZSTD_initDStream_usingDDict(zds, NULL); |
| } |
| |
| /* ZSTD_initDStream_usingDDict() : |
| * ddict will just be referenced, and must outlive decompression session |
| * this function cannot fail */ |
| size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* dctx, const ZSTD_DDict* ddict) |
| { |
| FORWARD_IF_ERROR( ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only) , ""); |
| FORWARD_IF_ERROR( ZSTD_DCtx_refDDict(dctx, ddict) , ""); |
| return ZSTD_startingInputLength(dctx->format); |
| } |
| |
| /* ZSTD_resetDStream() : |
| * return : expected size, aka ZSTD_startingInputLength(). |
| * this function cannot fail */ |
| size_t ZSTD_resetDStream(ZSTD_DStream* dctx) |
| { |
| FORWARD_IF_ERROR(ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only), ""); |
| return ZSTD_startingInputLength(dctx->format); |
| } |
| |
| |
| size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict) |
| { |
| RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); |
| ZSTD_clearDict(dctx); |
| if (ddict) { |
| dctx->ddict = ddict; |
| dctx->dictUses = ZSTD_use_indefinitely; |
| if (dctx->refMultipleDDicts == ZSTD_rmd_refMultipleDDicts) { |
| if (dctx->ddictSet == NULL) { |
| dctx->ddictSet = ZSTD_createDDictHashSet(dctx->customMem); |
| if (!dctx->ddictSet) { |
| RETURN_ERROR(memory_allocation, "Failed to allocate memory for hash set!"); |
| } |
| } |
| assert(!dctx->staticSize); /* Impossible: ddictSet cannot have been allocated if static dctx */ |
| FORWARD_IF_ERROR(ZSTD_DDictHashSet_addDDict(dctx->ddictSet, ddict, dctx->customMem), ""); |
| } |
| } |
| return 0; |
| } |
| |
| /* ZSTD_DCtx_setMaxWindowSize() : |
| * note : no direct equivalence in ZSTD_DCtx_setParameter, |
| * since this version sets windowSize, and the other sets windowLog */ |
| size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize) |
| { |
| ZSTD_bounds const bounds = ZSTD_dParam_getBounds(ZSTD_d_windowLogMax); |
| size_t const min = (size_t)1 << bounds.lowerBound; |
| size_t const max = (size_t)1 << bounds.upperBound; |
| RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); |
| RETURN_ERROR_IF(maxWindowSize < min, parameter_outOfBound, ""); |
| RETURN_ERROR_IF(maxWindowSize > max, parameter_outOfBound, ""); |
| dctx->maxWindowSize = maxWindowSize; |
| return 0; |
| } |
| |
| size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format) |
| { |
| return ZSTD_DCtx_setParameter(dctx, ZSTD_d_format, (int)format); |
| } |
| |
| ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam) |
| { |
| ZSTD_bounds bounds = { 0, 0, 0 }; |
| switch(dParam) { |
| case ZSTD_d_windowLogMax: |
| bounds.lowerBound = ZSTD_WINDOWLOG_ABSOLUTEMIN; |
| bounds.upperBound = ZSTD_WINDOWLOG_MAX; |
| return bounds; |
| case ZSTD_d_format: |
| bounds.lowerBound = (int)ZSTD_f_zstd1; |
| bounds.upperBound = (int)ZSTD_f_zstd1_magicless; |
| ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless); |
| return bounds; |
| case ZSTD_d_stableOutBuffer: |
| bounds.lowerBound = (int)ZSTD_bm_buffered; |
| bounds.upperBound = (int)ZSTD_bm_stable; |
| return bounds; |
| case ZSTD_d_forceIgnoreChecksum: |
| bounds.lowerBound = (int)ZSTD_d_validateChecksum; |
| bounds.upperBound = (int)ZSTD_d_ignoreChecksum; |
| return bounds; |
| case ZSTD_d_refMultipleDDicts: |
| bounds.lowerBound = (int)ZSTD_rmd_refSingleDDict; |
| bounds.upperBound = (int)ZSTD_rmd_refMultipleDDicts; |
| return bounds; |
| default:; |
| } |
| bounds.error = ERROR(parameter_unsupported); |
| return bounds; |
| } |
| |
| /* ZSTD_dParam_withinBounds: |
| * @return 1 if value is within dParam bounds, |
| * 0 otherwise */ |
| static int ZSTD_dParam_withinBounds(ZSTD_dParameter dParam, int value) |
| { |
| ZSTD_bounds const bounds = ZSTD_dParam_getBounds(dParam); |
| if (ZSTD_isError(bounds.error)) return 0; |
| if (value < bounds.lowerBound) return 0; |
| if (value > bounds.upperBound) return 0; |
| return 1; |
| } |
| |
| #define CHECK_DBOUNDS(p,v) { \ |
| RETURN_ERROR_IF(!ZSTD_dParam_withinBounds(p, v), parameter_outOfBound, ""); \ |
| } |
| |
| size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value) |
| { |
| switch (param) { |
| case ZSTD_d_windowLogMax: |
| *value = (int)ZSTD_highbit32((U32)dctx->maxWindowSize); |
| return 0; |
| case ZSTD_d_format: |
| *value = (int)dctx->format; |
| return 0; |
| case ZSTD_d_stableOutBuffer: |
| *value = (int)dctx->outBufferMode; |
| return 0; |
| case ZSTD_d_forceIgnoreChecksum: |
| *value = (int)dctx->forceIgnoreChecksum; |
| return 0; |
| case ZSTD_d_refMultipleDDicts: |
| *value = (int)dctx->refMultipleDDicts; |
| return 0; |
| default:; |
| } |
| RETURN_ERROR(parameter_unsupported, ""); |
| } |
| |
| size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter dParam, int value) |
| { |
| RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); |
| switch(dParam) { |
| case ZSTD_d_windowLogMax: |
| if (value == 0) value = ZSTD_WINDOWLOG_LIMIT_DEFAULT; |
| CHECK_DBOUNDS(ZSTD_d_windowLogMax, value); |
| dctx->maxWindowSize = ((size_t)1) << value; |
| return 0; |
| case ZSTD_d_format: |
| CHECK_DBOUNDS(ZSTD_d_format, value); |
| dctx->format = (ZSTD_format_e)value; |
| return 0; |
| case ZSTD_d_stableOutBuffer: |
| CHECK_DBOUNDS(ZSTD_d_stableOutBuffer, value); |
| dctx->outBufferMode = (ZSTD_bufferMode_e)value; |
| return 0; |
| case ZSTD_d_forceIgnoreChecksum: |
| CHECK_DBOUNDS(ZSTD_d_forceIgnoreChecksum, value); |
| dctx->forceIgnoreChecksum = (ZSTD_forceIgnoreChecksum_e)value; |
| return 0; |
| case ZSTD_d_refMultipleDDicts: |
| CHECK_DBOUNDS(ZSTD_d_refMultipleDDicts, value); |
| if (dctx->staticSize != 0) { |
| RETURN_ERROR(parameter_unsupported, "Static dctx does not support multiple DDicts!"); |
| } |
| dctx->refMultipleDDicts = (ZSTD_refMultipleDDicts_e)value; |
| return 0; |
| default:; |
| } |
| RETURN_ERROR(parameter_unsupported, ""); |
| } |
| |
| size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset) |
| { |
| if ( (reset == ZSTD_reset_session_only) |
| || (reset == ZSTD_reset_session_and_parameters) ) { |
| dctx->streamStage = zdss_init; |
| dctx->noForwardProgress = 0; |
| } |
| if ( (reset == ZSTD_reset_parameters) |
| || (reset == ZSTD_reset_session_and_parameters) ) { |
| RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); |
| ZSTD_clearDict(dctx); |
| ZSTD_DCtx_resetParameters(dctx); |
| } |
| return 0; |
| } |
| |
| |
| size_t ZSTD_sizeof_DStream(const ZSTD_DStream* dctx) |
| { |
| return ZSTD_sizeof_DCtx(dctx); |
| } |
| |
| size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize) |
| { |
| size_t const blockSize = (size_t) MIN(windowSize, ZSTD_BLOCKSIZE_MAX); |
| unsigned long long const neededRBSize = windowSize + blockSize + (WILDCOPY_OVERLENGTH * 2); |
| unsigned long long const neededSize = MIN(frameContentSize, neededRBSize); |
| size_t const minRBSize = (size_t) neededSize; |
| RETURN_ERROR_IF((unsigned long long)minRBSize != neededSize, |
| frameParameter_windowTooLarge, ""); |
| return minRBSize; |
| } |
| |
| size_t ZSTD_estimateDStreamSize(size_t windowSize) |
| { |
| size_t const blockSize = MIN(windowSize, ZSTD_BLOCKSIZE_MAX); |
| size_t const inBuffSize = blockSize; /* no block can be larger */ |
| size_t const outBuffSize = ZSTD_decodingBufferSize_min(windowSize, ZSTD_CONTENTSIZE_UNKNOWN); |
| return ZSTD_estimateDCtxSize() + inBuffSize + outBuffSize; |
| } |
| |
| size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize) |
| { |
| U32 const windowSizeMax = 1U << ZSTD_WINDOWLOG_MAX; /* note : should be user-selectable, but requires an additional parameter (or a dctx) */ |
| ZSTD_frameHeader zfh; |
| size_t const err = ZSTD_getFrameHeader(&zfh, src, srcSize); |
| if (ZSTD_isError(err)) return err; |
| RETURN_ERROR_IF(err>0, srcSize_wrong, ""); |
| RETURN_ERROR_IF(zfh.windowSize > windowSizeMax, |
| frameParameter_windowTooLarge, ""); |
| return ZSTD_estimateDStreamSize((size_t)zfh.windowSize); |
| } |
| |
| |
| /* ***** Decompression ***** */ |
| |
| static int ZSTD_DCtx_isOverflow(ZSTD_DStream* zds, size_t const neededInBuffSize, size_t const neededOutBuffSize) |
| { |
| return (zds->inBuffSize + zds->outBuffSize) >= (neededInBuffSize + neededOutBuffSize) * ZSTD_WORKSPACETOOLARGE_FACTOR; |
| } |
| |
| static void ZSTD_DCtx_updateOversizedDuration(ZSTD_DStream* zds, size_t const neededInBuffSize, size_t const neededOutBuffSize) |
| { |
| if (ZSTD_DCtx_isOverflow(zds, neededInBuffSize, neededOutBuffSize)) |
| zds->oversizedDuration++; |
| else |
| zds->oversizedDuration = 0; |
| } |
| |
| static int ZSTD_DCtx_isOversizedTooLong(ZSTD_DStream* zds) |
| { |
| return zds->oversizedDuration >= ZSTD_WORKSPACETOOLARGE_MAXDURATION; |
| } |
| |
| /* Checks that the output buffer hasn't changed if ZSTD_obm_stable is used. */ |
| static size_t ZSTD_checkOutBuffer(ZSTD_DStream const* zds, ZSTD_outBuffer const* output) |
| { |
| ZSTD_outBuffer const expect = zds->expectedOutBuffer; |
| /* No requirement when ZSTD_obm_stable is not enabled. */ |
| if (zds->outBufferMode != ZSTD_bm_stable) |
| return 0; |
| /* Any buffer is allowed in zdss_init, this must be the same for every other call until |
| * the context is reset. |
| */ |
| if (zds->streamStage == zdss_init) |
| return 0; |
| /* The buffer must match our expectation exactly. */ |
| if (expect.dst == output->dst && expect.pos == output->pos && expect.size == output->size) |
| return 0; |
| RETURN_ERROR(dstBuffer_wrong, "ZSTD_d_stableOutBuffer enabled but output differs!"); |
| } |
| |
| /* Calls ZSTD_decompressContinue() with the right parameters for ZSTD_decompressStream() |
| * and updates the stage and the output buffer state. This call is extracted so it can be |
| * used both when reading directly from the ZSTD_inBuffer, and in buffered input mode. |
| * NOTE: You must break after calling this function since the streamStage is modified. |
| */ |
| static size_t ZSTD_decompressContinueStream( |
| ZSTD_DStream* zds, char** op, char* oend, |
| void const* src, size_t srcSize) { |
