| // rg 8/23/2024: I fixed some minor undefined behavior in this module (signed 32-bit left shifts). |
| |
| #ifndef TINYEXR_H_ |
| #define TINYEXR_H_ |
| /* |
| Copyright (c) 2014 - 2021, Syoyo Fujita and many contributors. |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are met: |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| * Neither the name of the Syoyo Fujita nor the |
| names of its contributors may be used to endorse or promote products |
| derived from this software without specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY |
| DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| // TinyEXR contains some OpenEXR code, which is licensed under ------------ |
| |
| /////////////////////////////////////////////////////////////////////////// |
| // |
| // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
| // Digital Ltd. LLC |
| // |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Industrial Light & Magic nor the names of |
| // its contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| /////////////////////////////////////////////////////////////////////////// |
| |
| // End of OpenEXR license ------------------------------------------------- |
| |
| |
| // |
| // |
| // Do this: |
| // #define TINYEXR_IMPLEMENTATION |
| // before you include this file in *one* C or C++ file to create the |
| // implementation. |
| // |
| // // i.e. it should look like this: |
| // #include ... |
| // #include ... |
| // #include ... |
| // #define TINYEXR_IMPLEMENTATION |
| // #include "tinyexr.h" |
| // |
| // |
| |
| #include <stddef.h> // for size_t |
| #include <stdint.h> // guess stdint.h is available(C99) |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \ |
| defined(__i386) || defined(__i486__) || defined(__i486) || \ |
| defined(i386) || defined(__ia64__) || defined(__x86_64__) |
| #define TINYEXR_X86_OR_X64_CPU 1 |
| #else |
| #define TINYEXR_X86_OR_X64_CPU 0 |
| #endif |
| |
| #if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || TINYEXR_X86_OR_X64_CPU |
| #define TINYEXR_LITTLE_ENDIAN 1 |
| #else |
| #define TINYEXR_LITTLE_ENDIAN 0 |
| #endif |
| |
| // Use miniz or not to decode ZIP format pixel. Linking with zlib |
| // required if this flag is 0 and TINYEXR_USE_STB_ZLIB is 0. |
| #ifndef TINYEXR_USE_MINIZ |
| #define TINYEXR_USE_MINIZ (1) |
| #ifndef MINIZ_HEADER_FILE_ONLY |
| #define MINIZ_HEADER_FILE_ONLY (1) |
| #endif |
| #endif |
| |
| // Use the ZIP implementation of stb_image.h and stb_image_write.h. |
| #ifndef TINYEXR_USE_STB_ZLIB |
| #define TINYEXR_USE_STB_ZLIB (0) |
| #endif |
| |
| // Use nanozlib. |
| #ifndef TINYEXR_USE_NANOZLIB |
| #define TINYEXR_USE_NANOZLIB (0) |
| #endif |
| |
| // Disable PIZ compression when applying cpplint. |
| #ifndef TINYEXR_USE_PIZ |
| #define TINYEXR_USE_PIZ (1) |
| #endif |
| |
| #ifndef TINYEXR_USE_ZFP |
| #define TINYEXR_USE_ZFP (0) // TinyEXR extension. |
| // http://computation.llnl.gov/projects/floating-point-compression |
| #endif |
| |
| #ifndef TINYEXR_USE_THREAD |
| #define TINYEXR_USE_THREAD (0) // No threaded loading. |
| // http://computation.llnl.gov/projects/floating-point-compression |
| #endif |
| |
| #ifndef TINYEXR_USE_OPENMP |
| #ifdef _OPENMP |
| #define TINYEXR_USE_OPENMP (1) |
| #else |
| #define TINYEXR_USE_OPENMP (0) |
| #endif |
| #endif |
| |
| #define TINYEXR_SUCCESS (0) |
| #define TINYEXR_ERROR_INVALID_MAGIC_NUMBER (-1) |
| #define TINYEXR_ERROR_INVALID_EXR_VERSION (-2) |
| #define TINYEXR_ERROR_INVALID_ARGUMENT (-3) |
| #define TINYEXR_ERROR_INVALID_DATA (-4) |
| #define TINYEXR_ERROR_INVALID_FILE (-5) |
| #define TINYEXR_ERROR_INVALID_PARAMETER (-6) |
| #define TINYEXR_ERROR_CANT_OPEN_FILE (-7) |
| #define TINYEXR_ERROR_UNSUPPORTED_FORMAT (-8) |
| #define TINYEXR_ERROR_INVALID_HEADER (-9) |
| #define TINYEXR_ERROR_UNSUPPORTED_FEATURE (-10) |
| #define TINYEXR_ERROR_CANT_WRITE_FILE (-11) |
| #define TINYEXR_ERROR_SERIALIZATION_FAILED (-12) |
| #define TINYEXR_ERROR_LAYER_NOT_FOUND (-13) |
| #define TINYEXR_ERROR_DATA_TOO_LARGE (-14) |
| |
| // @note { OpenEXR file format: http://www.openexr.com/openexrfilelayout.pdf } |
| |
| // pixel type: possible values are: UINT = 0 HALF = 1 FLOAT = 2 |
| #define TINYEXR_PIXELTYPE_UINT (0) |
| #define TINYEXR_PIXELTYPE_HALF (1) |
| #define TINYEXR_PIXELTYPE_FLOAT (2) |
| |
| #define TINYEXR_MAX_HEADER_ATTRIBUTES (1024) |
| #define TINYEXR_MAX_CUSTOM_ATTRIBUTES (128) |
| |
| #define TINYEXR_COMPRESSIONTYPE_NONE (0) |
| #define TINYEXR_COMPRESSIONTYPE_RLE (1) |
| #define TINYEXR_COMPRESSIONTYPE_ZIPS (2) |
| #define TINYEXR_COMPRESSIONTYPE_ZIP (3) |
| #define TINYEXR_COMPRESSIONTYPE_PIZ (4) |
| #define TINYEXR_COMPRESSIONTYPE_ZFP (128) // TinyEXR extension |
| |
| #define TINYEXR_ZFP_COMPRESSIONTYPE_RATE (0) |
| #define TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION (1) |
| #define TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY (2) |
| |
| #define TINYEXR_TILE_ONE_LEVEL (0) |
| #define TINYEXR_TILE_MIPMAP_LEVELS (1) |
| #define TINYEXR_TILE_RIPMAP_LEVELS (2) |
| |
| #define TINYEXR_TILE_ROUND_DOWN (0) |
| #define TINYEXR_TILE_ROUND_UP (1) |
| |
| typedef struct TEXRVersion { |
| int version; // this must be 2 |
| // tile format image; |
| // not zero for only a single-part "normal" tiled file (according to spec.) |
| int tiled; |
| int long_name; // long name attribute |
| // deep image(EXR 2.0); |
| // for a multi-part file, indicates that at least one part is of type deep* (according to spec.) |
| int non_image; |
| int multipart; // multi-part(EXR 2.0) |
| } EXRVersion; |
| |
| typedef struct TEXRAttribute { |
| char name[256]; // name and type are up to 255 chars long. |
| char type[256]; |
| unsigned char *value; // uint8_t* |
| int size; |
| int pad0; |
| } EXRAttribute; |
| |
| typedef struct TEXRChannelInfo { |
| char name[256]; // less than 255 bytes long |
| int pixel_type; |
| int x_sampling; |
| int y_sampling; |
| unsigned char p_linear; |
| unsigned char pad[3]; |
| } EXRChannelInfo; |
| |
| typedef struct TEXRTile { |
| int offset_x; |
| int offset_y; |
| int level_x; |
| int level_y; |
| |
| int width; // actual width in a tile. |
| int height; // actual height int a tile. |
| |
| unsigned char **images; // image[channels][pixels] |
| } EXRTile; |
| |
| typedef struct TEXRBox2i { |
| int min_x; |
| int min_y; |
| int max_x; |
| int max_y; |
| } EXRBox2i; |
| |
| typedef struct TEXRHeader { |
| float pixel_aspect_ratio; |
| int line_order; |
| EXRBox2i data_window; |
| EXRBox2i display_window; |
| float screen_window_center[2]; |
| float screen_window_width; |
| |
| int chunk_count; |
| |
| // Properties for tiled format(`tiledesc`). |
| int tiled; |
| int tile_size_x; |
| int tile_size_y; |
| int tile_level_mode; |
| int tile_rounding_mode; |
| |
| int long_name; |
| // for a single-part file, agree with the version field bit 11 |
| // for a multi-part file, it is consistent with the type of part |
| int non_image; |
| int multipart; |
| unsigned int header_len; |
| |
| // Custom attributes(exludes required attributes(e.g. `channels`, |
| // `compression`, etc) |
| int num_custom_attributes; |
| EXRAttribute *custom_attributes; // array of EXRAttribute. size = |
| // `num_custom_attributes`. |
| |
| EXRChannelInfo *channels; // [num_channels] |
| |
| int *pixel_types; // Loaded pixel type(TINYEXR_PIXELTYPE_*) of `images` for |
| // each channel. This is overwritten with `requested_pixel_types` when |
| // loading. |
| int num_channels; |
| |
| int compression_type; // compression type(TINYEXR_COMPRESSIONTYPE_*) |
| int *requested_pixel_types; // Filled initially by |
| // ParseEXRHeaderFrom(Meomory|File), then users |
| // can edit it(only valid for HALF pixel type |
| // channel) |
| // name attribute required for multipart files; |
| // must be unique and non empty (according to spec.); |
| // use EXRSetNameAttr for setting value; |
| // max 255 character allowed - excluding terminating zero |
| char name[256]; |
| } EXRHeader; |
| |
| typedef struct TEXRMultiPartHeader { |
| int num_headers; |
| EXRHeader *headers; |
| |
| } EXRMultiPartHeader; |
| |
| typedef struct TEXRImage { |
| EXRTile *tiles; // Tiled pixel data. The application must reconstruct image |
| // from tiles manually. NULL if scanline format. |
| struct TEXRImage* next_level; // NULL if scanline format or image is the last level. |
| int level_x; // x level index |
| int level_y; // y level index |
| |
| unsigned char **images; // image[channels][pixels]. NULL if tiled format. |
| |
| int width; |
| int height; |
| int num_channels; |
| |
| // Properties for tile format. |
| int num_tiles; |
| |
| } EXRImage; |
| |
| typedef struct TEXRMultiPartImage { |
| int num_images; |
| EXRImage *images; |
| |
| } EXRMultiPartImage; |
| |
| typedef struct TDeepImage { |
| const char **channel_names; |
| float ***image; // image[channels][scanlines][samples] |
| int **offset_table; // offset_table[scanline][offsets] |
| int num_channels; |
| int width; |
| int height; |
| int pad0; |
| } DeepImage; |
| |
| // @deprecated { For backward compatibility. Not recommended to use. } |
| // Loads single-frame OpenEXR image. Assume EXR image contains A(single channel |
| // alpha) or RGB(A) channels. |
| // Application must free image data as returned by `out_rgba` |
| // Result image format is: float x RGBA x width x hight |
| // Returns negative value and may set error string in `err` when there's an |
| // error |
| extern int LoadEXR(float **out_rgba, int *width, int *height, |
| const char *filename, const char **err); |
| |
| // Loads single-frame OpenEXR image by specifying layer name. Assume EXR image |
| // contains A(single channel alpha) or RGB(A) channels. Application must free |
| // image data as returned by `out_rgba` Result image format is: float x RGBA x |
| // width x hight Returns negative value and may set error string in `err` when |
| // there's an error When the specified layer name is not found in the EXR file, |
| // the function will return `TINYEXR_ERROR_LAYER_NOT_FOUND`. |
| extern int LoadEXRWithLayer(float **out_rgba, int *width, int *height, |
| const char *filename, const char *layer_name, |
| const char **err, int *num_chans = NULL); |
| |
| // |
| // Get layer infos from EXR file. |
| // |
| // @param[out] layer_names List of layer names. Application must free memory |
| // after using this. |
| // @param[out] num_layers The number of layers |
| // @param[out] err Error string(will be filled when the function returns error |
| // code). Free it using FreeEXRErrorMessage after using this value. |
| // |
| // @return TINYEXR_SUCCEES upon success. |
| // |
| extern int EXRLayers(const char *filename, const char **layer_names[], |
| int *num_layers, const char **err); |
| |
| // @deprecated |
| // Simple wrapper API for ParseEXRHeaderFromFile. |
| // checking given file is a EXR file(by just look up header) |
| // @return TINYEXR_SUCCEES for EXR image, TINYEXR_ERROR_INVALID_HEADER for |
| // others |
| extern int IsEXR(const char *filename); |
| |
| // Simple wrapper API for ParseEXRHeaderFromMemory. |
| // Check if given data is a EXR image(by just looking up a header section) |
| // @return TINYEXR_SUCCEES for EXR image, TINYEXR_ERROR_INVALID_HEADER for |
| // others |
| extern int IsEXRFromMemory(const unsigned char *memory, size_t size); |
| |
| // @deprecated |
| // Saves single-frame OpenEXR image to a buffer. Assume EXR image contains RGB(A) channels. |
| // components must be 1(Grayscale), 3(RGB) or 4(RGBA). |
| // Input image format is: `float x width x height`, or `float x RGB(A) x width x |
| // hight` |
| // Save image as fp16(HALF) format when `save_as_fp16` is positive non-zero |
| // value. |
| // Save image as fp32(FLOAT) format when `save_as_fp16` is 0. |
| // Use ZIP compression by default. |
| // `buffer` is the pointer to write EXR data. |
| // Memory for `buffer` is allocated internally in SaveEXRToMemory. |
| // Returns the data size of EXR file when the value is positive(up to 2GB EXR data). |
| // Returns negative value and may set error string in `err` when there's an |
| // error |
| extern int SaveEXRToMemory(const float *data, const int width, const int height, |
| const int components, const int save_as_fp16, |
| const unsigned char **buffer, const char **err); |
| |
| // @deprecated { Not recommended, but handy to use. } |
| // Saves single-frame OpenEXR image to a buffer. Assume EXR image contains RGB(A) channels. |
| // components must be 1(Grayscale), 3(RGB) or 4(RGBA). |
| // Input image format is: `float x width x height`, or `float x RGB(A) x width x |
| // hight` |
| // Save image as fp16(HALF) format when `save_as_fp16` is positive non-zero |
| // value. |
| // Save image as fp32(FLOAT) format when `save_as_fp16` is 0. |
| // Use ZIP compression by default. |
| // Returns TINYEXR_SUCCEES(0) when success. |
| // Returns negative value and may set error string in `err` when there's an |
| // error |
| extern int SaveEXR(const float *data, const int width, const int height, |
| const int components, const int save_as_fp16, |
| const char *filename, const char **err); |
| |
| // Returns the number of resolution levels of the image (including the base) |
| extern int EXRNumLevels(const EXRImage* exr_image); |
| |
| // Initialize EXRHeader struct |
| extern void InitEXRHeader(EXRHeader *exr_header); |
| |
| // Set name attribute of EXRHeader struct (it makes a copy) |
| extern void EXRSetNameAttr(EXRHeader *exr_header, const char* name); |
| |
| // Initialize EXRImage struct |
| extern void InitEXRImage(EXRImage *exr_image); |
| |
| // Frees internal data of EXRHeader struct |
| extern int FreeEXRHeader(EXRHeader *exr_header); |
| |
| // Frees internal data of EXRImage struct |
| extern int FreeEXRImage(EXRImage *exr_image); |
| |
| // Frees error message |
| extern void FreeEXRErrorMessage(const char *msg); |
| |
| // Parse EXR version header of a file. |
| extern int ParseEXRVersionFromFile(EXRVersion *version, const char *filename); |
| |
| // Parse EXR version header from memory-mapped EXR data. |
| extern int ParseEXRVersionFromMemory(EXRVersion *version, |
| const unsigned char *memory, size_t size); |
| |
| // Parse single-part OpenEXR header from a file and initialize `EXRHeader`. |
| // When there was an error message, Application must free `err` with |
| // FreeEXRErrorMessage() |
| extern int ParseEXRHeaderFromFile(EXRHeader *header, const EXRVersion *version, |
| const char *filename, const char **err); |
| |
| // Parse single-part OpenEXR header from a memory and initialize `EXRHeader`. |
| // When there was an error message, Application must free `err` with |
| // FreeEXRErrorMessage() |
| extern int ParseEXRHeaderFromMemory(EXRHeader *header, |
| const EXRVersion *version, |
| const unsigned char *memory, size_t size, |
| const char **err); |
| |
| // Parse multi-part OpenEXR headers from a file and initialize `EXRHeader*` |
| // array. |
| // When there was an error message, Application must free `err` with |
| // FreeEXRErrorMessage() |
| extern int ParseEXRMultipartHeaderFromFile(EXRHeader ***headers, |
| int *num_headers, |
| const EXRVersion *version, |
| const char *filename, |
| const char **err); |
| |
| // Parse multi-part OpenEXR headers from a memory and initialize `EXRHeader*` |
| // array |
| // When there was an error message, Application must free `err` with |
| // FreeEXRErrorMessage() |
| extern int ParseEXRMultipartHeaderFromMemory(EXRHeader ***headers, |
| int *num_headers, |
| const EXRVersion *version, |
| const unsigned char *memory, |
| size_t size, const char **err); |
| |
| // Loads single-part OpenEXR image from a file. |
| // Application must setup `ParseEXRHeaderFromFile` before calling this function. |
| // Application can free EXRImage using `FreeEXRImage` |
| // Returns negative value and may set error string in `err` when there's an |
| // error |
| // When there was an error message, Application must free `err` with |
| // FreeEXRErrorMessage() |
| extern int LoadEXRImageFromFile(EXRImage *image, const EXRHeader *header, |
| const char *filename, const char **err); |
| |
| // Loads single-part OpenEXR image from a memory. |
| // Application must setup `EXRHeader` with |
| // `ParseEXRHeaderFromMemory` before calling this function. |
| // Application can free EXRImage using `FreeEXRImage` |
| // Returns negative value and may set error string in `err` when there's an |
| // error |
| // When there was an error message, Application must free `err` with |
| // FreeEXRErrorMessage() |
| extern int LoadEXRImageFromMemory(EXRImage *image, const EXRHeader *header, |
| const unsigned char *memory, |
| const size_t size, const char **err); |
| |
| // Loads multi-part OpenEXR image from a file. |
| // Application must setup `ParseEXRMultipartHeaderFromFile` before calling this |
| // function. |
| // Application can free EXRImage using `FreeEXRImage` |
| // Returns negative value and may set error string in `err` when there's an |
| // error |
| // When there was an error message, Application must free `err` with |
| // FreeEXRErrorMessage() |
| extern int LoadEXRMultipartImageFromFile(EXRImage *images, |
| const EXRHeader **headers, |
| unsigned int num_parts, |
| const char *filename, |
| const char **err); |
| |
| // Loads multi-part OpenEXR image from a memory. |
| // Application must setup `EXRHeader*` array with |
| // `ParseEXRMultipartHeaderFromMemory` before calling this function. |
| // Application can free EXRImage using `FreeEXRImage` |
| // Returns negative value and may set error string in `err` when there's an |
| // error |
| // When there was an error message, Application must free `err` with |
| // FreeEXRErrorMessage() |
| extern int LoadEXRMultipartImageFromMemory(EXRImage *images, |
| const EXRHeader **headers, |
| unsigned int num_parts, |
| const unsigned char *memory, |
| const size_t size, const char **err); |
| |
| // Saves multi-channel, single-frame OpenEXR image to a file. |
| // Returns negative value and may set error string in `err` when there's an |
| // error |
| // When there was an error message, Application must free `err` with |
| // FreeEXRErrorMessage() |
| extern int SaveEXRImageToFile(const EXRImage *image, |
| const EXRHeader *exr_header, const char *filename, |
| const char **err); |
| |
| // Saves multi-channel, single-frame OpenEXR image to a memory. |
| // Image is compressed using EXRImage.compression value. |
| // Return the number of bytes if success. |
| // Return zero and will set error string in `err` when there's an |
| // error. |
| // When there was an error message, Application must free `err` with |
| // FreeEXRErrorMessage() |
| extern size_t SaveEXRImageToMemory(const EXRImage *image, |
| const EXRHeader *exr_header, |
| unsigned char **memory, const char **err); |
| |
| // Saves multi-channel, multi-frame OpenEXR image to a memory. |
| // Image is compressed using EXRImage.compression value. |
| // File global attributes (eg. display_window) must be set in the first header. |
| // Returns negative value and may set error string in `err` when there's an |
| // error |
| // When there was an error message, Application must free `err` with |
| // FreeEXRErrorMessage() |
| extern int SaveEXRMultipartImageToFile(const EXRImage *images, |
| const EXRHeader **exr_headers, |
| unsigned int num_parts, |
| const char *filename, const char **err); |
| |
| // Saves multi-channel, multi-frame OpenEXR image to a memory. |
| // Image is compressed using EXRImage.compression value. |
| // File global attributes (eg. display_window) must be set in the first header. |
| // Return the number of bytes if success. |
| // Return zero and will set error string in `err` when there's an |
| // error. |
| // When there was an error message, Application must free `err` with |
| // FreeEXRErrorMessage() |
| extern size_t SaveEXRMultipartImageToMemory(const EXRImage *images, |
| const EXRHeader **exr_headers, |
| unsigned int num_parts, |
| unsigned char **memory, const char **err); |
| // Loads single-frame OpenEXR deep image. |
| // Application must free memory of variables in DeepImage(image, offset_table) |
| // Returns negative value and may set error string in `err` when there's an |
| // error |
| // When there was an error message, Application must free `err` with |
| // FreeEXRErrorMessage() |
| extern int LoadDeepEXR(DeepImage *out_image, const char *filename, |
| const char **err); |
| |
| // NOT YET IMPLEMENTED: |
| // Saves single-frame OpenEXR deep image. |
| // Returns negative value and may set error string in `err` when there's an |
| // error |
| // extern int SaveDeepEXR(const DeepImage *in_image, const char *filename, |
| // const char **err); |
| |
| // NOT YET IMPLEMENTED: |
| // Loads multi-part OpenEXR deep image. |
| // Application must free memory of variables in DeepImage(image, offset_table) |
| // extern int LoadMultiPartDeepEXR(DeepImage **out_image, int num_parts, const |
| // char *filename, |
| // const char **err); |
| |
| // For emscripten. |
| // Loads single-frame OpenEXR image from memory. Assume EXR image contains |
| // RGB(A) channels. |
| // Returns negative value and may set error string in `err` when there's an |
| // error |
| // When there was an error message, Application must free `err` with |
| // FreeEXRErrorMessage() |
| extern int LoadEXRFromMemory(float **out_rgba, int *width, int *height, |
| const unsigned char *memory, size_t size, |
| const char **err); |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #endif // TINYEXR_H_ |
| |
| #ifdef TINYEXR_IMPLEMENTATION |
| #ifndef TINYEXR_IMPLEMENTATION_DEFINED |
| #define TINYEXR_IMPLEMENTATION_DEFINED |
| |
| #ifdef _WIN32 |
| |
| #ifndef WIN32_LEAN_AND_MEAN |
| #define WIN32_LEAN_AND_MEAN |
| #endif |
| #ifndef NOMINMAX |
| #define NOMINMAX |
| #endif |
| #include <windows.h> // for UTF-8 and memory-mapping |
| |
| #if !defined(WINAPI_FAMILY) || (WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP) |
| #define TINYEXR_USE_WIN32_MMAP (1) |
| #endif |
| |
| #elif defined(__linux__) || defined(__unix__) |
| #include <fcntl.h> // for open() |
| #include <sys/mman.h> // for memory-mapping |
| #include <sys/stat.h> // for stat |
| #include <unistd.h> // for close() |
| #define TINYEXR_USE_POSIX_MMAP (1) |
| #endif |
| |
| #include <algorithm> |
| #include <cstdio> |
| #include <cstdlib> |
| #include <cstring> |
| #include <sstream> |
| |
| //#include <iostream> // debug |
| |
| #include <limits> |
| #include <string> |
| #include <vector> |
| #include <set> |
| |
| // https://stackoverflow.com/questions/5047971/how-do-i-check-for-c11-support |
| #if __cplusplus > 199711L || (defined(_MSC_VER) && _MSC_VER >= 1900) |
| #define TINYEXR_HAS_CXX11 (1) |
| // C++11 |
| #include <cstdint> |
| |
| #if TINYEXR_USE_THREAD |
| #include <atomic> |
| #include <thread> |
| #endif |
| |
| #else // __cplusplus > 199711L |
| #define TINYEXR_HAS_CXX11 (0) |
| #endif // __cplusplus > 199711L |
| |
| #if TINYEXR_USE_OPENMP |
| #include <omp.h> |
| #endif |
| |
| #if defined(TINYEXR_USE_MINIZ) && (TINYEXR_USE_MINIZ==1) |
| #include "../basisu_miniz.h" |
| #else |
| // Issue #46. Please include your own zlib-compatible API header before |
| // including `tinyexr.h` |
| //#include "zlib.h" |
| #endif |
| |
| #if defined(TINYEXR_USE_NANOZLIB) && (TINYEXR_USE_NANOZLIB==1) |
| #define NANOZLIB_IMPLEMENTATION |
| #include "nanozlib.h" |
| #endif |
| |
| #if TINYEXR_USE_STB_ZLIB |
| // Since we don't know where a project has stb_image.h and stb_image_write.h |
| // and whether they are in the include path, we don't include them here, and |
| // instead declare the two relevant functions manually. |
| // from stb_image.h: |
| extern "C" int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); |
| // from stb_image_write.h: |
| extern "C" unsigned char *stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality); |
| #endif |
| |
| |
| #if TINYEXR_USE_ZFP |
| |
| #ifdef __clang__ |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Weverything" |
| #endif |
| |
| #include "zfp.h" |
| |
| #ifdef __clang__ |
| #pragma clang diagnostic pop |
| #endif |
| |
| #endif |
| |
| // cond: conditional expression |
| // msg: std::string |
| // err: std::string* |
| #define TINYEXR_CHECK_AND_RETURN_MSG(cond, msg, err) do { \ |
| if (!(cond)) { \ |
| if (!err) { \ |
| std::ostringstream ss_e; \ |
| ss_e << __func__ << "():" << __LINE__ << msg << "\n"; \ |
| (*err) += ss_e.str(); \ |
| } \ |
| return false;\ |
| } \ |
| } while(0) |
| |
| // no error message. |
| #define TINYEXR_CHECK_AND_RETURN_C(cond, retcode) do { \ |
| if (!(cond)) { \ |
| return retcode; \ |
| } \ |
| } while(0) |
| |
| namespace tinyexr { |
| |
| #if __cplusplus > 199711L |
| // C++11 |
| typedef uint64_t tinyexr_uint64; |
| typedef int64_t tinyexr_int64; |
| #else |
| // Although `long long` is not a standard type pre C++11, assume it is defined |
| // as a compiler's extension. |
| #ifdef __clang__ |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wc++11-long-long" |
| #endif |
| typedef unsigned long long tinyexr_uint64; |
| typedef long long tinyexr_int64; |
| #ifdef __clang__ |
| #pragma clang diagnostic pop |
| #endif |
| #endif |
| |
| // static bool IsBigEndian(void) { |
| // union { |
| // unsigned int i; |
| // char c[4]; |
| // } bint = {0x01020304}; |
| // |
| // return bint.c[0] == 1; |
| //} |
| |
| static void SetErrorMessage(const std::string &msg, const char **err) { |
| if (err) { |
| #ifdef _WIN32 |
| (*err) = _strdup(msg.c_str()); |
| #else |
| (*err) = strdup(msg.c_str()); |
| #endif |
| } |
| } |
| |
| #if 0 |
| static void SetWarningMessage(const std::string &msg, const char **warn) { |
| if (warn) { |
| #ifdef _WIN32 |
| (*warn) = _strdup(msg.c_str()); |
| #else |
| (*warn) = strdup(msg.c_str()); |
| #endif |
| } |
| } |
| #endif |
| |
| static const int kEXRVersionSize = 8; |
| |
| static void cpy2(unsigned short *dst_val, const unsigned short *src_val) { |
| unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val); |
| const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val); |
| |
| dst[0] = src[0]; |
| dst[1] = src[1]; |
| } |
| |
| static void swap2(unsigned short *val) { |
| #if TINYEXR_LITTLE_ENDIAN |
| (void)val; |
| #else |
| unsigned short tmp = *val; |
| unsigned char *dst = reinterpret_cast<unsigned char *>(val); |
| unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); |
| |
| dst[0] = src[1]; |
| dst[1] = src[0]; |
| #endif |
| } |
| |
| #ifdef __clang__ |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wunused-function" |
| #endif |
| |
| #ifdef __GNUC__ |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wunused-function" |
| #endif |
| static void cpy4(int *dst_val, const int *src_val) { |
| unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val); |
| const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val); |
| |
| dst[0] = src[0]; |
| dst[1] = src[1]; |
| dst[2] = src[2]; |
| dst[3] = src[3]; |
| } |
| |
| static void cpy4(unsigned int *dst_val, const unsigned int *src_val) { |
| unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val); |
| const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val); |
| |
| dst[0] = src[0]; |
| dst[1] = src[1]; |
| dst[2] = src[2]; |
| dst[3] = src[3]; |
| } |
| |
| static void cpy4(float *dst_val, const float *src_val) { |
| unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val); |
| const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val); |
| |
| dst[0] = src[0]; |
| dst[1] = src[1]; |
| dst[2] = src[2]; |
| dst[3] = src[3]; |
| } |
| #ifdef __clang__ |
| #pragma clang diagnostic pop |
| #endif |
| |
| #ifdef __GNUC__ |
| #pragma GCC diagnostic pop |
| #endif |
| |
| static void swap4(unsigned int *val) { |
| #if TINYEXR_LITTLE_ENDIAN |
| (void)val; |
| #else |
| unsigned int tmp = *val; |
| unsigned char *dst = reinterpret_cast<unsigned char *>(val); |
| unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); |
| |
| dst[0] = src[3]; |
| dst[1] = src[2]; |
| dst[2] = src[1]; |
| dst[3] = src[0]; |
| #endif |
| } |
| |
| static void swap4(int *val) { |
| #if TINYEXR_LITTLE_ENDIAN |
| (void)val; |
| #else |
| int tmp = *val; |
| unsigned char *dst = reinterpret_cast<unsigned char *>(val); |
| unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); |
| |
| dst[0] = src[3]; |
| dst[1] = src[2]; |
| dst[2] = src[1]; |
| dst[3] = src[0]; |
| #endif |
| } |
| |
| static void swap4(float *val) { |
| #if TINYEXR_LITTLE_ENDIAN |
| (void)val; |
| #else |
| float tmp = *val; |
| unsigned char *dst = reinterpret_cast<unsigned char *>(val); |
| unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); |
| |
| dst[0] = src[3]; |
| dst[1] = src[2]; |
| dst[2] = src[1]; |
| dst[3] = src[0]; |
| #endif |
| } |
| |
| #if 0 |
| static void cpy8(tinyexr::tinyexr_uint64 *dst_val, const tinyexr::tinyexr_uint64 *src_val) { |
| unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val); |
| const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val); |
| |
| dst[0] = src[0]; |
| dst[1] = src[1]; |
| dst[2] = src[2]; |
| dst[3] = src[3]; |
| dst[4] = src[4]; |
| dst[5] = src[5]; |
| dst[6] = src[6]; |
| dst[7] = src[7]; |
| } |
| #endif |
| |
| static void swap8(tinyexr::tinyexr_uint64 *val) { |
| #if TINYEXR_LITTLE_ENDIAN |
| (void)val; |
| #else |
| tinyexr::tinyexr_uint64 tmp = (*val); |
| unsigned char *dst = reinterpret_cast<unsigned char *>(val); |
| unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); |
| |
| dst[0] = src[7]; |
| dst[1] = src[6]; |
| dst[2] = src[5]; |
| dst[3] = src[4]; |
| dst[4] = src[3]; |
| dst[5] = src[2]; |
| dst[6] = src[1]; |
| dst[7] = src[0]; |
| #endif |
| } |
| |
| // https://gist.github.com/rygorous/2156668 |
| union FP32 { |
| unsigned int u; |
| float f; |
| struct { |
| #if TINYEXR_LITTLE_ENDIAN |
| unsigned int Mantissa : 23; |
| unsigned int Exponent : 8; |
| unsigned int Sign : 1; |
| #else |
| unsigned int Sign : 1; |
| unsigned int Exponent : 8; |
| unsigned int Mantissa : 23; |
| #endif |
| } s; |
| }; |
| |
| #ifdef __clang__ |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wpadded" |
| #endif |
| |
| union FP16 { |
| unsigned short u; |
| struct { |
| #if TINYEXR_LITTLE_ENDIAN |
| unsigned int Mantissa : 10; |
| unsigned int Exponent : 5; |
| unsigned int Sign : 1; |
| #else |
| unsigned int Sign : 1; |
| unsigned int Exponent : 5; |
| unsigned int Mantissa : 10; |
| #endif |
| } s; |
| }; |
| |
| #ifdef __clang__ |
| #pragma clang diagnostic pop |
| #endif |
| |
| static FP32 half_to_float(FP16 h) { |
| static const FP32 magic = {113 << 23}; |
| static const unsigned int shifted_exp = 0x7c00 |
| << 13; // exponent mask after shift |
| FP32 o; |
| |
| o.u = (h.u & 0x7fffU) << 13U; // exponent/mantissa bits |
| unsigned int exp_ = shifted_exp & o.u; // just the exponent |
| o.u += (127 - 15) << 23; // exponent adjust |
| |
| // handle exponent special cases |
| if (exp_ == shifted_exp) // Inf/NaN? |
| o.u += (128 - 16) << 23; // extra exp adjust |
| else if (exp_ == 0) // Zero/Denormal? |
| { |
| o.u += 1 << 23; // extra exp adjust |
| o.f -= magic.f; // renormalize |
| } |
| |
| o.u |= (h.u & 0x8000U) << 16U; // sign bit |
| return o; |
| } |
| |
| static FP16 float_to_half_full(FP32 f) { |
| FP16 o = {0}; |
| |
| // Based on ISPC reference code (with minor modifications) |
| if (f.s.Exponent == 0) // Signed zero/denormal (which will underflow) |
| o.s.Exponent = 0; |
| else if (f.s.Exponent == 255) // Inf or NaN (all exponent bits set) |
| { |
| o.s.Exponent = 31; |
| o.s.Mantissa = f.s.Mantissa ? 0x200 : 0; // NaN->qNaN and Inf->Inf |
| } else // Normalized number |
| { |
| // Exponent unbias the single, then bias the halfp |
| int newexp = f.s.Exponent - 127 + 15; |
| if (newexp >= 31) // Overflow, return signed infinity |
| o.s.Exponent = 31; |
| else if (newexp <= 0) // Underflow |
| { |
| if ((14 - newexp) <= 24) // Mantissa might be non-zero |
| { |
| unsigned int mant = f.s.Mantissa | 0x800000; // Hidden 1 bit |
| o.s.Mantissa = mant >> (14 - newexp); |
| if ((mant >> (13 - newexp)) & 1) // Check for rounding |
| o.u++; // Round, might overflow into exp bit, but this is OK |
| } |
| } else { |
| o.s.Exponent = static_cast<unsigned int>(newexp); |
| o.s.Mantissa = f.s.Mantissa >> 13; |
| if (f.s.Mantissa & 0x1000) // Check for rounding |
| o.u++; // Round, might overflow to inf, this is OK |
| } |
| } |
| |
| o.s.Sign = f.s.Sign; |
| return o; |
| } |
| |
| // NOTE: From OpenEXR code |
| // #define IMF_INCREASING_Y 0 |
| // #define IMF_DECREASING_Y 1 |
| // #define IMF_RAMDOM_Y 2 |
| // |
| // #define IMF_NO_COMPRESSION 0 |
| // #define IMF_RLE_COMPRESSION 1 |
| // #define IMF_ZIPS_COMPRESSION 2 |
| // #define IMF_ZIP_COMPRESSION 3 |
| // #define IMF_PIZ_COMPRESSION 4 |
| // #define IMF_PXR24_COMPRESSION 5 |
| // #define IMF_B44_COMPRESSION 6 |
| // #define IMF_B44A_COMPRESSION 7 |
| |
| #ifdef __clang__ |
| #pragma clang diagnostic push |
| |
| #if __has_warning("-Wzero-as-null-pointer-constant") |
| #pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant" |
| #endif |
| |
| #endif |
| |
| static const char *ReadString(std::string *s, const char *ptr, size_t len) { |
| // Read untile NULL(\0). |
| const char *p = ptr; |
| const char *q = ptr; |
| while ((size_t(q - ptr) < len) && (*q) != 0) { |
| q++; |
| } |
| |
| if (size_t(q - ptr) >= len) { |
| (*s).clear(); |
| return NULL; |
| } |
| |
| (*s) = std::string(p, q); |
| |
| return q + 1; // skip '\0' |
| } |
| |
| static bool ReadAttribute(std::string *name, std::string *type, |
| std::vector<unsigned char> *data, size_t *marker_size, |
| const char *marker, size_t size) { |
| size_t name_len = strnlen(marker, size); |
| if (name_len == size) { |
| // String does not have a terminating character. |
| return false; |
| } |
| *name = std::string(marker, name_len); |
| |
| marker += name_len + 1; |
| size -= name_len + 1; |
| |
| size_t type_len = strnlen(marker, size); |
| if (type_len == size) { |
| return false; |
| } |
| *type = std::string(marker, type_len); |
| |
| marker += type_len + 1; |
| size -= type_len + 1; |
| |
| if (size < sizeof(uint32_t)) { |
| return false; |
| } |
| |
| uint32_t data_len; |
| memcpy(&data_len, marker, sizeof(uint32_t)); |
| tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len)); |
| |
| if (data_len == 0) { |
| if ((*type).compare("string") == 0) { |
| // Accept empty string attribute. |
| |
| marker += sizeof(uint32_t); |
| size -= sizeof(uint32_t); |
| |
| *marker_size = name_len + 1 + type_len + 1 + sizeof(uint32_t); |
| |
| data->resize(1); |
| (*data)[0] = '\0'; |
| |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| marker += sizeof(uint32_t); |
| size -= sizeof(uint32_t); |
| |
| if (size < data_len) { |
| return false; |
| } |
| |
| data->resize(static_cast<size_t>(data_len)); |
| memcpy(&data->at(0), marker, static_cast<size_t>(data_len)); |
| |
| *marker_size = name_len + 1 + type_len + 1 + sizeof(uint32_t) + data_len; |
| return true; |
| } |
| |
| static void WriteAttributeToMemory(std::vector<unsigned char> *out, |
| const char *name, const char *type, |
| const unsigned char *data, int len) { |
| out->insert(out->end(), name, name + strlen(name) + 1); |
| out->insert(out->end(), type, type + strlen(type) + 1); |
| |
| int outLen = len; |
| tinyexr::swap4(&outLen); |
| out->insert(out->end(), reinterpret_cast<unsigned char *>(&outLen), |
| reinterpret_cast<unsigned char *>(&outLen) + sizeof(int)); |
| out->insert(out->end(), data, data + len); |
| } |
| |
| typedef struct TChannelInfo { |
| std::string name; // less than 255 bytes long |
| int pixel_type; |
| int requested_pixel_type; |
| int x_sampling; |
| int y_sampling; |
| unsigned char p_linear; |
| unsigned char pad[3]; |
| } ChannelInfo; |
| |
| typedef struct { |
| int min_x; |
| int min_y; |
| int max_x; |
| int max_y; |
| } Box2iInfo; |
| |
| struct HeaderInfo { |
| std::vector<tinyexr::ChannelInfo> channels; |
| std::vector<EXRAttribute> attributes; |
| |
| Box2iInfo data_window; |
| int line_order; |
| Box2iInfo display_window; |
| float screen_window_center[2]; |
| float screen_window_width; |
| float pixel_aspect_ratio; |
| |
| int chunk_count; |
| |
| // Tiled format |
| int tiled; // Non-zero if the part is tiled. |
| int tile_size_x; |
| int tile_size_y; |
| int tile_level_mode; |
| int tile_rounding_mode; |
| |
| unsigned int header_len; |
| |
| int compression_type; |
| |
| // required for multi-part or non-image files |
| std::string name; |
| // required for multi-part or non-image files |
| std::string type; |
| |
| void clear() { |
| channels.clear(); |
| attributes.clear(); |
| |
| data_window.min_x = 0; |
| data_window.min_y = 0; |
| data_window.max_x = 0; |
| data_window.max_y = 0; |
| line_order = 0; |
| display_window.min_x = 0; |
| display_window.min_y = 0; |
| display_window.max_x = 0; |
| display_window.max_y = 0; |
| screen_window_center[0] = 0.0f; |
| screen_window_center[1] = 0.0f; |
| screen_window_width = 0.0f; |
| pixel_aspect_ratio = 0.0f; |
| |
| chunk_count = 0; |
| |
| // Tiled format |
| tiled = 0; |
| tile_size_x = 0; |
| tile_size_y = 0; |
| tile_level_mode = 0; |
| tile_rounding_mode = 0; |
| |
| header_len = 0; |
| compression_type = 0; |
| |
| name.clear(); |
| type.clear(); |
| } |
| }; |
| |
| static bool ReadChannelInfo(std::vector<ChannelInfo> &channels, |
| const std::vector<unsigned char> &data) { |
| const char *p = reinterpret_cast<const char *>(&data.at(0)); |
| |
| for (;;) { |
| if ((*p) == 0) { |
| break; |
| } |
| ChannelInfo info; |
| info.requested_pixel_type = 0; |
| |
| tinyexr_int64 data_len = static_cast<tinyexr_int64>(data.size()) - |
| (p - reinterpret_cast<const char *>(data.data())); |
| if (data_len < 0) { |
| return false; |
| } |
| |
| p = ReadString(&info.name, p, size_t(data_len)); |
| if ((p == NULL) && (info.name.empty())) { |
| // Buffer overrun. Issue #51. |
| return false; |
| } |
| |
| const unsigned char *data_end = |
| reinterpret_cast<const unsigned char *>(p) + 16; |
| if (data_end >= (data.data() + data.size())) { |
| return false; |
| } |
| |
| memcpy(&info.pixel_type, p, sizeof(int)); |
| p += 4; |
| info.p_linear = static_cast<unsigned char>(p[0]); // uchar |
| p += 1 + 3; // reserved: uchar[3] |
| memcpy(&info.x_sampling, p, sizeof(int)); // int |
| p += 4; |
| memcpy(&info.y_sampling, p, sizeof(int)); // int |
| p += 4; |
| |
| tinyexr::swap4(&info.pixel_type); |
| tinyexr::swap4(&info.x_sampling); |
| tinyexr::swap4(&info.y_sampling); |
| |
| channels.push_back(info); |
| } |
| |
| return true; |
| } |
| |
| static void WriteChannelInfo(std::vector<unsigned char> &data, |
| const std::vector<ChannelInfo> &channels) { |
| size_t sz = 0; |
| |
| // Calculate total size. |
| for (size_t c = 0; c < channels.size(); c++) { |
| sz += channels[c].name.length() + 1; // +1 for \0 |
| sz += 16; // 4 * int |
| } |
| data.resize(sz + 1); |
| |
| unsigned char *p = &data.at(0); |
| |
| for (size_t c = 0; c < channels.size(); c++) { |
| memcpy(p, channels[c].name.c_str(), channels[c].name.length()); |
| p += channels[c].name.length(); |
| (*p) = '\0'; |
| p++; |
| |
| int pixel_type = channels[c].requested_pixel_type; |
| int x_sampling = channels[c].x_sampling; |
| int y_sampling = channels[c].y_sampling; |
| tinyexr::swap4(&pixel_type); |
| tinyexr::swap4(&x_sampling); |
| tinyexr::swap4(&y_sampling); |
| |
| memcpy(p, &pixel_type, sizeof(int)); |
| p += sizeof(int); |
| |
| (*p) = channels[c].p_linear; |
| p += 4; |
| |
| memcpy(p, &x_sampling, sizeof(int)); |
| p += sizeof(int); |
| |
| memcpy(p, &y_sampling, sizeof(int)); |
| p += sizeof(int); |
| } |
| |
| (*p) = '\0'; |
| } |
| |
| static bool CompressZip(unsigned char *dst, |
| tinyexr::tinyexr_uint64 &compressedSize, |
| const unsigned char *src, unsigned long src_size) { |
| std::vector<unsigned char> tmpBuf(src_size); |
| |
| // |
| // Apply EXR-specific? postprocess. Grabbed from OpenEXR's |
| // ImfZipCompressor.cpp |
| // |
| |
| // |
| // Reorder the pixel data. |
| // |
| |
| const char *srcPtr = reinterpret_cast<const char *>(src); |
| |
| { |
| char *t1 = reinterpret_cast<char *>(&tmpBuf.at(0)); |
| char *t2 = reinterpret_cast<char *>(&tmpBuf.at(0)) + (src_size + 1) / 2; |
| const char *stop = srcPtr + src_size; |
| |
| for (;;) { |
| if (srcPtr < stop) |
| *(t1++) = *(srcPtr++); |
| else |
| break; |
| |
| if (srcPtr < stop) |
| *(t2++) = *(srcPtr++); |
| else |
| break; |
| } |
| } |
| |
| // |
| // Predictor. |
| // |
| |
| { |
| unsigned char *t = &tmpBuf.at(0) + 1; |
| unsigned char *stop = &tmpBuf.at(0) + src_size; |
| int p = t[-1]; |
| |
| while (t < stop) { |
| int d = int(t[0]) - p + (128 + 256); |
| p = t[0]; |
| t[0] = static_cast<unsigned char>(d); |
| ++t; |
| } |
| } |
| |
| #if defined(TINYEXR_USE_MINIZ) && (TINYEXR_USE_MINIZ==1) |
| // |
| // Compress the data using miniz |
| // |
| |
| buminiz::mz_ulong outSize = buminiz::mz_compressBound(src_size); |
| int ret = buminiz::mz_compress( |
| dst, &outSize, static_cast<const unsigned char *>(&tmpBuf.at(0)), |
| src_size); |
| if (ret != buminiz::MZ_OK) { |
| return false; |
| } |
| |
| compressedSize = outSize; |
| #elif defined(TINYEXR_USE_STB_ZLIB) && (TINYEXR_USE_STB_ZLIB==1) |
| int outSize; |
| unsigned char* ret = stbi_zlib_compress(const_cast<unsigned char*>(&tmpBuf.at(0)), src_size, &outSize, 8); |
| if (!ret) { |
| return false; |
| } |
| memcpy(dst, ret, outSize); |
| free(ret); |
| |
| compressedSize = outSize; |
| #elif defined(TINYEXR_USE_NANOZLIB) && (TINYEXR_USE_NANOZLIB==1) |
| uint64_t dstSize = nanoz_compressBound(static_cast<uint64_t>(src_size)); |
| int outSize{0}; |
| unsigned char *ret = nanoz_compress(&tmpBuf.at(0), src_size, &outSize, /* quality */8); |
| if (!ret) { |
| return false; |
| } |
| |
| memcpy(dst, ret, outSize); |
| free(ret); |
| |
| compressedSize = outSize; |
| #else |
| uLong outSize = compressBound(static_cast<uLong>(src_size)); |
| int ret = compress(dst, &outSize, static_cast<const Bytef *>(&tmpBuf.at(0)), |
| src_size); |
| if (ret != Z_OK) { |
| return false; |
| } |
| |
| compressedSize = outSize; |
| #endif |
| |
| // Use uncompressed data when compressed data is larger than uncompressed. |
| // (Issue 40) |
| if (compressedSize >= src_size) { |
| compressedSize = src_size; |
| memcpy(dst, src, src_size); |
| } |
| |
| return true; |
| } |
| |
| static bool DecompressZip(unsigned char *dst, |
| unsigned long *uncompressed_size /* inout */, |
| const unsigned char *src, unsigned long src_size) { |
| if ((*uncompressed_size) == src_size) { |
| // Data is not compressed(Issue 40). |
| memcpy(dst, src, src_size); |
| return true; |
| } |
| std::vector<unsigned char> tmpBuf(*uncompressed_size); |
| |
| #if defined(TINYEXR_USE_MINIZ) && (TINYEXR_USE_MINIZ==1) |
| int ret = |
| buminiz::mz_uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size); |
| if (buminiz::MZ_OK != ret) { |
| return false; |
| } |
| #elif TINYEXR_USE_STB_ZLIB |
| int ret = stbi_zlib_decode_buffer(reinterpret_cast<char*>(&tmpBuf.at(0)), |
| *uncompressed_size, reinterpret_cast<const char*>(src), src_size); |
| if (ret < 0) { |
| return false; |
| } |
| #elif defined(TINYEXR_USE_NANOZLIB) && (TINYEXR_USE_NANOZLIB==1) |
| uint64_t dest_size = (*uncompressed_size); |
| uint64_t uncomp_size{0}; |
| nanoz_status_t ret = |
| nanoz_uncompress(src, src_size, dest_size, &tmpBuf.at(0), &uncomp_size); |
| if (NANOZ_SUCCESS != ret) { |
| return false; |
| } |
| if ((*uncompressed_size) != uncomp_size) { |
| return false; |
| } |
| #else |
| int ret = uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size); |
| if (Z_OK != ret) { |
| return false; |
| } |
| #endif |
| |
| // |
| // Apply EXR-specific? postprocess. Grabbed from OpenEXR's |
| // ImfZipCompressor.cpp |
| // |
| |
| // Predictor. |
| { |
| unsigned char *t = &tmpBuf.at(0) + 1; |
| unsigned char *stop = &tmpBuf.at(0) + (*uncompressed_size); |
| |
| while (t < stop) { |
| int d = int(t[-1]) + int(t[0]) - 128; |
| t[0] = static_cast<unsigned char>(d); |
| ++t; |
| } |
| } |
| |
| // Reorder the pixel data. |
| { |
| const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(0)); |
| const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(0)) + |
| (*uncompressed_size + 1) / 2; |
| char *s = reinterpret_cast<char *>(dst); |
| char *stop = s + (*uncompressed_size); |
| |
| for (;;) { |
| if (s < stop) |
| *(s++) = *(t1++); |
| else |
| break; |
| |
| if (s < stop) |
| *(s++) = *(t2++); |
| else |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| // RLE code from OpenEXR -------------------------------------- |
| |
| #ifdef __clang__ |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wsign-conversion" |
| #if __has_warning("-Wextra-semi-stmt") |
| #pragma clang diagnostic ignored "-Wextra-semi-stmt" |
| #endif |
| #endif |
| |
| #ifdef _MSC_VER |
| #pragma warning(push) |
| #pragma warning(disable : 4204) // nonstandard extension used : non-constant |
| // aggregate initializer (also supported by GNU |
| // C and C99, so no big deal) |
| #pragma warning(disable : 4244) // 'initializing': conversion from '__int64' to |
| // 'int', possible loss of data |
| #pragma warning(disable : 4267) // 'argument': conversion from '__int64' to |
| // 'int', possible loss of data |
| #pragma warning(disable : 4996) // 'strdup': The POSIX name for this item is |
| // deprecated. Instead, use the ISO C and C++ |
| // conformant name: _strdup. |
| #endif |
| |
| const int MIN_RUN_LENGTH = 3; |
| const int MAX_RUN_LENGTH = 127; |
| |
| // |
| // Compress an array of bytes, using run-length encoding, |
| // and return the length of the compressed data. |
| // |
| |
| static int rleCompress(int inLength, const char in[], signed char out[]) { |
| const char *inEnd = in + inLength; |
| const char *runStart = in; |
| const char *runEnd = in + 1; |
| signed char *outWrite = out; |
| |
| while (runStart < inEnd) { |
| while (runEnd < inEnd && *runStart == *runEnd && |
| runEnd - runStart - 1 < MAX_RUN_LENGTH) { |
| ++runEnd; |
| } |
| |
| if (runEnd - runStart >= MIN_RUN_LENGTH) { |
| // |
| // Compressible run |
| // |
| |
| *outWrite++ = static_cast<char>(runEnd - runStart) - 1; |
| *outWrite++ = *(reinterpret_cast<const signed char *>(runStart)); |
| runStart = runEnd; |
| } else { |
| // |
| // Uncompressable run |
| // |
| |
| while (runEnd < inEnd && |
| ((runEnd + 1 >= inEnd || *runEnd != *(runEnd + 1)) || |
| (runEnd + 2 >= inEnd || *(runEnd + 1) != *(runEnd + 2))) && |
| runEnd - runStart < MAX_RUN_LENGTH) { |
| ++runEnd; |
| } |
| |
| *outWrite++ = static_cast<char>(runStart - runEnd); |
| |
| while (runStart < runEnd) { |
| *outWrite++ = *(reinterpret_cast<const signed char *>(runStart++)); |
| } |
| } |
| |
| ++runEnd; |
| } |
| |
| return static_cast<int>(outWrite - out); |
| } |
| |
| // |
| // Uncompress an array of bytes compressed with rleCompress(). |
| // Returns the length of the uncompressed data, or 0 if the |
| // length of the uncompressed data would be more than maxLength. |
| // |
| |
| static int rleUncompress(int inLength, int maxLength, const signed char in[], |
| char out[]) { |
| char *outStart = out; |
| |
| while (inLength > 0) { |
| if (*in < 0) { |
| int count = -(static_cast<int>(*in++)); |
| inLength -= count + 1; |
| |
| // Fixes #116: Add bounds check to in buffer. |
| if ((0 > (maxLength -= count)) || (inLength < 0)) return 0; |
| |
| memcpy(out, in, count); |
| out += count; |
| in += count; |
| } else { |
| int count = *in++; |
| inLength -= 2; |
| |
| if ((0 > (maxLength -= count + 1)) || (inLength < 0)) return 0; |
| |
| memset(out, *reinterpret_cast<const char *>(in), count + 1); |
| out += count + 1; |
| |
| in++; |
| } |
| } |
| |
| return static_cast<int>(out - outStart); |
| } |
| |
| #ifdef __clang__ |
| #pragma clang diagnostic pop |
| #endif |
| |
| // End of RLE code from OpenEXR ----------------------------------- |
| |
| static bool CompressRle(unsigned char *dst, |
| tinyexr::tinyexr_uint64 &compressedSize, |
| const unsigned char *src, unsigned long src_size) { |
| std::vector<unsigned char> tmpBuf(src_size); |
| |
| // |
| // Apply EXR-specific? postprocess. Grabbed from OpenEXR's |
| // ImfRleCompressor.cpp |
| // |
| |
| // |
| // Reorder the pixel data. |
| // |
| |
| const char *srcPtr = reinterpret_cast<const char *>(src); |
| |
| { |
| char *t1 = reinterpret_cast<char *>(&tmpBuf.at(0)); |
| char *t2 = reinterpret_cast<char *>(&tmpBuf.at(0)) + (src_size + 1) / 2; |
| const char *stop = srcPtr + src_size; |
| |
| for (;;) { |
| if (srcPtr < stop) |
| *(t1++) = *(srcPtr++); |
| else |
| break; |
| |
| if (srcPtr < stop) |
| *(t2++) = *(srcPtr++); |
| else |
| break; |
| } |
| } |
| |
| // |
| // Predictor. |
| // |
| |
| { |
| unsigned char *t = &tmpBuf.at(0) + 1; |
| unsigned char *stop = &tmpBuf.at(0) + src_size; |
| int p = t[-1]; |
| |
| while (t < stop) { |
| int d = int(t[0]) - p + (128 + 256); |
| p = t[0]; |
| t[0] = static_cast<unsigned char>(d); |
| ++t; |
| } |
| } |
| |
| // outSize will be (srcSiz * 3) / 2 at max. |
| int outSize = rleCompress(static_cast<int>(src_size), |
| reinterpret_cast<const char *>(&tmpBuf.at(0)), |
| reinterpret_cast<signed char *>(dst)); |
| TINYEXR_CHECK_AND_RETURN_C(outSize > 0, false); |
| |
| compressedSize = static_cast<tinyexr::tinyexr_uint64>(outSize); |
| |
| // Use uncompressed data when compressed data is larger than uncompressed. |
| // (Issue 40) |
| if (compressedSize >= src_size) { |
| compressedSize = src_size; |
| memcpy(dst, src, src_size); |
| } |
| |
| return true; |
| } |
| |
| static bool DecompressRle(unsigned char *dst, |
| const unsigned long uncompressed_size, |
| const unsigned char *src, unsigned long src_size) { |
| if (uncompressed_size == src_size) { |
| // Data is not compressed(Issue 40). |
| memcpy(dst, src, src_size); |
| return true; |
| } |
| |
| // Workaround for issue #112. |
| // TODO(syoyo): Add more robust out-of-bounds check in `rleUncompress`. |
| if (src_size <= 2) { |
| return false; |
| } |
| |
| std::vector<unsigned char> tmpBuf(uncompressed_size); |
| |
| int ret = rleUncompress(static_cast<int>(src_size), |
| static_cast<int>(uncompressed_size), |
| reinterpret_cast<const signed char *>(src), |
| reinterpret_cast<char *>(&tmpBuf.at(0))); |
| if (ret != static_cast<int>(uncompressed_size)) { |
| return false; |
| } |
| |
| // |
| // Apply EXR-specific? postprocess. Grabbed from OpenEXR's |
| // ImfRleCompressor.cpp |
| // |
| |
| // Predictor. |
| { |
| unsigned char *t = &tmpBuf.at(0) + 1; |
| unsigned char *stop = &tmpBuf.at(0) + uncompressed_size; |
| |
| while (t < stop) { |
| int d = int(t[-1]) + int(t[0]) - 128; |
| t[0] = static_cast<unsigned char>(d); |
| ++t; |
| } |
| } |
| |
| // Reorder the pixel data. |
| { |
| const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(0)); |
| const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(0)) + |
| (uncompressed_size + 1) / 2; |
| char *s = reinterpret_cast<char *>(dst); |
| char *stop = s + uncompressed_size; |
| |
| for (;;) { |
| if (s < stop) |
| *(s++) = *(t1++); |
| else |
| break; |
| |
| if (s < stop) |
| *(s++) = *(t2++); |
| else |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| #if TINYEXR_USE_PIZ |
| |
| #ifdef __clang__ |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wc++11-long-long" |
| #pragma clang diagnostic ignored "-Wold-style-cast" |
| #pragma clang diagnostic ignored "-Wpadded" |
| #pragma clang diagnostic ignored "-Wsign-conversion" |
| #pragma clang diagnostic ignored "-Wc++11-extensions" |
| #pragma clang diagnostic ignored "-Wconversion" |
| #pragma clang diagnostic ignored "-Wc++98-compat-pedantic" |
| |
| #if __has_warning("-Wcast-qual") |
| #pragma clang diagnostic ignored "-Wcast-qual" |
| #endif |
| |
| #if __has_warning("-Wextra-semi-stmt") |
| #pragma clang diagnostic ignored "-Wextra-semi-stmt" |
| #endif |
| |
| #endif |
| |
| // |
| // PIZ compress/uncompress, based on OpenEXR's ImfPizCompressor.cpp |
| // |
| // ----------------------------------------------------------------- |
| // Copyright (c) 2004, Industrial Light & Magic, a division of Lucas |
| // Digital Ltd. LLC) |
| // (3 clause BSD license) |
| // |
| |
| struct PIZChannelData { |
| unsigned short *start; |
| unsigned short *end; |
| int nx; |
| int ny; |
| int ys; |
| int size; |
| }; |
| |
| //----------------------------------------------------------------------------- |
| // |
| // 16-bit Haar Wavelet encoding and decoding |
| // |
| // The source code in this file is derived from the encoding |
| // and decoding routines written by Christian Rouet for his |
| // PIZ image file format. |
| // |
| //----------------------------------------------------------------------------- |
| |
| // |
| // Wavelet basis functions without modulo arithmetic; they produce |
| // the best compression ratios when the wavelet-transformed data are |
| // Huffman-encoded, but the wavelet transform works only for 14-bit |
| // data (untransformed data values must be less than (1 << 14)). |
| // |
| |
| inline void wenc14(unsigned short a, unsigned short b, unsigned short &l, |
| unsigned short &h) { |
| short as = static_cast<short>(a); |
| short bs = static_cast<short>(b); |
| |
| short ms = (as + bs) >> 1; |
| short ds = as - bs; |
| |
| l = static_cast<unsigned short>(ms); |
| h = static_cast<unsigned short>(ds); |
| } |
| |
| inline void wdec14(unsigned short l, unsigned short h, unsigned short &a, |
| unsigned short &b) { |
| short ls = static_cast<short>(l); |
| short hs = static_cast<short>(h); |
| |
| int hi = hs; |
| int ai = ls + (hi & 1) + (hi >> 1); |
| |
| short as = static_cast<short>(ai); |
| short bs = static_cast<short>(ai - hi); |
| |
| a = static_cast<unsigned short>(as); |
| b = static_cast<unsigned short>(bs); |
| } |
| |
| // |
| // Wavelet basis functions with modulo arithmetic; they work with full |
| // 16-bit data, but Huffman-encoding the wavelet-transformed data doesn't |
| // compress the data quite as well. |
| // |
| |
| const int NBITS = 16; |
| const int A_OFFSET = 1 << (NBITS - 1); |
| const int M_OFFSET = 1 << (NBITS - 1); |
| const int MOD_MASK = (1 << NBITS) - 1; |
| |
| inline void wenc16(unsigned short a, unsigned short b, unsigned short &l, |
| unsigned short &h) { |
| int ao = (a + A_OFFSET) & MOD_MASK; |
| int m = ((ao + b) >> 1); |
| int d = ao - b; |
| |
| if (d < 0) m = (m + M_OFFSET) & MOD_MASK; |
| |
| d &= MOD_MASK; |
| |
| l = static_cast<unsigned short>(m); |
| h = static_cast<unsigned short>(d); |
| } |
| |
| inline void wdec16(unsigned short l, unsigned short h, unsigned short &a, |
| unsigned short &b) { |
| int m = l; |
| int d = h; |
| int bb = (m - (d >> 1)) & MOD_MASK; |
| int aa = (d + bb - A_OFFSET) & MOD_MASK; |
| b = static_cast<unsigned short>(bb); |
| a = static_cast<unsigned short>(aa); |
| } |
| |
| // |
| // 2D Wavelet encoding: |
| // |
| |
| static void wav2Encode( |
| unsigned short *in, // io: values are transformed in place |
| int nx, // i : x size |
| int ox, // i : x offset |
| int ny, // i : y size |
| int oy, // i : y offset |
| unsigned short mx) // i : maximum in[x][y] value |
| { |
| bool w14 = (mx < (1 << 14)); |
| int n = (nx > ny) ? ny : nx; |
| int p = 1; // == 1 << level |
| int p2 = 2; // == 1 << (level+1) |
| |
| // |
| // Hierarchical loop on smaller dimension n |
| // |
| |
| while (p2 <= n) { |
| unsigned short *py = in; |
| unsigned short *ey = in + oy * (ny - p2); |
| int oy1 = oy * p; |
| int oy2 = oy * p2; |
| int ox1 = ox * p; |
| int ox2 = ox * p2; |
| unsigned short i00, i01, i10, i11; |
| |
| // |
| // Y loop |
| // |
| |
| for (; py <= ey; py += oy2) { |
| unsigned short *px = py; |
| unsigned short *ex = py + ox * (nx - p2); |
| |
| // |
| // X loop |
| // |
| |
| for (; px <= ex; px += ox2) { |
| unsigned short *p01 = px + ox1; |
| unsigned short *p10 = px + oy1; |
| unsigned short *p11 = p10 + ox1; |
| |
| // |
| // 2D wavelet encoding |
| // |
| |
| if (w14) { |
| wenc14(*px, *p01, i00, i01); |
| wenc14(*p10, *p11, i10, i11); |
| wenc14(i00, i10, *px, *p10); |
| wenc14(i01, i11, *p01, *p11); |
| } else { |
| wenc16(*px, *p01, i00, i01); |
| wenc16(*p10, *p11, i10, i11); |
| wenc16(i00, i10, *px, *p10); |
| wenc16(i01, i11, *p01, *p11); |
| } |
| } |
| |
| // |
| // Encode (1D) odd column (still in Y loop) |
| // |
| |
| if (nx & p) { |
| unsigned short *p10 = px + oy1; |
| |
| if (w14) |
| wenc14(*px, *p10, i00, *p10); |
| else |
| wenc16(*px, *p10, i00, *p10); |
| |
| *px = i00; |
| } |
| } |
| |
| // |
| // Encode (1D) odd line (must loop in X) |
| // |
| |
| if (ny & p) { |
| unsigned short *px = py; |
| unsigned short *ex = py + ox * (nx - p2); |
| |
| for (; px <= ex; px += ox2) { |
| unsigned short *p01 = px + ox1; |
| |
| if (w14) |
| wenc14(*px, *p01, i00, *p01); |
| else |
| wenc16(*px, *p01, i00, *p01); |
| |
| *px = i00; |
| } |
| } |
| |
| // |
| // Next level |
| // |
| |
| p = p2; |
| p2 <<= 1; |
| } |
| } |
| |
| // |
| // 2D Wavelet decoding: |
| // |
| |
| static void wav2Decode( |
| unsigned short *in, // io: values are transformed in place |
| int nx, // i : x size |
| int ox, // i : x offset |
| int ny, // i : y size |
| int oy, // i : y offset |
| unsigned short mx) // i : maximum in[x][y] value |
| { |
| bool w14 = (mx < (1 << 14)); |
| int n = (nx > ny) ? ny : nx; |
| int p = 1; |
| int p2; |
| |
| // |
| // Search max level |
| // |
| |
| while (p <= n) p <<= 1; |
| |
| p >>= 1; |
| p2 = p; |
| p >>= 1; |
| |
| // |
| // Hierarchical loop on smaller dimension n |
| // |
| |
| while (p >= 1) { |
| unsigned short *py = in; |
| unsigned short *ey = in + oy * (ny - p2); |
| int oy1 = oy * p; |
| int oy2 = oy * p2; |
| int ox1 = ox * p; |
| int ox2 = ox * p2; |
| unsigned short i00, i01, i10, i11; |