| int const isSkipFrame = ZSTD_isSkipFrame(zds); |
| if (zds->outBufferMode == ZSTD_bm_buffered) { |
| size_t const dstSize = isSkipFrame ? 0 : zds->outBuffSize - zds->outStart; |
| size_t const decodedSize = ZSTD_decompressContinue(zds, |
| zds->outBuff + zds->outStart, dstSize, src, srcSize); |
| FORWARD_IF_ERROR(decodedSize, ""); |
| if (!decodedSize && !isSkipFrame) { |
| zds->streamStage = zdss_read; |
| } else { |
| zds->outEnd = zds->outStart + decodedSize; |
| zds->streamStage = zdss_flush; |
| } |
| } else { |
| /* Write directly into the output buffer */ |
| size_t const dstSize = isSkipFrame ? 0 : (size_t)(oend - *op); |
| size_t const decodedSize = ZSTD_decompressContinue(zds, *op, dstSize, src, srcSize); |
| FORWARD_IF_ERROR(decodedSize, ""); |
| *op += decodedSize; |
| /* Flushing is not needed. */ |
| zds->streamStage = zdss_read; |
| assert(*op <= oend); |
| assert(zds->outBufferMode == ZSTD_bm_stable); |
| } |
| return 0; |
| } |
| |
| size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input) |
| { |
| const char* const src = (const char*)input->src; |
| const char* const istart = input->pos != 0 ? src + input->pos : src; |
| const char* const iend = input->size != 0 ? src + input->size : src; |
| const char* ip = istart; |
| char* const dst = (char*)output->dst; |
| char* const ostart = output->pos != 0 ? dst + output->pos : dst; |
| char* const oend = output->size != 0 ? dst + output->size : dst; |
| char* op = ostart; |
| U32 someMoreWork = 1; |
| |
| DEBUGLOG(5, "ZSTD_decompressStream"); |
| RETURN_ERROR_IF( |
| input->pos > input->size, |
| srcSize_wrong, |
| "forbidden. in: pos: %u vs size: %u", |
| (U32)input->pos, (U32)input->size); |
| RETURN_ERROR_IF( |
| output->pos > output->size, |
| dstSize_tooSmall, |
| "forbidden. out: pos: %u vs size: %u", |
| (U32)output->pos, (U32)output->size); |
| DEBUGLOG(5, "input size : %u", (U32)(input->size - input->pos)); |
| FORWARD_IF_ERROR(ZSTD_checkOutBuffer(zds, output), ""); |
| |
| while (someMoreWork) { |
| switch(zds->streamStage) |
| { |
| case zdss_init : |
| DEBUGLOG(5, "stage zdss_init => transparent reset "); |
| zds->streamStage = zdss_loadHeader; |
| zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0; |
| zds->legacyVersion = 0; |
| zds->hostageByte = 0; |
| zds->expectedOutBuffer = *output; |
| /* fall-through */ |
| |
| case zdss_loadHeader : |
| DEBUGLOG(5, "stage zdss_loadHeader (srcSize : %u)", (U32)(iend - ip)); |
| #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) |
| if (zds->legacyVersion) { |
| RETURN_ERROR_IF(zds->staticSize, memory_allocation, |
| "legacy support is incompatible with static dctx"); |
| { size_t const hint = ZSTD_decompressLegacyStream(zds->legacyContext, zds->legacyVersion, output, input); |
| if (hint==0) zds->streamStage = zdss_init; |
| return hint; |
| } } |
| #endif |
| { size_t const hSize = ZSTD_getFrameHeader_advanced(&zds->fParams, zds->headerBuffer, zds->lhSize, zds->format); |
| if (zds->refMultipleDDicts && zds->ddictSet) { |
| ZSTD_DCtx_selectFrameDDict(zds); |
| } |
| DEBUGLOG(5, "header size : %u", (U32)hSize); |
| if (ZSTD_isError(hSize)) { |
| #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) |
| U32 const legacyVersion = ZSTD_isLegacy(istart, iend-istart); |
| if (legacyVersion) { |
| ZSTD_DDict const* const ddict = ZSTD_getDDict(zds); |
| const void* const dict = ddict ? ZSTD_DDict_dictContent(ddict) : NULL; |
| size_t const dictSize = ddict ? ZSTD_DDict_dictSize(ddict) : 0; |
| DEBUGLOG(5, "ZSTD_decompressStream: detected legacy version v0.%u", legacyVersion); |
| RETURN_ERROR_IF(zds->staticSize, memory_allocation, |
| "legacy support is incompatible with static dctx"); |
| FORWARD_IF_ERROR(ZSTD_initLegacyStream(&zds->legacyContext, |
| zds->previousLegacyVersion, legacyVersion, |
| dict, dictSize), ""); |
| zds->legacyVersion = zds->previousLegacyVersion = legacyVersion; |
| { size_t const hint = ZSTD_decompressLegacyStream(zds->legacyContext, legacyVersion, output, input); |
| if (hint==0) zds->streamStage = zdss_init; /* or stay in stage zdss_loadHeader */ |
| return hint; |
| } } |
| #endif |
| return hSize; /* error */ |
| } |
| if (hSize != 0) { /* need more input */ |
| size_t const toLoad = hSize - zds->lhSize; /* if hSize!=0, hSize > zds->lhSize */ |
| size_t const remainingInput = (size_t)(iend-ip); |
| assert(iend >= ip); |
| if (toLoad > remainingInput) { /* not enough input to load full header */ |
| if (remainingInput > 0) { |
| ZSTD_memcpy(zds->headerBuffer + zds->lhSize, ip, remainingInput); |
| zds->lhSize += remainingInput; |
| } |
| input->pos = input->size; |
| return (MAX((size_t)ZSTD_FRAMEHEADERSIZE_MIN(zds->format), hSize) - zds->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */ |
| } |
| assert(ip != NULL); |
| ZSTD_memcpy(zds->headerBuffer + zds->lhSize, ip, toLoad); zds->lhSize = hSize; ip += toLoad; |
| break; |
| } } |
| |
| /* check for single-pass mode opportunity */ |
| if (zds->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN |
| && zds->fParams.frameType != ZSTD_skippableFrame |
| && (U64)(size_t)(oend-op) >= zds->fParams.frameContentSize) { |
| size_t const cSize = ZSTD_findFrameCompressedSize(istart, (size_t)(iend-istart)); |
| if (cSize <= (size_t)(iend-istart)) { |
| /* shortcut : using single-pass mode */ |
| size_t const decompressedSize = ZSTD_decompress_usingDDict(zds, op, (size_t)(oend-op), istart, cSize, ZSTD_getDDict(zds)); |
| if (ZSTD_isError(decompressedSize)) return decompressedSize; |
| DEBUGLOG(4, "shortcut to single-pass ZSTD_decompress_usingDDict()") |
| ip = istart + cSize; |
| op += decompressedSize; |
| zds->expected = 0; |
| zds->streamStage = zdss_init; |
| someMoreWork = 0; |
| break; |
| } } |
| |
| /* Check output buffer is large enough for ZSTD_odm_stable. */ |
| if (zds->outBufferMode == ZSTD_bm_stable |
| && zds->fParams.frameType != ZSTD_skippableFrame |
| && zds->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN |
| && (U64)(size_t)(oend-op) < zds->fParams.frameContentSize) { |
| RETURN_ERROR(dstSize_tooSmall, "ZSTD_obm_stable passed but ZSTD_outBuffer is too small"); |
| } |
| |
| /* Consume header (see ZSTDds_decodeFrameHeader) */ |
| DEBUGLOG(4, "Consume header"); |
| FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(zds, ZSTD_getDDict(zds)), ""); |
| |
| if ((MEM_readLE32(zds->headerBuffer) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */ |
| zds->expected = MEM_readLE32(zds->headerBuffer + ZSTD_FRAMEIDSIZE); |
| zds->stage = ZSTDds_skipFrame; |
| } else { |
| FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(zds, zds->headerBuffer, zds->lhSize), ""); |
| zds->expected = ZSTD_blockHeaderSize; |
| zds->stage = ZSTDds_decodeBlockHeader; |
| } |
| |
| /* control buffer memory usage */ |
| DEBUGLOG(4, "Control max memory usage (%u KB <= max %u KB)", |
| (U32)(zds->fParams.windowSize >>10), |
| (U32)(zds->maxWindowSize >> 10) ); |
| zds->fParams.windowSize = MAX(zds->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN); |
| RETURN_ERROR_IF(zds->fParams.windowSize > zds->maxWindowSize, |
| frameParameter_windowTooLarge, ""); |
| |
| /* Adapt buffer sizes to frame header instructions */ |
| { size_t const neededInBuffSize = MAX(zds->fParams.blockSizeMax, 4 /* frame checksum */); |
| size_t const neededOutBuffSize = zds->outBufferMode == ZSTD_bm_buffered |
| ? ZSTD_decodingBufferSize_min(zds->fParams.windowSize, zds->fParams.frameContentSize) |
| : 0; |
| |
| ZSTD_DCtx_updateOversizedDuration(zds, neededInBuffSize, neededOutBuffSize); |
| |
| { int const tooSmall = (zds->inBuffSize < neededInBuffSize) || (zds->outBuffSize < neededOutBuffSize); |
| int const tooLarge = ZSTD_DCtx_isOversizedTooLong(zds); |
| |
| if (tooSmall || tooLarge) { |
| size_t const bufferSize = neededInBuffSize + neededOutBuffSize; |
| DEBUGLOG(4, "inBuff : from %u to %u", |
| (U32)zds->inBuffSize, (U32)neededInBuffSize); |
| DEBUGLOG(4, "outBuff : from %u to %u", |
| (U32)zds->outBuffSize, (U32)neededOutBuffSize); |
| if (zds->staticSize) { /* static DCtx */ |
| DEBUGLOG(4, "staticSize : %u", (U32)zds->staticSize); |
| assert(zds->staticSize >= sizeof(ZSTD_DCtx)); /* controlled at init */ |
| RETURN_ERROR_IF( |
| bufferSize > zds->staticSize - sizeof(ZSTD_DCtx), |
| memory_allocation, ""); |
| } else { |
| ZSTD_customFree(zds->inBuff, zds->customMem); |
| zds->inBuffSize = 0; |
| zds->outBuffSize = 0; |
| zds->inBuff = (char*)ZSTD_customMalloc(bufferSize, zds->customMem); |
| RETURN_ERROR_IF(zds->inBuff == NULL, memory_allocation, ""); |
| } |
| zds->inBuffSize = neededInBuffSize; |
| zds->outBuff = zds->inBuff + zds->inBuffSize; |
| zds->outBuffSize = neededOutBuffSize; |
| } } } |
| zds->streamStage = zdss_read; |
| /* fall-through */ |
| |
| case zdss_read: |
| DEBUGLOG(5, "stage zdss_read"); |
| { size_t const neededInSize = ZSTD_nextSrcSizeToDecompressWithInputSize(zds, (size_t)(iend - ip)); |
| DEBUGLOG(5, "neededInSize = %u", (U32)neededInSize); |
| if (neededInSize==0) { /* end of frame */ |
| zds->streamStage = zdss_init; |
| someMoreWork = 0; |
| break; |
| } |
| if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */ |
| FORWARD_IF_ERROR(ZSTD_decompressContinueStream(zds, &op, oend, ip, neededInSize), ""); |
| ip += neededInSize; |
| /* Function modifies the stage so we must break */ |
| break; |
| } } |
| if (ip==iend) { someMoreWork = 0; break; } /* no more input */ |
| zds->streamStage = zdss_load; |
| /* fall-through */ |
| |
| case zdss_load: |
| { size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds); |
| size_t const toLoad = neededInSize - zds->inPos; |
| int const isSkipFrame = ZSTD_isSkipFrame(zds); |
| size_t loadedSize; |
| /* At this point we shouldn't be decompressing a block that we can stream. */ |
| assert(neededInSize == ZSTD_nextSrcSizeToDecompressWithInputSize(zds, iend - ip)); |
| if (isSkipFrame) { |
| loadedSize = MIN(toLoad, (size_t)(iend-ip)); |
| } else { |
| RETURN_ERROR_IF(toLoad > zds->inBuffSize - zds->inPos, |
| corruption_detected, |
| "should never happen"); |
| loadedSize = ZSTD_limitCopy(zds->inBuff + zds->inPos, toLoad, ip, (size_t)(iend-ip)); |
| } |
| ip += loadedSize; |
| zds->inPos += loadedSize; |
| if (loadedSize < toLoad) { someMoreWork = 0; break; } /* not enough input, wait for more */ |
| |
| /* decode loaded input */ |
| zds->inPos = 0; /* input is consumed */ |
| FORWARD_IF_ERROR(ZSTD_decompressContinueStream(zds, &op, oend, zds->inBuff, neededInSize), ""); |
| /* Function modifies the stage so we must break */ |
| break; |
| } |
| case zdss_flush: |
| { size_t const toFlushSize = zds->outEnd - zds->outStart; |
| size_t const flushedSize = ZSTD_limitCopy(op, (size_t)(oend-op), zds->outBuff + zds->outStart, toFlushSize); |
| op += flushedSize; |
| zds->outStart += flushedSize; |
| if (flushedSize == toFlushSize) { /* flush completed */ |
| zds->streamStage = zdss_read; |
| if ( (zds->outBuffSize < zds->fParams.frameContentSize) |
| && (zds->outStart + zds->fParams.blockSizeMax > zds->outBuffSize) ) { |
| DEBUGLOG(5, "restart filling outBuff from beginning (left:%i, needed:%u)", |
| (int)(zds->outBuffSize - zds->outStart), |
| (U32)zds->fParams.blockSizeMax); |
| zds->outStart = zds->outEnd = 0; |
| } |
| break; |
| } } |
| /* cannot complete flush */ |
| someMoreWork = 0; |
| break; |
| |
| default: |
| assert(0); /* impossible */ |
| RETURN_ERROR(GENERIC, "impossible to reach"); /* some compiler require default to do something */ |
| } } |
| |
| /* result */ |
| input->pos = (size_t)(ip - (const char*)(input->src)); |
| output->pos = (size_t)(op - (char*)(output->dst)); |
| |
| /* Update the expected output buffer for ZSTD_obm_stable. */ |
| zds->expectedOutBuffer = *output; |
| |
| if ((ip==istart) && (op==ostart)) { /* no forward progress */ |
| zds->noForwardProgress ++; |
| if (zds->noForwardProgress >= ZSTD_NO_FORWARD_PROGRESS_MAX) { |
| RETURN_ERROR_IF(op==oend, dstSize_tooSmall, ""); |
| RETURN_ERROR_IF(ip==iend, srcSize_wrong, ""); |
| assert(0); |
| } |
| } else { |
| zds->noForwardProgress = 0; |
| } |
| { size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zds); |
| if (!nextSrcSizeHint) { /* frame fully decoded */ |
| if (zds->outEnd == zds->outStart) { /* output fully flushed */ |
| if (zds->hostageByte) { |
| if (input->pos >= input->size) { |
| /* can't release hostage (not present) */ |
| zds->streamStage = zdss_read; |
| return 1; |
| } |
| input->pos++; /* release hostage */ |
| } /* zds->hostageByte */ |
| return 0; |
| } /* zds->outEnd == zds->outStart */ |
| if (!zds->hostageByte) { /* output not fully flushed; keep last byte as hostage; will be released when all output is flushed */ |
| input->pos--; /* note : pos > 0, otherwise, impossible to finish reading last block */ |
| zds->hostageByte=1; |
| } |
| return 1; |
| } /* nextSrcSizeHint==0 */ |
| nextSrcSizeHint += ZSTD_blockHeaderSize * (ZSTD_nextInputType(zds) == ZSTDnit_block); /* preload header of next block */ |
| assert(zds->inPos <= nextSrcSizeHint); |
| nextSrcSizeHint -= zds->inPos; /* part already loaded*/ |
| return nextSrcSizeHint; |
| } |
| } |
| |
| size_t ZSTD_decompressStream_simpleArgs ( |
| ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, size_t* dstPos, |
| const void* src, size_t srcSize, size_t* srcPos) |
| { |
| ZSTD_outBuffer output = { dst, dstCapacity, *dstPos }; |
| ZSTD_inBuffer input = { src, srcSize, *srcPos }; |
| /* ZSTD_compress_generic() will check validity of dstPos and srcPos */ |
| size_t const cErr = ZSTD_decompressStream(dctx, &output, &input); |
| *dstPos = output.pos; |
| *srcPos = input.pos; |
| return cErr; |
| } |
| /**** ended inlining decompress/zstd_decompress.c ****/ |
| /**** start inlining decompress/zstd_decompress_block.c ****/ |
| /* |
| * Copyright (c) 2016-2021, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| /* zstd_decompress_block : |
| * this module takes care of decompressing _compressed_ block */ |
| |
| /*-******************************************************* |
| * Dependencies |
| *********************************************************/ |
| /**** skipping file: ../common/zstd_deps.h ****/ |
| /**** skipping file: ../common/compiler.h ****/ |
| /**** skipping file: ../common/cpu.h ****/ |
| /**** skipping file: ../common/mem.h ****/ |
| #define FSE_STATIC_LINKING_ONLY |
| /**** skipping file: ../common/fse.h ****/ |
| #define HUF_STATIC_LINKING_ONLY |
| /**** skipping file: ../common/huf.h ****/ |
| /**** skipping file: ../common/zstd_internal.h ****/ |
| /**** skipping file: zstd_decompress_internal.h ****/ |
| /**** skipping file: zstd_ddict.h ****/ |
| /**** skipping file: zstd_decompress_block.h ****/ |
| |
| /*_******************************************************* |
| * Macros |
| **********************************************************/ |
| |
| /* These two optional macros force the use one way or another of the two |
| * ZSTD_decompressSequences implementations. You can't force in both directions |
| * at the same time. |
| */ |
| #if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ |
| defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) |
| #error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!" |
| #endif |
| |
| |
| /*_******************************************************* |
| * Memory operations |
| **********************************************************/ |
| static void ZSTD_copy4(void* dst, const void* src) { ZSTD_memcpy(dst, src, 4); } |
| |
| |
| /*-************************************************************* |
| * Block decoding |
| ***************************************************************/ |
| |
| /*! ZSTD_getcBlockSize() : |
| * Provides the size of compressed block from block header `src` */ |
| size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, |
| blockProperties_t* bpPtr) |
| { |
| RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong, ""); |
| |
| { U32 const cBlockHeader = MEM_readLE24(src); |
| U32 const cSize = cBlockHeader >> 3; |
| bpPtr->lastBlock = cBlockHeader & 1; |
| bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3); |
| bpPtr->origSize = cSize; /* only useful for RLE */ |
| if (bpPtr->blockType == bt_rle) return 1; |
| RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected, ""); |
| return cSize; |
| } |
| } |
| |
| |
| /* Hidden declaration for fullbench */ |
| size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx, |
| const void* src, size_t srcSize); |
| /*! ZSTD_decodeLiteralsBlock() : |
| * @return : nb of bytes read from src (< srcSize ) |
| * note : symbol not declared but exposed for fullbench */ |
| size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx, |
| const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */ |
| { |
| DEBUGLOG(5, "ZSTD_decodeLiteralsBlock"); |
| RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, ""); |
| |
| { const BYTE* const istart = (const BYTE*) src; |
| symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3); |
| |
| switch(litEncType) |
| { |
| case set_repeat: |
| DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block"); |
| RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted, ""); |
| /* fall-through */ |
| |
| case set_compressed: |
| RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3"); |
| { size_t lhSize, litSize, litCSize; |
| U32 singleStream=0; |
| U32 const lhlCode = (istart[0] >> 2) & 3; |
| U32 const lhc = MEM_readLE32(istart); |
| size_t hufSuccess; |
| switch(lhlCode) |
| { |
| case 0: case 1: default: /* note : default is impossible, since lhlCode into [0..3] */ |
| /* 2 - 2 - 10 - 10 */ |
| singleStream = !lhlCode; |
| lhSize = 3; |
| litSize = (lhc >> 4) & 0x3FF; |
| litCSize = (lhc >> 14) & 0x3FF; |
| break; |
| case 2: |
| /* 2 - 2 - 14 - 14 */ |
| lhSize = 4; |
| litSize = (lhc >> 4) & 0x3FFF; |
| litCSize = lhc >> 18; |
| break; |
| case 3: |
| /* 2 - 2 - 18 - 18 */ |
| lhSize = 5; |
| litSize = (lhc >> 4) & 0x3FFFF; |
| litCSize = (lhc >> 22) + ((size_t)istart[4] << 10); |
| break; |
| } |
| RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, ""); |
| RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, ""); |
| |
| /* prefetch huffman table if cold */ |
| if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) { |
| PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable)); |
| } |
| |
| if (litEncType==set_repeat) { |
| if (singleStream) { |
| hufSuccess = HUF_decompress1X_usingDTable_bmi2( |
| dctx->litBuffer, litSize, istart+lhSize, litCSize, |
| dctx->HUFptr, dctx->bmi2); |
| } else { |
| hufSuccess = HUF_decompress4X_usingDTable_bmi2( |
| dctx->litBuffer, litSize, istart+lhSize, litCSize, |
| dctx->HUFptr, dctx->bmi2); |
| } |
| } else { |
| if (singleStream) { |
| #if defined(HUF_FORCE_DECOMPRESS_X2) |
| hufSuccess = HUF_decompress1X_DCtx_wksp( |
| dctx->entropy.hufTable, dctx->litBuffer, litSize, |
| istart+lhSize, litCSize, dctx->workspace, |
| sizeof(dctx->workspace)); |
| #else |
| hufSuccess = HUF_decompress1X1_DCtx_wksp_bmi2( |
| dctx->entropy.hufTable, dctx->litBuffer, litSize, |
| istart+lhSize, litCSize, dctx->workspace, |
| sizeof(dctx->workspace), dctx->bmi2); |
| #endif |
| } else { |
| hufSuccess = HUF_decompress4X_hufOnly_wksp_bmi2( |
| dctx->entropy.hufTable, dctx->litBuffer, litSize, |
| istart+lhSize, litCSize, dctx->workspace, |
| sizeof(dctx->workspace), dctx->bmi2); |
| } |
| } |
| |
| RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, ""); |
| |
| dctx->litPtr = dctx->litBuffer; |
| dctx->litSize = litSize; |
| dctx->litEntropy = 1; |
| if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable; |
| ZSTD_memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH); |
| return litCSize + lhSize; |
| } |
| |
| case set_basic: |
| { size_t litSize, lhSize; |
| U32 const lhlCode = ((istart[0]) >> 2) & 3; |
| switch(lhlCode) |
| { |
| case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */ |
| lhSize = 1; |
| litSize = istart[0] >> 3; |
| break; |
| case 1: |
| lhSize = 2; |
| litSize = MEM_readLE16(istart) >> 4; |
| break; |
| case 3: |
| lhSize = 3; |
| litSize = MEM_readLE24(istart) >> 4; |
| break; |
| } |
| |
| if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */ |
| RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected, ""); |
| ZSTD_memcpy(dctx->litBuffer, istart+lhSize, litSize); |
| dctx->litPtr = dctx->litBuffer; |
| dctx->litSize = litSize; |
| ZSTD_memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH); |
| return lhSize+litSize; |
| } |
| /* direct reference into compressed stream */ |
| dctx->litPtr = istart+lhSize; |
| dctx->litSize = litSize; |
| return lhSize+litSize; |
| } |
| |
| case set_rle: |
| { U32 const lhlCode = ((istart[0]) >> 2) & 3; |
| size_t litSize, lhSize; |
| switch(lhlCode) |
| { |
| case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */ |
| lhSize = 1; |
| litSize = istart[0] >> 3; |
| break; |
| case 1: |
| lhSize = 2; |
| litSize = MEM_readLE16(istart) >> 4; |
| break; |
| case 3: |
| lhSize = 3; |
| litSize = MEM_readLE24(istart) >> 4; |
| RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4"); |
| break; |
| } |
| RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, ""); |
| ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH); |
| dctx->litPtr = dctx->litBuffer; |
| dctx->litSize = litSize; |
| return lhSize+1; |
| } |
| default: |
| RETURN_ERROR(corruption_detected, "impossible"); |
| } |
| } |
| } |
| |
| /* Default FSE distribution tables. |
| * These are pre-calculated FSE decoding tables using default distributions as defined in specification : |
| * https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#default-distributions |
| * They were generated programmatically with following method : |
| * - start from default distributions, present in /lib/common/zstd_internal.h |
| * - generate tables normally, using ZSTD_buildFSETable() |
| * - printout the content of tables |
| * - pretify output, report below, test with fuzzer to ensure it's correct */ |
| |
| /* Default FSE distribution table for Literal Lengths */ |
| static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = { |
| { 1, 1, 1, LL_DEFAULTNORMLOG}, /* header : fastMode, tableLog */ |
| /* nextState, nbAddBits, nbBits, baseVal */ |
| { 0, 0, 4, 0}, { 16, 0, 4, 0}, |
| { 32, 0, 5, 1}, { 0, 0, 5, 3}, |
| { 0, 0, 5, 4}, { 0, 0, 5, 6}, |
| { 0, 0, 5, 7}, { 0, 0, 5, 9}, |
| { 0, 0, 5, 10}, { 0, 0, 5, 12}, |
| { 0, 0, 6, 14}, { 0, 1, 5, 16}, |
| { 0, 1, 5, 20}, { 0, 1, 5, 22}, |
| { 0, 2, 5, 28}, { 0, 3, 5, 32}, |
| { 0, 4, 5, 48}, { 32, 6, 5, 64}, |
| { 0, 7, 5, 128}, { 0, 8, 6, 256}, |
| { 0, 10, 6, 1024}, { 0, 12, 6, 4096}, |
| { 32, 0, 4, 0}, { 0, 0, 4, 1}, |
| { 0, 0, 5, 2}, { 32, 0, 5, 4}, |
| { 0, 0, 5, 5}, { 32, 0, 5, 7}, |
| { 0, 0, 5, 8}, { 32, 0, 5, 10}, |
| { 0, 0, 5, 11}, { 0, 0, 6, 13}, |
| { 32, 1, 5, 16}, { 0, 1, 5, 18}, |
| { 32, 1, 5, 22}, { 0, 2, 5, 24}, |
| { 32, 3, 5, 32}, { 0, 3, 5, 40}, |
| { 0, 6, 4, 64}, { 16, 6, 4, 64}, |
| { 32, 7, 5, 128}, { 0, 9, 6, 512}, |
| { 0, 11, 6, 2048}, { 48, 0, 4, 0}, |
| { 16, 0, 4, 1}, { 32, 0, 5, 2}, |
| { 32, 0, 5, 3}, { 32, 0, 5, 5}, |
| { 32, 0, 5, 6}, { 32, 0, 5, 8}, |
| { 32, 0, 5, 9}, { 32, 0, 5, 11}, |
| { 32, 0, 5, 12}, { 0, 0, 6, 15}, |
| { 32, 1, 5, 18}, { 32, 1, 5, 20}, |
| { 32, 2, 5, 24}, { 32, 2, 5, 28}, |
| { 32, 3, 5, 40}, { 32, 4, 5, 48}, |
| { 0, 16, 6,65536}, { 0, 15, 6,32768}, |
| { 0, 14, 6,16384}, { 0, 13, 6, 8192}, |
| }; /* LL_defaultDTable */ |
| |
| /* Default FSE distribution table for Offset Codes */ |
| static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = { |
| { 1, 1, 1, OF_DEFAULTNORMLOG}, /* header : fastMode, tableLog */ |
| /* nextState, nbAddBits, nbBits, baseVal */ |
| { 0, 0, 5, 0}, { 0, 6, 4, 61}, |
| { 0, 9, 5, 509}, { 0, 15, 5,32765}, |
| { 0, 21, 5,2097149}, { 0, 3, 5, 5}, |
| { 0, 7, 4, 125}, { 0, 12, 5, 4093}, |
| { 0, 18, 5,262141}, { 0, 23, 5,8388605}, |
| { 0, 5, 5, 29}, { 0, 8, 4, 253}, |
| { 0, 14, 5,16381}, { 0, 20, 5,1048573}, |
| { 0, 2, 5, 1}, { 16, 7, 4, 125}, |
| { 0, 11, 5, 2045}, { 0, 17, 5,131069}, |
| { 0, 22, 5,4194301}, { 0, 4, 5, 13}, |
| { 16, 8, 4, 253}, { 0, 13, 5, 8189}, |
| { 0, 19, 5,524285}, { 0, 1, 5, 1}, |
| { 16, 6, 4, 61}, { 0, 10, 5, 1021}, |
| { 0, 16, 5,65533}, { 0, 28, 5,268435453}, |
| { 0, 27, 5,134217725}, { 0, 26, 5,67108861}, |
| { 0, 25, 5,33554429}, { 0, 24, 5,16777213}, |
| }; /* OF_defaultDTable */ |
| |
| |
| /* Default FSE distribution table for Match Lengths */ |
| static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = { |
| { 1, 1, 1, ML_DEFAULTNORMLOG}, /* header : fastMode, tableLog */ |
| /* nextState, nbAddBits, nbBits, baseVal */ |
| { 0, 0, 6, 3}, { 0, 0, 4, 4}, |
| { 32, 0, 5, 5}, { 0, 0, 5, 6}, |
| { 0, 0, 5, 8}, { 0, 0, 5, 9}, |
| { 0, 0, 5, 11}, { 0, 0, 6, 13}, |
| { 0, 0, 6, 16}, { 0, 0, 6, 19}, |
| { 0, 0, 6, 22}, { 0, 0, 6, 25}, |
| { 0, 0, 6, 28}, { 0, 0, 6, 31}, |
| { 0, 0, 6, 34}, { 0, 1, 6, 37}, |
| { 0, 1, 6, 41}, { 0, 2, 6, 47}, |
| { 0, 3, 6, 59}, { 0, 4, 6, 83}, |
| { 0, 7, 6, 131}, { 0, 9, 6, 515}, |
| { 16, 0, 4, 4}, { 0, 0, 4, 5}, |
| { 32, 0, 5, 6}, { 0, 0, 5, 7}, |
| { 32, 0, 5, 9}, { 0, 0, 5, 10}, |
| { 0, 0, 6, 12}, { 0, 0, 6, 15}, |
| { 0, 0, 6, 18}, { 0, 0, 6, 21}, |
| { 0, 0, 6, 24}, { 0, 0, 6, 27}, |
| { 0, 0, 6, 30}, { 0, 0, 6, 33}, |
| { 0, 1, 6, 35}, { 0, 1, 6, 39}, |
| { 0, 2, 6, 43}, { 0, 3, 6, 51}, |
| { 0, 4, 6, 67}, { 0, 5, 6, 99}, |
| { 0, 8, 6, 259}, { 32, 0, 4, 4}, |
| { 48, 0, 4, 4}, { 16, 0, 4, 5}, |
| { 32, 0, 5, 7}, { 32, 0, 5, 8}, |
| { 32, 0, 5, 10}, { 32, 0, 5, 11}, |
| { 0, 0, 6, 14}, { 0, 0, 6, 17}, |
| { 0, 0, 6, 20}, { 0, 0, 6, 23}, |
| { 0, 0, 6, 26}, { 0, 0, 6, 29}, |
| { 0, 0, 6, 32}, { 0, 16, 6,65539}, |
| { 0, 15, 6,32771}, { 0, 14, 6,16387}, |
| { 0, 13, 6, 8195}, { 0, 12, 6, 4099}, |
| { 0, 11, 6, 2051}, { 0, 10, 6, 1027}, |
| }; /* ML_defaultDTable */ |
| |
| |
| static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U32 nbAddBits) |
| { |
| void* ptr = dt; |
| ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr; |
| ZSTD_seqSymbol* const cell = dt + 1; |
| |
| DTableH->tableLog = 0; |
| DTableH->fastMode = 0; |
| |
| cell->nbBits = 0; |
| cell->nextState = 0; |
| assert(nbAddBits < 255); |
| cell->nbAdditionalBits = (BYTE)nbAddBits; |
| cell->baseValue = baseValue; |
| } |
| |
| |
| /* ZSTD_buildFSETable() : |
| * generate FSE decoding table for one symbol (ll, ml or off) |
| * cannot fail if input is valid => |
| * all inputs are presumed validated at this stage */ |
| FORCE_INLINE_TEMPLATE |
| void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt, |
| const short* normalizedCounter, unsigned maxSymbolValue, |
| const U32* baseValue, const U32* nbAdditionalBits, |
| unsigned tableLog, void* wksp, size_t wkspSize) |
| { |
| ZSTD_seqSymbol* const tableDecode = dt+1; |
| U32 const maxSV1 = maxSymbolValue + 1; |
| U32 const tableSize = 1 << tableLog; |
| |
| U16* symbolNext = (U16*)wksp; |
| BYTE* spread = (BYTE*)(symbolNext + MaxSeq + 1); |
| U32 highThreshold = tableSize - 1; |
| |
| |
| /* Sanity Checks */ |
| assert(maxSymbolValue <= MaxSeq); |
| assert(tableLog <= MaxFSELog); |
| assert(wkspSize >= ZSTD_BUILD_FSE_TABLE_WKSP_SIZE); |
| (void)wkspSize; |
| /* Init, lay down lowprob symbols */ |
| { ZSTD_seqSymbol_header DTableH; |
| DTableH.tableLog = tableLog; |
| DTableH.fastMode = 1; |
| { S16 const largeLimit= (S16)(1 << (tableLog-1)); |
| U32 s; |
| for (s=0; s<maxSV1; s++) { |
| if (normalizedCounter[s]==-1) { |
| tableDecode[highThreshold--].baseValue = s; |
| symbolNext[s] = 1; |
| } else { |
| if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0; |
| assert(normalizedCounter[s]>=0); |
| symbolNext[s] = (U16)normalizedCounter[s]; |
| } } } |
| ZSTD_memcpy(dt, &DTableH, sizeof(DTableH)); |
| } |
| |
| /* Spread symbols */ |
| assert(tableSize <= 512); |
| /* Specialized symbol spreading for the case when there are |
| * no low probability (-1 count) symbols. When compressing |
| * small blocks we avoid low probability symbols to hit this |
| * case, since header decoding speed matters more. |
| */ |
| if (highThreshold == tableSize - 1) { |
| size_t const tableMask = tableSize-1; |
| size_t const step = FSE_TABLESTEP(tableSize); |
| /* First lay down the symbols in order. |
| * We use a uint64_t to lay down 8 bytes at a time. This reduces branch |
| * misses since small blocks generally have small table logs, so nearly |
| * all symbols have counts <= 8. We ensure we have 8 bytes at the end of |
| * our buffer to handle the over-write. |
| */ |
| { |
| U64 const add = 0x0101010101010101ull; |
| size_t pos = 0; |
| U64 sv = 0; |
| U32 s; |
| for (s=0; s<maxSV1; ++s, sv += add) { |
| int i; |
| int const n = normalizedCounter[s]; |
| MEM_write64(spread + pos, sv); |
| for (i = 8; i < n; i += 8) { |
| MEM_write64(spread + pos + i, sv); |
| } |
| pos += n; |
| } |
| } |
| /* Now we spread those positions across the table. |
| * The benefit of doing it in two stages is that we avoid the the |
| * variable size inner loop, which caused lots of branch misses. |
| * Now we can run through all the positions without any branch misses. |
| * We unroll the loop twice, since that is what emperically worked best. |
| */ |
| { |
| size_t position = 0; |
| size_t s; |
| size_t const unroll = 2; |
| assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */ |
| for (s = 0; s < (size_t)tableSize; s += unroll) { |
| size_t u; |
| for (u = 0; u < unroll; ++u) { |
| size_t const uPosition = (position + (u * step)) & tableMask; |
| tableDecode[uPosition].baseValue = spread[s + u]; |
| } |
| position = (position + (unroll * step)) & tableMask; |
| } |
| assert(position == 0); |
| } |
| } else { |
| U32 const tableMask = tableSize-1; |
| U32 const step = FSE_TABLESTEP(tableSize); |
| U32 s, position = 0; |
| for (s=0; s<maxSV1; s++) { |
| int i; |