| |
| // |
| // Y loop |
| // |
| |
| for (; py <= ey; py += oy2) { |
| unsigned short *px = py; |
| unsigned short *ex = py + ox * (nx - p2); |
| |
| // |
| // X loop |
| // |
| |
| for (; px <= ex; px += ox2) { |
| unsigned short *p01 = px + ox1; |
| unsigned short *p10 = px + oy1; |
| unsigned short *p11 = p10 + ox1; |
| |
| // |
| // 2D wavelet decoding |
| // |
| |
| if (w14) { |
| wdec14(*px, *p10, i00, i10); |
| wdec14(*p01, *p11, i01, i11); |
| wdec14(i00, i01, *px, *p01); |
| wdec14(i10, i11, *p10, *p11); |
| } else { |
| wdec16(*px, *p10, i00, i10); |
| wdec16(*p01, *p11, i01, i11); |
| wdec16(i00, i01, *px, *p01); |
| wdec16(i10, i11, *p10, *p11); |
| } |
| } |
| |
| // |
| // Decode (1D) odd column (still in Y loop) |
| // |
| |
| if (nx & p) { |
| unsigned short *p10 = px + oy1; |
| |
| if (w14) |
| wdec14(*px, *p10, i00, *p10); |
| else |
| wdec16(*px, *p10, i00, *p10); |
| |
| *px = i00; |
| } |
| } |
| |
| // |
| // Decode (1D) odd line (must loop in X) |
| // |
| |
| if (ny & p) { |
| unsigned short *px = py; |
| unsigned short *ex = py + ox * (nx - p2); |
| |
| for (; px <= ex; px += ox2) { |
| unsigned short *p01 = px + ox1; |
| |
| if (w14) |
| wdec14(*px, *p01, i00, *p01); |
| else |
| wdec16(*px, *p01, i00, *p01); |
| |
| *px = i00; |
| } |
| } |
| |
| // |
| // Next level |
| // |
| |
| p2 = p; |
| p >>= 1; |
| } |
| } |
| |
| //----------------------------------------------------------------------------- |
| // |
| // 16-bit Huffman compression and decompression. |
| // |
| // The source code in this file is derived from the 8-bit |
| // Huffman compression and decompression routines written |
| // by Christian Rouet for his PIZ image file format. |
| // |
| //----------------------------------------------------------------------------- |
| |
| // Adds some modification for tinyexr. |
| |
| const int HUF_ENCBITS = 16; // literal (value) bit length |
| const int HUF_DECBITS = 14; // decoding bit size (>= 8) |
| |
| const int HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size |
| const int HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size |
| const int HUF_DECMASK = HUF_DECSIZE - 1; |
| |
| struct HufDec { // short code long code |
| //------------------------------- |
| unsigned int len : 8; // code length 0 |
| unsigned int lit : 24; // lit p size |
| unsigned int *p; // 0 lits |
| }; |
| |
| inline long long hufLength(long long code) { return code & 63; } |
| |
| inline long long hufCode(long long code) { return code >> 6; } |
| |
| inline void outputBits(int nBits, long long bits, long long &c, int &lc, |
| char *&out) { |
| c <<= nBits; |
| lc += nBits; |
| |
| c |= bits; |
| |
| while (lc >= 8) *out++ = static_cast<char>((c >> (lc -= 8))); |
| } |
| |
| inline long long getBits(int nBits, long long &c, int &lc, const char *&in) { |
| while (lc < nBits) { |
| c = (long long)((unsigned long long)c << 8) | *(reinterpret_cast<const unsigned char *>(in++)); |
| lc += 8; |
| } |
| |
| lc -= nBits; |
| return (c >> lc) & ((1 << nBits) - 1); |
| } |
| |
| // |
| // ENCODING TABLE BUILDING & (UN)PACKING |
| // |
| |
| // |
| // Build a "canonical" Huffman code table: |
| // - for each (uncompressed) symbol, hcode contains the length |
| // of the corresponding code (in the compressed data) |
| // - canonical codes are computed and stored in hcode |
| // - the rules for constructing canonical codes are as follows: |
| // * shorter codes (if filled with zeroes to the right) |
| // have a numerically higher value than longer codes |
| // * for codes with the same length, numerical values |
| // increase with numerical symbol values |
| // - because the canonical code table can be constructed from |
| // symbol lengths alone, the code table can be transmitted |
| // without sending the actual code values |
| // - see http://www.compressconsult.com/huffman/ |
| // |
| |
| static void hufCanonicalCodeTable(long long hcode[HUF_ENCSIZE]) { |
| long long n[59]; |
| |
| // |
| // For each i from 0 through 58, count the |
| // number of different codes of length i, and |
| // store the count in n[i]. |
| // |
| |
| for (int i = 0; i <= 58; ++i) n[i] = 0; |
| |
| for (int i = 0; i < HUF_ENCSIZE; ++i) n[hcode[i]] += 1; |
| |
| // |
| // For each i from 58 through 1, compute the |
| // numerically lowest code with length i, and |
| // store that code in n[i]. |
| // |
| |
| long long c = 0; |
| |
| for (int i = 58; i > 0; --i) { |
| long long nc = ((c + n[i]) >> 1); |
| n[i] = c; |
| c = nc; |
| } |
| |
| // |
| // hcode[i] contains the length, l, of the |
| // code for symbol i. Assign the next available |
| // code of length l to the symbol and store both |
| // l and the code in hcode[i]. |
| // |
| |
| for (int i = 0; i < HUF_ENCSIZE; ++i) { |
| int l = static_cast<int>(hcode[i]); |
| |
| if (l > 0) hcode[i] = l | (n[l]++ << 6); |
| } |
| } |
| |
| // |
| // Compute Huffman codes (based on frq input) and store them in frq: |
| // - code structure is : [63:lsb - 6:msb] | [5-0: bit length]; |
| // - max code length is 58 bits; |
| // - codes outside the range [im-iM] have a null length (unused values); |
| // - original frequencies are destroyed; |
| // - encoding tables are used by hufEncode() and hufBuildDecTable(); |
| // |
| |
| struct FHeapCompare { |
| bool operator()(long long *a, long long *b) { return *a > *b; } |
| }; |
| |
| static bool hufBuildEncTable( |
| long long *frq, // io: input frequencies [HUF_ENCSIZE], output table |
| int *im, // o: min frq index |
| int *iM) // o: max frq index |
| { |
| // |
| // This function assumes that when it is called, array frq |
| // indicates the frequency of all possible symbols in the data |
| // that are to be Huffman-encoded. (frq[i] contains the number |
| // of occurrences of symbol i in the data.) |
| // |
| // The loop below does three things: |
| // |
| // 1) Finds the minimum and maximum indices that point |
| // to non-zero entries in frq: |
| // |
| // frq[im] != 0, and frq[i] == 0 for all i < im |
| // frq[iM] != 0, and frq[i] == 0 for all i > iM |
| // |
| // 2) Fills array fHeap with pointers to all non-zero |
| // entries in frq. |
| // |
| // 3) Initializes array hlink such that hlink[i] == i |
| // for all array entries. |
| // |
| |
| std::vector<int> hlink(HUF_ENCSIZE); |
| std::vector<long long *> fHeap(HUF_ENCSIZE); |
| |
| *im = 0; |
| |
| while (!frq[*im]) (*im)++; |
| |
| int nf = 0; |
| |
| for (int i = *im; i < HUF_ENCSIZE; i++) { |
| hlink[i] = i; |
| |
| if (frq[i]) { |
| fHeap[nf] = &frq[i]; |
| nf++; |
| *iM = i; |
| } |
| } |
| |
| // |
| // Add a pseudo-symbol, with a frequency count of 1, to frq; |
| // adjust the fHeap and hlink array accordingly. Function |
| // hufEncode() uses the pseudo-symbol for run-length encoding. |
| // |
| |
| (*iM)++; |
| frq[*iM] = 1; |
| fHeap[nf] = &frq[*iM]; |
| nf++; |
| |
| // |
| // Build an array, scode, such that scode[i] contains the number |
| // of bits assigned to symbol i. Conceptually this is done by |
| // constructing a tree whose leaves are the symbols with non-zero |
| // frequency: |
| // |
| // Make a heap that contains all symbols with a non-zero frequency, |
| // with the least frequent symbol on top. |
| // |
| // Repeat until only one symbol is left on the heap: |
| // |
| // Take the two least frequent symbols off the top of the heap. |
| // Create a new node that has first two nodes as children, and |
| // whose frequency is the sum of the frequencies of the first |
| // two nodes. Put the new node back into the heap. |
| // |
| // The last node left on the heap is the root of the tree. For each |
| // leaf node, the distance between the root and the leaf is the length |
| // of the code for the corresponding symbol. |
| // |
| // The loop below doesn't actually build the tree; instead we compute |
| // the distances of the leaves from the root on the fly. When a new |
| // node is added to the heap, then that node's descendants are linked |
| // into a single linear list that starts at the new node, and the code |
| // lengths of the descendants (that is, their distance from the root |
| // of the tree) are incremented by one. |
| // |
| |
| std::make_heap(&fHeap[0], &fHeap[nf], FHeapCompare()); |
| |
| std::vector<long long> scode(HUF_ENCSIZE); |
| memset(scode.data(), 0, sizeof(long long) * HUF_ENCSIZE); |
| |
| while (nf > 1) { |
| // |
| // Find the indices, mm and m, of the two smallest non-zero frq |
| // values in fHeap, add the smallest frq to the second-smallest |
| // frq, and remove the smallest frq value from fHeap. |
| // |
| |
| int mm = fHeap[0] - frq; |
| std::pop_heap(&fHeap[0], &fHeap[nf], FHeapCompare()); |
| --nf; |
| |
| int m = fHeap[0] - frq; |
| std::pop_heap(&fHeap[0], &fHeap[nf], FHeapCompare()); |
| |
| frq[m] += frq[mm]; |
| std::push_heap(&fHeap[0], &fHeap[nf], FHeapCompare()); |
| |
| // |
| // The entries in scode are linked into lists with the |
| // entries in hlink serving as "next" pointers and with |
| // the end of a list marked by hlink[j] == j. |
| // |
| // Traverse the lists that start at scode[m] and scode[mm]. |
| // For each element visited, increment the length of the |
| // corresponding code by one bit. (If we visit scode[j] |
| // during the traversal, then the code for symbol j becomes |
| // one bit longer.) |
| // |
| // Merge the lists that start at scode[m] and scode[mm] |
| // into a single list that starts at scode[m]. |
| // |
| |
| // |
| // Add a bit to all codes in the first list. |
| // |
| |
| for (int j = m;; j = hlink[j]) { |
| scode[j]++; |
| |
| TINYEXR_CHECK_AND_RETURN_C(scode[j] <= 58, false); |
| |
| if (hlink[j] == j) { |
| // |
| // Merge the two lists. |
| // |
| |
| hlink[j] = mm; |
| break; |
| } |
| } |
| |
| // |
| // Add a bit to all codes in the second list |
| // |
| |
| for (int j = mm;; j = hlink[j]) { |
| scode[j]++; |
| |
| TINYEXR_CHECK_AND_RETURN_C(scode[j] <= 58, false); |
| |
| if (hlink[j] == j) break; |
| } |
| } |
| |
| // |
| // Build a canonical Huffman code table, replacing the code |
| // lengths in scode with (code, code length) pairs. Copy the |
| // code table from scode into frq. |
| // |
| |
| hufCanonicalCodeTable(scode.data()); |
| memcpy(frq, scode.data(), sizeof(long long) * HUF_ENCSIZE); |
| |
| return true; |
| } |
| |
| // |
| // Pack an encoding table: |
| // - only code lengths, not actual codes, are stored |
| // - runs of zeroes are compressed as follows: |
| // |
| // unpacked packed |
| // -------------------------------- |
| // 1 zero 0 (6 bits) |
| // 2 zeroes 59 |
| // 3 zeroes 60 |
| // 4 zeroes 61 |
| // 5 zeroes 62 |
| // n zeroes (6 or more) 63 n-6 (6 + 8 bits) |
| // |
| |
| const int SHORT_ZEROCODE_RUN = 59; |
| const int LONG_ZEROCODE_RUN = 63; |
| const int SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN; |
| const int LONGEST_LONG_RUN = 255 + SHORTEST_LONG_RUN; |
| |
| static void hufPackEncTable( |
| const long long *hcode, // i : encoding table [HUF_ENCSIZE] |
| int im, // i : min hcode index |
| int iM, // i : max hcode index |
| char **pcode) // o: ptr to packed table (updated) |
| { |
| char *p = *pcode; |
| long long c = 0; |
| int lc = 0; |
| |
| for (; im <= iM; im++) { |
| int l = hufLength(hcode[im]); |
| |
| if (l == 0) { |
| int zerun = 1; |
| |
| while ((im < iM) && (zerun < LONGEST_LONG_RUN)) { |
| if (hufLength(hcode[im + 1]) > 0) break; |
| im++; |
| zerun++; |
| } |
| |
| if (zerun >= 2) { |
| if (zerun >= SHORTEST_LONG_RUN) { |
| outputBits(6, LONG_ZEROCODE_RUN, c, lc, p); |
| outputBits(8, zerun - SHORTEST_LONG_RUN, c, lc, p); |
| } else { |
| outputBits(6, SHORT_ZEROCODE_RUN + zerun - 2, c, lc, p); |
| } |
| continue; |
| } |
| } |
| |
| outputBits(6, l, c, lc, p); |
| } |
| |
| if (lc > 0) *p++ = (unsigned char)(c << (8 - lc)); |
| |
| *pcode = p; |
| } |
| |
| // |
| // Unpack an encoding table packed by hufPackEncTable(): |
| // |
| |
| static bool hufUnpackEncTable( |
| const char **pcode, // io: ptr to packed table (updated) |
| int ni, // i : input size (in bytes) |
| int im, // i : min hcode index |
| int iM, // i : max hcode index |
| long long *hcode) // o: encoding table [HUF_ENCSIZE] |
| { |
| memset(hcode, 0, sizeof(long long) * HUF_ENCSIZE); |
| |
| const char *p = *pcode; |
| long long c = 0; |
| int lc = 0; |
| |
| for (; im <= iM; im++) { |
| if (p - *pcode >= ni) { |
| return false; |
| } |
| |
| long long l = hcode[im] = getBits(6, c, lc, p); // code length |
| |
| if (l == (long long)LONG_ZEROCODE_RUN) { |
| if (p - *pcode > ni) { |
| return false; |
| } |
| |
| int zerun = getBits(8, c, lc, p) + SHORTEST_LONG_RUN; |
| |
| if (im + zerun > iM + 1) { |
| return false; |
| } |
| |
| while (zerun--) hcode[im++] = 0; |
| |
| im--; |
| } else if (l >= (long long)SHORT_ZEROCODE_RUN) { |
| int zerun = l - SHORT_ZEROCODE_RUN + 2; |
| |
| if (im + zerun > iM + 1) { |
| return false; |
| } |
| |
| while (zerun--) hcode[im++] = 0; |
| |
| im--; |
| } |
| } |
| |
| *pcode = const_cast<char *>(p); |
| |
| hufCanonicalCodeTable(hcode); |
| |
| return true; |
| } |
| |
| // |
| // DECODING TABLE BUILDING |
| // |
| |
| // |
| // Clear a newly allocated decoding table so that it contains only zeroes. |
| // |
| |
| static void hufClearDecTable(HufDec *hdecod) // io: (allocated by caller) |
| // decoding table [HUF_DECSIZE] |
| { |
| for (int i = 0; i < HUF_DECSIZE; i++) { |
| hdecod[i].len = 0; |
| hdecod[i].lit = 0; |
| hdecod[i].p = NULL; |
| } |
| // memset(hdecod, 0, sizeof(HufDec) * HUF_DECSIZE); |
| } |
| |
| // |
| // Build a decoding hash table based on the encoding table hcode: |
| // - short codes (<= HUF_DECBITS) are resolved with a single table access; |
| // - long code entry allocations are not optimized, because long codes are |
| // unfrequent; |
| // - decoding tables are used by hufDecode(); |
| // |
| |
| static bool hufBuildDecTable(const long long *hcode, // i : encoding table |
| int im, // i : min index in hcode |
| int iM, // i : max index in hcode |
| HufDec *hdecod) // o: (allocated by caller) |
| // decoding table [HUF_DECSIZE] |
| { |
| // |
| // Init hashtable & loop on all codes. |
| // Assumes that hufClearDecTable(hdecod) has already been called. |
| // |
| |
| for (; im <= iM; im++) { |
| long long c = hufCode(hcode[im]); |
| int l = hufLength(hcode[im]); |
| |
| if (c >> l) { |
| // |
| // Error: c is supposed to be an l-bit code, |
| // but c contains a value that is greater |
| // than the largest l-bit number. |
| // |
| |
| // invalidTableEntry(); |
| return false; |
| } |
| |
| if (l > HUF_DECBITS) { |
| // |
| // Long code: add a secondary entry |
| // |
| |
| HufDec *pl = hdecod + (c >> (l - HUF_DECBITS)); |
| |
| if (pl->len) { |
| // |
| // Error: a short code has already |
| // been stored in table entry *pl. |
| // |
| |
| // invalidTableEntry(); |
| return false; |
| } |
| |
| pl->lit++; |
| |
| if (pl->p) { |
| unsigned int *p = pl->p; |
| pl->p = new unsigned int[pl->lit]; |
| |
| for (unsigned int i = 0; i < pl->lit - 1u; ++i) pl->p[i] = p[i]; |
| |
| delete[] p; |
| } else { |
| pl->p = new unsigned int[1]; |
| } |
| |
| pl->p[pl->lit - 1] = im; |
| } else if (l) { |
| // |
| // Short code: init all primary entries |
| // |
| |
| HufDec *pl = hdecod + (c << (HUF_DECBITS - l)); |
| |
| for (long long i = 1ULL << (HUF_DECBITS - l); i > 0; i--, pl++) { |
| if (pl->len || pl->p) { |
| // |
| // Error: a short code or a long code has |
| // already been stored in table entry *pl. |
| // |
| |
| // invalidTableEntry(); |
| return false; |
| } |
| |
| pl->len = l; |
| pl->lit = im; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // |
| // Free the long code entries of a decoding table built by hufBuildDecTable() |
| // |
| |
| static void hufFreeDecTable(HufDec *hdecod) // io: Decoding table |
| { |
| for (int i = 0; i < HUF_DECSIZE; i++) { |
| if (hdecod[i].p) { |
| delete[] hdecod[i].p; |
| hdecod[i].p = 0; |
| } |
| } |
| } |
| |
| // |
| // ENCODING |
| // |
| |
| inline void outputCode(long long code, long long &c, int &lc, char *&out) { |
| outputBits(hufLength(code), hufCode(code), c, lc, out); |
| } |
| |
| inline void sendCode(long long sCode, int runCount, long long runCode, |
| long long &c, int &lc, char *&out) { |
| // |
| // Output a run of runCount instances of the symbol sCount. |
| // Output the symbols explicitly, or if that is shorter, output |
| // the sCode symbol once followed by a runCode symbol and runCount |
| // expressed as an 8-bit number. |
| // |
| |
| if (hufLength(sCode) + hufLength(runCode) + 8 < hufLength(sCode) * runCount) { |
| outputCode(sCode, c, lc, out); |
| outputCode(runCode, c, lc, out); |
| outputBits(8, runCount, c, lc, out); |
| } else { |
| while (runCount-- >= 0) outputCode(sCode, c, lc, out); |
| } |
| } |
| |
| // |
| // Encode (compress) ni values based on the Huffman encoding table hcode: |
| // |
| |
| static int hufEncode // return: output size (in bits) |
| (const long long *hcode, // i : encoding table |
| const unsigned short *in, // i : uncompressed input buffer |
| const int ni, // i : input buffer size (in bytes) |
| int rlc, // i : rl code |
| char *out) // o: compressed output buffer |
| { |
| char *outStart = out; |
| long long c = 0; // bits not yet written to out |
| int lc = 0; // number of valid bits in c (LSB) |
| int s = in[0]; |
| int cs = 0; |
| |
| // |
| // Loop on input values |
| // |
| |
| for (int i = 1; i < ni; i++) { |
| // |
| // Count same values or send code |
| // |
| |
| if (s == in[i] && cs < 255) { |
| cs++; |
| } else { |
| sendCode(hcode[s], cs, hcode[rlc], c, lc, out); |
| cs = 0; |
| } |
| |
| s = in[i]; |
| } |
| |
| // |
| // Send remaining code |
| // |
| |
| sendCode(hcode[s], cs, hcode[rlc], c, lc, out); |
| |
| if (lc) *out = (c << (8 - lc)) & 0xff; |
| |
| return (out - outStart) * 8 + lc; |
| } |
| |
| // |
| // DECODING |
| // |
| |
| // |
| // In order to force the compiler to inline them, |
| // getChar() and getCode() are implemented as macros |
| // instead of "inline" functions. |
| // |
| |
| #define getChar(c, lc, in) \ |
| { \ |
| c = ((unsigned long long)c << 8) | *(unsigned char *)(in++); \ |
| lc += 8; \ |
| } |
| |
| #if 0 |
| #define getCode(po, rlc, c, lc, in, out, ob, oe) \ |
| { \ |
| if (po == rlc) { \ |
| if (lc < 8) getChar(c, lc, in); \ |
| \ |
| lc -= 8; \ |
| \ |
| unsigned char cs = (c >> lc); \ |
| \ |
| if (out + cs > oe) return false; \ |
| \ |
| /* TinyEXR issue 78 */ \ |
| unsigned short s = out[-1]; \ |
| \ |
| while (cs-- > 0) *out++ = s; \ |
| } else if (out < oe) { \ |
| *out++ = po; \ |
| } else { \ |
| return false; \ |
| } \ |
| } |
| #else |
| static bool getCode(int po, int rlc, long long &c, int &lc, const char *&in, |
| const char *in_end, unsigned short *&out, |
| const unsigned short *ob, const unsigned short *oe) { |
| (void)ob; |
| if (po == rlc) { |
| if (lc < 8) { |
| /* TinyEXR issue 78 */ |
| /* TinyEXR issue 160. in + 1 -> in */ |
| if (in >= in_end) { |
| return false; |
| } |
| |
| getChar(c, lc, in); |
| } |
| |
| lc -= 8; |
| |
| unsigned char cs = (c >> lc); |
| |
| if (out + cs > oe) return false; |
| |
| // Bounds check for safety |
| // Issue 100. |
| if ((out - 1) < ob) return false; |
| unsigned short s = out[-1]; |
| |
| while (cs-- > 0) *out++ = s; |
| } else if (out < oe) { |
| *out++ = po; |
| } else { |
| return false; |
| } |
| return true; |
| } |
| #endif |
| |
| // |
| // Decode (uncompress) ni bits based on encoding & decoding tables: |
| // |
| |
| static bool hufDecode(const long long *hcode, // i : encoding table |
| const HufDec *hdecod, // i : decoding table |
| const char *in, // i : compressed input buffer |
| int ni, // i : input size (in bits) |
| int rlc, // i : run-length code |
| int no, // i : expected output size (in bytes) |
| unsigned short *out) // o: uncompressed output buffer |
| { |
| long long c = 0; |
| int lc = 0; |
| unsigned short *outb = out; // begin |
| unsigned short *oe = out + no; // end |
| const char *ie = in + (ni + 7) / 8; // input byte size |
| |
| // |
| // Loop on input bytes |
| // |
| |
| while (in < ie) { |
| getChar(c, lc, in); |
| |
| // |
| // Access decoding table |
| // |
| |
| while (lc >= HUF_DECBITS) { |
| const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK]; |
| |
| if (pl.len) { |
| // |
| // Get short code |
| // |
| |
| lc -= pl.len; |
| // std::cout << "lit = " << pl.lit << std::endl; |
| // std::cout << "rlc = " << rlc << std::endl; |
| // std::cout << "c = " << c << std::endl; |
| // std::cout << "lc = " << lc << std::endl; |
| // std::cout << "in = " << in << std::endl; |
| // std::cout << "out = " << out << std::endl; |
| // std::cout << "oe = " << oe << std::endl; |
| if (!getCode(pl.lit, rlc, c, lc, in, ie, out, outb, oe)) { |
| return false; |
| } |
| } else { |
| if (!pl.p) { |
| return false; |
| } |
| // invalidCode(); // wrong code |
| |
| // |
| // Search long code |
| // |
| |
| unsigned int j; |
| |
| for (j = 0; j < pl.lit; j++) { |
| int l = hufLength(hcode[pl.p[j]]); |
| |
| while (lc < l && in < ie) // get more bits |
| getChar(c, lc, in); |
| |
| if (lc >= l) { |
| if (hufCode(hcode[pl.p[j]]) == |
| ((c >> (lc - l)) & (((long long)(1) << l) - 1))) { |
| // |
| // Found : get long code |
| // |
| |
| lc -= l; |
| if (!getCode(pl.p[j], rlc, c, lc, in, ie, out, outb, oe)) { |
| return false; |
| } |
| break; |
| } |
| } |
| } |
| |
| if (j == pl.lit) { |
| return false; |
| // invalidCode(); // Not found |
| } |
| } |
| } |
| } |
| |
| // |
| // Get remaining (short) codes |
| // |
| |
| int i = (8 - ni) & 7; |
| c >>= i; |
| lc -= i; |
| |
| while (lc > 0) { |
| const HufDec pl = hdecod[((unsigned long long)c << (HUF_DECBITS - lc)) & HUF_DECMASK]; |
| |
| if (pl.len) { |
| lc -= pl.len; |
| if (!getCode(pl.lit, rlc, c, lc, in, ie, out, outb, oe)) { |
| return false; |
| } |
| } else { |
| return false; |
| // invalidCode(); // wrong (long) code |
| } |
| } |
| |
| if (out - outb != no) { |
| return false; |
| } |
| // notEnoughData (); |
| |
| return true; |
| } |
| |
| static void countFrequencies(std::vector<long long> &freq, |
| const unsigned short data[/*n*/], int n) { |
| for (int i = 0; i < HUF_ENCSIZE; ++i) freq[i] = 0; |
| |
| for (int i = 0; i < n; ++i) ++freq[data[i]]; |
| } |
| |
| static void writeUInt(char buf[4], unsigned int i) { |
| unsigned char *b = (unsigned char *)buf; |
| |
| b[0] = i; |
| b[1] = i >> 8; |
| b[2] = i >> 16; |
| b[3] = i >> 24; |
| } |
| |
| static unsigned int readUInt(const char buf[4]) { |
| const unsigned char *b = (const unsigned char *)buf; |
| |
| return (b[0] & 0x000000ff) | ((b[1] << 8) & 0x0000ff00) | |
| ((b[2] << 16) & 0x00ff0000) | ((b[3] << 24) & 0xff000000); |
| } |
| |
| // |
| // EXTERNAL INTERFACE |
| // |
| |
| static int hufCompress(const unsigned short raw[], int nRaw, |
| char compressed[]) { |
| if (nRaw == 0) return 0; |
| |
| std::vector<long long> freq(HUF_ENCSIZE); |
| |
| countFrequencies(freq, raw, nRaw); |
| |
| int im = 0; |
| int iM = 0; |
| hufBuildEncTable(freq.data(), &im, &iM); |
| |
| char *tableStart = compressed + 20; |
| char *tableEnd = tableStart; |
| hufPackEncTable(freq.data(), im, iM, &tableEnd); |
| int tableLength = tableEnd - tableStart; |
| |
| char *dataStart = tableEnd; |
| int nBits = hufEncode(freq.data(), raw, nRaw, iM, dataStart); |
| int data_length = (nBits + 7) / 8; |
| |
| writeUInt(compressed, im); |
| writeUInt(compressed + 4, iM); |
| writeUInt(compressed + 8, tableLength); |
| writeUInt(compressed + 12, nBits); |
| writeUInt(compressed + 16, 0); // room for future extensions |
| |
| return dataStart + data_length - compressed; |
| } |
| |
| static bool hufUncompress(const char compressed[], int nCompressed, |
| std::vector<unsigned short> *raw) { |
| if (nCompressed == 0) { |
| if (raw->size() != 0) return false; |
| |
| return false; |
| } |
| |
| int im = readUInt(compressed); |
| int iM = readUInt(compressed + 4); |
| // int tableLength = readUInt (compressed + 8); |
| int nBits = readUInt(compressed + 12); |
| |
| if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) return false; |
| |
| const char *ptr = compressed + 20; |
| |
| // |
| // Fast decoder needs at least 2x64-bits of compressed data, and |
| // needs to be run-able on this platform. Otherwise, fall back |
| // to the original decoder |
| // |
| |
| // if (FastHufDecoder::enabled() && nBits > 128) |
| //{ |
| // FastHufDecoder fhd (ptr, nCompressed - (ptr - compressed), im, iM, iM); |
| // fhd.decode ((unsigned char*)ptr, nBits, raw, nRaw); |
| //} |
| // else |
| { |
| std::vector<long long> freq(HUF_ENCSIZE); |
| std::vector<HufDec> hdec(HUF_DECSIZE); |
| |
| hufClearDecTable(&hdec.at(0)); |
| |
| hufUnpackEncTable(&ptr, nCompressed - (ptr - compressed), im, iM, |
| &freq.at(0)); |
| |
| { |
| if (nBits > 8 * (nCompressed - (ptr - compressed))) { |
| return false; |
| } |
| |
| hufBuildDecTable(&freq.at(0), im, iM, &hdec.at(0)); |
| hufDecode(&freq.at(0), &hdec.at(0), ptr, nBits, iM, raw->size(), |
| raw->data()); |
| } |
| // catch (...) |
| //{ |
| // hufFreeDecTable (hdec); |
| // throw; |
| //} |
| |
| hufFreeDecTable(&hdec.at(0)); |
| } |
| |
| return true; |
| } |
| |
| // |
| // Functions to compress the range of values in the pixel data |
| // |
| |
| const int USHORT_RANGE = (1 << 16); |
| const int BITMAP_SIZE = (USHORT_RANGE >> 3); |
| |
| static void bitmapFromData(const unsigned short data[/*nData*/], int nData, |
| unsigned char bitmap[BITMAP_SIZE], |
| unsigned short &minNonZero, |
| unsigned short &maxNonZero) { |
| for (int i = 0; i < BITMAP_SIZE; ++i) bitmap[i] = 0; |
| |
| for (int i = 0; i < nData; ++i) bitmap[data[i] >> 3] |= (1 << (data[i] & 7)); |
| |
| bitmap[0] &= ~1; // zero is not explicitly stored in |
| // the bitmap; we assume that the |
| // data always contain zeroes |
| minNonZero = BITMAP_SIZE - 1; |
| maxNonZero = 0; |
| |
| for (int i = 0; i < BITMAP_SIZE; ++i) { |
| if (bitmap[i]) { |
| if (minNonZero > i) minNonZero = i; |
| if (maxNonZero < i) maxNonZero = i; |
| } |
| } |
| } |
| |
| static unsigned short forwardLutFromBitmap( |
| const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) { |
| int k = 0; |
| |
| for (int i = 0; i < USHORT_RANGE; ++i) { |
| if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) |
| lut[i] = k++; |
| else |
| lut[i] = 0; |
| } |
| |
| return k - 1; // maximum value stored in lut[], |
| } // i.e. number of ones in bitmap minus 1 |
| |
| static unsigned short reverseLutFromBitmap( |
| const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) { |
| int k = 0; |
| |
| for (int i = 0; i < USHORT_RANGE; ++i) { |
| if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) lut[k++] = i; |
| } |
| |
| int n = k - 1; |
| |
| while (k < USHORT_RANGE) lut[k++] = 0; |
| |
| return n; // maximum k where lut[k] is non-zero, |
| } // i.e. number of ones in bitmap minus 1 |
| |
| static void applyLut(const unsigned short lut[USHORT_RANGE], |
| unsigned short data[/*nData*/], int nData) { |
| for (int i = 0; i < nData; ++i) data[i] = lut[data[i]]; |
| } |
| |
| #ifdef __clang__ |
| #pragma clang diagnostic pop |
| #endif // __clang__ |
| |
| #ifdef _MSC_VER |
| #pragma warning(pop) |
| #endif |
| |
| static bool CompressPiz(unsigned char *outPtr, unsigned int *outSize, |
| const unsigned char *inPtr, size_t inSize, |
| const std::vector<ChannelInfo> &channelInfo, |
| int data_width, int num_lines) { |
| std::vector<unsigned char> bitmap(BITMAP_SIZE); |
| unsigned short minNonZero; |
| unsigned short maxNonZero; |
| |
| #if !TINYEXR_LITTLE_ENDIAN |
| // @todo { PIZ compression on BigEndian architecture. } |
| return false; |
| #endif |
| |
| // Assume `inSize` is multiple of 2 or 4. |
| std::vector<unsigned short> tmpBuffer(inSize / sizeof(unsigned short)); |
| |
| std::vector<PIZChannelData> channelData(channelInfo.size()); |
| unsigned short *tmpBufferEnd = &tmpBuffer.at(0); |
| |
| for (size_t c = 0; c < channelData.size(); c++) { |
| PIZChannelData &cd = channelData[c]; |
| |
| cd.start = tmpBufferEnd; |
| cd.end = cd.start; |
| |
| cd.nx = data_width; |
| cd.ny = num_lines; |
| // cd.ys = c.channel().ySampling; |
| |
| size_t pixelSize = sizeof(int); // UINT and FLOAT |
| if (channelInfo[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| pixelSize = sizeof(short); |
| } |
| |
| cd.size = static_cast<int>(pixelSize / sizeof(short)); |
| |
| tmpBufferEnd += cd.nx * cd.ny * cd.size; |
| } |
| |
| const unsigned char *ptr = inPtr; |
| for (int y = 0; y < num_lines; ++y) { |
| for (size_t i = 0; i < channelData.size(); ++i) { |
| PIZChannelData &cd = channelData[i]; |
| |
| // if (modp (y, cd.ys) != 0) |
| // continue; |
| |
| size_t n = static_cast<size_t>(cd.nx * cd.size); |
| memcpy(cd.end, ptr, n * sizeof(unsigned short)); |
| ptr += n * sizeof(unsigned short); |
| cd.end += n; |
| } |
| } |
| |
| bitmapFromData(&tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()), |
| bitmap.data(), minNonZero, maxNonZero); |
| |
| std::vector<unsigned short> lut(USHORT_RANGE); |
| unsigned short maxValue = forwardLutFromBitmap(bitmap.data(), lut.data()); |
| applyLut(lut.data(), &tmpBuffer.at(0), static_cast<int>(tmpBuffer.size())); |
| |
| // |
| // Store range compression info in _outBuffer |
| // |
| |
| char *buf = reinterpret_cast<char *>(outPtr); |
| |
| memcpy(buf, &minNonZero, sizeof(unsigned short)); |
| buf += sizeof(unsigned short); |
| memcpy(buf, &maxNonZero, sizeof(unsigned short)); |
| buf += sizeof(unsigned short); |
| |
| if (minNonZero <= maxNonZero) { |
| memcpy(buf, reinterpret_cast<char *>(&bitmap[0] + minNonZero), |
| maxNonZero - minNonZero + 1); |
| buf += maxNonZero - minNonZero + 1; |
| } |
| |
| // |
| // Apply wavelet encoding |
| // |
| |
| for (size_t i = 0; i < channelData.size(); ++i) { |
| PIZChannelData &cd = channelData[i]; |
| |
| for (int j = 0; j < cd.size; ++j) { |
| wav2Encode(cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size, |
| maxValue); |
| } |
| } |
| |
| // |
| // Apply Huffman encoding; append the result to _outBuffer |
| // |
| |
| // length header(4byte), then huff data. Initialize length header with zero, |
| // then later fill it by `length`. |
| char *lengthPtr = buf; |
| int zero = 0; |
| memcpy(buf, &zero, sizeof(int)); |
| buf += sizeof(int); |
| |
| int length = |
| hufCompress(&tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()), buf); |
| memcpy(lengthPtr, &length, sizeof(int)); |
| |
| (*outSize) = static_cast<unsigned int>( |
| (reinterpret_cast<unsigned char *>(buf) - outPtr) + |
| static_cast<unsigned int>(length)); |
| |
| // Use uncompressed data when compressed data is larger than uncompressed. |
| // (Issue 40) |
| if ((*outSize) >= inSize) { |
| (*outSize) = static_cast<unsigned int>(inSize); |
| memcpy(outPtr, inPtr, inSize); |
| } |
| return true; |
| } |
| |
| static bool DecompressPiz(unsigned char *outPtr, const unsigned char *inPtr, |
| size_t tmpBufSizeInBytes, size_t inLen, int num_channels, |
| const EXRChannelInfo *channels, int data_width, |
| int num_lines) { |
| if (inLen == tmpBufSizeInBytes) { |
| // Data is not compressed(Issue 40). |
| memcpy(outPtr, inPtr, inLen); |
| return true; |
| } |
| |
| std::vector<unsigned char> bitmap(BITMAP_SIZE); |
| unsigned short minNonZero; |
| unsigned short maxNonZero; |
| |
| #if !TINYEXR_LITTLE_ENDIAN |
| // @todo { PIZ compression on BigEndian architecture. } |
| return false; |
| #endif |
| |
| memset(bitmap.data(), 0, BITMAP_SIZE); |
| |
| if (inLen < 4) { |
| return false; |
| } |
| |
| size_t readLen = 0; |
| |
| const unsigned char *ptr = inPtr; |
| // minNonZero = *(reinterpret_cast<const unsigned short *>(ptr)); |
| tinyexr::cpy2(&minNonZero, reinterpret_cast<const unsigned short *>(ptr)); |
| // maxNonZero = *(reinterpret_cast<const unsigned short *>(ptr + 2)); |
| tinyexr::cpy2(&maxNonZero, reinterpret_cast<const unsigned short *>(ptr + 2)); |
| ptr += 4; |
| readLen += 4; |
| |
| if (maxNonZero >= BITMAP_SIZE) { |
| return false; |
| } |
| |
| //printf("maxNonZero = %d\n", maxNonZero); |
| //printf("minNonZero = %d\n", minNonZero); |
| //printf("len = %d\n", (maxNonZero - minNonZero + 1)); |
| //printf("BITMAPSIZE - min = %d\n", (BITMAP_SIZE - minNonZero)); |
| |
| if (minNonZero <= maxNonZero) { |
| if (((maxNonZero - minNonZero + 1) + readLen) > inLen) { |
| // Input too short |
| return false; |
| } |
| |
| memcpy(reinterpret_cast<char *>(&bitmap[0] + minNonZero), ptr, |
| maxNonZero - minNonZero + 1); |
| ptr += maxNonZero - minNonZero + 1; |
| readLen += maxNonZero - minNonZero + 1; |
| } else { |
| // Issue 194 |
| if ((minNonZero == (BITMAP_SIZE - 1)) && (maxNonZero == 0)) { |
| // OK. all pixels are zero. And no need to read `bitmap` data. |
| } else { |
| // invalid minNonZero/maxNonZero combination. |
| return false; |
| } |
| } |
| |
| std::vector<unsigned short> lut(USHORT_RANGE); |
| memset(lut.data(), 0, sizeof(unsigned short) * USHORT_RANGE); |
| unsigned short maxValue = reverseLutFromBitmap(bitmap.data(), lut.data()); |
| |
| // |
| // Huffman decoding |
| // |
| |
| if ((readLen + 4) > inLen) { |
| return false; |
| } |
| |
| int length=0; |
| |
| // length = *(reinterpret_cast<const int *>(ptr)); |
| tinyexr::cpy4(&length, reinterpret_cast<const int *>(ptr)); |
| ptr += sizeof(int); |
| |
| if (size_t((ptr - inPtr) + length) > inLen) { |
| return false; |
| } |
| |
| std::vector<unsigned short> tmpBuffer(tmpBufSizeInBytes / sizeof(unsigned short)); |
| hufUncompress(reinterpret_cast<const char *>(ptr), length, &tmpBuffer); |
| |
| // |
| // Wavelet decoding |
| // |
| |
| std::vector<PIZChannelData> channelData(static_cast<size_t>(num_channels)); |
| |
| unsigned short *tmpBufferEnd = &tmpBuffer.at(0); |
| |
| for (size_t i = 0; i < static_cast<size_t>(num_channels); ++i) { |
| const EXRChannelInfo &chan = channels[i]; |
| |
| size_t pixelSize = sizeof(int); // UINT and FLOAT |
| if (chan.pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| pixelSize = sizeof(short); |
| } |
| |
| channelData[i].start = tmpBufferEnd; |
| channelData[i].end = channelData[i].start; |
| channelData[i].nx = data_width; |
| channelData[i].ny = num_lines; |
| // channelData[i].ys = 1; |
| channelData[i].size = static_cast<int>(pixelSize / sizeof(short)); |
| |
| tmpBufferEnd += channelData[i].nx * channelData[i].ny * channelData[i].size; |
| } |
| |
| for (size_t i = 0; i < channelData.size(); ++i) { |
| PIZChannelData &cd = channelData[i]; |
| |
| for (int j = 0; j < cd.size; ++j) { |
| wav2Decode(cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size, |
| maxValue); |
| } |
| } |
| |
| // |
| // Expand the pixel data to their original range |
| // |
| |
| applyLut(lut.data(), &tmpBuffer.at(0), static_cast<int>(tmpBufSizeInBytes / sizeof(unsigned short))); |
| |
| for (int y = 0; y < num_lines; y++) { |
| for (size_t i = 0; i < channelData.size(); ++i) { |
| PIZChannelData &cd = channelData[i]; |
| |
| // if (modp (y, cd.ys) != 0) |
| // continue; |
| |
| size_t n = static_cast<size_t>(cd.nx * cd.size); |
| memcpy(outPtr, cd.end, static_cast<size_t>(n * sizeof(unsigned short))); |
| outPtr += n * sizeof(unsigned short); |
| cd.end += n; |
| } |
| } |
| |
| return true; |
| } |
| #endif // TINYEXR_USE_PIZ |
| |
| #if TINYEXR_USE_ZFP |
| |
| struct ZFPCompressionParam { |
| double rate; |
| unsigned int precision; |
| unsigned int __pad0; |
| double tolerance; |
| int type; // TINYEXR_ZFP_COMPRESSIONTYPE_* |
| unsigned int __pad1; |
| |
| ZFPCompressionParam() { |
| type = TINYEXR_ZFP_COMPRESSIONTYPE_RATE; |
| rate = 2.0; |
| precision = 0; |
| tolerance = 0.0; |
| } |
| }; |
| |
| static bool FindZFPCompressionParam(ZFPCompressionParam *param, |
| const EXRAttribute *attributes, |
| int num_attributes, std::string *err) { |
| bool foundType = false; |
| |
| for (int i = 0; i < num_attributes; i++) { |
| if ((strcmp(attributes[i].name, "zfpCompressionType") == 0)) { |
| if (attributes[i].size == 1) { |
| param->type = static_cast<int>(attributes[i].value[0]); |
| foundType = true; |
| break; |
| } else { |
| if (err) { |
| (*err) += |
| "zfpCompressionType attribute must be uchar(1 byte) type.\n"; |
| } |
| return false; |
| } |
| } |
| } |
| |
| if (!foundType) { |
| if (err) { |
| (*err) += "`zfpCompressionType` attribute not found.\n"; |
| } |
| return false; |
| } |
| |
| if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) { |
| for (int i = 0; i < num_attributes; i++) { |
| if ((strcmp(attributes[i].name, "zfpCompressionRate") == 0) && |
| (attributes[i].size == 8)) { |
| param->rate = *(reinterpret_cast<double *>(attributes[i].value)); |
| return true; |
| } |
| } |
| |
| if (err) { |
| (*err) += "`zfpCompressionRate` attribute not found.\n"; |
| } |
| |
| } else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) { |
| for (int i = 0; i < num_attributes; i++) { |
| if ((strcmp(attributes[i].name, "zfpCompressionPrecision") == 0) && |
| (attributes[i].size == 4)) { |
| param->rate = *(reinterpret_cast<int *>(attributes[i].value)); |
| return true; |
| } |
| } |
| |
| if (err) { |
| (*err) += "`zfpCompressionPrecision` attribute not found.\n"; |
| } |
| |
| } else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) { |
| for (int i = 0; i < num_attributes; i++) { |
| if ((strcmp(attributes[i].name, "zfpCompressionTolerance") == 0) && |
| (attributes[i].size == 8)) { |
| param->tolerance = *(reinterpret_cast<double *>(attributes[i].value)); |
| return true; |
| } |
| } |
| |
| if (err) { |
| (*err) += "`zfpCompressionTolerance` attribute not found.\n"; |
| } |
| } else { |
| if (err) { |
| (*err) += "Unknown value specified for `zfpCompressionType`.\n"; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Assume pixel format is FLOAT for all channels. |
| static bool DecompressZfp(float *dst, int dst_width, int dst_num_lines, |
| size_t num_channels, const unsigned char *src, |
| unsigned long src_size, |
| const ZFPCompressionParam ¶m) { |
| size_t uncompressed_size = |
| size_t(dst_width) * size_t(dst_num_lines) * num_channels; |
| |
| if (uncompressed_size == src_size) { |
| // Data is not compressed(Issue 40). |
| memcpy(dst, src, src_size); |
| } |
| |
| zfp_stream *zfp = NULL; |
| zfp_field *field = NULL; |
| |
| TINYEXR_CHECK_AND_RETURN_C((dst_width % 4) == 0, false); |
| TINYEXR_CHECK_AND_RETURN_C((dst_num_lines % 4) == 0, false); |
| |
| if ((size_t(dst_width) & 3U) || (size_t(dst_num_lines) & 3U)) { |
| return false; |
| } |
| |
| field = |
| zfp_field_2d(reinterpret_cast<void *>(const_cast<unsigned char *>(src)), |
| zfp_type_float, static_cast<unsigned int>(dst_width), |
| static_cast<unsigned int>(dst_num_lines) * |
| static_cast<unsigned int>(num_channels)); |
| zfp = zfp_stream_open(NULL); |
| |
| if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) { |
| zfp_stream_set_rate(zfp, param.rate, zfp_type_float, /* dimension */ 2, |
| /* write random access */ 0); |
| } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) { |
| zfp_stream_set_precision(zfp, param.precision); |
| } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) { |
| zfp_stream_set_accuracy(zfp, param.tolerance); |
| } else { |
| return false; |
| } |
| |
| size_t buf_size = zfp_stream_maximum_size(zfp, field); |
| std::vector<unsigned char> buf(buf_size); |
| memcpy(&buf.at(0), src, src_size); |
| |
| bitstream *stream = stream_open(&buf.at(0), buf_size); |
| zfp_stream_set_bit_stream(zfp, stream); |
| zfp_stream_rewind(zfp); |
| |
| size_t image_size = size_t(dst_width) * size_t(dst_num_lines); |
| |
| for (size_t c = 0; c < size_t(num_channels); c++) { |
| // decompress 4x4 pixel block. |
| for (size_t y = 0; y < size_t(dst_num_lines); y += 4) { |
| for (size_t x = 0; x < size_t(dst_width); x += 4) { |
| float fblock[16]; |
| zfp_decode_block_float_2(zfp, fblock); |
| for (size_t j = 0; j < 4; j++) { |
| for (size_t i = 0; i < 4; i++) { |
| dst[c * image_size + ((y + j) * size_t(dst_width) + (x + i))] = |
| fblock[j * 4 + i]; |
| } |
| } |
| } |
| } |
| } |
| |
| zfp_field_free(field); |
| zfp_stream_close(zfp); |
| stream_close(stream); |
| |
| return true; |
| } |
| |
| // Assume pixel format is FLOAT for all channels. |
| static bool CompressZfp(std::vector<unsigned char> *outBuf, |
| unsigned int *outSize, const float *inPtr, int width, |
| int num_lines, int num_channels, |
| const ZFPCompressionParam ¶m) { |
| zfp_stream *zfp = NULL; |
| zfp_field *field = NULL; |
| |
| TINYEXR_CHECK_AND_RETURN_C((width % 4) == 0, false); |
| TINYEXR_CHECK_AND_RETURN_C((num_lines % 4) == 0, false); |
| |
| if ((size_t(width) & 3U) || (size_t(num_lines) & 3U)) { |
| return false; |
| } |
| |
| // create input array. |
| field = zfp_field_2d(reinterpret_cast<void *>(const_cast<float *>(inPtr)), |
| zfp_type_float, static_cast<unsigned int>(width), |
| static_cast<unsigned int>(num_lines * num_channels)); |
| |
| zfp = zfp_stream_open(NULL); |
| |
| if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) { |
| zfp_stream_set_rate(zfp, param.rate, zfp_type_float, 2, 0); |
| } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) { |
| zfp_stream_set_precision(zfp, param.precision); |
| } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) { |
| zfp_stream_set_accuracy(zfp, param.tolerance); |
| } else { |
| return false; |
| } |
| |
| size_t buf_size = zfp_stream_maximum_size(zfp, field); |
| |
| outBuf->resize(buf_size); |
| |
| bitstream *stream = stream_open(&outBuf->at(0), buf_size); |
| zfp_stream_set_bit_stream(zfp, stream); |
| zfp_field_free(field); |
| |
| size_t image_size = size_t(width) * size_t(num_lines); |
| |
| for (size_t c = 0; c < size_t(num_channels); c++) { |
| // compress 4x4 pixel block. |
| for (size_t y = 0; y < size_t(num_lines); y += 4) { |
| for (size_t x = 0; x < size_t(width); x += 4) { |
| float fblock[16]; |
| for (size_t j = 0; j < 4; j++) { |
| for (size_t i = 0; i < 4; i++) { |
| fblock[j * 4 + i] = |
| inPtr[c * image_size + ((y + j) * size_t(width) + (x + i))]; |
| } |
| } |
| zfp_encode_block_float_2(zfp, fblock); |
| } |
| } |
| } |
| |
| zfp_stream_flush(zfp); |
| (*outSize) = static_cast<unsigned int>(zfp_stream_compressed_size(zfp)); |
| |
| zfp_stream_close(zfp); |
| |
| return true; |
| } |
| |
| #endif |
| |
| // |
| // ----------------------------------------------------------------- |
| // |
| |
| // heuristics |
| #define TINYEXR_DIMENSION_THRESHOLD (1024 * 8192) |
| |
| // TODO(syoyo): Refactor function arguments. |
| static bool DecodePixelData(/* out */ unsigned char **out_images, |
| const int *requested_pixel_types, |
| const unsigned char *data_ptr, size_t data_len, |
| int compression_type, int line_order, int width, |
| int height, int x_stride, int y, int line_no, |
| int num_lines, size_t pixel_data_size, |
| size_t num_attributes, |
| const EXRAttribute *attributes, size_t num_channels, |
| const EXRChannelInfo *channels, |
| const std::vector<size_t> &channel_offset_list) { |
| if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { // PIZ |
| #if TINYEXR_USE_PIZ |
| if ((width == 0) || (num_lines == 0) || (pixel_data_size == 0)) { |
| // Invalid input #90 |
| return false; |
| } |
| |
| // Allocate original data size. |
| std::vector<unsigned char> outBuf(static_cast<size_t>( |
| static_cast<size_t>(width * num_lines) * pixel_data_size)); |
| size_t tmpBufLen = outBuf.size(); |
| |
| bool ret = tinyexr::DecompressPiz( |
| reinterpret_cast<unsigned char *>(&outBuf.at(0)), data_ptr, tmpBufLen, |
| data_len, static_cast<int>(num_channels), channels, width, num_lines); |
| |
| if (!ret) { |
| return false; |
| } |
| |
| // For PIZ_COMPRESSION: |
| // pixel sample data for channel 0 for scanline 0 |
| // pixel sample data for channel 1 for scanline 0 |
| // pixel sample data for channel ... for scanline 0 |
| // pixel sample data for channel n for scanline 0 |
| // pixel sample data for channel 0 for scanline 1 |
| // pixel sample data for channel 1 for scanline 1 |
| // pixel sample data for channel ... for scanline 1 |
| // pixel sample data for channel n for scanline 1 |
| // ... |
| for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| const unsigned short *line_ptr = reinterpret_cast<unsigned short *>( |
| &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + |
| channel_offset_list[c] * static_cast<size_t>(width))); |
| for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| FP16 hf; |
| |
| // hf.u = line_ptr[u]; |
| // use `cpy` to avoid unaligned memory access when compiler's |
| // optimization is on. |
| tinyexr::cpy2(&(hf.u), line_ptr + u); |
| |
| tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u)); |
| |
| if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| unsigned short *image = |
| reinterpret_cast<unsigned short **>(out_images)[c]; |
| if (line_order == 0) { |
| image += (static_cast<size_t>(line_no) + v) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } else { |
| image += static_cast<size_t>( |
| (height - 1 - (line_no + static_cast<int>(v)))) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } |
| *image = hf.u; |
| } else { // HALF -> FLOAT |
| FP32 f32 = half_to_float(hf); |
| float *image = reinterpret_cast<float **>(out_images)[c]; |
| size_t offset = 0; |
| if (line_order == 0) { |
| offset = (static_cast<size_t>(line_no) + v) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } else { |
| offset = static_cast<size_t>( |
| (height - 1 - (line_no + static_cast<int>(v)))) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } |
| image += offset; |
| *image = f32.f; |
| } |
| } |
| } |
| } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT, false); |
| |
| for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| const unsigned int *line_ptr = reinterpret_cast<unsigned int *>( |
| &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + |
| channel_offset_list[c] * static_cast<size_t>(width))); |
| for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| unsigned int val; |
| // val = line_ptr[u]; |
| tinyexr::cpy4(&val, line_ptr + u); |
| |
| tinyexr::swap4(&val); |
| |
| unsigned int *image = |
| reinterpret_cast<unsigned int **>(out_images)[c]; |
| if (line_order == 0) { |
| image += (static_cast<size_t>(line_no) + v) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } else { |
| image += static_cast<size_t>( |
| (height - 1 - (line_no + static_cast<int>(v)))) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } |
| *image = val; |
| } |
| } |
| } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT, false); |
| for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| const float *line_ptr = reinterpret_cast<float *>(&outBuf.at( |
| v * pixel_data_size * static_cast<size_t>(width) + |
| channel_offset_list[c] * static_cast<size_t>(width))); |
| for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| float val; |
| // val = line_ptr[u]; |
| tinyexr::cpy4(&val, line_ptr + u); |
| |
| tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); |
| |
| float *image = reinterpret_cast<float **>(out_images)[c]; |
| if (line_order == 0) { |
| image += (static_cast<size_t>(line_no) + v) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } else { |
| image += static_cast<size_t>( |
| (height - 1 - (line_no + static_cast<int>(v)))) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } |
| *image = val; |
| } |
| } |
| } else { |
| return false; |
| } |
| } |
| #else |
| return false; |
| #endif |
| |
| } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS || |
| compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { |
| // Allocate original data size. |
| std::vector<unsigned char> outBuf(static_cast<size_t>(width) * |
| static_cast<size_t>(num_lines) * |
| pixel_data_size); |
| |
| unsigned long dstLen = static_cast<unsigned long>(outBuf.size()); |
| TINYEXR_CHECK_AND_RETURN_C(dstLen > 0, false); |
| if (!tinyexr::DecompressZip( |
| reinterpret_cast<unsigned char *>(&outBuf.at(0)), &dstLen, data_ptr, |
| static_cast<unsigned long>(data_len))) { |
| return false; |
| } |
| |
| // For ZIP_COMPRESSION: |
| // pixel sample data for channel 0 for scanline 0 |
| // pixel sample data for channel 1 for scanline 0 |
| // pixel sample data for channel ... for scanline 0 |
| // pixel sample data for channel n for scanline 0 |
| // pixel sample data for channel 0 for scanline 1 |
| // pixel sample data for channel 1 for scanline 1 |
| // pixel sample data for channel ... for scanline 1 |
| // pixel sample data for channel n for scanline 1 |
| // ... |
| for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| const unsigned short *line_ptr = reinterpret_cast<unsigned short *>( |
| &outBuf.at(v * static_cast<size_t>(pixel_data_size) * |
| static_cast<size_t>(width) + |
| channel_offset_list[c] * static_cast<size_t>(width))); |
| for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| tinyexr::FP16 hf; |
| |
| // hf.u = line_ptr[u]; |
| tinyexr::cpy2(&(hf.u), line_ptr + u); |
| |
| tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u)); |
| |
| if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| unsigned short *image = |
| reinterpret_cast<unsigned short **>(out_images)[c]; |
| if (line_order == 0) { |
| image += (static_cast<size_t>(line_no) + v) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } else { |
| image += (static_cast<size_t>(height) - 1U - |
| (static_cast<size_t>(line_no) + v)) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } |
| *image = hf.u; |
| } else { // HALF -> FLOAT |
| tinyexr::FP32 f32 = half_to_float(hf); |
| float *image = reinterpret_cast<float **>(out_images)[c]; |
| size_t offset = 0; |
| if (line_order == 0) { |
| offset = (static_cast<size_t>(line_no) + v) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } else { |
| offset = (static_cast<size_t>(height) - 1U - |
| (static_cast<size_t>(line_no) + v)) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } |
| image += offset; |
| |
| *image = f32.f; |
| } |
| } |
| } |
| } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT, false); |
| |
| for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| const unsigned int *line_ptr = reinterpret_cast<unsigned int *>( |
| &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + |
| channel_offset_list[c] * static_cast<size_t>(width))); |
| for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| unsigned int val; |
| // val = line_ptr[u]; |
| tinyexr::cpy4(&val, line_ptr + u); |
| |
| tinyexr::swap4(&val); |
| |
| unsigned int *image = |
| reinterpret_cast<unsigned int **>(out_images)[c]; |
| if (line_order == 0) { |
| image += (static_cast<size_t>(line_no) + v) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } else { |
| image += (static_cast<size_t>(height) - 1U - |
| (static_cast<size_t>(line_no) + v)) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } |
| *image = val; |
| } |
| } |
| } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT, false); |
| for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| const float *line_ptr = reinterpret_cast<float *>( |
| &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + |
| channel_offset_list[c] * static_cast<size_t>(width))); |
| for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| float val; |
| // val = line_ptr[u]; |
| tinyexr::cpy4(&val, line_ptr + u); |
| |
| tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); |
| |
| float *image = reinterpret_cast<float **>(out_images)[c]; |
| if (line_order == 0) { |
| image += (static_cast<size_t>(line_no) + v) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } else { |
| image += (static_cast<size_t>(height) - 1U - |
| (static_cast<size_t>(line_no) + v)) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } |
| *image = val; |
| } |
| } |
| } else { |
| return false; |
| } |
| } |
| } else if (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) { |
| // Allocate original data size. |
| std::vector<unsigned char> outBuf(static_cast<size_t>(width) * |
| static_cast<size_t>(num_lines) * |
| pixel_data_size); |
| |
| unsigned long dstLen = static_cast<unsigned long>(outBuf.size()); |
| if (dstLen == 0) { |
| return false; |
| } |
| |
| if (!tinyexr::DecompressRle( |
| reinterpret_cast<unsigned char *>(&outBuf.at(0)), dstLen, data_ptr, |
| static_cast<unsigned long>(data_len))) { |
| return false; |
| } |
| |
| // For RLE_COMPRESSION: |
| // pixel sample data for channel 0 for scanline 0 |
| // pixel sample data for channel 1 for scanline 0 |
| // pixel sample data for channel ... for scanline 0 |
| // pixel sample data for channel n for scanline 0 |
| // pixel sample data for channel 0 for scanline 1 |
| // pixel sample data for channel 1 for scanline 1 |
| // pixel sample data for channel ... for scanline 1 |
| // pixel sample data for channel n for scanline 1 |
| // ... |
| for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| const unsigned short *line_ptr = reinterpret_cast<unsigned short *>( |
| &outBuf.at(v * static_cast<size_t>(pixel_data_size) * |
| static_cast<size_t>(width) + |
| channel_offset_list[c] * static_cast<size_t>(width))); |
| for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| tinyexr::FP16 hf; |
| |
| // hf.u = line_ptr[u]; |
| tinyexr::cpy2(&(hf.u), line_ptr + u); |
| |
| tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u)); |
| |
| if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| unsigned short *image = |
| reinterpret_cast<unsigned short **>(out_images)[c]; |
| if (line_order == 0) { |
| image += (static_cast<size_t>(line_no) + v) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } else { |
| image += (static_cast<size_t>(height) - 1U - |
| (static_cast<size_t>(line_no) + v)) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } |
| *image = hf.u; |
| } else { // HALF -> FLOAT |
| tinyexr::FP32 f32 = half_to_float(hf); |
| float *image = reinterpret_cast<float **>(out_images)[c]; |
| if (line_order == 0) { |
| image += (static_cast<size_t>(line_no) + v) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } else { |
| image += (static_cast<size_t>(height) - 1U - |
| (static_cast<size_t>(line_no) + v)) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } |
| *image = f32.f; |
| } |
| } |
| } |
| } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT, false); |
| |
| for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| const unsigned int *line_ptr = reinterpret_cast<unsigned int *>( |
| &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + |
| channel_offset_list[c] * static_cast<size_t>(width))); |
| for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| unsigned int val; |
| // val = line_ptr[u]; |
| tinyexr::cpy4(&val, line_ptr + u); |
| |
| tinyexr::swap4(&val); |
| |
| unsigned int *image = |
| reinterpret_cast<unsigned int **>(out_images)[c]; |
| if (line_order == 0) { |
| image += (static_cast<size_t>(line_no) + v) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } else { |
| image += (static_cast<size_t>(height) - 1U - |
| (static_cast<size_t>(line_no) + v)) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } |
| *image = val; |
| } |
| } |
| } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT, false); |
| for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| const float *line_ptr = reinterpret_cast<float *>( |
| &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + |
| channel_offset_list[c] * static_cast<size_t>(width))); |
| for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| float val; |
| // val = line_ptr[u]; |
| tinyexr::cpy4(&val, line_ptr + u); |
| |
| tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); |
| |
| float *image = reinterpret_cast<float **>(out_images)[c]; |
| if (line_order == 0) { |
| image += (static_cast<size_t>(line_no) + v) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } else { |
| image += (static_cast<size_t>(height) - 1U - |
| (static_cast<size_t>(line_no) + v)) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } |
| *image = val; |
| } |
| } |
| } else { |
| return false; |
| } |
| } |
| } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| #if TINYEXR_USE_ZFP |
| tinyexr::ZFPCompressionParam zfp_compression_param; |
| std::string e; |
| if (!tinyexr::FindZFPCompressionParam(&zfp_compression_param, attributes, |
| int(num_attributes), &e)) { |
| // This code path should not be reachable. |
| return false; |
| } |
| |
| // Allocate original data size. |
| std::vector<unsigned char> outBuf(static_cast<size_t>(width) * |
| static_cast<size_t>(num_lines) * |
| pixel_data_size); |
| |
| unsigned long dstLen = outBuf.size(); |
| TINYEXR_CHECK_AND_RETURN_C(dstLen > 0, false); |
| tinyexr::DecompressZfp(reinterpret_cast<float *>(&outBuf.at(0)), width, |
| num_lines, num_channels, data_ptr, |
| static_cast<unsigned long>(data_len), |
| zfp_compression_param); |
| |
| // For ZFP_COMPRESSION: |
| // pixel sample data for channel 0 for scanline 0 |
| // pixel sample data for channel 1 for scanline 0 |
| // pixel sample data for channel ... for scanline 0 |
| // pixel sample data for channel n for scanline 0 |
| // pixel sample data for channel 0 for scanline 1 |
| // pixel sample data for channel 1 for scanline 1 |
| // pixel sample data for channel ... for scanline 1 |
| // pixel sample data for channel n for scanline 1 |
| // ... |
| for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| TINYEXR_CHECK_AND_RETURN_C(channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT, false); |
| if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT, false); |
| for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| const float *line_ptr = reinterpret_cast<float *>( |
| &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + |
| channel_offset_list[c] * static_cast<size_t>(width))); |
| for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| float val; |
| tinyexr::cpy4(&val, line_ptr + u); |
| |
| tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); |