| int const n = normalizedCounter[s]; |
| for (i=0; i<n; i++) { |
| tableDecode[position].baseValue = s; |
| position = (position + step) & tableMask; |
| while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */ |
| } } |
| assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */ |
| } |
| |
| /* Build Decoding table */ |
| { |
| U32 u; |
| for (u=0; u<tableSize; u++) { |
| U32 const symbol = tableDecode[u].baseValue; |
| U32 const nextState = symbolNext[symbol]++; |
| tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) ); |
| tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize); |
| assert(nbAdditionalBits[symbol] < 255); |
| tableDecode[u].nbAdditionalBits = (BYTE)nbAdditionalBits[symbol]; |
| tableDecode[u].baseValue = baseValue[symbol]; |
| } |
| } |
| } |
| |
| /* Avoids the FORCE_INLINE of the _body() function. */ |
| static void ZSTD_buildFSETable_body_default(ZSTD_seqSymbol* dt, |
| const short* normalizedCounter, unsigned maxSymbolValue, |
| const U32* baseValue, const U32* nbAdditionalBits, |
| unsigned tableLog, void* wksp, size_t wkspSize) |
| { |
| ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue, |
| baseValue, nbAdditionalBits, tableLog, wksp, wkspSize); |
| } |
| |
| #if DYNAMIC_BMI2 |
| TARGET_ATTRIBUTE("bmi2") static void ZSTD_buildFSETable_body_bmi2(ZSTD_seqSymbol* dt, |
| const short* normalizedCounter, unsigned maxSymbolValue, |
| const U32* baseValue, const U32* nbAdditionalBits, |
| unsigned tableLog, void* wksp, size_t wkspSize) |
| { |
| ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue, |
| baseValue, nbAdditionalBits, tableLog, wksp, wkspSize); |
| } |
| #endif |
| |
| void ZSTD_buildFSETable(ZSTD_seqSymbol* dt, |
| const short* normalizedCounter, unsigned maxSymbolValue, |
| const U32* baseValue, const U32* nbAdditionalBits, |
| unsigned tableLog, void* wksp, size_t wkspSize, int bmi2) |
| { |
| #if DYNAMIC_BMI2 |
| if (bmi2) { |
| ZSTD_buildFSETable_body_bmi2(dt, normalizedCounter, maxSymbolValue, |
| baseValue, nbAdditionalBits, tableLog, wksp, wkspSize); |
| return; |
| } |
| #endif |
| (void)bmi2; |
| ZSTD_buildFSETable_body_default(dt, normalizedCounter, maxSymbolValue, |
| baseValue, nbAdditionalBits, tableLog, wksp, wkspSize); |
| } |
| |
| |
| /*! ZSTD_buildSeqTable() : |
| * @return : nb bytes read from src, |
| * or an error code if it fails */ |
| static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr, |
| symbolEncodingType_e type, unsigned max, U32 maxLog, |
| const void* src, size_t srcSize, |
| const U32* baseValue, const U32* nbAdditionalBits, |
| const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable, |
| int ddictIsCold, int nbSeq, U32* wksp, size_t wkspSize, |
| int bmi2) |
| { |
| switch(type) |
| { |
| case set_rle : |
| RETURN_ERROR_IF(!srcSize, srcSize_wrong, ""); |
| RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected, ""); |
| { U32 const symbol = *(const BYTE*)src; |
| U32 const baseline = baseValue[symbol]; |
| U32 const nbBits = nbAdditionalBits[symbol]; |
| ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits); |
| } |
| *DTablePtr = DTableSpace; |
| return 1; |
| case set_basic : |
| *DTablePtr = defaultTable; |
| return 0; |
| case set_repeat: |
| RETURN_ERROR_IF(!flagRepeatTable, corruption_detected, ""); |
| /* prefetch FSE table if used */ |
| if (ddictIsCold && (nbSeq > 24 /* heuristic */)) { |
| const void* const pStart = *DTablePtr; |
| size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog)); |
| PREFETCH_AREA(pStart, pSize); |
| } |
| return 0; |
| case set_compressed : |
| { unsigned tableLog; |
| S16 norm[MaxSeq+1]; |
| size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize); |
| RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected, ""); |
| RETURN_ERROR_IF(tableLog > maxLog, corruption_detected, ""); |
| ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog, wksp, wkspSize, bmi2); |
| *DTablePtr = DTableSpace; |
| return headerSize; |
| } |
| default : |
| assert(0); |
| RETURN_ERROR(GENERIC, "impossible"); |
| } |
| } |
| |
| size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr, |
| const void* src, size_t srcSize) |
| { |
| const BYTE* const istart = (const BYTE*)src; |
| const BYTE* const iend = istart + srcSize; |
| const BYTE* ip = istart; |
| int nbSeq; |
| DEBUGLOG(5, "ZSTD_decodeSeqHeaders"); |
| |
| /* check */ |
| RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong, ""); |
| |
| /* SeqHead */ |
| nbSeq = *ip++; |
| if (!nbSeq) { |
| *nbSeqPtr=0; |
| RETURN_ERROR_IF(srcSize != 1, srcSize_wrong, ""); |
| return 1; |
| } |
| if (nbSeq > 0x7F) { |
| if (nbSeq == 0xFF) { |
| RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, ""); |
| nbSeq = MEM_readLE16(ip) + LONGNBSEQ; |
| ip+=2; |
| } else { |
| RETURN_ERROR_IF(ip >= iend, srcSize_wrong, ""); |
| nbSeq = ((nbSeq-0x80)<<8) + *ip++; |
| } |
| } |
| *nbSeqPtr = nbSeq; |
| |
| /* FSE table descriptors */ |
| RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */ |
| { symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6); |
| symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3); |
| symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3); |
| ip++; |
| |
| /* Build DTables */ |
| { size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr, |
| LLtype, MaxLL, LLFSELog, |
| ip, iend-ip, |
| LL_base, LL_bits, |
| LL_defaultDTable, dctx->fseEntropy, |
| dctx->ddictIsCold, nbSeq, |
| dctx->workspace, sizeof(dctx->workspace), |
| dctx->bmi2); |
| RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected, "ZSTD_buildSeqTable failed"); |
| ip += llhSize; |
| } |
| |
| { size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr, |
| OFtype, MaxOff, OffFSELog, |
| ip, iend-ip, |
| OF_base, OF_bits, |
| OF_defaultDTable, dctx->fseEntropy, |
| dctx->ddictIsCold, nbSeq, |
| dctx->workspace, sizeof(dctx->workspace), |
| dctx->bmi2); |
| RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected, "ZSTD_buildSeqTable failed"); |
| ip += ofhSize; |
| } |
| |
| { size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr, |
| MLtype, MaxML, MLFSELog, |
| ip, iend-ip, |
| ML_base, ML_bits, |
| ML_defaultDTable, dctx->fseEntropy, |
| dctx->ddictIsCold, nbSeq, |
| dctx->workspace, sizeof(dctx->workspace), |
| dctx->bmi2); |
| RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected, "ZSTD_buildSeqTable failed"); |
| ip += mlhSize; |
| } |
| } |
| |
| return ip-istart; |
| } |
| |
| |
| typedef struct { |
| size_t litLength; |
| size_t matchLength; |
| size_t offset; |
| const BYTE* match; |
| } seq_t; |
| |
| typedef struct { |
| size_t state; |
| const ZSTD_seqSymbol* table; |
| } ZSTD_fseState; |
| |
| typedef struct { |
| BIT_DStream_t DStream; |
| ZSTD_fseState stateLL; |
| ZSTD_fseState stateOffb; |
| ZSTD_fseState stateML; |
| size_t prevOffset[ZSTD_REP_NUM]; |
| const BYTE* prefixStart; |
| const BYTE* dictEnd; |
| size_t pos; |
| } seqState_t; |
| |
| /*! ZSTD_overlapCopy8() : |
| * Copies 8 bytes from ip to op and updates op and ip where ip <= op. |
| * If the offset is < 8 then the offset is spread to at least 8 bytes. |
| * |
| * Precondition: *ip <= *op |
| * Postcondition: *op - *op >= 8 |
| */ |
| HINT_INLINE void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) { |
| assert(*ip <= *op); |
| if (offset < 8) { |
| /* close range match, overlap */ |
| static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */ |
| static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */ |
| int const sub2 = dec64table[offset]; |
| (*op)[0] = (*ip)[0]; |
| (*op)[1] = (*ip)[1]; |
| (*op)[2] = (*ip)[2]; |
| (*op)[3] = (*ip)[3]; |
| *ip += dec32table[offset]; |
| ZSTD_copy4(*op+4, *ip); |
| *ip -= sub2; |
| } else { |
| ZSTD_copy8(*op, *ip); |
| } |
| *ip += 8; |
| *op += 8; |
| assert(*op - *ip >= 8); |
| } |
| |
| /*! ZSTD_safecopy() : |
| * Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer |
| * and write up to 16 bytes past oend_w (op >= oend_w is allowed). |
| * This function is only called in the uncommon case where the sequence is near the end of the block. It |
| * should be fast for a single long sequence, but can be slow for several short sequences. |
| * |
| * @param ovtype controls the overlap detection |
| * - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart. |
| * - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart. |
| * The src buffer must be before the dst buffer. |
| */ |
| static void ZSTD_safecopy(BYTE* op, BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) { |
| ptrdiff_t const diff = op - ip; |
| BYTE* const oend = op + length; |
| |
| assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) || |
| (ovtype == ZSTD_overlap_src_before_dst && diff >= 0)); |
| |
| if (length < 8) { |
| /* Handle short lengths. */ |
| while (op < oend) *op++ = *ip++; |
| return; |
| } |
| if (ovtype == ZSTD_overlap_src_before_dst) { |
| /* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */ |
| assert(length >= 8); |
| ZSTD_overlapCopy8(&op, &ip, diff); |
| assert(op - ip >= 8); |
| assert(op <= oend); |
| } |
| |
| if (oend <= oend_w) { |
| /* No risk of overwrite. */ |
| ZSTD_wildcopy(op, ip, length, ovtype); |
| return; |
| } |
| if (op <= oend_w) { |
| /* Wildcopy until we get close to the end. */ |
| assert(oend > oend_w); |
| ZSTD_wildcopy(op, ip, oend_w - op, ovtype); |
| ip += oend_w - op; |
| op = oend_w; |
| } |
| /* Handle the leftovers. */ |
| while (op < oend) *op++ = *ip++; |
| } |
| |
| /* ZSTD_execSequenceEnd(): |
| * This version handles cases that are near the end of the output buffer. It requires |
| * more careful checks to make sure there is no overflow. By separating out these hard |
| * and unlikely cases, we can speed up the common cases. |
| * |
| * NOTE: This function needs to be fast for a single long sequence, but doesn't need |
| * to be optimized for many small sequences, since those fall into ZSTD_execSequence(). |
| */ |
| FORCE_NOINLINE |
| size_t ZSTD_execSequenceEnd(BYTE* op, |