| |
| float *image = reinterpret_cast<float **>(out_images)[c]; |
| if (line_order == 0) { |
| image += (static_cast<size_t>(line_no) + v) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } else { |
| image += (static_cast<size_t>(height) - 1U - |
| (static_cast<size_t>(line_no) + v)) * |
| static_cast<size_t>(x_stride) + |
| u; |
| } |
| *image = val; |
| } |
| } |
| } else { |
| return false; |
| } |
| } |
| #else |
| (void)attributes; |
| (void)num_attributes; |
| (void)num_channels; |
| return false; |
| #endif |
| } else if (compression_type == TINYEXR_COMPRESSIONTYPE_NONE) { |
| for (size_t c = 0; c < num_channels; c++) { |
| for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| const unsigned short *line_ptr = |
| reinterpret_cast<const unsigned short *>( |
| data_ptr + v * pixel_data_size * size_t(width) + |
| channel_offset_list[c] * static_cast<size_t>(width)); |
| |
| if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| unsigned short *outLine = |
| reinterpret_cast<unsigned short *>(out_images[c]); |
| if (line_order == 0) { |
| outLine += (size_t(y) + v) * size_t(x_stride); |
| } else { |
| outLine += |
| (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride); |
| } |
| |
| for (int u = 0; u < width; u++) { |
| tinyexr::FP16 hf; |
| |
| // hf.u = line_ptr[u]; |
| tinyexr::cpy2(&(hf.u), line_ptr + u); |
| |
| tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u)); |
| |
| outLine[u] = hf.u; |
| } |
| } else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) { |
| float *outLine = reinterpret_cast<float *>(out_images[c]); |
| if (line_order == 0) { |
| outLine += (size_t(y) + v) * size_t(x_stride); |
| } else { |
| outLine += |
| (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride); |
| } |
| |
| if (reinterpret_cast<const unsigned char *>(line_ptr + width) > |
| (data_ptr + data_len)) { |
| // Insufficient data size |
| return false; |
| } |
| |
| for (int u = 0; u < width; u++) { |
| tinyexr::FP16 hf; |
| |
| // address may not be aligned. use byte-wise copy for safety.#76 |
| // hf.u = line_ptr[u]; |
| tinyexr::cpy2(&(hf.u), line_ptr + u); |
| |
| tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u)); |
| |
| tinyexr::FP32 f32 = half_to_float(hf); |
| |
| outLine[u] = f32.f; |
| } |
| } else { |
| return false; |
| } |
| } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| const float *line_ptr = reinterpret_cast<const float *>( |
| data_ptr + v * pixel_data_size * size_t(width) + |
| channel_offset_list[c] * static_cast<size_t>(width)); |
| |
| float *outLine = reinterpret_cast<float *>(out_images[c]); |
| if (line_order == 0) { |
| outLine += (size_t(y) + v) * size_t(x_stride); |
| } else { |
| outLine += |
| (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride); |
| } |
| |
| if (reinterpret_cast<const unsigned char *>(line_ptr + width) > |
| (data_ptr + data_len)) { |
| // Insufficient data size |
| return false; |
| } |
| |
| for (int u = 0; u < width; u++) { |
| float val; |
| tinyexr::cpy4(&val, line_ptr + u); |
| |
| tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); |
| |
| outLine[u] = val; |
| } |
| } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| const unsigned int *line_ptr = reinterpret_cast<const unsigned int *>( |
| data_ptr + v * pixel_data_size * size_t(width) + |
| channel_offset_list[c] * static_cast<size_t>(width)); |
| |
| unsigned int *outLine = |
| reinterpret_cast<unsigned int *>(out_images[c]); |
| if (line_order == 0) { |
| outLine += (size_t(y) + v) * size_t(x_stride); |
| } else { |
| outLine += |
| (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride); |
| } |
| |
| if (reinterpret_cast<const unsigned char *>(line_ptr + width) > |
| (data_ptr + data_len)) { |
| // Corrupted data |
| return false; |
| } |
| |
| for (int u = 0; u < width; u++) { |
| |
| unsigned int val; |
| tinyexr::cpy4(&val, line_ptr + u); |
| |
| tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); |
| |
| outLine[u] = val; |
| } |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool DecodeTiledPixelData( |
| unsigned char **out_images, int *width, int *height, |
| const int *requested_pixel_types, const unsigned char *data_ptr, |
| size_t data_len, int compression_type, int line_order, int data_width, |
| int data_height, int tile_offset_x, int tile_offset_y, int tile_size_x, |
| int tile_size_y, size_t pixel_data_size, size_t num_attributes, |
| const EXRAttribute *attributes, size_t num_channels, |
| const EXRChannelInfo *channels, |
| const std::vector<size_t> &channel_offset_list) { |
| // Here, data_width and data_height are the dimensions of the current (sub)level. |
| if (tile_size_x * tile_offset_x > data_width || |
| tile_size_y * tile_offset_y > data_height) { |
| return false; |
| } |
| |
| // Compute actual image size in a tile. |
| if ((tile_offset_x + 1) * tile_size_x >= data_width) { |
| (*width) = data_width - (tile_offset_x * tile_size_x); |
| } else { |
| (*width) = tile_size_x; |
| } |
| |
| if ((tile_offset_y + 1) * tile_size_y >= data_height) { |
| (*height) = data_height - (tile_offset_y * tile_size_y); |
| } else { |
| (*height) = tile_size_y; |
| } |
| |
| // Image size = tile size. |
| return DecodePixelData(out_images, requested_pixel_types, data_ptr, data_len, |
| compression_type, line_order, (*width), tile_size_y, |
| /* stride */ tile_size_x, /* y */ 0, /* line_no */ 0, |
| (*height), pixel_data_size, num_attributes, attributes, |
| num_channels, channels, channel_offset_list); |
| } |
| |
| static bool ComputeChannelLayout(std::vector<size_t> *channel_offset_list, |
| int *pixel_data_size, size_t *channel_offset, |
| int num_channels, |
| const EXRChannelInfo *channels) { |
| channel_offset_list->resize(static_cast<size_t>(num_channels)); |
| |
| (*pixel_data_size) = 0; |
| (*channel_offset) = 0; |
| |
| for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| (*channel_offset_list)[c] = (*channel_offset); |
| if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| (*pixel_data_size) += sizeof(unsigned short); |
| (*channel_offset) += sizeof(unsigned short); |
| } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| (*pixel_data_size) += sizeof(float); |
| (*channel_offset) += sizeof(float); |
| } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| (*pixel_data_size) += sizeof(unsigned int); |
| (*channel_offset) += sizeof(unsigned int); |
| } else { |
| // ??? |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // TODO: Simply return nullptr when failed to allocate? |
| static unsigned char **AllocateImage(int num_channels, |
| const EXRChannelInfo *channels, |
| const int *requested_pixel_types, |
| int data_width, int data_height, bool *success) { |
| unsigned char **images = |
| reinterpret_cast<unsigned char **>(static_cast<float **>( |
| malloc(sizeof(float *) * static_cast<size_t>(num_channels)))); |
| |
| for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| images[c] = NULL; |
| } |
| |
| bool valid = true; |
| |
| for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| size_t data_len = |
| static_cast<size_t>(data_width) * static_cast<size_t>(data_height); |
| if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| // pixel_data_size += sizeof(unsigned short); |
| // channel_offset += sizeof(unsigned short); |
| // Alloc internal image for half type. |
| if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| images[c] = |
| reinterpret_cast<unsigned char *>(static_cast<unsigned short *>( |
| malloc(sizeof(unsigned short) * data_len))); |
| } else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) { |
| images[c] = reinterpret_cast<unsigned char *>( |
| static_cast<float *>(malloc(sizeof(float) * data_len))); |
| } else { |
| images[c] = NULL; // just in case. |
| valid = false; |
| break; |
| } |
| } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| // pixel_data_size += sizeof(float); |
| // channel_offset += sizeof(float); |
| images[c] = reinterpret_cast<unsigned char *>( |
| static_cast<float *>(malloc(sizeof(float) * data_len))); |
| } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| // pixel_data_size += sizeof(unsigned int); |
| // channel_offset += sizeof(unsigned int); |
| images[c] = reinterpret_cast<unsigned char *>( |
| static_cast<unsigned int *>(malloc(sizeof(unsigned int) * data_len))); |
| } else { |
| images[c] = NULL; // just in case. |
| valid = false; |
| break; |
| } |
| } |
| |
| if (!valid) { |
| for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| if (images[c]) { |
| free(images[c]); |
| images[c] = NULL; |
| } |
| } |
| |
| if (success) { |
| (*success) = false; |
| } |
| } else { |
| if (success) { |
| (*success) = true; |
| } |
| } |
| |
| return images; |
| } |
| |
| #ifdef _WIN32 |
| static inline std::wstring UTF8ToWchar(const std::string &str) { |
| int wstr_size = |
| MultiByteToWideChar(CP_UTF8, 0, str.data(), (int)str.size(), NULL, 0); |
| std::wstring wstr(wstr_size, 0); |
| MultiByteToWideChar(CP_UTF8, 0, str.data(), (int)str.size(), &wstr[0], |
| (int)wstr.size()); |
| return wstr; |
| } |
| #endif |
| |
| |
| static int ParseEXRHeader(HeaderInfo *info, bool *empty_header, |
| const EXRVersion *version, std::string *err, |
| const unsigned char *buf, size_t size) { |
| const char *marker = reinterpret_cast<const char *>(&buf[0]); |
| |
| if (empty_header) { |
| (*empty_header) = false; |
| } |
| |
| if (version->multipart) { |
| if (size > 0 && marker[0] == '\0') { |
| // End of header list. |
| if (empty_header) { |
| (*empty_header) = true; |
| } |
| return TINYEXR_SUCCESS; |
| } |
| } |
| |
| // According to the spec, the header of every OpenEXR file must contain at |
| // least the following attributes: |
| // |
| // channels chlist |
| // compression compression |
| // dataWindow box2i |
| // displayWindow box2i |
| // lineOrder lineOrder |
| // pixelAspectRatio float |
| // screenWindowCenter v2f |
| // screenWindowWidth float |
| bool has_channels = false; |
| bool has_compression = false; |
| bool has_data_window = false; |
| bool has_display_window = false; |
| bool has_line_order = false; |
| bool has_pixel_aspect_ratio = false; |
| bool has_screen_window_center = false; |
| bool has_screen_window_width = false; |
| bool has_name = false; |
| bool has_type = false; |
| |
| info->name.clear(); |
| info->type.clear(); |
| |
| info->data_window.min_x = 0; |
| info->data_window.min_y = 0; |
| info->data_window.max_x = 0; |
| info->data_window.max_y = 0; |
| info->line_order = 0; // @fixme |
| info->display_window.min_x = 0; |
| info->display_window.min_y = 0; |
| info->display_window.max_x = 0; |
| info->display_window.max_y = 0; |
| info->screen_window_center[0] = 0.0f; |
| info->screen_window_center[1] = 0.0f; |
| info->screen_window_width = -1.0f; |
| info->pixel_aspect_ratio = -1.0f; |
| |
| info->tiled = 0; |
| info->tile_size_x = -1; |
| info->tile_size_y = -1; |
| info->tile_level_mode = -1; |
| info->tile_rounding_mode = -1; |
| |
| info->attributes.clear(); |
| |
| // Read attributes |
| size_t orig_size = size; |
| for (size_t nattr = 0; nattr < TINYEXR_MAX_HEADER_ATTRIBUTES; nattr++) { |
| if (0 == size) { |
| if (err) { |
| (*err) += "Insufficient data size for attributes.\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } else if (marker[0] == '\0') { |
| size--; |
| break; |
| } |
| |
| std::string attr_name; |
| std::string attr_type; |
| std::vector<unsigned char> data; |
| size_t marker_size; |
| if (!tinyexr::ReadAttribute(&attr_name, &attr_type, &data, &marker_size, |
| marker, size)) { |
| if (err) { |
| (*err) += "Failed to read attribute.\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| marker += marker_size; |
| size -= marker_size; |
| |
| // For a multipart file, the version field 9th bit is 0. |
| if ((version->tiled || version->multipart || version->non_image) && attr_name.compare("tiles") == 0) { |
| unsigned int x_size, y_size; |
| unsigned char tile_mode; |
| if (data.size() != 9) { |
| if (err) { |
| (*err) += "(ParseEXRHeader) Invalid attribute data size. Attribute data size must be 9.\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| memcpy(&x_size, &data.at(0), sizeof(int)); |
| memcpy(&y_size, &data.at(4), sizeof(int)); |
| tile_mode = data[8]; |
| tinyexr::swap4(&x_size); |
| tinyexr::swap4(&y_size); |
| |
| if (x_size > static_cast<unsigned int>(std::numeric_limits<int>::max()) || |
| y_size > static_cast<unsigned int>(std::numeric_limits<int>::max())) { |
| if (err) { |
| (*err) = "Tile sizes were invalid."; |
| } |
| return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| } |
| |
| info->tile_size_x = static_cast<int>(x_size); |
| info->tile_size_y = static_cast<int>(y_size); |
| |
| // mode = levelMode + roundingMode * 16 |
| info->tile_level_mode = tile_mode & 0x3; |
| info->tile_rounding_mode = (tile_mode >> 4) & 0x1; |
| info->tiled = 1; |
| } else if (attr_name.compare("compression") == 0) { |
| bool ok = false; |
| if (data[0] < TINYEXR_COMPRESSIONTYPE_PIZ) { |
| ok = true; |
| } |
| |
| if (data[0] == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| #if TINYEXR_USE_PIZ |
| ok = true; |
| #else |
| if (err) { |
| (*err) = "PIZ compression is not supported."; |
| } |
| return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| #endif |
| } |
| |
| if (data[0] == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| #if TINYEXR_USE_ZFP |
| ok = true; |
| #else |
| if (err) { |
| (*err) = "ZFP compression is not supported."; |
| } |
| return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| #endif |
| } |
| |
| if (!ok) { |
| if (err) { |
| (*err) = "Unknown compression type."; |
| } |
| return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| } |
| |
| info->compression_type = static_cast<int>(data[0]); |
| has_compression = true; |
| |
| } else if (attr_name.compare("channels") == 0) { |
| // name: zero-terminated string, from 1 to 255 bytes long |
| // pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2 |
| // pLinear: unsigned char, possible values are 0 and 1 |
| // reserved: three chars, should be zero |
| // xSampling: int |
| // ySampling: int |
| |
| if (!ReadChannelInfo(info->channels, data)) { |
| if (err) { |
| (*err) += "Failed to parse channel info.\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| if (info->channels.size() < 1) { |
| if (err) { |
| (*err) += "# of channels is zero.\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| has_channels = true; |
| |
| } else if (attr_name.compare("dataWindow") == 0) { |
| if (data.size() >= 16) { |
| memcpy(&info->data_window.min_x, &data.at(0), sizeof(int)); |
| memcpy(&info->data_window.min_y, &data.at(4), sizeof(int)); |
| memcpy(&info->data_window.max_x, &data.at(8), sizeof(int)); |
| memcpy(&info->data_window.max_y, &data.at(12), sizeof(int)); |
| tinyexr::swap4(&info->data_window.min_x); |
| tinyexr::swap4(&info->data_window.min_y); |
| tinyexr::swap4(&info->data_window.max_x); |
| tinyexr::swap4(&info->data_window.max_y); |
| has_data_window = true; |
| } |
| } else if (attr_name.compare("displayWindow") == 0) { |
| if (data.size() >= 16) { |
| memcpy(&info->display_window.min_x, &data.at(0), sizeof(int)); |
| memcpy(&info->display_window.min_y, &data.at(4), sizeof(int)); |
| memcpy(&info->display_window.max_x, &data.at(8), sizeof(int)); |
| memcpy(&info->display_window.max_y, &data.at(12), sizeof(int)); |
| tinyexr::swap4(&info->display_window.min_x); |
| tinyexr::swap4(&info->display_window.min_y); |
| tinyexr::swap4(&info->display_window.max_x); |
| tinyexr::swap4(&info->display_window.max_y); |
| |
| has_display_window = true; |
| } |
| } else if (attr_name.compare("lineOrder") == 0) { |
| if (data.size() >= 1) { |
| info->line_order = static_cast<int>(data[0]); |
| has_line_order = true; |
| } |
| } else if (attr_name.compare("pixelAspectRatio") == 0) { |
| if (data.size() >= sizeof(float)) { |
| memcpy(&info->pixel_aspect_ratio, &data.at(0), sizeof(float)); |
| tinyexr::swap4(&info->pixel_aspect_ratio); |
| has_pixel_aspect_ratio = true; |
| } |
| } else if (attr_name.compare("screenWindowCenter") == 0) { |
| if (data.size() >= 8) { |
| memcpy(&info->screen_window_center[0], &data.at(0), sizeof(float)); |
| memcpy(&info->screen_window_center[1], &data.at(4), sizeof(float)); |
| tinyexr::swap4(&info->screen_window_center[0]); |
| tinyexr::swap4(&info->screen_window_center[1]); |
| has_screen_window_center = true; |
| } |
| } else if (attr_name.compare("screenWindowWidth") == 0) { |
| if (data.size() >= sizeof(float)) { |
| memcpy(&info->screen_window_width, &data.at(0), sizeof(float)); |
| tinyexr::swap4(&info->screen_window_width); |
| |
| has_screen_window_width = true; |
| } |
| } else if (attr_name.compare("chunkCount") == 0) { |
| if (data.size() >= sizeof(int)) { |
| memcpy(&info->chunk_count, &data.at(0), sizeof(int)); |
| tinyexr::swap4(&info->chunk_count); |
| } |
| } else if (attr_name.compare("name") == 0) { |
| if (!data.empty() && data[0]) { |
| data.push_back(0); |
| size_t len = strlen(reinterpret_cast<const char*>(&data[0])); |
| info->name.resize(len); |
| info->name.assign(reinterpret_cast<const char*>(&data[0]), len); |
| has_name = true; |
| } |
| } else if (attr_name.compare("type") == 0) { |
| if (!data.empty() && data[0]) { |
| data.push_back(0); |
| size_t len = strlen(reinterpret_cast<const char*>(&data[0])); |
| info->type.resize(len); |
| info->type.assign(reinterpret_cast<const char*>(&data[0]), len); |
| has_type = true; |
| } |
| } else { |
| // Custom attribute(up to TINYEXR_MAX_CUSTOM_ATTRIBUTES) |
| if (info->attributes.size() < TINYEXR_MAX_CUSTOM_ATTRIBUTES) { |
| EXRAttribute attrib; |
| #ifdef _MSC_VER |
| strncpy_s(attrib.name, attr_name.c_str(), 255); |
| strncpy_s(attrib.type, attr_type.c_str(), 255); |
| #else |
| strncpy(attrib.name, attr_name.c_str(), 255); |
| strncpy(attrib.type, attr_type.c_str(), 255); |
| #endif |
| attrib.name[255] = '\0'; |
| attrib.type[255] = '\0'; |
| //std::cout << "i = " << info->attributes.size() << ", dsize = " << data.size() << "\n"; |
| attrib.size = static_cast<int>(data.size()); |
| attrib.value = static_cast<unsigned char *>(malloc(data.size())); |
| memcpy(reinterpret_cast<char *>(attrib.value), &data.at(0), |
| data.size()); |
| info->attributes.push_back(attrib); |
| } |
| } |
| } |
| |
| // Check if required attributes exist |
| { |
| std::stringstream ss_err; |
| |
| if (!has_compression) { |
| ss_err << "\"compression\" attribute not found in the header." |
| << std::endl; |
| } |
| |
| if (!has_channels) { |
| ss_err << "\"channels\" attribute not found in the header." << std::endl; |
| } |
| |
| if (!has_line_order) { |
| ss_err << "\"lineOrder\" attribute not found in the header." << std::endl; |
| } |
| |
| if (!has_display_window) { |
| ss_err << "\"displayWindow\" attribute not found in the header." |
| << std::endl; |
| } |
| |
| if (!has_data_window) { |
| ss_err << "\"dataWindow\" attribute not found in the header or invalid." |
| << std::endl; |
| } |
| |
| if (!has_pixel_aspect_ratio) { |
| ss_err << "\"pixelAspectRatio\" attribute not found in the header." |
| << std::endl; |
| } |
| |
| if (!has_screen_window_width) { |
| ss_err << "\"screenWindowWidth\" attribute not found in the header." |
| << std::endl; |
| } |
| |
| if (!has_screen_window_center) { |
| ss_err << "\"screenWindowCenter\" attribute not found in the header." |
| << std::endl; |
| } |
| |
| if (version->multipart || version->non_image) { |
| if (!has_name) { |
| ss_err << "\"name\" attribute not found in the header." |
| << std::endl; |
| } |
| if (!has_type) { |
| ss_err << "\"type\" attribute not found in the header." |
| << std::endl; |
| } |
| } |
| |
| if (!(ss_err.str().empty())) { |
| if (err) { |
| (*err) += ss_err.str(); |
| } |
| |
| return TINYEXR_ERROR_INVALID_HEADER; |
| } |
| } |
| |
| info->header_len = static_cast<unsigned int>(orig_size - size); |
| |
| return TINYEXR_SUCCESS; |
| } |
| |
| // C++ HeaderInfo to C EXRHeader conversion. |
| static bool ConvertHeader(EXRHeader *exr_header, const HeaderInfo &info, std::string *warn, std::string *err) { |
| exr_header->pixel_aspect_ratio = info.pixel_aspect_ratio; |
| exr_header->screen_window_center[0] = info.screen_window_center[0]; |
| exr_header->screen_window_center[1] = info.screen_window_center[1]; |
| exr_header->screen_window_width = info.screen_window_width; |
| exr_header->chunk_count = info.chunk_count; |
| exr_header->display_window.min_x = info.display_window.min_x; |
| exr_header->display_window.min_y = info.display_window.min_y; |
| exr_header->display_window.max_x = info.display_window.max_x; |
| exr_header->display_window.max_y = info.display_window.max_y; |
| exr_header->data_window.min_x = info.data_window.min_x; |
| exr_header->data_window.min_y = info.data_window.min_y; |
| exr_header->data_window.max_x = info.data_window.max_x; |
| exr_header->data_window.max_y = info.data_window.max_y; |
| exr_header->line_order = info.line_order; |
| exr_header->compression_type = info.compression_type; |
| exr_header->tiled = info.tiled; |
| exr_header->tile_size_x = info.tile_size_x; |
| exr_header->tile_size_y = info.tile_size_y; |
| exr_header->tile_level_mode = info.tile_level_mode; |
| exr_header->tile_rounding_mode = info.tile_rounding_mode; |
| |
| EXRSetNameAttr(exr_header, info.name.c_str()); |
| |
| |
| if (!info.type.empty()) { |
| bool valid = true; |
| if (info.type == "scanlineimage") { |
| if (exr_header->tiled) { |
| if (err) { |
| (*err) += "(ConvertHeader) tiled bit must be off for `scanlineimage` type.\n"; |
| } |
| valid = false; |
| } |
| } else if (info.type == "tiledimage") { |
| if (!exr_header->tiled) { |
| if (err) { |
| (*err) += "(ConvertHeader) tiled bit must be on for `tiledimage` type.\n"; |
| } |
| valid = false; |
| } |
| } else if (info.type == "deeptile") { |
| exr_header->non_image = 1; |
| if (!exr_header->tiled) { |
| if (err) { |
| (*err) += "(ConvertHeader) tiled bit must be on for `deeptile` type.\n"; |
| } |
| valid = false; |
| } |
| } else if (info.type == "deepscanline") { |
| exr_header->non_image = 1; |
| if (exr_header->tiled) { |
| if (err) { |
| (*err) += "(ConvertHeader) tiled bit must be off for `deepscanline` type.\n"; |
| } |
| //valid = false; |
| } |
| } else { |
| if (warn) { |
| std::stringstream ss; |
| ss << "(ConvertHeader) Unsupported or unknown info.type: " << info.type << "\n"; |
| (*warn) += ss.str(); |
| } |
| } |
| |
| if (!valid) { |
| return false; |
| } |
| } |
| |
| exr_header->num_channels = static_cast<int>(info.channels.size()); |
| |
| exr_header->channels = static_cast<EXRChannelInfo *>(malloc( |
| sizeof(EXRChannelInfo) * static_cast<size_t>(exr_header->num_channels))); |
| for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { |
| #ifdef _MSC_VER |
| strncpy_s(exr_header->channels[c].name, info.channels[c].name.c_str(), 255); |
| #else |
| strncpy(exr_header->channels[c].name, info.channels[c].name.c_str(), 255); |
| #endif |
| // manually add '\0' for safety. |
| exr_header->channels[c].name[255] = '\0'; |
| |
| exr_header->channels[c].pixel_type = info.channels[c].pixel_type; |
| exr_header->channels[c].p_linear = info.channels[c].p_linear; |
| exr_header->channels[c].x_sampling = info.channels[c].x_sampling; |
| exr_header->channels[c].y_sampling = info.channels[c].y_sampling; |
| } |
| |
| exr_header->pixel_types = static_cast<int *>( |
| malloc(sizeof(int) * static_cast<size_t>(exr_header->num_channels))); |
| for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { |
| exr_header->pixel_types[c] = info.channels[c].pixel_type; |
| } |
| |
| // Initially fill with values of `pixel_types` |
| exr_header->requested_pixel_types = static_cast<int *>( |
| malloc(sizeof(int) * static_cast<size_t>(exr_header->num_channels))); |
| for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { |
| exr_header->requested_pixel_types[c] = info.channels[c].pixel_type; |
| } |
| |
| exr_header->num_custom_attributes = static_cast<int>(info.attributes.size()); |
| |
| if (exr_header->num_custom_attributes > 0) { |
| // TODO(syoyo): Report warning when # of attributes exceeds |
| // `TINYEXR_MAX_CUSTOM_ATTRIBUTES` |
| if (exr_header->num_custom_attributes > TINYEXR_MAX_CUSTOM_ATTRIBUTES) { |
| exr_header->num_custom_attributes = TINYEXR_MAX_CUSTOM_ATTRIBUTES; |
| } |
| |
| exr_header->custom_attributes = static_cast<EXRAttribute *>(malloc( |
| sizeof(EXRAttribute) * size_t(exr_header->num_custom_attributes))); |
| |
| for (size_t i = 0; i < size_t(exr_header->num_custom_attributes); i++) { |
| memcpy(exr_header->custom_attributes[i].name, info.attributes[i].name, |
| 256); |
| memcpy(exr_header->custom_attributes[i].type, info.attributes[i].type, |
| 256); |
| exr_header->custom_attributes[i].size = info.attributes[i].size; |
| // Just copy pointer |
| exr_header->custom_attributes[i].value = info.attributes[i].value; |
| } |
| |
| } else { |
| exr_header->custom_attributes = NULL; |
| } |
| |
| exr_header->header_len = info.header_len; |
| |
| return true; |
| } |
| |
| struct OffsetData { |
| OffsetData() : num_x_levels(0), num_y_levels(0) {} |
| std::vector<std::vector<std::vector <tinyexr::tinyexr_uint64> > > offsets; |
| int num_x_levels; |
| int num_y_levels; |
| }; |
| |
| // -1 = error |
| static int LevelIndex(int lx, int ly, int tile_level_mode, int num_x_levels) { |
| switch (tile_level_mode) { |
| case TINYEXR_TILE_ONE_LEVEL: |
| return 0; |
| |
| case TINYEXR_TILE_MIPMAP_LEVELS: |
| return lx; |
| |
| case TINYEXR_TILE_RIPMAP_LEVELS: |
| return lx + ly * num_x_levels; |
| |
| default: |
| return -1; |
| } |
| // return 0; |
| } |
| |
| static int LevelSize(int toplevel_size, int level, int tile_rounding_mode) { |
| if (level < 0) { |
| return -1; |
| } |
| |
| int b = static_cast<int>(1u << static_cast<unsigned int>(level)); |
| int level_size = toplevel_size / b; |
| |
| if (tile_rounding_mode == TINYEXR_TILE_ROUND_UP && level_size * b < toplevel_size) |
| level_size += 1; |
| |
| return std::max(level_size, 1); |
| } |
| |
| static int DecodeTiledLevel(EXRImage* exr_image, const EXRHeader* exr_header, |
| const OffsetData& offset_data, |
| const std::vector<size_t>& channel_offset_list, |
| int pixel_data_size, |
| const unsigned char* head, const size_t size, |
| std::string* err) { |
| int num_channels = exr_header->num_channels; |
| |
| int level_index = LevelIndex(exr_image->level_x, exr_image->level_y, exr_header->tile_level_mode, offset_data.num_x_levels); |
| int num_y_tiles = int(offset_data.offsets[size_t(level_index)].size()); |
| if (num_y_tiles < 1) { |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| int num_x_tiles = int(offset_data.offsets[size_t(level_index)][0].size()); |
| if (num_x_tiles < 1) { |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| int num_tiles = num_x_tiles * num_y_tiles; |
| |
| int err_code = TINYEXR_SUCCESS; |
| |
| enum { |
| EF_SUCCESS = 0, |
| EF_INVALID_DATA = 1, |
| EF_INSUFFICIENT_DATA = 2, |
| EF_FAILED_TO_DECODE = 4 |
| }; |
| #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| std::atomic<unsigned> error_flag(EF_SUCCESS); |
| #else |
| unsigned error_flag(EF_SUCCESS); |
| #endif |
| |
| // Although the spec says : "...the data window is subdivided into an array of smaller rectangles...", |
| // the IlmImf library allows the dimensions of the tile to be larger (or equal) than the dimensions of the data window. |
| #if 0 |
| if ((exr_header->tile_size_x > exr_image->width || exr_header->tile_size_y > exr_image->height) && |
| exr_image->level_x == 0 && exr_image->level_y == 0) { |
| if (err) { |
| (*err) += "Failed to decode tile data.\n"; |
| } |
| err_code = TINYEXR_ERROR_INVALID_DATA; |
| } |
| #endif |
| exr_image->tiles = static_cast<EXRTile*>( |
| calloc(sizeof(EXRTile), static_cast<size_t>(num_tiles))); |
| |
| #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| std::vector<std::thread> workers; |
| std::atomic<int> tile_count(0); |
| |
| int num_threads = std::max(1, int(std::thread::hardware_concurrency())); |
| if (num_threads > int(num_tiles)) { |
| num_threads = int(num_tiles); |
| } |
| |
| for (int t = 0; t < num_threads; t++) { |
| workers.emplace_back(std::thread([&]() |
| { |
| int tile_idx = 0; |
| while ((tile_idx = tile_count++) < num_tiles) { |
| |
| #else |
| #if TINYEXR_USE_OPENMP |
| #pragma omp parallel for |
| #endif |
| for (int tile_idx = 0; tile_idx < num_tiles; tile_idx++) { |
| #endif |
| // Allocate memory for each tile. |
| bool alloc_success = false; |
| exr_image->tiles[tile_idx].images = tinyexr::AllocateImage( |
| num_channels, exr_header->channels, |
| exr_header->requested_pixel_types, exr_header->tile_size_x, |
| exr_header->tile_size_y, &alloc_success); |
| |
| if (!alloc_success) { |
| error_flag |= EF_INVALID_DATA; |
| continue; |
| } |
| |
| int x_tile = tile_idx % num_x_tiles; |
| int y_tile = tile_idx / num_x_tiles; |
| // 16 byte: tile coordinates |
| // 4 byte : data size |
| // ~ : data(uncompressed or compressed) |
| tinyexr::tinyexr_uint64 offset = offset_data.offsets[size_t(level_index)][size_t(y_tile)][size_t(x_tile)]; |
| if (offset + sizeof(int) * 5 > size) { |
| // Insufficient data size. |
| error_flag |= EF_INSUFFICIENT_DATA; |
| continue; |
| } |
| |
| size_t data_size = |
| size_t(size - (offset + sizeof(int) * 5)); |
| const unsigned char* data_ptr = |
| reinterpret_cast<const unsigned char*>(head + offset); |
| |
| int tile_coordinates[4]; |
| memcpy(tile_coordinates, data_ptr, sizeof(int) * 4); |
| tinyexr::swap4(&tile_coordinates[0]); |
| tinyexr::swap4(&tile_coordinates[1]); |
| tinyexr::swap4(&tile_coordinates[2]); |
| tinyexr::swap4(&tile_coordinates[3]); |
| |
| if (tile_coordinates[2] != exr_image->level_x) { |
| // Invalid data. |
| error_flag |= EF_INVALID_DATA; |
| continue; |
| } |
| if (tile_coordinates[3] != exr_image->level_y) { |
| // Invalid data. |
| error_flag |= EF_INVALID_DATA; |
| continue; |
| } |
| |
| int data_len; |
| memcpy(&data_len, data_ptr + 16, |
| sizeof(int)); // 16 = sizeof(tile_coordinates) |
| tinyexr::swap4(&data_len); |
| |
| if (data_len < 2 || size_t(data_len) > data_size) { |
| // Insufficient data size. |
| error_flag |= EF_INSUFFICIENT_DATA; |
| continue; |
| } |
| |
| // Move to data addr: 20 = 16 + 4; |
| data_ptr += 20; |
| bool ret = tinyexr::DecodeTiledPixelData( |
| exr_image->tiles[tile_idx].images, |
| &(exr_image->tiles[tile_idx].width), |
| &(exr_image->tiles[tile_idx].height), |
| exr_header->requested_pixel_types, data_ptr, |
| static_cast<size_t>(data_len), exr_header->compression_type, |
| exr_header->line_order, |
| exr_image->width, exr_image->height, |
| tile_coordinates[0], tile_coordinates[1], exr_header->tile_size_x, |
| exr_header->tile_size_y, static_cast<size_t>(pixel_data_size), |
| static_cast<size_t>(exr_header->num_custom_attributes), |
| exr_header->custom_attributes, |
| static_cast<size_t>(exr_header->num_channels), |
| exr_header->channels, channel_offset_list); |
| |
| if (!ret) { |
| // Failed to decode tile data. |
| error_flag |= EF_FAILED_TO_DECODE; |
| } |
| |
| exr_image->tiles[tile_idx].offset_x = tile_coordinates[0]; |
| exr_image->tiles[tile_idx].offset_y = tile_coordinates[1]; |
| exr_image->tiles[tile_idx].level_x = tile_coordinates[2]; |
| exr_image->tiles[tile_idx].level_y = tile_coordinates[3]; |
| |
| #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| } |
| })); |
| } // num_thread loop |
| |
| for (auto& t : workers) { |
| t.join(); |
| } |
| |
| #else |
| } // parallel for |
| #endif |
| |
| // Even in the event of an error, the reserved memory may be freed. |
| exr_image->num_channels = num_channels; |
| exr_image->num_tiles = static_cast<int>(num_tiles); |
| |
| if (error_flag) err_code = TINYEXR_ERROR_INVALID_DATA; |
| if (err) { |
| if (error_flag & EF_INSUFFICIENT_DATA) { |
| (*err) += "Insufficient data length.\n"; |
| } |
| if (error_flag & EF_FAILED_TO_DECODE) { |
| (*err) += "Failed to decode tile data.\n"; |
| } |
| } |
| return err_code; |
| } |
| |
| static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header, |
| const OffsetData& offset_data, |
| const unsigned char *head, const size_t size, |
| std::string *err) { |
| int num_channels = exr_header->num_channels; |
| |
| int num_scanline_blocks = 1; |
| if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { |
| num_scanline_blocks = 16; |
| } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| num_scanline_blocks = 32; |
| } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| num_scanline_blocks = 16; |
| |
| #if TINYEXR_USE_ZFP |
| tinyexr::ZFPCompressionParam zfp_compression_param; |
| if (!FindZFPCompressionParam(&zfp_compression_param, |
| exr_header->custom_attributes, |
| int(exr_header->num_custom_attributes), err)) { |
| return TINYEXR_ERROR_INVALID_HEADER; |
| } |
| #endif |
| } |
| |
| if (exr_header->data_window.max_x < exr_header->data_window.min_x || |
| exr_header->data_window.max_y < exr_header->data_window.min_y) { |
| if (err) { |
| (*err) += "Invalid data window.\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| tinyexr_int64 data_width = |
| static_cast<tinyexr_int64>(exr_header->data_window.max_x) - static_cast<tinyexr_int64>(exr_header->data_window.min_x) + static_cast<tinyexr_int64>(1); |
| tinyexr_int64 data_height = |
| static_cast<tinyexr_int64>(exr_header->data_window.max_y) - static_cast<tinyexr_int64>(exr_header->data_window.min_y) + static_cast<tinyexr_int64>(1); |
| |
| if (data_width <= 0) { |
| if (err) { |
| (*err) += "Invalid data window width.\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| if (data_height <= 0) { |
| if (err) { |
| (*err) += "Invalid data window height.\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| // Do not allow too large data_width and data_height. header invalid? |
| { |
| if ((data_width > TINYEXR_DIMENSION_THRESHOLD) || (data_height > TINYEXR_DIMENSION_THRESHOLD)) { |
| if (err) { |
| std::stringstream ss; |
| ss << "data_with or data_height too large. data_width: " << data_width |
| << ", " |
| << "data_height = " << data_height << std::endl; |
| (*err) += ss.str(); |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| if (exr_header->tiled) { |
| if ((exr_header->tile_size_x > TINYEXR_DIMENSION_THRESHOLD) || (exr_header->tile_size_y > TINYEXR_DIMENSION_THRESHOLD)) { |
| if (err) { |
| std::stringstream ss; |
| ss << "tile with or tile height too large. tile width: " << exr_header->tile_size_x |
| << ", " |
| << "tile height = " << exr_header->tile_size_y << std::endl; |
| (*err) += ss.str(); |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| } |
| } |
| |
| const std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data.offsets[0][0]; |
| size_t num_blocks = offsets.size(); |
| |
| std::vector<size_t> channel_offset_list; |
| int pixel_data_size = 0; |
| size_t channel_offset = 0; |
| if (!tinyexr::ComputeChannelLayout(&channel_offset_list, &pixel_data_size, |
| &channel_offset, num_channels, |
| exr_header->channels)) { |
| if (err) { |
| (*err) += "Failed to compute channel layout.\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| std::atomic<bool> invalid_data(false); |
| #else |
| bool invalid_data(false); |
| #endif |
| |
| if (exr_header->tiled) { |
| // value check |
| if (exr_header->tile_size_x < 0) { |
| if (err) { |
| std::stringstream ss; |
| ss << "Invalid tile size x : " << exr_header->tile_size_x << "\n"; |
| (*err) += ss.str(); |
| } |
| return TINYEXR_ERROR_INVALID_HEADER; |
| } |
| |
| if (exr_header->tile_size_y < 0) { |
| if (err) { |
| std::stringstream ss; |
| ss << "Invalid tile size y : " << exr_header->tile_size_y << "\n"; |
| (*err) += ss.str(); |
| } |
| return TINYEXR_ERROR_INVALID_HEADER; |
| } |
| if (exr_header->tile_level_mode != TINYEXR_TILE_RIPMAP_LEVELS) { |
| EXRImage* level_image = NULL; |
| for (int level = 0; level < offset_data.num_x_levels; ++level) { |
| if (!level_image) { |
| level_image = exr_image; |
| } else { |
| level_image->next_level = new EXRImage; |
| InitEXRImage(level_image->next_level); |
| level_image = level_image->next_level; |
| } |
| level_image->width = |
| LevelSize(exr_header->data_window.max_x - exr_header->data_window.min_x + 1, level, exr_header->tile_rounding_mode); |
| if (level_image->width < 1) { |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| level_image->height = |
| LevelSize(exr_header->data_window.max_y - exr_header->data_window.min_y + 1, level, exr_header->tile_rounding_mode); |
| |
| if (level_image->height < 1) { |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| level_image->level_x = level; |
| level_image->level_y = level; |
| |
| int ret = DecodeTiledLevel(level_image, exr_header, |
| offset_data, |
| channel_offset_list, |
| pixel_data_size, |
| head, size, |
| err); |
| if (ret != TINYEXR_SUCCESS) return ret; |
| } |
| } else { |
| EXRImage* level_image = NULL; |
| for (int level_y = 0; level_y < offset_data.num_y_levels; ++level_y) |
| for (int level_x = 0; level_x < offset_data.num_x_levels; ++level_x) { |
| if (!level_image) { |
| level_image = exr_image; |
| } else { |
| level_image->next_level = new EXRImage; |
| InitEXRImage(level_image->next_level); |
| level_image = level_image->next_level; |
| } |
| |
| level_image->width = |
| LevelSize(exr_header->data_window.max_x - exr_header->data_window.min_x + 1, level_x, exr_header->tile_rounding_mode); |
| if (level_image->width < 1) { |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| level_image->height = |
| LevelSize(exr_header->data_window.max_y - exr_header->data_window.min_y + 1, level_y, exr_header->tile_rounding_mode); |
| if (level_image->height < 1) { |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| level_image->level_x = level_x; |
| level_image->level_y = level_y; |
| |
| int ret = DecodeTiledLevel(level_image, exr_header, |
| offset_data, |
| channel_offset_list, |
| pixel_data_size, |
| head, size, |
| err); |
| if (ret != TINYEXR_SUCCESS) return ret; |
| } |
| } |
| } else { // scanline format |
| // Don't allow too large image(256GB * pixel_data_size or more). Workaround |
| // for #104. |
| size_t total_data_len = |
| size_t(data_width) * size_t(data_height) * size_t(num_channels); |
| const bool total_data_len_overflown = |
| sizeof(void *) == 8 ? (total_data_len >= 0x4000000000) : false; |
| if ((total_data_len == 0) || total_data_len_overflown) { |
| if (err) { |
| std::stringstream ss; |
| ss << "Image data size is zero or too large: width = " << data_width |
| << ", height = " << data_height << ", channels = " << num_channels |
| << std::endl; |
| (*err) += ss.str(); |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| bool alloc_success = false; |
| exr_image->images = tinyexr::AllocateImage( |
| num_channels, exr_header->channels, exr_header->requested_pixel_types, |
| int(data_width), int(data_height), &alloc_success); |
| |
| if (!alloc_success) { |
| if (err) { |
| std::stringstream ss; |
| ss << "Failed to allocate memory for Images. Maybe EXR header is corrupted or Image data size is too large: width = " << data_width |
| << ", height = " << data_height << ", channels = " << num_channels |
| << std::endl; |
| (*err) += ss.str(); |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| std::vector<std::thread> workers; |
| std::atomic<int> y_count(0); |
| |
| int num_threads = std::max(1, int(std::thread::hardware_concurrency())); |
| if (num_threads > int(num_blocks)) { |
| num_threads = int(num_blocks); |
| } |
| |
| for (int t = 0; t < num_threads; t++) { |
| workers.emplace_back(std::thread([&]() { |
| int y = 0; |
| while ((y = y_count++) < int(num_blocks)) { |
| |
| #else |
| |
| #if TINYEXR_USE_OPENMP |
| #pragma omp parallel for |
| #endif |
| for (int y = 0; y < static_cast<int>(num_blocks); y++) { |
| |
| #endif |
| size_t y_idx = static_cast<size_t>(y); |
| |
| if (offsets[y_idx] + sizeof(int) * 2 > size) { |
| invalid_data = true; |
| } else { |
| // 4 byte: scan line |
| // 4 byte: data size |
| // ~ : pixel data(uncompressed or compressed) |
| size_t data_size = |
| size_t(size - (offsets[y_idx] + sizeof(int) * 2)); |
| const unsigned char *data_ptr = |
| reinterpret_cast<const unsigned char *>(head + offsets[y_idx]); |
| |
| int line_no; |
| memcpy(&line_no, data_ptr, sizeof(int)); |
| int data_len; |
| memcpy(&data_len, data_ptr + 4, sizeof(int)); |
| tinyexr::swap4(&line_no); |
| tinyexr::swap4(&data_len); |
| |
| if (size_t(data_len) > data_size) { |
| invalid_data = true; |
| |
| } else if ((line_no > (2 << 20)) || (line_no < -(2 << 20))) { |
| // Too large value. Assume this is invalid |
| // 2**20 = 1048576 = heuristic value. |
| invalid_data = true; |
| } else if (data_len == 0) { |
| // TODO(syoyo): May be ok to raise the threshold for example |
| // `data_len < 4` |
| invalid_data = true; |
| } else { |
| // line_no may be negative. |
| int end_line_no = (std::min)(line_no + num_scanline_blocks, |
| (exr_header->data_window.max_y + 1)); |
| |
| int num_lines = end_line_no - line_no; |
| |
| if (num_lines <= 0) { |
| invalid_data = true; |
| } else { |
| // Move to data addr: 8 = 4 + 4; |
| data_ptr += 8; |
| |
| // Adjust line_no with data_window.bmin.y |
| |
| // overflow check |
| tinyexr_int64 lno = |
| static_cast<tinyexr_int64>(line_no) - |
| static_cast<tinyexr_int64>(exr_header->data_window.min_y); |
| if (lno > std::numeric_limits<int>::max()) { |
| line_no = -1; // invalid |
| } else if (lno < -std::numeric_limits<int>::max()) { |
| line_no = -1; // invalid |
| } else { |
| line_no -= exr_header->data_window.min_y; |
| } |
| |
| if (line_no < 0) { |
| invalid_data = true; |
| } else { |
| if (!tinyexr::DecodePixelData( |
| exr_image->images, exr_header->requested_pixel_types, |
| data_ptr, static_cast<size_t>(data_len), |
| exr_header->compression_type, exr_header->line_order, |
| int(data_width), int(data_height), int(data_width), y, line_no, |
| num_lines, static_cast<size_t>(pixel_data_size), |
| static_cast<size_t>( |
| exr_header->num_custom_attributes), |
| exr_header->custom_attributes, |
| static_cast<size_t>(exr_header->num_channels), |
| exr_header->channels, channel_offset_list)) { |
| invalid_data = true; |
| } |
| } |
| } |
| } |
| } |
| |
| #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| } |
| })); |
| } |
| |
| for (auto &t : workers) { |
| t.join(); |
| } |
| #else |
| } // omp parallel |
| #endif |
| } |
| |
| if (invalid_data) { |
| if (err) { |
| (*err) += "Invalid/Corrupted data found when decoding pixels.\n"; |
| } |
| |
| // free alloced image. |
| for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| if (exr_image->images[c]) { |
| free(exr_image->images[c]); |
| exr_image->images[c] = NULL; |
| } |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| // Overwrite `pixel_type` with `requested_pixel_type`. |
| { |
| for (int c = 0; c < exr_header->num_channels; c++) { |
| exr_header->pixel_types[c] = exr_header->requested_pixel_types[c]; |
| } |
| } |
| |
| { |
| exr_image->num_channels = num_channels; |
| |
| exr_image->width = int(data_width); |
| exr_image->height = int(data_height); |
| } |
| |
| return TINYEXR_SUCCESS; |
| } |
| |
| static bool ReconstructLineOffsets( |
| std::vector<tinyexr::tinyexr_uint64> *offsets, size_t n, |
| const unsigned char *head, const unsigned char *marker, const size_t size) { |
| if (head >= marker) { |
| return false; |
| } |
| if (offsets->size() != n) { |
| return false; |
| } |
| |
| for (size_t i = 0; i < n; i++) { |
| size_t offset = static_cast<size_t>(marker - head); |
| // Offset should not exceed whole EXR file/data size. |
| if ((offset + sizeof(tinyexr::tinyexr_uint64)) >= size) { |
| return false; |
| } |
| |
| int y; |
| unsigned int data_len; |
| |
| memcpy(&y, marker, sizeof(int)); |
| memcpy(&data_len, marker + 4, sizeof(unsigned int)); |
| |
| if (data_len >= size) { |
| return false; |
| } |
| |
| tinyexr::swap4(&y); |
| tinyexr::swap4(&data_len); |
| |
| (*offsets)[i] = offset; |
| |
| marker += data_len + 8; // 8 = 4 bytes(y) + 4 bytes(data_len) |
| } |
| |
| return true; |
| } |
| |
| |
| static int FloorLog2(unsigned x) { |
| // |
| // For x > 0, floorLog2(y) returns floor(log(x)/log(2)). |
| // |
| int y = 0; |
| while (x > 1) { |
| y += 1; |
| x >>= 1u; |
| } |
| return y; |
| } |
| |
| |
| static int CeilLog2(unsigned x) { |
| // |
| // For x > 0, ceilLog2(y) returns ceil(log(x)/log(2)). |
| // |
| int y = 0; |
| int r = 0; |
| while (x > 1) { |
| if (x & 1) |
| r = 1; |
| |
| y += 1; |
| x >>= 1u; |
| } |
| return y + r; |
| } |
| |
| static int RoundLog2(int x, int tile_rounding_mode) { |
| return (tile_rounding_mode == TINYEXR_TILE_ROUND_DOWN) ? FloorLog2(static_cast<unsigned>(x)) : CeilLog2(static_cast<unsigned>(x)); |
| } |
| |
| static int CalculateNumXLevels(const EXRHeader* exr_header) { |
| int min_x = exr_header->data_window.min_x; |
| int max_x = exr_header->data_window.max_x; |
| int min_y = exr_header->data_window.min_y; |
| int max_y = exr_header->data_window.max_y; |
| |
| int num = 0; |
| switch (exr_header->tile_level_mode) { |
| case TINYEXR_TILE_ONE_LEVEL: |
| |
| num = 1; |
| break; |
| |
| case TINYEXR_TILE_MIPMAP_LEVELS: |
| |
| { |
| int w = max_x - min_x + 1; |
| int h = max_y - min_y + 1; |
| num = RoundLog2(std::max(w, h), exr_header->tile_rounding_mode) + 1; |
| } |
| break; |
| |
| case TINYEXR_TILE_RIPMAP_LEVELS: |
| |
| { |
| int w = max_x - min_x + 1; |
| num = RoundLog2(w, exr_header->tile_rounding_mode) + 1; |
| } |
| break; |
| |
| default: |
| |
| return -1; |
| } |
| |
| return num; |
| } |
| |
| static int CalculateNumYLevels(const EXRHeader* exr_header) { |
| int min_x = exr_header->data_window.min_x; |
| int max_x = exr_header->data_window.max_x; |
| int min_y = exr_header->data_window.min_y; |
| int max_y = exr_header->data_window.max_y; |
| int num = 0; |
| |
| switch (exr_header->tile_level_mode) { |
| case TINYEXR_TILE_ONE_LEVEL: |
| |
| num = 1; |
| break; |
| |
| case TINYEXR_TILE_MIPMAP_LEVELS: |
| |
| { |
| int w = max_x - min_x + 1; |
| int h = max_y - min_y + 1; |
| num = RoundLog2(std::max(w, h), exr_header->tile_rounding_mode) + 1; |
| } |
| break; |
| |
| case TINYEXR_TILE_RIPMAP_LEVELS: |
| |
| { |
| int h = max_y - min_y + 1; |
| num = RoundLog2(h, exr_header->tile_rounding_mode) + 1; |
| } |
| break; |
| |
| default: |
| |
| return -1; |
| } |
| |
| return num; |
| } |
| |
| static bool CalculateNumTiles(std::vector<int>& numTiles, |
| int toplevel_size, |
| int size, |
| int tile_rounding_mode) { |
| for (unsigned i = 0; i < numTiles.size(); i++) { |
| int l = LevelSize(toplevel_size, int(i), tile_rounding_mode); |
| if (l < 0) { |
| return false; |
| } |
| TINYEXR_CHECK_AND_RETURN_C(l <= std::numeric_limits<int>::max() - size + 1, false); |
| |
| numTiles[i] = (l + size - 1) / size; |
| } |
| return true; |
| } |
| |
| static bool PrecalculateTileInfo(std::vector<int>& num_x_tiles, |
| std::vector<int>& num_y_tiles, |
| const EXRHeader* exr_header) { |
| int min_x = exr_header->data_window.min_x; |
| int max_x = exr_header->data_window.max_x; |
| int min_y = exr_header->data_window.min_y; |
| int max_y = exr_header->data_window.max_y; |
| |
| int num_x_levels = CalculateNumXLevels(exr_header); |
| |
| if (num_x_levels < 0) { |
| return false; |
| } |
| |
| int num_y_levels = CalculateNumYLevels(exr_header); |
| |
| if (num_y_levels < 0) { |
| return false; |
| } |
| |
| num_x_tiles.resize(size_t(num_x_levels)); |
| num_y_tiles.resize(size_t(num_y_levels)); |
| |
| if (!CalculateNumTiles(num_x_tiles, |
| max_x - min_x + 1, |
| exr_header->tile_size_x, |
| exr_header->tile_rounding_mode)) { |
| return false; |
| } |
| |
| if (!CalculateNumTiles(num_y_tiles, |
| max_y - min_y + 1, |
| exr_header->tile_size_y, |
| exr_header->tile_rounding_mode)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void InitSingleResolutionOffsets(OffsetData& offset_data, size_t num_blocks) { |
| offset_data.offsets.resize(1); |
| offset_data.offsets[0].resize(1); |
| offset_data.offsets[0][0].resize(num_blocks); |
| offset_data.num_x_levels = 1; |
| offset_data.num_y_levels = 1; |
| } |
| |
| // Return sum of tile blocks. |
| // 0 = error |
| static int InitTileOffsets(OffsetData& offset_data, |
| const EXRHeader* exr_header, |
| const std::vector<int>& num_x_tiles, |
| const std::vector<int>& num_y_tiles) { |
| int num_tile_blocks = 0; |
| offset_data.num_x_levels = static_cast<int>(num_x_tiles.size()); |
| offset_data.num_y_levels = static_cast<int>(num_y_tiles.size()); |
| switch (exr_header->tile_level_mode) { |
| case TINYEXR_TILE_ONE_LEVEL: |
| case TINYEXR_TILE_MIPMAP_LEVELS: |
| TINYEXR_CHECK_AND_RETURN_C(offset_data.num_x_levels == offset_data.num_y_levels, 0); |
| offset_data.offsets.resize(size_t(offset_data.num_x_levels)); |
| |
| for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) { |
| offset_data.offsets[l].resize(size_t(num_y_tiles[l])); |
| |
| for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) { |
| offset_data.offsets[l][dy].resize(size_t(num_x_tiles[l])); |
| num_tile_blocks += num_x_tiles[l]; |
| } |
| } |
| break; |
| |
| case TINYEXR_TILE_RIPMAP_LEVELS: |
| |
| offset_data.offsets.resize(static_cast<size_t>(offset_data.num_x_levels) * static_cast<size_t>(offset_data.num_y_levels)); |
| |
| for (int ly = 0; ly < offset_data.num_y_levels; ++ly) { |
| for (int lx = 0; lx < offset_data.num_x_levels; ++lx) { |
| int l = ly * offset_data.num_x_levels + lx; |
| offset_data.offsets[size_t(l)].resize(size_t(num_y_tiles[size_t(ly)])); |
| |
| for (size_t dy = 0; dy < offset_data.offsets[size_t(l)].size(); ++dy) { |
| offset_data.offsets[size_t(l)][dy].resize(size_t(num_x_tiles[size_t(lx)])); |
| num_tile_blocks += num_x_tiles[size_t(lx)]; |
| } |
| } |
| } |
| break; |
| |
| default: |
| return 0; |
| } |
| return num_tile_blocks; |
| } |
| |
| static bool IsAnyOffsetsAreInvalid(const OffsetData& offset_data) { |
| for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) |
| for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) |
| for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) |
| if (reinterpret_cast<const tinyexr::tinyexr_int64&>(offset_data.offsets[l][dy][dx]) <= 0) |
| return true; |
| |
| return false; |
| } |
| |
| static bool isValidTile(const EXRHeader* exr_header, |
| const OffsetData& offset_data, |
| int dx, int dy, int lx, int ly) { |
| if (lx < 0 || ly < 0 || dx < 0 || dy < 0) return false; |
| int num_x_levels = offset_data.num_x_levels; |
| int num_y_levels = offset_data.num_y_levels; |
| switch (exr_header->tile_level_mode) { |
| case TINYEXR_TILE_ONE_LEVEL: |
| |
| if (lx == 0 && |
| ly == 0 && |
| offset_data.offsets.size() > 0 && |
| offset_data.offsets[0].size() > static_cast<size_t>(dy) && |
| offset_data.offsets[0][size_t(dy)].size() > static_cast<size_t>(dx)) { |
| return true; |
| } |
| |
| break; |
| |
| case TINYEXR_TILE_MIPMAP_LEVELS: |
| |
| if (lx < num_x_levels && |
| ly < num_y_levels && |
| offset_data.offsets.size() > static_cast<size_t>(lx) && |
| offset_data.offsets[size_t(lx)].size() > static_cast<size_t>(dy) && |
| offset_data.offsets[size_t(lx)][size_t(dy)].size() > static_cast<size_t>(dx)) { |
| return true; |
| } |
| |
| break; |
| |
| case TINYEXR_TILE_RIPMAP_LEVELS: |
| { |
| size_t idx = static_cast<size_t>(lx) + static_cast<size_t>(ly)* static_cast<size_t>(num_x_levels); |
| if (lx < num_x_levels && |
| ly < num_y_levels && |
| (offset_data.offsets.size() > idx) && |
| offset_data.offsets[idx].size() > static_cast<size_t>(dy) && |
| offset_data.offsets[idx][size_t(dy)].size() > static_cast<size_t>(dx)) { |
| return true; |
| } |
| } |
| |
| break; |
| |
| default: |
| |
| return false; |
| } |
| |
| return false; |
| } |
| |
| static bool ReconstructTileOffsets(OffsetData& offset_data, |
| const EXRHeader* exr_header, |
| const unsigned char* head, const unsigned char* marker, const size_t size, |
| bool isMultiPartFile, |
| bool isDeep) { |
| int numXLevels = offset_data.num_x_levels; |
| for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) { |
| for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) { |
| for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) { |
| tinyexr::tinyexr_uint64 tileOffset = tinyexr::tinyexr_uint64(marker - head); |
| |
| |
| if (isMultiPartFile) { |
| if ((marker + sizeof(int)) >= (head + size)) { |
| return false; |
| } |
| |
| //int partNumber; |
| marker += sizeof(int); |
| } |
| |
| if ((marker + 4 * sizeof(int)) >= (head + size)) { |
| return false; |
| } |
| |
| int tileX; |
| memcpy(&tileX, marker, sizeof(int)); |
| tinyexr::swap4(&tileX); |
| marker += sizeof(int); |
| |
| int tileY; |
| memcpy(&tileY, marker, sizeof(int)); |
| tinyexr::swap4(&tileY); |
| marker += sizeof(int); |
| |
| int levelX; |
| memcpy(&levelX, marker, sizeof(int)); |
| tinyexr::swap4(&levelX); |
| marker += sizeof(int); |
| |
| int levelY; |
| memcpy(&levelY, marker, sizeof(int)); |
| tinyexr::swap4(&levelY); |
| marker += sizeof(int); |
| |
| if (isDeep) { |
| if ((marker + 2 * sizeof(tinyexr::tinyexr_int64)) >= (head + size)) { |
| return false; |
| } |
| tinyexr::tinyexr_int64 packed_offset_table_size; |
| memcpy(&packed_offset_table_size, marker, sizeof(tinyexr::tinyexr_int64)); |
| tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64*>(&packed_offset_table_size)); |
| marker += sizeof(tinyexr::tinyexr_int64); |
| |
| tinyexr::tinyexr_int64 packed_sample_size; |
| memcpy(&packed_sample_size, marker, sizeof(tinyexr::tinyexr_int64)); |
| tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64*>(&packed_sample_size)); |
| marker += sizeof(tinyexr::tinyexr_int64); |
| |
| // next Int64 is unpacked sample size - skip that too |
| marker += packed_offset_table_size + packed_sample_size + 8; |
| |
| if (marker >= (head + size)) { |
| return false; |
| } |
| |
| } else { |
| |
| if ((marker + sizeof(uint32_t)) >= (head + size)) { |
| return false; |
| } |
| |
| uint32_t dataSize; |
| memcpy(&dataSize, marker, sizeof(uint32_t)); |
| tinyexr::swap4(&dataSize); |
| marker += sizeof(uint32_t); |
| |
| marker += dataSize; |
| |
| if (marker >= (head + size)) { |
| return false; |
| } |
| } |
| |
| if (!isValidTile(exr_header, offset_data, |
| tileX, tileY, levelX, levelY)) { |
| return false; |
| } |
| |
| int level_idx = LevelIndex(levelX, levelY, exr_header->tile_level_mode, numXLevels); |
| if (level_idx < 0) { |
| return false; |
| } |
| |
| if (size_t(level_idx) >= offset_data.offsets.size()) { |
| return false; |
| } |
| |
| if (size_t(tileY) >= offset_data.offsets[size_t(level_idx)].size()) { |
| return false; |
| } |
| |
| if (size_t(tileX) >= offset_data.offsets[size_t(level_idx)][size_t(tileY)].size()) { |
| return false; |
| } |
| |
| offset_data.offsets[size_t(level_idx)][size_t(tileY)][size_t(tileX)] = tileOffset; |
| } |
| } |
| } |
| return true; |
| } |
| |
| // marker output is also |
| static int ReadOffsets(OffsetData& offset_data, |
| const unsigned char* head, |
| const unsigned char*& marker, |
| const size_t size, |
| const char** err) { |
| for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) { |
| for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) { |
| for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) { |
| tinyexr::tinyexr_uint64 offset; |
| if ((marker + sizeof(tinyexr_uint64)) >= (head + size)) { |
| tinyexr::SetErrorMessage("Insufficient data size in offset table.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64)); |
| tinyexr::swap8(&offset); |
| if (offset >= size) { |
| tinyexr::SetErrorMessage("Invalid offset value in DecodeEXRImage.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| marker += sizeof(tinyexr::tinyexr_uint64); // = 8 |
| offset_data.offsets[l][dy][dx] = offset; |
| } |
| } |
| } |
| return TINYEXR_SUCCESS; |
| } |
| |
| static int DecodeEXRImage(EXRImage *exr_image, const EXRHeader *exr_header, |
| const unsigned char *head, |
| const unsigned char *marker, const size_t size, |
| const char **err) { |
| if (exr_image == NULL || exr_header == NULL || head == NULL || |
| marker == NULL || (size <= tinyexr::kEXRVersionSize)) { |
| tinyexr::SetErrorMessage("Invalid argument for DecodeEXRImage().", err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| int num_scanline_blocks = 1; |
| if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { |
| num_scanline_blocks = 16; |
| } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| num_scanline_blocks = 32; |
| } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| num_scanline_blocks = 16; |
| } |
| |
| if (exr_header->data_window.max_x < exr_header->data_window.min_x || |
| exr_header->data_window.max_x - exr_header->data_window.min_x == |
| std::numeric_limits<int>::max()) { |
| // Issue 63 |
| tinyexr::SetErrorMessage("Invalid data width value", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| tinyexr_int64 data_width = |
| static_cast<tinyexr_int64>(exr_header->data_window.max_x) - static_cast<tinyexr_int64>(exr_header->data_window.min_x) + static_cast<tinyexr_int64>(1); |
| if (data_width <= 0) { |
| tinyexr::SetErrorMessage("Invalid data window width value", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| if (exr_header->data_window.max_y < exr_header->data_window.min_y || |
| exr_header->data_window.max_y - exr_header->data_window.min_y == |
| std::numeric_limits<int>::max()) { |
| tinyexr::SetErrorMessage("Invalid data height value", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| tinyexr_int64 data_height = |
| static_cast<tinyexr_int64>(exr_header->data_window.max_y) - static_cast<tinyexr_int64>(exr_header->data_window.min_y) + static_cast<tinyexr_int64>(1); |
| |
| if (data_height <= 0) { |
| tinyexr::SetErrorMessage("Invalid data window height value", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| // Do not allow too large data_width and data_height. header invalid? |