| BYTE* const oend, seq_t sequence, |
| const BYTE** litPtr, const BYTE* const litLimit, |
| const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd) |
| { |
| BYTE* const oLitEnd = op + sequence.litLength; |
| size_t const sequenceLength = sequence.litLength + sequence.matchLength; |
| const BYTE* const iLitEnd = *litPtr + sequence.litLength; |
| const BYTE* match = oLitEnd - sequence.offset; |
| BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; |
| |
| /* bounds checks : careful of address space overflow in 32-bit mode */ |
| RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer"); |
| RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer"); |
| assert(op < op + sequenceLength); |
| assert(oLitEnd < op + sequenceLength); |
| |
| /* copy literals */ |
| ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap); |
| op = oLitEnd; |
| *litPtr = iLitEnd; |
| |
| /* copy Match */ |
| if (sequence.offset > (size_t)(oLitEnd - prefixStart)) { |
| /* offset beyond prefix */ |
| RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, ""); |
| match = dictEnd - (prefixStart-match); |
| if (match + sequence.matchLength <= dictEnd) { |
| ZSTD_memmove(oLitEnd, match, sequence.matchLength); |
| return sequenceLength; |
| } |
| /* span extDict & currentPrefixSegment */ |
| { size_t const length1 = dictEnd - match; |
| ZSTD_memmove(oLitEnd, match, length1); |
| op = oLitEnd + length1; |
| sequence.matchLength -= length1; |
| match = prefixStart; |
| } } |
| ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst); |
| return sequenceLength; |
| } |
| |
| HINT_INLINE |
| size_t ZSTD_execSequence(BYTE* op, |
| BYTE* const oend, seq_t sequence, |
| const BYTE** litPtr, const BYTE* const litLimit, |
| const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd) |
| { |
| BYTE* const oLitEnd = op + sequence.litLength; |
| size_t const sequenceLength = sequence.litLength + sequence.matchLength; |
| BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */ |
| BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; /* risk : address space underflow on oend=NULL */ |
| const BYTE* const iLitEnd = *litPtr + sequence.litLength; |
| const BYTE* match = oLitEnd - sequence.offset; |
| |
| assert(op != NULL /* Precondition */); |
| assert(oend_w < oend /* No underflow */); |
| /* Handle edge cases in a slow path: |
| * - Read beyond end of literals |
| * - Match end is within WILDCOPY_OVERLIMIT of oend |
| * - 32-bit mode and the match length overflows |
| */ |
| if (UNLIKELY( |
| iLitEnd > litLimit || |
| oMatchEnd > oend_w || |
| (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH))) |
| return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd); |
| |
| /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */ |
| assert(op <= oLitEnd /* No overflow */); |
| assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */); |
| assert(oMatchEnd <= oend /* No underflow */); |
| assert(iLitEnd <= litLimit /* Literal length is in bounds */); |
| assert(oLitEnd <= oend_w /* Can wildcopy literals */); |
| assert(oMatchEnd <= oend_w /* Can wildcopy matches */); |
| |
| /* Copy Literals: |
| * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9. |
| * We likely don't need the full 32-byte wildcopy. |
| */ |
| assert(WILDCOPY_OVERLENGTH >= 16); |
| ZSTD_copy16(op, (*litPtr)); |
| if (UNLIKELY(sequence.litLength > 16)) { |
| ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap); |
| } |
| op = oLitEnd; |
| *litPtr = iLitEnd; /* update for next sequence */ |
| |
| /* Copy Match */ |
| if (sequence.offset > (size_t)(oLitEnd - prefixStart)) { |
| /* offset beyond prefix -> go into extDict */ |
| RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, ""); |
| match = dictEnd + (match - prefixStart); |
| if (match + sequence.matchLength <= dictEnd) { |
| ZSTD_memmove(oLitEnd, match, sequence.matchLength); |
| return sequenceLength; |
| } |
| /* span extDict & currentPrefixSegment */ |
| { size_t const length1 = dictEnd - match; |
| ZSTD_memmove(oLitEnd, match, length1); |
| op = oLitEnd + length1; |
| sequence.matchLength -= length1; |
| match = prefixStart; |
| } } |
| /* Match within prefix of 1 or more bytes */ |
| assert(op <= oMatchEnd); |
| assert(oMatchEnd <= oend_w); |
| assert(match >= prefixStart); |
| assert(sequence.matchLength >= 1); |
| |
| /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy |
| * without overlap checking. |
| */ |
| if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) { |
| /* We bet on a full wildcopy for matches, since we expect matches to be |
| * longer than literals (in general). In silesia, ~10% of matches are longer |
| * than 16 bytes. |
| */ |
| ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap); |
| return sequenceLength; |
| } |
| assert(sequence.offset < WILDCOPY_VECLEN); |
| |
| /* Copy 8 bytes and spread the offset to be >= 8. */ |
| ZSTD_overlapCopy8(&op, &match, sequence.offset); |
| |
| /* If the match length is > 8 bytes, then continue with the wildcopy. */ |
| if (sequence.matchLength > 8) { |
| assert(op < oMatchEnd); |
| ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst); |
| } |
| return sequenceLength; |
| } |
| |
| static void |
| ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt) |
| { |
| const void* ptr = dt; |
| const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr; |
| DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog); |
| DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits", |
| (U32)DStatePtr->state, DTableH->tableLog); |
| BIT_reloadDStream(bitD); |
| DStatePtr->table = dt + 1; |
| } |
| |
| FORCE_INLINE_TEMPLATE void |
| ZSTD_updateFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD) |
| { |
| ZSTD_seqSymbol const DInfo = DStatePtr->table[DStatePtr->state]; |
| U32 const nbBits = DInfo.nbBits; |
| size_t const lowBits = BIT_readBits(bitD, nbBits); |
| DStatePtr->state = DInfo.nextState + lowBits; |
| } |
| |
| FORCE_INLINE_TEMPLATE void |
| ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, ZSTD_seqSymbol const DInfo) |
| { |
| U32 const nbBits = DInfo.nbBits; |
| size_t const lowBits = BIT_readBits(bitD, nbBits); |
| DStatePtr->state = DInfo.nextState + lowBits; |
| } |
| |
| /* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum |
| * offset bits. But we can only read at most (STREAM_ACCUMULATOR_MIN_32 - 1) |
| * bits before reloading. This value is the maximum number of bytes we read |
| * after reloading when we are decoding long offsets. |
| */ |
| #define LONG_OFFSETS_MAX_EXTRA_BITS_32 \ |
| (ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32 \ |
| ? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32 \ |
| : 0) |
| |
| typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e; |
| typedef enum { ZSTD_p_noPrefetch=0, ZSTD_p_prefetch=1 } ZSTD_prefetch_e; |
| |
| FORCE_INLINE_TEMPLATE seq_t |
| ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets, const ZSTD_prefetch_e prefetch) |
| { |
| seq_t seq; |
| ZSTD_seqSymbol const llDInfo = seqState->stateLL.table[seqState->stateLL.state]; |
| ZSTD_seqSymbol const mlDInfo = seqState->stateML.table[seqState->stateML.state]; |
| ZSTD_seqSymbol const ofDInfo = seqState->stateOffb.table[seqState->stateOffb.state]; |
| U32 const llBase = llDInfo.baseValue; |
| U32 const mlBase = mlDInfo.baseValue; |
| U32 const ofBase = ofDInfo.baseValue; |
| BYTE const llBits = llDInfo.nbAdditionalBits; |
| BYTE const mlBits = mlDInfo.nbAdditionalBits; |
| BYTE const ofBits = ofDInfo.nbAdditionalBits; |
| BYTE const totalBits = llBits+mlBits+ofBits; |
| |
| /* sequence */ |
| { size_t offset; |
| if (ofBits > 1) { |
| ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1); |
| ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5); |
| assert(ofBits <= MaxOff); |
| if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) { |
| U32 const extraBits = ofBits - MIN(ofBits, 32 - seqState->DStream.bitsConsumed); |
| offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits); |
| BIT_reloadDStream(&seqState->DStream); |
| if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits); |
| assert(extraBits <= LONG_OFFSETS_MAX_EXTRA_BITS_32); /* to avoid another reload */ |
| } else { |
| offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */ |
| if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); |
| } |
| seqState->prevOffset[2] = seqState->prevOffset[1]; |
| seqState->prevOffset[1] = seqState->prevOffset[0]; |
| seqState->prevOffset[0] = offset; |
| } else { |
| U32 const ll0 = (llBase == 0); |
| if (LIKELY((ofBits == 0))) { |
| if (LIKELY(!ll0)) |
| offset = seqState->prevOffset[0]; |
| else { |
| offset = seqState->prevOffset[1]; |
| seqState->prevOffset[1] = seqState->prevOffset[0]; |
| seqState->prevOffset[0] = offset; |
| } |
| } else { |
| offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1); |
| { size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset]; |
| temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */ |
| if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1]; |
| seqState->prevOffset[1] = seqState->prevOffset[0]; |
| seqState->prevOffset[0] = offset = temp; |
| } } } |
| seq.offset = offset; |
| } |
| |
| seq.matchLength = mlBase; |
| if (mlBits > 0) |
| seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/); |
| |
| if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32)) |
| BIT_reloadDStream(&seqState->DStream); |
| if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog))) |
| BIT_reloadDStream(&seqState->DStream); |
| /* Ensure there are enough bits to read the rest of data in 64-bit mode. */ |
| ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64); |
| |
| seq.litLength = llBase; |
| if (llBits > 0) |
| seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/); |
| |
| if (MEM_32bits()) |
| BIT_reloadDStream(&seqState->DStream); |
| |
| DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u", |