| { |
| if (data_width > TINYEXR_DIMENSION_THRESHOLD) { |
| tinyexr::SetErrorMessage("data width too large.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| if (data_height > TINYEXR_DIMENSION_THRESHOLD) { |
| tinyexr::SetErrorMessage("data height too large.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| } |
| |
| if (exr_header->tiled) { |
| if (exr_header->tile_size_x > TINYEXR_DIMENSION_THRESHOLD) { |
| tinyexr::SetErrorMessage("tile width too large.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| if (exr_header->tile_size_y > TINYEXR_DIMENSION_THRESHOLD) { |
| tinyexr::SetErrorMessage("tile height too large.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| } |
| |
| // Read offset tables. |
| OffsetData offset_data; |
| size_t num_blocks = 0; |
| // For a multi-resolution image, the size of the offset table will be calculated from the other attributes of the header. |
| // If chunk_count > 0 then chunk_count must be equal to the calculated tile count. |
| if (exr_header->tiled) { |
| { |
| std::vector<int> num_x_tiles, num_y_tiles; |
| if (!PrecalculateTileInfo(num_x_tiles, num_y_tiles, exr_header)) { |
| tinyexr::SetErrorMessage("Failed to precalculate tile info.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| num_blocks = size_t(InitTileOffsets(offset_data, exr_header, num_x_tiles, num_y_tiles)); |
| if (exr_header->chunk_count > 0) { |
| if (exr_header->chunk_count != static_cast<int>(num_blocks)) { |
| tinyexr::SetErrorMessage("Invalid offset table size.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| } |
| } |
| |
| int ret = ReadOffsets(offset_data, head, marker, size, err); |
| if (ret != TINYEXR_SUCCESS) return ret; |
| if (IsAnyOffsetsAreInvalid(offset_data)) { |
| if (!ReconstructTileOffsets(offset_data, exr_header, |
| head, marker, size, |
| exr_header->multipart, exr_header->non_image)) { |
| |
| tinyexr::SetErrorMessage("Invalid Tile Offsets data.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| } |
| } else if (exr_header->chunk_count > 0) { |
| // Use `chunkCount` attribute. |
| num_blocks = static_cast<size_t>(exr_header->chunk_count); |
| InitSingleResolutionOffsets(offset_data, num_blocks); |
| } else { |
| num_blocks = static_cast<size_t>(data_height) / |
| static_cast<size_t>(num_scanline_blocks); |
| if (num_blocks * static_cast<size_t>(num_scanline_blocks) < |
| static_cast<size_t>(data_height)) { |
| num_blocks++; |
| } |
| |
| InitSingleResolutionOffsets(offset_data, num_blocks); |
| } |
| |
| if (!exr_header->tiled) { |
| std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data.offsets[0][0]; |
| for (size_t y = 0; y < num_blocks; y++) { |
| tinyexr::tinyexr_uint64 offset; |
| // Issue #81 |
| if ((marker + sizeof(tinyexr_uint64)) >= (head + size)) { |
| tinyexr::SetErrorMessage("Insufficient data size in offset table.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64)); |
| tinyexr::swap8(&offset); |
| if (offset >= size) { |
| tinyexr::SetErrorMessage("Invalid offset value in DecodeEXRImage.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| marker += sizeof(tinyexr::tinyexr_uint64); // = 8 |
| offsets[y] = offset; |
| } |
| |
| // If line offsets are invalid, we try to reconstruct it. |
| // See OpenEXR/IlmImf/ImfScanLineInputFile.cpp::readLineOffsets() for details. |
| for (size_t y = 0; y < num_blocks; y++) { |
| if (offsets[y] <= 0) { |
| // TODO(syoyo) Report as warning? |
| // if (err) { |
| // stringstream ss; |
| // ss << "Incomplete lineOffsets." << std::endl; |
| // (*err) += ss.str(); |
| //} |
| bool ret = |
| ReconstructLineOffsets(&offsets, num_blocks, head, marker, size); |
| if (ret) { |
| // OK |
| break; |
| } else { |
| tinyexr::SetErrorMessage( |
| "Cannot reconstruct lineOffset table in DecodeEXRImage.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| } |
| } |
| } |
| |
| { |
| std::string e; |
| int ret = DecodeChunk(exr_image, exr_header, offset_data, head, size, &e); |
| |
| if (ret != TINYEXR_SUCCESS) { |
| if (!e.empty()) { |
| tinyexr::SetErrorMessage(e, err); |
| } |
| |
| #if 1 |
| FreeEXRImage(exr_image); |
| #else |
| // release memory(if exists) |
| if ((exr_header->num_channels > 0) && exr_image && exr_image->images) { |
| for (size_t c = 0; c < size_t(exr_header->num_channels); c++) { |
| if (exr_image->images[c]) { |
| free(exr_image->images[c]); |
| exr_image->images[c] = NULL; |
| } |
| } |
| free(exr_image->images); |
| exr_image->images = NULL; |
| } |
| #endif |
| } |
| |
| return ret; |
| } |
| } |
| |
| static void GetLayers(const EXRHeader &exr_header, |
| std::vector<std::string> &layer_names) { |
| // Naive implementation |
| // Group channels by layers |
| // go over all channel names, split by periods |
| // collect unique names |
| layer_names.clear(); |
| for (int c = 0; c < exr_header.num_channels; c++) { |
| std::string full_name(exr_header.channels[c].name); |
| const size_t pos = full_name.find_last_of('.'); |
| if (pos != std::string::npos && pos != 0 && pos + 1 < full_name.size()) { |
| full_name.erase(pos); |
| if (std::find(layer_names.begin(), layer_names.end(), full_name) == |
| layer_names.end()) |
| layer_names.push_back(full_name); |
| } |
| } |
| } |
| |
| struct LayerChannel { |
| explicit LayerChannel(size_t i, std::string n) : index(i), name(n) {} |
| size_t index; |
| std::string name; |
| }; |
| |
| static void ChannelsInLayer(const EXRHeader &exr_header, |
| const std::string &layer_name, |
| std::vector<LayerChannel> &channels) { |
| channels.clear(); |
| //std::cout << "layer_name = " << layer_name << "\n"; |
| for (int c = 0; c < exr_header.num_channels; c++) { |
| //std::cout << "chan[" << c << "] = " << exr_header.channels[c].name << "\n"; |
| std::string ch_name(exr_header.channels[c].name); |
| if (layer_name.empty()) { |
| const size_t pos = ch_name.find_last_of('.'); |
| if (pos != std::string::npos && pos < ch_name.size()) { |
| if (pos != 0) continue; |
| ch_name = ch_name.substr(pos + 1); |
| } |
| } else { |
| const size_t pos = ch_name.find(layer_name + '.'); |
| if (pos == std::string::npos) continue; |
| if (pos == 0) { |
| ch_name = ch_name.substr(layer_name.size() + 1); |
| } |
| } |
| LayerChannel ch(size_t(c), ch_name); |
| channels.push_back(ch); |
| } |
| } |
| |
| } // namespace tinyexr |
| |
| int EXRLayers(const char *filename, const char **layer_names[], int *num_layers, |
| const char **err) { |
| EXRVersion exr_version; |
| EXRHeader exr_header; |
| InitEXRHeader(&exr_header); |
| |
| { |
| int ret = ParseEXRVersionFromFile(&exr_version, filename); |
| if (ret != TINYEXR_SUCCESS) { |
| tinyexr::SetErrorMessage("Invalid EXR header.", err); |
| return ret; |
| } |
| |
| if (exr_version.multipart || exr_version.non_image) { |
| tinyexr::SetErrorMessage( |
| "Loading multipart or DeepImage is not supported in LoadEXR() API", |
| err); |
| return TINYEXR_ERROR_INVALID_DATA; // @fixme. |
| } |
| } |
| |
| int ret = ParseEXRHeaderFromFile(&exr_header, &exr_version, filename, err); |
| if (ret != TINYEXR_SUCCESS) { |
| FreeEXRHeader(&exr_header); |
| return ret; |
| } |
| |
| std::vector<std::string> layer_vec; |
| tinyexr::GetLayers(exr_header, layer_vec); |
| |
| (*num_layers) = int(layer_vec.size()); |
| (*layer_names) = static_cast<const char **>( |
| malloc(sizeof(const char *) * static_cast<size_t>(layer_vec.size()))); |
| for (size_t c = 0; c < static_cast<size_t>(layer_vec.size()); c++) { |
| #ifdef _MSC_VER |
| (*layer_names)[c] = _strdup(layer_vec[c].c_str()); |
| #else |
| (*layer_names)[c] = strdup(layer_vec[c].c_str()); |
| #endif |
| } |
| |
| FreeEXRHeader(&exr_header); |
| return TINYEXR_SUCCESS; |
| } |
| |
| int LoadEXR(float **out_rgba, int *width, int *height, const char *filename, |
| const char **err, int *num_chans) { |
| return LoadEXRWithLayer(out_rgba, width, height, filename, |
| /* layername */ NULL, err, num_chans); |
| } |
| |
| int LoadEXRWithLayer(float **out_rgba, int *width, int *height, |
| const char *filename, const char *layername, |
| const char **err, int *num_chans) { |
| if (num_chans) |
| *num_chans = 0; |
| |
| if (out_rgba == NULL) { |
| tinyexr::SetErrorMessage("Invalid argument for LoadEXR()", err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| EXRVersion exr_version; |
| EXRImage exr_image; |
| EXRHeader exr_header; |
| InitEXRHeader(&exr_header); |
| InitEXRImage(&exr_image); |
| |
| { |
| int ret = ParseEXRVersionFromFile(&exr_version, filename); |
| if (ret != TINYEXR_SUCCESS) { |
| std::stringstream ss; |
| ss << "Failed to open EXR file or read version info from EXR file. code(" |
| << ret << ")"; |
| tinyexr::SetErrorMessage(ss.str(), err); |
| return ret; |
| } |
| |
| if (exr_version.multipart || exr_version.non_image) { |
| tinyexr::SetErrorMessage( |
| "Loading multipart or DeepImage is not supported in LoadEXR() API", |
| err); |
| return TINYEXR_ERROR_INVALID_DATA; // @fixme. |
| } |
| } |
| |
| { |
| int ret = ParseEXRHeaderFromFile(&exr_header, &exr_version, filename, err); |
| if (ret != TINYEXR_SUCCESS) { |
| FreeEXRHeader(&exr_header); |
| return ret; |
| } |
| } |
| |
| // Read HALF channel as FLOAT. |
| for (int i = 0; i < exr_header.num_channels; i++) { |
| if (exr_header.pixel_types[i] == TINYEXR_PIXELTYPE_HALF) { |
| exr_header.requested_pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT; |
| } |
| } |
| |
| // TODO: Probably limit loading to layers (channels) selected by layer index |
| { |
| int ret = LoadEXRImageFromFile(&exr_image, &exr_header, filename, err); |
| if (ret != TINYEXR_SUCCESS) { |
| FreeEXRHeader(&exr_header); |
| return ret; |
| } |
| } |
| |
| // RGBA |
| int idxR = -1; |
| int idxG = -1; |
| int idxB = -1; |
| int idxA = -1; |
| |
| std::vector<std::string> layer_names; |
| tinyexr::GetLayers(exr_header, layer_names); |
| |
| std::vector<tinyexr::LayerChannel> channels; |
| tinyexr::ChannelsInLayer( |
| exr_header, layername == NULL ? "" : std::string(layername), channels); |
| |
| |
| if (channels.size() < 1) { |
| if (layername == NULL) { |
| tinyexr::SetErrorMessage("Layer Not Found. Seems EXR contains channels with layer(e.g. `diffuse.R`). if you are using LoadEXR(), please try LoadEXRWithLayer(). LoadEXR() cannot load EXR having channels with layer.", err); |
| |
| } else { |
| tinyexr::SetErrorMessage("Layer Not Found", err); |
| } |
| FreeEXRHeader(&exr_header); |
| FreeEXRImage(&exr_image); |
| return TINYEXR_ERROR_LAYER_NOT_FOUND; |
| } |
| |
| size_t ch_count = channels.size() < 4 ? channels.size() : 4; |
| for (size_t c = 0; c < ch_count; c++) { |
| const tinyexr::LayerChannel &ch = channels[c]; |
| |
| if (ch.name == "R") { |
| idxR = int(ch.index); |
| } else if (ch.name == "G") { |
| idxG = int(ch.index); |
| } else if (ch.name == "B") { |
| idxB = int(ch.index); |
| } else if (ch.name == "A") { |
| idxA = int(ch.index); |
| } |
| } |
| |
| if (channels.size() == 1) { |
| if (num_chans) |
| *num_chans = 1; |
| |
| int chIdx = int(channels.front().index); |
| // Grayscale channel only. |
| |
| (*out_rgba) = reinterpret_cast<float *>( |
| malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) * |
| static_cast<size_t>(exr_image.height))); |
| |
| if (exr_header.tiled) { |
| const size_t tile_size_x = static_cast<size_t>(exr_header.tile_size_x); |
| const size_t tile_size_y = static_cast<size_t>(exr_header.tile_size_y); |
| for (int it = 0; it < exr_image.num_tiles; it++) { |
| for (size_t j = 0; j < tile_size_y; j++) { |
| for (size_t i = 0; i < tile_size_x; i++) { |
| const size_t ii = |
| static_cast<size_t>(exr_image.tiles[it].offset_x) * tile_size_x + |
| i; |
| const size_t jj = |
| static_cast<size_t>(exr_image.tiles[it].offset_y) * tile_size_y + |
| j; |
| const size_t idx = ii + jj * static_cast<size_t>(exr_image.width); |
| |
| // out of region check. |
| if (ii >= static_cast<size_t>(exr_image.width)) { |
| continue; |
| } |
| if (jj >= static_cast<size_t>(exr_image.height)) { |
| continue; |
| } |
| const size_t srcIdx = i + j * tile_size_x; |
| unsigned char **src = exr_image.tiles[it].images; |
| (*out_rgba)[4 * idx + 0] = |
| reinterpret_cast<float **>(src)[chIdx][srcIdx]; |
| (*out_rgba)[4 * idx + 1] = |
| reinterpret_cast<float **>(src)[chIdx][srcIdx]; |
| (*out_rgba)[4 * idx + 2] = |
| reinterpret_cast<float **>(src)[chIdx][srcIdx]; |
| (*out_rgba)[4 * idx + 3] = |
| reinterpret_cast<float **>(src)[chIdx][srcIdx]; |
| } |
| } |
| } |
| } else { |
| const size_t pixel_size = static_cast<size_t>(exr_image.width) * |
| static_cast<size_t>(exr_image.height); |
| for (size_t i = 0; i < pixel_size; i++) { |
| const float val = |
| reinterpret_cast<float **>(exr_image.images)[chIdx][i]; |
| (*out_rgba)[4 * i + 0] = val; |
| (*out_rgba)[4 * i + 1] = val; |
| (*out_rgba)[4 * i + 2] = val; |
| (*out_rgba)[4 * i + 3] = val; |
| } |
| } |
| } else { |
| // Assume RGB(A) |
| |
| if (idxR == -1) { |
| tinyexr::SetErrorMessage("R channel not found", err); |
| |
| FreeEXRHeader(&exr_header); |
| FreeEXRImage(&exr_image); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| if (idxG == -1) { |
| tinyexr::SetErrorMessage("G channel not found", err); |
| FreeEXRHeader(&exr_header); |
| FreeEXRImage(&exr_image); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| if (idxB == -1) { |
| tinyexr::SetErrorMessage("B channel not found", err); |
| FreeEXRHeader(&exr_header); |
| FreeEXRImage(&exr_image); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| if (num_chans) |
| *num_chans = (idxA != -1) ? 4 : 3; |
| |
| (*out_rgba) = reinterpret_cast<float *>( |
| malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) * |
| static_cast<size_t>(exr_image.height))); |
| if (exr_header.tiled) { |
| const size_t tile_size_x = static_cast<size_t>(exr_header.tile_size_x); |
| const size_t tile_size_y = static_cast<size_t>(exr_header.tile_size_y); |
| for (int it = 0; it < exr_image.num_tiles; it++) { |
| for (size_t j = 0; j < tile_size_y; j++) { |
| for (size_t i = 0; i < tile_size_x; i++) { |
| const size_t ii = |
| static_cast<size_t>(exr_image.tiles[it].offset_x) * |
| tile_size_x + |
| i; |
| const size_t jj = |
| static_cast<size_t>(exr_image.tiles[it].offset_y) * |
| tile_size_y + |
| j; |
| const size_t idx = ii + jj * static_cast<size_t>(exr_image.width); |
| |
| // out of region check. |
| if (ii >= static_cast<size_t>(exr_image.width)) { |
| continue; |
| } |
| if (jj >= static_cast<size_t>(exr_image.height)) { |
| continue; |
| } |
| const size_t srcIdx = i + j * tile_size_x; |
| unsigned char **src = exr_image.tiles[it].images; |
| (*out_rgba)[4 * idx + 0] = |
| reinterpret_cast<float **>(src)[idxR][srcIdx]; |
| (*out_rgba)[4 * idx + 1] = |
| reinterpret_cast<float **>(src)[idxG][srcIdx]; |
| (*out_rgba)[4 * idx + 2] = |
| reinterpret_cast<float **>(src)[idxB][srcIdx]; |
| if (idxA != -1) { |
| (*out_rgba)[4 * idx + 3] = |
| reinterpret_cast<float **>(src)[idxA][srcIdx]; |
| } else { |
| (*out_rgba)[4 * idx + 3] = 1.0; |
| } |
| } |
| } |
| } |
| } else { |
| const size_t pixel_size = static_cast<size_t>(exr_image.width) * |
| static_cast<size_t>(exr_image.height); |
| for (size_t i = 0; i < pixel_size; i++) { |
| (*out_rgba)[4 * i + 0] = |
| reinterpret_cast<float **>(exr_image.images)[idxR][i]; |
| (*out_rgba)[4 * i + 1] = |
| reinterpret_cast<float **>(exr_image.images)[idxG][i]; |
| (*out_rgba)[4 * i + 2] = |
| reinterpret_cast<float **>(exr_image.images)[idxB][i]; |
| if (idxA != -1) { |
| (*out_rgba)[4 * i + 3] = |
| reinterpret_cast<float **>(exr_image.images)[idxA][i]; |
| } else { |
| (*out_rgba)[4 * i + 3] = 1.0; |
| } |
| } |
| } |
| } |
| |
| (*width) = exr_image.width; |
| (*height) = exr_image.height; |
| |
| FreeEXRHeader(&exr_header); |
| FreeEXRImage(&exr_image); |
| |
| return TINYEXR_SUCCESS; |
| } |
| |
| int IsEXR(const char *filename) { |
| EXRVersion exr_version; |
| |
| int ret = ParseEXRVersionFromFile(&exr_version, filename); |
| if (ret != TINYEXR_SUCCESS) { |
| return ret; |
| } |
| |
| return TINYEXR_SUCCESS; |
| } |
| |
| int IsEXRFromMemory(const unsigned char *memory, size_t size) { |
| EXRVersion exr_version; |
| |
| int ret = ParseEXRVersionFromMemory(&exr_version, memory, size); |
| if (ret != TINYEXR_SUCCESS) { |
| return ret; |
| } |
| |
| return TINYEXR_SUCCESS; |
| } |
| |
| int ParseEXRHeaderFromMemory(EXRHeader *exr_header, const EXRVersion *version, |
| const unsigned char *memory, size_t size, |
| const char **err) { |
| if (memory == NULL || exr_header == NULL) { |
| tinyexr::SetErrorMessage( |
| "Invalid argument. `memory` or `exr_header` argument is null in " |
| "ParseEXRHeaderFromMemory()", |
| err); |
| |
| // Invalid argument |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| if (size < tinyexr::kEXRVersionSize) { |
| tinyexr::SetErrorMessage("Insufficient header/data size.\n", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| const unsigned char *marker = memory + tinyexr::kEXRVersionSize; |
| size_t marker_size = size - tinyexr::kEXRVersionSize; |
| |
| tinyexr::HeaderInfo info; |
| info.clear(); |
| |
| int ret; |
| { |
| std::string err_str; |
| ret = ParseEXRHeader(&info, NULL, version, &err_str, marker, marker_size); |
| |
| if (ret != TINYEXR_SUCCESS) { |
| if (err && !err_str.empty()) { |
| tinyexr::SetErrorMessage(err_str, err); |
| } |
| } |
| } |
| |
| { |
| std::string warn; |
| std::string err_str; |
| |
| if (!ConvertHeader(exr_header, info, &warn, &err_str)) { |
| // release mem |
| for (size_t i = 0; i < info.attributes.size(); i++) { |
| if (info.attributes[i].value) { |
| free(info.attributes[i].value); |
| } |
| } |
| if (err && !err_str.empty()) { |
| tinyexr::SetErrorMessage(err_str, err); |
| } |
| ret = TINYEXR_ERROR_INVALID_HEADER; |
| } |
| } |
| |
| exr_header->multipart = version->multipart ? 1 : 0; |
| exr_header->non_image = version->non_image ? 1 : 0; |
| |
| return ret; |
| } |
| |
| int LoadEXRFromMemory(float **out_rgba, int *width, int *height, |
| const unsigned char *memory, size_t size, |
| const char **err) { |
| if (out_rgba == NULL || memory == NULL) { |
| tinyexr::SetErrorMessage("Invalid argument for LoadEXRFromMemory", err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| EXRVersion exr_version; |
| EXRImage exr_image; |
| EXRHeader exr_header; |
| |
| InitEXRHeader(&exr_header); |
| |
| int ret = ParseEXRVersionFromMemory(&exr_version, memory, size); |
| if (ret != TINYEXR_SUCCESS) { |
| std::stringstream ss; |
| ss << "Failed to parse EXR version. code(" << ret << ")"; |
| tinyexr::SetErrorMessage(ss.str(), err); |
| return ret; |
| } |
| |
| ret = ParseEXRHeaderFromMemory(&exr_header, &exr_version, memory, size, err); |
| if (ret != TINYEXR_SUCCESS) { |
| return ret; |
| } |
| |
| // Read HALF channel as FLOAT. |
| for (int i = 0; i < exr_header.num_channels; i++) { |
| if (exr_header.pixel_types[i] == TINYEXR_PIXELTYPE_HALF) { |
| exr_header.requested_pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT; |
| } |
| } |
| |
| InitEXRImage(&exr_image); |
| ret = LoadEXRImageFromMemory(&exr_image, &exr_header, memory, size, err); |
| if (ret != TINYEXR_SUCCESS) { |
| return ret; |
| } |
| |
| // RGBA |
| int idxR = -1; |
| int idxG = -1; |
| int idxB = -1; |
| int idxA = -1; |
| for (int c = 0; c < exr_header.num_channels; c++) { |
| if (strcmp(exr_header.channels[c].name, "R") == 0) { |
| idxR = c; |
| } else if (strcmp(exr_header.channels[c].name, "G") == 0) { |
| idxG = c; |
| } else if (strcmp(exr_header.channels[c].name, "B") == 0) { |
| idxB = c; |
| } else if (strcmp(exr_header.channels[c].name, "A") == 0) { |
| idxA = c; |
| } |
| } |
| |
| // TODO(syoyo): Refactor removing same code as used in LoadEXR(). |
| if (exr_header.num_channels == 1) { |
| // Grayscale channel only. |
| |
| (*out_rgba) = reinterpret_cast<float *>( |
| malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) * |
| static_cast<size_t>(exr_image.height))); |
| |
| if (exr_header.tiled) { |
| const size_t tile_size_x = static_cast<size_t>(exr_header.tile_size_x); |
| const size_t tile_size_y = static_cast<size_t>(exr_header.tile_size_y); |
| for (int it = 0; it < exr_image.num_tiles; it++) { |
| for (size_t j = 0; j < tile_size_y; j++) { |
| for (size_t i = 0; i < tile_size_x; i++) { |
| const size_t ii = |
| static_cast<size_t>(exr_image.tiles[it].offset_x) * |
| tile_size_x + |
| i; |
| const size_t jj = |
| static_cast<size_t>(exr_image.tiles[it].offset_y) * |
| tile_size_y + |
| j; |
| const size_t idx = ii + jj * static_cast<size_t>(exr_image.width); |
| |
| // out of region check. |
| if (ii >= static_cast<size_t>(exr_image.width)) { |
| continue; |
| } |
| if (jj >= static_cast<size_t>(exr_image.height)) { |
| continue; |
| } |
| const size_t srcIdx = i + j * tile_size_x; |
| unsigned char **src = exr_image.tiles[it].images; |
| (*out_rgba)[4 * idx + 0] = |
| reinterpret_cast<float **>(src)[0][srcIdx]; |
| (*out_rgba)[4 * idx + 1] = |
| reinterpret_cast<float **>(src)[0][srcIdx]; |
| (*out_rgba)[4 * idx + 2] = |
| reinterpret_cast<float **>(src)[0][srcIdx]; |
| (*out_rgba)[4 * idx + 3] = |
| reinterpret_cast<float **>(src)[0][srcIdx]; |
| } |
| } |
| } |
| } else { |
| const size_t pixel_size = static_cast<size_t>(exr_image.width) * |
| static_cast<size_t>(exr_image.height); |
| for (size_t i = 0; i < pixel_size; i++) { |
| const float val = reinterpret_cast<float **>(exr_image.images)[0][i]; |
| (*out_rgba)[4 * i + 0] = val; |
| (*out_rgba)[4 * i + 1] = val; |
| (*out_rgba)[4 * i + 2] = val; |
| (*out_rgba)[4 * i + 3] = val; |
| } |
| } |
| |
| } else { |
| // TODO(syoyo): Support non RGBA image. |
| |
| if (idxR == -1) { |
| tinyexr::SetErrorMessage("R channel not found", err); |
| |
| // @todo { free exr_image } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| if (idxG == -1) { |
| tinyexr::SetErrorMessage("G channel not found", err); |
| // @todo { free exr_image } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| if (idxB == -1) { |
| tinyexr::SetErrorMessage("B channel not found", err); |
| // @todo { free exr_image } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| (*out_rgba) = reinterpret_cast<float *>( |
| malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) * |
| static_cast<size_t>(exr_image.height))); |
| |
| if (exr_header.tiled) { |
| const size_t tile_size_x = static_cast<size_t>(exr_header.tile_size_x); |
| const size_t tile_size_y = static_cast<size_t>(exr_header.tile_size_y); |
| for (int it = 0; it < exr_image.num_tiles; it++) { |
| for (size_t j = 0; j < tile_size_y; j++) |
| for (size_t i = 0; i < tile_size_x; i++) { |
| const size_t ii = |
| static_cast<size_t>(exr_image.tiles[it].offset_x) * |
| tile_size_x + |
| i; |
| const size_t jj = |
| static_cast<size_t>(exr_image.tiles[it].offset_y) * |
| tile_size_y + |
| j; |
| const size_t idx = ii + jj * static_cast<size_t>(exr_image.width); |
| |
| // out of region check. |
| if (ii >= static_cast<size_t>(exr_image.width)) { |
| continue; |
| } |
| if (jj >= static_cast<size_t>(exr_image.height)) { |
| continue; |
| } |
| const size_t srcIdx = i + j * tile_size_x; |
| unsigned char **src = exr_image.tiles[it].images; |
| (*out_rgba)[4 * idx + 0] = |
| reinterpret_cast<float **>(src)[idxR][srcIdx]; |
| (*out_rgba)[4 * idx + 1] = |
| reinterpret_cast<float **>(src)[idxG][srcIdx]; |
| (*out_rgba)[4 * idx + 2] = |
| reinterpret_cast<float **>(src)[idxB][srcIdx]; |
| if (idxA != -1) { |
| (*out_rgba)[4 * idx + 3] = |
| reinterpret_cast<float **>(src)[idxA][srcIdx]; |
| } else { |
| (*out_rgba)[4 * idx + 3] = 1.0; |
| } |
| } |
| } |
| } else { |
| const size_t pixel_size = static_cast<size_t>(exr_image.width) * |
| static_cast<size_t>(exr_image.height); |
| for (size_t i = 0; i < pixel_size; i++) { |
| (*out_rgba)[4 * i + 0] = |
| reinterpret_cast<float **>(exr_image.images)[idxR][i]; |
| (*out_rgba)[4 * i + 1] = |
| reinterpret_cast<float **>(exr_image.images)[idxG][i]; |
| (*out_rgba)[4 * i + 2] = |
| reinterpret_cast<float **>(exr_image.images)[idxB][i]; |
| if (idxA != -1) { |
| (*out_rgba)[4 * i + 3] = |
| reinterpret_cast<float **>(exr_image.images)[idxA][i]; |
| } else { |
| (*out_rgba)[4 * i + 3] = 1.0; |
| } |
| } |
| } |
| } |
| |
| (*width) = exr_image.width; |
| (*height) = exr_image.height; |
| |
| FreeEXRHeader(&exr_header); |
| FreeEXRImage(&exr_image); |
| |
| return TINYEXR_SUCCESS; |
| } |
| |
| // Represents a read-only file mapped to an address space in memory. |
| // If no memory-mapping API is available, falls back to allocating a buffer |
| // with a copy of the file's data. |
| struct MemoryMappedFile { |
| unsigned char *data; // To the start of the file's data. |
| size_t size; // The size of the file in bytes. |
| #ifdef TINYEXR_USE_WIN32_MMAP |
| HANDLE windows_file; |
| HANDLE windows_file_mapping; |
| #elif defined(TINYEXR_USE_POSIX_MMAP) |
| int posix_descriptor; |
| #endif |
| |
| // MemoryMappedFile's constructor tries to map memory to a file. |
| // If this succeeds, valid() will return true and all fields |
| // are usable; otherwise, valid() will return false. |
| MemoryMappedFile(const char *filename) { |
| data = NULL; |
| size = 0; |
| #ifdef TINYEXR_USE_WIN32_MMAP |
| windows_file_mapping = NULL; |
| windows_file = |
| CreateFileW(tinyexr::UTF8ToWchar(filename).c_str(), // lpFileName |
| GENERIC_READ, // dwDesiredAccess |
| FILE_SHARE_READ, // dwShareMode |
| NULL, // lpSecurityAttributes |
| OPEN_EXISTING, // dwCreationDisposition |
| FILE_ATTRIBUTE_READONLY, // dwFlagsAndAttributes |
| NULL); // hTemplateFile |
| if (windows_file == INVALID_HANDLE_VALUE) { |
| return; |
| } |
| |
| windows_file_mapping = CreateFileMapping(windows_file, // hFile |
| NULL, // lpFileMappingAttributes |
| PAGE_READONLY, // flProtect |
| 0, // dwMaximumSizeHigh |
| 0, // dwMaximumSizeLow |
| NULL); // lpName |
| if (windows_file_mapping == NULL) { |
| return; |
| } |
| |
| data = reinterpret_cast<unsigned char *>( |
| MapViewOfFile(windows_file_mapping, // hFileMappingObject |
| FILE_MAP_READ, // dwDesiredAccess |
| 0, // dwFileOffsetHigh |
| 0, // dwFileOffsetLow |
| 0)); // dwNumberOfBytesToMap |
| if (!data) { |
| return; |
| } |
| |
| LARGE_INTEGER windows_file_size = {}; |
| if (!GetFileSizeEx(windows_file, &windows_file_size) || |
| static_cast<ULONGLONG>(windows_file_size.QuadPart) > |
| std::numeric_limits<size_t>::max()) { |
| UnmapViewOfFile(data); |
| data = NULL; |
| return; |
| } |
| size = static_cast<size_t>(windows_file_size.QuadPart); |
| #elif defined(TINYEXR_USE_POSIX_MMAP) |
| posix_descriptor = open(filename, O_RDONLY); |
| if (posix_descriptor == -1) { |
| return; |
| } |
| |
| struct stat info; |
| if (fstat(posix_descriptor, &info) < 0) { |
| return; |
| } |
| // Make sure st_size is in the valid range for a size_t. The second case |
| // can only fail if a POSIX implementation defines off_t to be a larger |
| // type than size_t - for instance, compiling with _FILE_OFFSET_BITS=64 |
| // on a 32-bit system. On current 64-bit systems, this check can never |
| // fail, so we turn off clang's Wtautological-type-limit-compare warning |
| // around this code. |
| #ifdef __clang__ |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wtautological-type-limit-compare" |
| #endif |
| if (info.st_size < 0 || |
| info.st_size > std::numeric_limits<ssize_t>::max()) { |
| return; |
| } |
| #ifdef __clang__ |
| #pragma clang diagnostic pop |
| #endif |
| size = static_cast<size_t>(info.st_size); |
| |
| data = reinterpret_cast<unsigned char *>( |
| mmap(0, size, PROT_READ, MAP_SHARED, posix_descriptor, 0)); |
| if (data == MAP_FAILED) { |
| data = nullptr; |
| return; |
| } |
| #else |
| FILE *fp = fopen(filename, "rb"); |
| if (!fp) { |
| return; |
| } |
| |
| // Calling fseek(fp, 0, SEEK_END) isn't strictly-conforming C code, but |
| // since neither the WIN32 nor POSIX APIs are available in this branch, this |
| // is a reasonable fallback option. |
| if (fseek(fp, 0, SEEK_END) != 0) { |
| fclose(fp); |
| return; |
| } |
| const long ftell_result = ftell(fp); |
| if (ftell_result < 0) { |
| // Error from ftell |
| fclose(fp); |
| return; |
| } |
| size = static_cast<size_t>(ftell_result); |
| if (fseek(fp, 0, SEEK_SET) != 0) { |
| fclose(fp); |
| size = 0; |
| return; |
| } |
| |
| data = reinterpret_cast<unsigned char *>(malloc(size)); |
| if (!data) { |
| size = 0; |
| fclose(fp); |
| return; |
| } |
| size_t read_bytes = fread(data, 1, size, fp); |
| if (read_bytes != size) { |
| // TODO: Try to read data until reading `size` bytes. |
| fclose(fp); |
| size = 0; |
| data = nullptr; |
| return; |
| } |
| fclose(fp); |
| #endif |
| } |
| |
| // MemoryMappedFile's destructor closes all its handles. |
| ~MemoryMappedFile() { |
| #ifdef TINYEXR_USE_WIN32_MMAP |
| if (data) { |
| (void)UnmapViewOfFile(data); |
| data = NULL; |
| } |
| |
| if (windows_file_mapping != NULL) { |
| (void)CloseHandle(windows_file_mapping); |
| } |
| |
| if (windows_file != INVALID_HANDLE_VALUE) { |