| (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset); |
| |
| if (prefetch == ZSTD_p_prefetch) { |
| size_t const pos = seqState->pos + seq.litLength; |
| const BYTE* const matchBase = (seq.offset > pos) ? seqState->dictEnd : seqState->prefixStart; |
| seq.match = matchBase + pos - seq.offset; /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted. |
| * No consequence though : no memory access will occur, offset is only used for prefetching */ |
| seqState->pos = pos + seq.matchLength; |
| } |
| |
| /* ANS state update |
| * gcc-9.0.0 does 2.5% worse with ZSTD_updateFseStateWithDInfo(). |
| * clang-9.2.0 does 7% worse with ZSTD_updateFseState(). |
| * Naturally it seems like ZSTD_updateFseStateWithDInfo() should be the |
| * better option, so it is the default for other compilers. But, if you |
| * measure that it is worse, please put up a pull request. |
| */ |
| { |
| #if defined(__GNUC__) && !defined(__clang__) |
| const int kUseUpdateFseState = 1; |
| #else |
| const int kUseUpdateFseState = 0; |
| #endif |
| if (kUseUpdateFseState) { |
| ZSTD_updateFseState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */ |
| ZSTD_updateFseState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */ |
| if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */ |
| ZSTD_updateFseState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */ |
| } else { |
| ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llDInfo); /* <= 9 bits */ |
| ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlDInfo); /* <= 9 bits */ |
| if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */ |
| ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofDInfo); /* <= 8 bits */ |
| } |
| } |
| |
| return seq; |
| } |
| |
| #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| MEM_STATIC int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd) |
| { |
| size_t const windowSize = dctx->fParams.windowSize; |
| /* No dictionary used. */ |
| if (dctx->dictContentEndForFuzzing == NULL) return 0; |
| /* Dictionary is our prefix. */ |
| if (prefixStart == dctx->dictContentBeginForFuzzing) return 1; |
| /* Dictionary is not our ext-dict. */ |
| if (dctx->dictEnd != dctx->dictContentEndForFuzzing) return 0; |
| /* Dictionary is not within our window size. */ |
| if ((size_t)(oLitEnd - prefixStart) >= windowSize) return 0; |
| /* Dictionary is active. */ |
| return 1; |
| } |
| |
| MEM_STATIC void ZSTD_assertValidSequence( |
| ZSTD_DCtx const* dctx, |
| BYTE const* op, BYTE const* oend, |
| seq_t const seq, |
| BYTE const* prefixStart, BYTE const* virtualStart) |
| { |
| #if DEBUGLEVEL >= 1 |
| size_t const windowSize = dctx->fParams.windowSize; |
| size_t const sequenceSize = seq.litLength + seq.matchLength; |
| BYTE const* const oLitEnd = op + seq.litLength; |
| DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u", |
| (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset); |
| assert(op <= oend); |
| assert((size_t)(oend - op) >= sequenceSize); |
| assert(sequenceSize <= ZSTD_BLOCKSIZE_MAX); |
| if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) { |
| size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing); |
| /* Offset must be within the dictionary. */ |
| assert(seq.offset <= (size_t)(oLitEnd - virtualStart)); |
| assert(seq.offset <= windowSize + dictSize); |
| } else { |
| /* Offset must be within our window. */ |
| assert(seq.offset <= windowSize); |
| } |
| #else |
| (void)dctx, (void)op, (void)oend, (void)seq, (void)prefixStart, (void)virtualStart; |
| #endif |
| } |
| #endif |
| |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG |
| FORCE_INLINE_TEMPLATE size_t |
| DONT_VECTORIZE |
| ZSTD_decompressSequences_body( ZSTD_DCtx* dctx, |
| void* dst, size_t maxDstSize, |
| const void* seqStart, size_t seqSize, int nbSeq, |
| const ZSTD_longOffset_e isLongOffset, |
| const int frame) |
| { |
| const BYTE* ip = (const BYTE*)seqStart; |
| const BYTE* const iend = ip + seqSize; |
| BYTE* const ostart = (BYTE*)dst; |
| BYTE* const oend = ostart + maxDstSize; |
| BYTE* op = ostart; |
| const BYTE* litPtr = dctx->litPtr; |
| const BYTE* const litEnd = litPtr + dctx->litSize; |
| const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart); |
| const BYTE* const vBase = (const BYTE*) (dctx->virtualStart); |
| const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd); |
| DEBUGLOG(5, "ZSTD_decompressSequences_body"); |
| (void)frame; |
| |
| /* Regen sequences */ |
| if (nbSeq) { |
| seqState_t seqState; |
| size_t error = 0; |
| dctx->fseEntropy = 1; |
| { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; } |
| RETURN_ERROR_IF( |
| ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)), |
| corruption_detected, ""); |
| ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr); |
| ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr); |
| ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr); |
| assert(dst != NULL); |
| |
| ZSTD_STATIC_ASSERT( |
| BIT_DStream_unfinished < BIT_DStream_completed && |
| BIT_DStream_endOfBuffer < BIT_DStream_completed && |
| BIT_DStream_completed < BIT_DStream_overflow); |
| |
| #if defined(__GNUC__) && defined(__x86_64__) |
| /* Align the decompression loop to 32 + 16 bytes. |
| * |
| * zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression |
| * speed swings based on the alignment of the decompression loop. This |
| * performance swing is caused by parts of the decompression loop falling |
| * out of the DSB. The entire decompression loop should fit in the DSB, |
| * when it can't we get much worse performance. You can measure if you've |
| * hit the good case or the bad case with this perf command for some |
| * compressed file test.zst: |
| * |
| * perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \ |
| * -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst |
| * |
| * If you see most cycles served out of the MITE you've hit the bad case. |
| * If you see most cycles served out of the DSB you've hit the good case. |
| * If it is pretty even then you may be in an okay case. |
| * |
| * I've been able to reproduce this issue on the following CPUs: |
| * - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9 |
| * Use Instruments->Counters to get DSB/MITE cycles. |
| * I never got performance swings, but I was able to |
| * go from the good case of mostly DSB to half of the |
| * cycles served from MITE. |
| * - Coffeelake: Intel i9-9900k |
| * |
| * I haven't been able to reproduce the instability or DSB misses on any |
| * of the following CPUS: |
| * - Haswell |
| * - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH |
| * - Skylake |
| * |
| * If you are seeing performance stability this script can help test. |
| * It tests on 4 commits in zstd where I saw performance change. |
| * |
| * https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4 |
| */ |
| __asm__(".p2align 5"); |
| __asm__("nop"); |
| __asm__(".p2align 4"); |
| #endif |
| for ( ; ; ) { |
| seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_noPrefetch); |
| size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd); |
| #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) |
| assert(!ZSTD_isError(oneSeqSize)); |
| if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase); |
| #endif |
| DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize); |
| BIT_reloadDStream(&(seqState.DStream)); |
| op += oneSeqSize; |
| /* gcc and clang both don't like early returns in this loop. |
| * Instead break and check for an error at the end of the loop. |
| */ |
| if (UNLIKELY(ZSTD_isError(oneSeqSize))) { |
| error = oneSeqSize; |
| break; |
| } |
| if (UNLIKELY(!--nbSeq)) break; |
| } |
| |
| /* check if reached exact end */ |
| DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq); |
| if (ZSTD_isError(error)) return error; |
| RETURN_ERROR_IF(nbSeq, corruption_detected, ""); |
| RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, ""); |
| /* save reps for next block */ |
| { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); } |
| } |
| |
| /* last literal segment */ |
| { size_t const lastLLSize = litEnd - litPtr; |
| RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, ""); |
| if (op != NULL) { |
| ZSTD_memcpy(op, litPtr, lastLLSize); |
| op += lastLLSize; |
| } |
| } |
| |
| return op-ostart; |
| } |
| |
| static size_t |
| ZSTD_decompressSequences_default(ZSTD_DCtx* dctx, |
| void* dst, size_t maxDstSize, |
| const void* seqStart, size_t seqSize, int nbSeq, |
| const ZSTD_longOffset_e isLongOffset, |
| const int frame) |
| { |
| return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); |
| } |
| #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */ |
| |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT |
| FORCE_INLINE_TEMPLATE size_t |
| ZSTD_decompressSequencesLong_body( |
| ZSTD_DCtx* dctx, |
| void* dst, size_t maxDstSize, |
| const void* seqStart, size_t seqSize, int nbSeq, |
| const ZSTD_longOffset_e isLongOffset, |
| const int frame) |
| { |
| const BYTE* ip = (const BYTE*)seqStart; |
| const BYTE* const iend = ip + seqSize; |
| BYTE* const ostart = (BYTE*)dst; |
| BYTE* const oend = ostart + maxDstSize; |
| BYTE* op = ostart; |
| const BYTE* litPtr = dctx->litPtr; |
| const BYTE* const litEnd = litPtr + dctx->litSize; |
| const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart); |
| const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart); |
| const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd); |
| (void)frame; |
| |
| /* Regen sequences */ |
| if (nbSeq) { |
| #define STORED_SEQS 4 |
| #define STORED_SEQS_MASK (STORED_SEQS-1) |
| #define ADVANCED_SEQS 4 |
| seq_t sequences[STORED_SEQS]; |
| int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS); |
| seqState_t seqState; |
| int seqNb; |
| dctx->fseEntropy = 1; |
| { int i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; } |
| seqState.prefixStart = prefixStart; |
| seqState.pos = (size_t)(op-prefixStart); |
| seqState.dictEnd = dictEnd; |
| assert(dst != NULL); |
| assert(iend >= ip); |
| RETURN_ERROR_IF( |
| ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)), |
| corruption_detected, ""); |
| ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr); |
| ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr); |
| ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr); |
| |
| /* prepare in advance */ |
| for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && (seqNb<seqAdvance); seqNb++) { |
| sequences[seqNb] = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_prefetch); |
| PREFETCH_L1(sequences[seqNb].match); PREFETCH_L1(sequences[seqNb].match + sequences[seqNb].matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */ |
| } |
| RETURN_ERROR_IF(seqNb<seqAdvance, corruption_detected, ""); |
| |
| /* decode and decompress */ |
| for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (seqNb<nbSeq) ; seqNb++) { |
| seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_prefetch); |
| size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd); |
| #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) |
| assert(!ZSTD_isError(oneSeqSize)); |
| if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart); |
| #endif |
| if (ZSTD_isError(oneSeqSize)) return oneSeqSize; |
| PREFETCH_L1(sequence.match); PREFETCH_L1(sequence.match + sequence.matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */ |
| sequences[seqNb & STORED_SEQS_MASK] = sequence; |
| op += oneSeqSize; |
| } |
| RETURN_ERROR_IF(seqNb<nbSeq, corruption_detected, ""); |
| |
| /* finish queue */ |
| seqNb -= seqAdvance; |
| for ( ; seqNb<nbSeq ; seqNb++) { |
| size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[seqNb&STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd); |
| #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE) |
| assert(!ZSTD_isError(oneSeqSize)); |
| if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart); |
| #endif |
| if (ZSTD_isError(oneSeqSize)) return oneSeqSize; |
| op += oneSeqSize; |
| } |
| |
| /* save reps for next block */ |
| { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); } |
| } |
| |
| /* last literal segment */ |
| { size_t const lastLLSize = litEnd - litPtr; |
| RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, ""); |
| if (op != NULL) { |
| ZSTD_memcpy(op, litPtr, lastLLSize); |
| op += lastLLSize; |
| } |
| } |
| |
| return op-ostart; |
| } |
| |
| static size_t |
| ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx, |
| void* dst, size_t maxDstSize, |
| const void* seqStart, size_t seqSize, int nbSeq, |
| const ZSTD_longOffset_e isLongOffset, |
| const int frame) |
| { |
| return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); |
| } |
| #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */ |
| |
| |
| |
| #if DYNAMIC_BMI2 |
| |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG |
| static TARGET_ATTRIBUTE("bmi2") size_t |
| DONT_VECTORIZE |
| ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx, |
| void* dst, size_t maxDstSize, |
| const void* seqStart, size_t seqSize, int nbSeq, |
| const ZSTD_longOffset_e isLongOffset, |
| const int frame) |
| { |
| return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); |
| } |
| #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */ |
| |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT |
| static TARGET_ATTRIBUTE("bmi2") size_t |
| ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx, |
| void* dst, size_t maxDstSize, |
| const void* seqStart, size_t seqSize, int nbSeq, |
| const ZSTD_longOffset_e isLongOffset, |
| const int frame) |
| { |
| return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); |
| } |
| #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */ |
| |
| #endif /* DYNAMIC_BMI2 */ |
| |
| typedef size_t (*ZSTD_decompressSequences_t)( |
| ZSTD_DCtx* dctx, |
| void* dst, size_t maxDstSize, |
| const void* seqStart, size_t seqSize, int nbSeq, |
| const ZSTD_longOffset_e isLongOffset, |
| const int frame); |
| |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG |
| static size_t |
| ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, |
| const void* seqStart, size_t seqSize, int nbSeq, |
| const ZSTD_longOffset_e isLongOffset, |
| const int frame) |
| { |
| DEBUGLOG(5, "ZSTD_decompressSequences"); |
| #if DYNAMIC_BMI2 |
| if (dctx->bmi2) { |
| return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); |
| } |
| #endif |
| return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); |
| } |
| #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */ |
| |
| |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT |
| /* ZSTD_decompressSequencesLong() : |
| * decompression function triggered when a minimum share of offsets is considered "long", |
| * aka out of cache. |
| * note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance". |
| * This function will try to mitigate main memory latency through the use of prefetching */ |
| static size_t |
| ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx, |
| void* dst, size_t maxDstSize, |
| const void* seqStart, size_t seqSize, int nbSeq, |
| const ZSTD_longOffset_e isLongOffset, |
| const int frame) |
| { |
| DEBUGLOG(5, "ZSTD_decompressSequencesLong"); |
| #if DYNAMIC_BMI2 |
| if (dctx->bmi2) { |
| return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); |
| } |
| #endif |
| return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame); |
| } |
| #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */ |
| |
| |
| |
| #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ |
| !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) |
| /* ZSTD_getLongOffsetsShare() : |
| * condition : offTable must be valid |
| * @return : "share" of long offsets (arbitrarily defined as > (1<<23)) |
| * compared to maximum possible of (1<<OffFSELog) */ |
| static unsigned |
| ZSTD_getLongOffsetsShare(const ZSTD_seqSymbol* offTable) |
| { |
| const void* ptr = offTable; |
| U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog; |
| const ZSTD_seqSymbol* table = offTable + 1; |
| U32 const max = 1 << tableLog; |
| U32 u, total = 0; |
| DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog); |
| |
| assert(max <= (1 << OffFSELog)); /* max not too large */ |
| for (u=0; u<max; u++) { |
| if (table[u].nbAdditionalBits > 22) total += 1; |
| } |
| |
| assert(tableLog <= OffFSELog); |
| total <<= (OffFSELog - tableLog); /* scale to OffFSELog */ |
| |
| return total; |
| } |
| #endif |
| |
| size_t |
| ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, const int frame) |
| { /* blockType == blockCompressed */ |
| const BYTE* ip = (const BYTE*)src; |
| /* isLongOffset must be true if there are long offsets. |
| * Offsets are long if they are larger than 2^STREAM_ACCUMULATOR_MIN. |
| * We don't expect that to be the case in 64-bit mode. |
| * In block mode, window size is not known, so we have to be conservative. |
| * (note: but it could be evaluated from current-lowLimit) |
| */ |
| ZSTD_longOffset_e const isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (!frame || (dctx->fParams.windowSize > (1ULL << STREAM_ACCUMULATOR_MIN)))); |
| DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize); |
| |
| RETURN_ERROR_IF(srcSize >= ZSTD_BLOCKSIZE_MAX, srcSize_wrong, ""); |
| |
| /* Decode literals section */ |
| { size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize); |
| DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : %u", (U32)litCSize); |
| if (ZSTD_isError(litCSize)) return litCSize; |
| ip += litCSize; |
| srcSize -= litCSize; |
| } |
| |
| /* Build Decoding Tables */ |
| { |
| /* These macros control at build-time which decompressor implementation |
| * we use. If neither is defined, we do some inspection and dispatch at |
| * runtime. |
| */ |
| #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ |
| !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) |
| int usePrefetchDecoder = dctx->ddictIsCold; |
| #endif |
| int nbSeq; |
| size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize); |
| if (ZSTD_isError(seqHSize)) return seqHSize; |
| ip += seqHSize; |
| srcSize -= seqHSize; |
| |
| RETURN_ERROR_IF(dst == NULL && nbSeq > 0, dstSize_tooSmall, "NULL not handled"); |
| |
| #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ |
| !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) |
| if ( !usePrefetchDecoder |
| && (!frame || (dctx->fParams.windowSize > (1<<24))) |
| && (nbSeq>ADVANCED_SEQS) ) { /* could probably use a larger nbSeq limit */ |
| U32 const shareLongOffsets = ZSTD_getLongOffsetsShare(dctx->OFTptr); |
| U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */ |
| usePrefetchDecoder = (shareLongOffsets >= minShare); |
| } |
| #endif |
| |
| dctx->ddictIsCold = 0; |
| |
| #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ |
| !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) |
| if (usePrefetchDecoder) |
| #endif |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT |
| return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame); |
| #endif |
| |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG |
| /* else */ |
| return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame); |
| #endif |
| } |
| } |
| |
| |
| void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize) |
| { |
| if (dst != dctx->previousDstEnd && dstSize > 0) { /* not contiguous */ |
| dctx->dictEnd = dctx->previousDstEnd; |
| dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart)); |
| dctx->prefixStart = dst; |
| dctx->previousDstEnd = dst; |
| } |
| } |
| |
| |
| size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize) |
| { |
| size_t dSize; |
| ZSTD_checkContinuity(dctx, dst, dstCapacity); |
| dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0); |
| dctx->previousDstEnd = (char*)dst + dSize; |
| return dSize; |
| } |
| /**** ended inlining decompress/zstd_decompress_block.c ****/ |