| (void)CloseHandle(windows_file); |
| } |
| #elif defined(TINYEXR_USE_POSIX_MMAP) |
| if (data) { |
| (void)munmap(data, size); |
| data = NULL; |
| } |
| |
| if (posix_descriptor != -1) { |
| (void)close(posix_descriptor); |
| } |
| #else |
| if (data) { |
| (void)free(data); |
| } |
| data = NULL; |
| #endif |
| } |
| |
| // A MemoryMappedFile cannot be copied or moved. |
| // Only check for this when compiling with C++11 or higher, since deleted |
| // function definitions were added then. |
| #if TINYEXR_HAS_CXX11 |
| #ifdef __clang__ |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wc++98-compat" |
| #endif |
| MemoryMappedFile(const MemoryMappedFile &) = delete; |
| MemoryMappedFile &operator=(const MemoryMappedFile &) = delete; |
| MemoryMappedFile(MemoryMappedFile &&other) noexcept = delete; |
| MemoryMappedFile &operator=(MemoryMappedFile &&other) noexcept = delete; |
| #ifdef __clang__ |
| #pragma clang diagnostic pop |
| #endif |
| #endif |
| |
| // Returns whether this was successfully opened. |
| bool valid() const { return data; } |
| }; |
| |
| int LoadEXRImageFromFile(EXRImage *exr_image, const EXRHeader *exr_header, |
| const char *filename, const char **err) { |
| if (exr_image == NULL) { |
| tinyexr::SetErrorMessage("Invalid argument for LoadEXRImageFromFile", err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| MemoryMappedFile file(filename); |
| if (!file.valid()) { |
| tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err); |
| return TINYEXR_ERROR_CANT_OPEN_FILE; |
| } |
| |
| if (file.size < 16) { |
| tinyexr::SetErrorMessage("File size too short : " + std::string(filename), |
| err); |
| return TINYEXR_ERROR_INVALID_FILE; |
| } |
| |
| return LoadEXRImageFromMemory(exr_image, exr_header, file.data, file.size, |
| err); |
| } |
| |
| int LoadEXRImageFromMemory(EXRImage *exr_image, const EXRHeader *exr_header, |
| const unsigned char *memory, const size_t size, |
| const char **err) { |
| if (exr_image == NULL || memory == NULL || |
| (size < tinyexr::kEXRVersionSize)) { |
| tinyexr::SetErrorMessage("Invalid argument for LoadEXRImageFromMemory", |
| err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| if (exr_header->header_len == 0) { |
| tinyexr::SetErrorMessage("EXRHeader variable is not initialized.", err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| const unsigned char *head = memory; |
| const unsigned char *marker = reinterpret_cast<const unsigned char *>( |
| memory + exr_header->header_len + |
| 8); // +8 for magic number + version header. |
| return tinyexr::DecodeEXRImage(exr_image, exr_header, head, marker, size, |
| err); |
| } |
| |
| namespace tinyexr |
| { |
| |
| #ifdef __clang__ |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wsign-conversion" |
| #endif |
| |
| // out_data must be allocated initially with the block-header size |
| // of the current image(-part) type |
| static bool EncodePixelData(/* out */ std::vector<unsigned char>& out_data, |
| const unsigned char* const* images, |
| int compression_type, |
| int /*line_order*/, |
| int width, // for tiled : tile.width |
| int /*height*/, // for tiled : header.tile_size_y |
| int x_stride, // for tiled : header.tile_size_x |
| int line_no, // for tiled : 0 |
| int num_lines, // for tiled : tile.height |
| size_t pixel_data_size, |
| const std::vector<ChannelInfo>& channels, |
| const std::vector<size_t>& channel_offset_list, |
| std::string *err, |
| const void* compression_param = 0) // zfp compression param |
| { |
| size_t buf_size = static_cast<size_t>(width) * |
| static_cast<size_t>(num_lines) * |
| static_cast<size_t>(pixel_data_size); |
| //int last2bit = (buf_size & 3); |
| // buf_size must be multiple of four |
| //if(last2bit) buf_size += 4 - last2bit; |
| std::vector<unsigned char> buf(buf_size); |
| |
| size_t start_y = static_cast<size_t>(line_no); |
| for (size_t c = 0; c < channels.size(); c++) { |
| if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| for (int y = 0; y < num_lines; y++) { |
| // Assume increasing Y |
| float *line_ptr = reinterpret_cast<float *>(&buf.at( |
| static_cast<size_t>(pixel_data_size * size_t(y) * size_t(width)) + |
| channel_offset_list[c] * |
| static_cast<size_t>(width))); |
| for (int x = 0; x < width; x++) { |
| tinyexr::FP16 h16; |
| h16.u = reinterpret_cast<const unsigned short * const *>( |
| images)[c][(y + start_y) * size_t(x_stride) + size_t(x)]; |
| |
| tinyexr::FP32 f32 = half_to_float(h16); |
| |
| tinyexr::swap4(&f32.f); |
| |
| // line_ptr[x] = f32.f; |
| tinyexr::cpy4(line_ptr + x, &(f32.f)); |
| } |
| } |
| } else if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| for (int y = 0; y < num_lines; y++) { |
| // Assume increasing Y |
| unsigned short *line_ptr = reinterpret_cast<unsigned short *>( |
| &buf.at(static_cast<size_t>(pixel_data_size * y * |
| width) + |
| channel_offset_list[c] * |
| static_cast<size_t>(width))); |
| for (int x = 0; x < width; x++) { |
| unsigned short val = reinterpret_cast<const unsigned short * const *>( |
| images)[c][(y + start_y) * x_stride + x]; |
| |
| tinyexr::swap2(&val); |
| |
| // line_ptr[x] = val; |
| tinyexr::cpy2(line_ptr + x, &val); |
| } |
| } |
| } else { |
| if (err) { |
| (*err) += "Invalid requested_pixel_type.\n"; |
| } |
| return false; |
| } |
| |
| } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| for (int y = 0; y < num_lines; y++) { |
| // Assume increasing Y |
| unsigned short *line_ptr = reinterpret_cast<unsigned short *>( |
| &buf.at(static_cast<size_t>(pixel_data_size * y * |
| width) + |
| channel_offset_list[c] * |
| static_cast<size_t>(width))); |
| for (int x = 0; x < width; x++) { |
| tinyexr::FP32 f32; |
| f32.f = reinterpret_cast<const float * const *>( |
| images)[c][(y + start_y) * x_stride + x]; |
| |
| tinyexr::FP16 h16; |
| h16 = float_to_half_full(f32); |
| |
| tinyexr::swap2(reinterpret_cast<unsigned short *>(&h16.u)); |
| |
| // line_ptr[x] = h16.u; |
| tinyexr::cpy2(line_ptr + x, &(h16.u)); |
| } |
| } |
| } else if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| for (int y = 0; y < num_lines; y++) { |
| // Assume increasing Y |
| float *line_ptr = reinterpret_cast<float *>(&buf.at( |
| static_cast<size_t>(pixel_data_size * y * width) + |
| channel_offset_list[c] * |
| static_cast<size_t>(width))); |
| for (int x = 0; x < width; x++) { |
| float val = reinterpret_cast<const float * const *>( |
| images)[c][(y + start_y) * x_stride + x]; |
| |
| tinyexr::swap4(&val); |
| |
| // line_ptr[x] = val; |
| tinyexr::cpy4(line_ptr + x, &val); |
| } |
| } |
| } else { |
| if (err) { |
| (*err) += "Invalid requested_pixel_type.\n"; |
| } |
| return false; |
| } |
| } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| for (int y = 0; y < num_lines; y++) { |
| // Assume increasing Y |
| unsigned int *line_ptr = reinterpret_cast<unsigned int *>(&buf.at( |
| static_cast<size_t>(pixel_data_size * y * width) + |
| channel_offset_list[c] * static_cast<size_t>(width))); |
| for (int x = 0; x < width; x++) { |
| unsigned int val = reinterpret_cast<const unsigned int * const *>( |
| images)[c][(y + start_y) * x_stride + x]; |
| |
| tinyexr::swap4(&val); |
| |
| // line_ptr[x] = val; |
| tinyexr::cpy4(line_ptr + x, &val); |
| } |
| } |
| } |
| } |
| |
| if (compression_type == TINYEXR_COMPRESSIONTYPE_NONE) { |
| // 4 byte: scan line |
| // 4 byte: data size |
| // ~ : pixel data(uncompressed) |
| out_data.insert(out_data.end(), buf.begin(), buf.end()); |
| |
| } else if ((compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) || |
| (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) { |
| #if defined(TINYEXR_USE_MINIZ) && (TINYEXR_USE_MINIZ==1) |
| std::vector<unsigned char> block(buminiz::mz_compressBound( |
| static_cast<unsigned long>(buf.size()))); |
| #elif TINYEXR_USE_STB_ZLIB |
| // there is no compressBound() function, so we use a value that |
| // is grossly overestimated, but should always work |
| std::vector<unsigned char> block(256 + 2 * buf.size()); |
| #elif defined(TINYEXR_USE_NANOZLIB) && (TINYEXR_USE_NANOZLIB == 1) |
| std::vector<unsigned char> block(nanoz_compressBound( |
| static_cast<unsigned long>(buf.size()))); |
| #else |
| std::vector<unsigned char> block( |
| compressBound(static_cast<uLong>(buf.size()))); |
| #endif |
| tinyexr::tinyexr_uint64 outSize = block.size(); |
| |
| if (!tinyexr::CompressZip(&block.at(0), outSize, |
| reinterpret_cast<const unsigned char *>(&buf.at(0)), |
| static_cast<unsigned long>(buf.size()))) { |
| if (err) { |
| (*err) += "Zip compresssion failed.\n"; |
| } |
| return false; |
| } |
| |
| // 4 byte: scan line |
| // 4 byte: data size |
| // ~ : pixel data(compressed) |
| unsigned int data_len = static_cast<unsigned int>(outSize); // truncate |
| |
| out_data.insert(out_data.end(), block.begin(), block.begin() + data_len); |
| |
| } else if (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) { |
| // (buf.size() * 3) / 2 would be enough. |
| std::vector<unsigned char> block((buf.size() * 3) / 2); |
| |
| tinyexr::tinyexr_uint64 outSize = block.size(); |
| |
| if (!tinyexr::CompressRle(&block.at(0), outSize, |
| reinterpret_cast<const unsigned char *>(&buf.at(0)), |
| static_cast<unsigned long>(buf.size()))) { |
| if (err) { |
| (*err) += "RLE compresssion failed.\n"; |
| } |
| return false; |
| } |
| |
| // 4 byte: scan line |
| // 4 byte: data size |
| // ~ : pixel data(compressed) |
| unsigned int data_len = static_cast<unsigned int>(outSize); // truncate |
| out_data.insert(out_data.end(), block.begin(), block.begin() + data_len); |
| |
| } else if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| #if TINYEXR_USE_PIZ |
| unsigned int bufLen = |
| 8192 + static_cast<unsigned int>( |
| 2 * static_cast<unsigned int>( |
| buf.size())); // @fixme { compute good bound. } |
| std::vector<unsigned char> block(bufLen); |
| unsigned int outSize = static_cast<unsigned int>(block.size()); |
| |
| if (!CompressPiz(&block.at(0), &outSize, |
| reinterpret_cast<const unsigned char *>(&buf.at(0)), |
| buf.size(), channels, width, num_lines)) { |
| if (err) { |
| (*err) += "PIZ compresssion failed.\n"; |
| } |
| return false; |
| } |
| |
| // 4 byte: scan line |
| // 4 byte: data size |
| // ~ : pixel data(compressed) |
| unsigned int data_len = outSize; |
| out_data.insert(out_data.end(), block.begin(), block.begin() + data_len); |
| |
| #else |
| if (err) { |
| (*err) += "PIZ compression is disabled in this build.\n"; |
| } |
| return false; |
| #endif |
| } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| #if TINYEXR_USE_ZFP |
| const ZFPCompressionParam* zfp_compression_param = reinterpret_cast<const ZFPCompressionParam*>(compression_param); |
| std::vector<unsigned char> block; |
| unsigned int outSize; |
| |
| tinyexr::CompressZfp( |
| &block, &outSize, reinterpret_cast<const float *>(&buf.at(0)), |
| width, num_lines, static_cast<int>(channels.size()), *zfp_compression_param); |
| |
| // 4 byte: scan line |
| // 4 byte: data size |
| // ~ : pixel data(compressed) |
| unsigned int data_len = outSize; |
| out_data.insert(out_data.end(), block.begin(), block.begin() + data_len); |
| |
| #else |
| if (err) { |
| (*err) += "ZFP compression is disabled in this build.\n"; |
| } |
| (void)compression_param; |
| return false; |
| #endif |
| } else { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int EncodeTiledLevel(const EXRImage* level_image, const EXRHeader* exr_header, |
| const std::vector<tinyexr::ChannelInfo>& channels, |
| std::vector<std::vector<unsigned char> >& data_list, |
| size_t start_index, // for data_list |
| int num_x_tiles, int num_y_tiles, |
| const std::vector<size_t>& channel_offset_list, |
| int pixel_data_size, |
| const void* compression_param, // must be set if zfp compression is enabled |
| std::string* err) { |
| int num_tiles = num_x_tiles * num_y_tiles; |
| if (num_tiles != level_image->num_tiles) { |
| if (err) { |
| (*err) += "Invalid number of tiles in argument.\n"; |
| } |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| if ((exr_header->tile_size_x > level_image->width || exr_header->tile_size_y > level_image->height) && |
| level_image->level_x == 0 && level_image->level_y == 0) { |
| if (err) { |
| (*err) += "Failed to encode tile data.\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| |
| #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| std::atomic<bool> invalid_data(false); |
| #else |
| bool invalid_data(false); |
| #endif |
| |
| #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| std::vector<std::thread> workers; |
| std::atomic<int> tile_count(0); |
| |
| int num_threads = std::max(1, int(std::thread::hardware_concurrency())); |
| if (num_threads > int(num_tiles)) { |
| num_threads = int(num_tiles); |
| } |
| |
| for (int t = 0; t < num_threads; t++) { |
| workers.emplace_back(std::thread([&]() { |
| int i = 0; |
| while ((i = tile_count++) < num_tiles) { |
| |
| #else |
| // Use signed int since some OpenMP compiler doesn't allow unsigned type for |
| // `parallel for` |
| #if TINYEXR_USE_OPENMP |
| #pragma omp parallel for |
| #endif |
| for (int i = 0; i < num_tiles; i++) { |
| |
| #endif |
| size_t tile_idx = static_cast<size_t>(i); |
| size_t data_idx = tile_idx + start_index; |
| |
| int x_tile = i % num_x_tiles; |
| int y_tile = i / num_x_tiles; |
| |
| EXRTile& tile = level_image->tiles[tile_idx]; |
| |
| const unsigned char* const* images = |
| static_cast<const unsigned char* const*>(tile.images); |
| |
| data_list[data_idx].resize(5*sizeof(int)); |
| size_t data_header_size = data_list[data_idx].size(); |
| bool ret = EncodePixelData(data_list[data_idx], |
| images, |
| exr_header->compression_type, |
| 0, // increasing y |
| tile.width, |
| exr_header->tile_size_y, |
| exr_header->tile_size_x, |
| 0, |
| tile.height, |
| pixel_data_size, |
| channels, |
| channel_offset_list, |
| err, compression_param); |
| if (!ret) { |
| invalid_data = true; |
| continue; |
| } |
| if (data_list[data_idx].size() <= data_header_size) { |
| invalid_data = true; |
| continue; |
| } |
| |
| int data_len = static_cast<int>(data_list[data_idx].size() - data_header_size); |
| //tileX, tileY, levelX, levelY // pixel_data_size(int) |
| memcpy(&data_list[data_idx][0], &x_tile, sizeof(int)); |
| memcpy(&data_list[data_idx][4], &y_tile, sizeof(int)); |
| memcpy(&data_list[data_idx][8], &level_image->level_x, sizeof(int)); |
| memcpy(&data_list[data_idx][12], &level_image->level_y, sizeof(int)); |
| memcpy(&data_list[data_idx][16], &data_len, sizeof(int)); |
| |
| swap4(reinterpret_cast<int*>(&data_list[data_idx][0])); |
| swap4(reinterpret_cast<int*>(&data_list[data_idx][4])); |
| swap4(reinterpret_cast<int*>(&data_list[data_idx][8])); |
| swap4(reinterpret_cast<int*>(&data_list[data_idx][12])); |
| swap4(reinterpret_cast<int*>(&data_list[data_idx][16])); |
| |
| #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| } |
| })); |
| } |
| |
| for (auto &t : workers) { |
| t.join(); |
| } |
| #else |
| } // omp parallel |
| #endif |
| |
| if (invalid_data) { |
| if (err) { |
| (*err) += "Failed to encode tile data.\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| return TINYEXR_SUCCESS; |
| } |
| |
| static int NumScanlines(int compression_type) { |
| int num_scanlines = 1; |
| if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { |
| num_scanlines = 16; |
| } else if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| num_scanlines = 32; |
| } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| num_scanlines = 16; |
| } |
| return num_scanlines; |
| } |
| |
| static int EncodeChunk(const EXRImage* exr_image, const EXRHeader* exr_header, |
| const std::vector<ChannelInfo>& channels, |
| int num_blocks, |
| tinyexr_uint64 chunk_offset, // starting offset of current chunk |
| bool is_multipart, |
| OffsetData& offset_data, // output block offsets, must be initialized |
| std::vector<std::vector<unsigned char> >& data_list, // output |
| tinyexr_uint64& total_size, // output: ending offset of current chunk |
| std::string* err) { |
| int num_scanlines = NumScanlines(exr_header->compression_type); |
| |
| data_list.resize(num_blocks); |
| |
| std::vector<size_t> channel_offset_list( |
| static_cast<size_t>(exr_header->num_channels)); |
| |
| int pixel_data_size = 0; |
| { |
| size_t channel_offset = 0; |
| for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { |
| channel_offset_list[c] = channel_offset; |
| if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| pixel_data_size += sizeof(unsigned short); |
| channel_offset += sizeof(unsigned short); |
| } else if (channels[c].requested_pixel_type == |
| TINYEXR_PIXELTYPE_FLOAT) { |
| pixel_data_size += sizeof(float); |
| channel_offset += sizeof(float); |
| } else if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| pixel_data_size += sizeof(unsigned int); |
| channel_offset += sizeof(unsigned int); |
| } else { |
| if (err) { |
| (*err) += "Invalid requested_pixel_type.\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| } |
| } |
| |
| const void* compression_param = 0; |
| #if TINYEXR_USE_ZFP |
| tinyexr::ZFPCompressionParam zfp_compression_param; |
| |
| // Use ZFP compression parameter from custom attributes(if such a parameter |
| // exists) |
| { |
| std::string e; |
| bool ret = tinyexr::FindZFPCompressionParam( |
| &zfp_compression_param, exr_header->custom_attributes, |
| exr_header->num_custom_attributes, &e); |
| |
| if (!ret) { |
| // Use predefined compression parameter. |
| zfp_compression_param.type = 0; |
| zfp_compression_param.rate = 2; |
| } |
| compression_param = &zfp_compression_param; |
| } |
| #endif |
| |
| tinyexr_uint64 offset = chunk_offset; |
| tinyexr_uint64 doffset = is_multipart ? 4u : 0u; |
| |
| if (exr_image->tiles) { |
| const EXRImage* level_image = exr_image; |
| size_t block_idx = 0; |
| //tinyexr::tinyexr_uint64 block_data_size = 0; |
| int num_levels = (exr_header->tile_level_mode != TINYEXR_TILE_RIPMAP_LEVELS) ? |
| offset_data.num_x_levels : (offset_data.num_x_levels * offset_data.num_y_levels); |
| for (int level_index = 0; level_index < num_levels; ++level_index) { |
| if (!level_image) { |
| if (err) { |
| (*err) += "Invalid number of tiled levels for EncodeChunk\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| int level_index_from_image = LevelIndex(level_image->level_x, level_image->level_y, |
| exr_header->tile_level_mode, offset_data.num_x_levels); |
| if (level_index_from_image < 0) { |
| if (err) { |
| (*err) += "Invalid tile level mode\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| if (level_index_from_image != level_index) { |
| if (err) { |
| (*err) += "Incorrect level ordering in tiled image\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| int num_y_tiles = int(offset_data.offsets[level_index].size()); |
| if (num_y_tiles <= 0) { |
| if (err) { |
| (*err) += "Invalid Y tile size\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| int num_x_tiles = int(offset_data.offsets[level_index][0].size()); |
| if (num_x_tiles <= 0) { |
| if (err) { |
| (*err) += "Invalid X tile size\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| std::string e; |
| int ret = EncodeTiledLevel(level_image, |
| exr_header, |
| channels, |
| data_list, |
| block_idx, |
| num_x_tiles, |
| num_y_tiles, |
| channel_offset_list, |
| pixel_data_size, |
| compression_param, |
| &e); |
| if (ret != TINYEXR_SUCCESS) { |
| if (!e.empty() && err) { |
| (*err) += e; |
| } |
| return ret; |
| } |
| |
| for (size_t j = 0; j < static_cast<size_t>(num_y_tiles); ++j) |
| for (size_t i = 0; i < static_cast<size_t>(num_x_tiles); ++i) { |
| offset_data.offsets[level_index][j][i] = offset; |
| swap8(reinterpret_cast<tinyexr_uint64*>(&offset_data.offsets[level_index][j][i])); |
| offset += data_list[block_idx].size() + doffset; |
| //block_data_size += data_list[block_idx].size(); |
| ++block_idx; |
| } |
| level_image = level_image->next_level; |
| } |
| TINYEXR_CHECK_AND_RETURN_C(static_cast<int>(block_idx) == num_blocks, TINYEXR_ERROR_INVALID_DATA); |
| total_size = offset; |
| } else { // scanlines |
| std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data.offsets[0][0]; |
| |
| #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| std::atomic<bool> invalid_data(false); |
| std::vector<std::thread> workers; |
| std::atomic<int> block_count(0); |
| |
| int num_threads = std::min(std::max(1, int(std::thread::hardware_concurrency())), num_blocks); |
| |
| for (int t = 0; t < num_threads; t++) { |
| workers.emplace_back(std::thread([&]() { |
| int i = 0; |
| while ((i = block_count++) < num_blocks) { |
| |
| #else |
| bool invalid_data(false); |
| #if TINYEXR_USE_OPENMP |
| #pragma omp parallel for |
| #endif |
| for (int i = 0; i < num_blocks; i++) { |
| |
| #endif |
| int start_y = num_scanlines * i; |
| int end_Y = (std::min)(num_scanlines * (i + 1), exr_image->height); |
| int num_lines = end_Y - start_y; |
| |
| const unsigned char* const* images = |
| static_cast<const unsigned char* const*>(exr_image->images); |
| |
| data_list[i].resize(2*sizeof(int)); |
| size_t data_header_size = data_list[i].size(); |
| |
| bool ret = EncodePixelData(data_list[i], |
| images, |
| exr_header->compression_type, |
| 0, // increasing y |
| exr_image->width, |
| exr_image->height, |
| exr_image->width, |
| start_y, |
| num_lines, |
| pixel_data_size, |
| channels, |
| channel_offset_list, |
| err, |
| compression_param); |
| if (!ret) { |
| invalid_data = true; |
| continue; // "break" cannot be used with OpenMP |
| } |
| if (data_list[i].size() <= data_header_size) { |
| invalid_data = true; |
| continue; // "break" cannot be used with OpenMP |
| } |
| int data_len = static_cast<int>(data_list[i].size() - data_header_size); |
| memcpy(&data_list[i][0], &start_y, sizeof(int)); |
| memcpy(&data_list[i][4], &data_len, sizeof(int)); |
| |
| swap4(reinterpret_cast<int*>(&data_list[i][0])); |
| swap4(reinterpret_cast<int*>(&data_list[i][4])); |
| #if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0) |
| } |
| })); |
| } |
| |
| for (auto &t : workers) { |
| t.join(); |
| } |
| #else |
| } // omp parallel |
| #endif |
| |
| if (invalid_data) { |
| if (err) { |
| (*err) += "Failed to encode scanline data.\n"; |
| } |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) { |
| offsets[i] = offset; |
| tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offsets[i])); |
| offset += data_list[i].size() + doffset; |
| } |
| |
| total_size = static_cast<size_t>(offset); |
| } |
| return TINYEXR_SUCCESS; |
| } |
| |
| // can save a single or multi-part image (no deep* formats) |
| static size_t SaveEXRNPartImageToMemory(const EXRImage* exr_images, |
| const EXRHeader** exr_headers, |
| unsigned int num_parts, |
| unsigned char** memory_out, const char** err) { |
| if (exr_images == NULL || exr_headers == NULL || num_parts == 0 || |
| memory_out == NULL) { |
| SetErrorMessage("Invalid argument for SaveEXRNPartImageToMemory", |
| err); |
| return 0; |
| } |
| { |
| for (unsigned int i = 0; i < num_parts; ++i) { |
| if (exr_headers[i]->compression_type < 0) { |
| SetErrorMessage("Invalid argument for SaveEXRNPartImageToMemory", |
| err); |
| return 0; |
| } |
| #if !TINYEXR_USE_PIZ |
| if (exr_headers[i]->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| SetErrorMessage("PIZ compression is not supported in this build", |
| err); |
| return 0; |
| } |
| #endif |
| if (exr_headers[i]->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| #if !TINYEXR_USE_ZFP |
| SetErrorMessage("ZFP compression is not supported in this build", |
| err); |
| return 0; |
| #else |
| // All channels must be fp32. |
| // No fp16 support in ZFP atm(as of 2023 June) |
| // https://github.com/LLNL/fpzip/issues/2 |
| for (int c = 0; c < exr_headers[i]->num_channels; ++c) { |
| if (exr_headers[i]->requested_pixel_types[c] != TINYEXR_PIXELTYPE_FLOAT) { |
| SetErrorMessage("Pixel type must be FLOAT for ZFP compression", |
| err); |
| return 0; |
| } |
| } |
| #endif |
| } |
| } |
| } |
| |
| std::vector<unsigned char> memory; |
| |
| // Header |
| { |
| const char header[] = { 0x76, 0x2f, 0x31, 0x01 }; |
| memory.insert(memory.end(), header, header + 4); |
| } |
| |
| // Version |
| // using value from the first header |
| int long_name = exr_headers[0]->long_name; |
| { |
| char marker[] = { 2, 0, 0, 0 }; |
| /* @todo |
| if (exr_header->non_image) { |
| marker[1] |= 0x8; |
| } |
| */ |
| // tiled |
| if (num_parts == 1 && exr_images[0].tiles) { |
| marker[1] |= 0x2; |
| } |
| // long_name |
| if (long_name) { |
| marker[1] |= 0x4; |
| } |
| // multipart |
| if (num_parts > 1) { |
| marker[1] |= 0x10; |
| } |
| memory.insert(memory.end(), marker, marker + 4); |
| } |
| |
| int total_chunk_count = 0; |
| std::vector<int> chunk_count(num_parts); |
| std::vector<OffsetData> offset_data(num_parts); |
| for (unsigned int i = 0; i < num_parts; ++i) { |
| if (!exr_images[i].tiles) { |
| int num_scanlines = NumScanlines(exr_headers[i]->compression_type); |
| chunk_count[i] = |
| (exr_images[i].height + num_scanlines - 1) / num_scanlines; |
| InitSingleResolutionOffsets(offset_data[i], chunk_count[i]); |
| total_chunk_count += chunk_count[i]; |
| } else { |
| { |
| std::vector<int> num_x_tiles, num_y_tiles; |
| if (!PrecalculateTileInfo(num_x_tiles, num_y_tiles, exr_headers[i])) { |
| SetErrorMessage("Failed to precalculate Tile info", |
| err); |
| return (size_t)TINYEXR_ERROR_INVALID_DATA; |
| } |
| int ntiles = InitTileOffsets(offset_data[i], exr_headers[i], num_x_tiles, num_y_tiles); |
| if (ntiles > 0) { |
| chunk_count[i] = ntiles; |
| } else { |
| SetErrorMessage("Failed to compute Tile offsets", |
| err); |
| return (size_t)TINYEXR_ERROR_INVALID_DATA; |
| |
| } |
| total_chunk_count += chunk_count[i]; |
| } |
| } |
| } |
| // Write attributes to memory buffer. |
| std::vector< std::vector<tinyexr::ChannelInfo> > channels(num_parts); |
| { |
| std::set<std::string> partnames; |
| for (unsigned int i = 0; i < num_parts; ++i) { |
| //channels |
| { |
| std::vector<unsigned char> data; |
| |
| for (int c = 0; c < exr_headers[i]->num_channels; c++) { |
| tinyexr::ChannelInfo info; |
| info.p_linear = 0; |
| info.pixel_type = exr_headers[i]->pixel_types[c]; |
| info.requested_pixel_type = exr_headers[i]->requested_pixel_types[c]; |
| info.x_sampling = 1; |
| info.y_sampling = 1; |
| info.name = std::string(exr_headers[i]->channels[c].name); |
| channels[i].push_back(info); |
| } |
| |
| tinyexr::WriteChannelInfo(data, channels[i]); |
| |
| tinyexr::WriteAttributeToMemory(&memory, "channels", "chlist", &data.at(0), |
| static_cast<int>(data.size())); |
| } |
| |
| { |
| int comp = exr_headers[i]->compression_type; |
| swap4(&comp); |
| WriteAttributeToMemory( |
| &memory, "compression", "compression", |
| reinterpret_cast<const unsigned char*>(&comp), 1); |
| } |
| |
| { |
| int data[4] = { 0, 0, exr_images[i].width - 1, exr_images[i].height - 1 }; |
| swap4(&data[0]); |
| swap4(&data[1]); |
| swap4(&data[2]); |
| swap4(&data[3]); |
| WriteAttributeToMemory( |
| &memory, "dataWindow", "box2i", |
| reinterpret_cast<const unsigned char*>(data), sizeof(int) * 4); |
| |
| int data0[4] = { 0, 0, exr_images[0].width - 1, exr_images[0].height - 1 }; |
| swap4(&data0[0]); |
| swap4(&data0[1]); |
| swap4(&data0[2]); |
| swap4(&data0[3]); |
| // Note: must be the same across parts (currently, using value from the first header) |
| WriteAttributeToMemory( |
| &memory, "displayWindow", "box2i", |
| reinterpret_cast<const unsigned char*>(data0), sizeof(int) * 4); |
| } |
| |
| { |
| unsigned char line_order = 0; // @fixme { read line_order from EXRHeader } |
| WriteAttributeToMemory(&memory, "lineOrder", "lineOrder", |
| &line_order, 1); |
| } |
| |
| { |
| // Note: must be the same across parts |
| float aspectRatio = 1.0f; |
| swap4(&aspectRatio); |
| WriteAttributeToMemory( |
| &memory, "pixelAspectRatio", "float", |
| reinterpret_cast<const unsigned char*>(&aspectRatio), sizeof(float)); |
| } |
| |
| { |
| float center[2] = { 0.0f, 0.0f }; |
| swap4(¢er[0]); |
| swap4(¢er[1]); |
| WriteAttributeToMemory( |
| &memory, "screenWindowCenter", "v2f", |
| reinterpret_cast<const unsigned char*>(center), 2 * sizeof(float)); |
| } |
| |
| { |
| float w = 1.0f; |
| swap4(&w); |
| WriteAttributeToMemory(&memory, "screenWindowWidth", "float", |
| reinterpret_cast<const unsigned char*>(&w), |
| sizeof(float)); |
| } |
| |
| if (exr_images[i].tiles) { |
| unsigned char tile_mode = static_cast<unsigned char>(exr_headers[i]->tile_level_mode & 0x3); |
| if (exr_headers[i]->tile_rounding_mode) tile_mode |= (1u << 4u); |
| //unsigned char data[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
| unsigned int datai[3] = { 0, 0, 0 }; |
| unsigned char* data = reinterpret_cast<unsigned char*>(&datai[0]); |
| datai[0] = static_cast<unsigned int>(exr_headers[i]->tile_size_x); |
| datai[1] = static_cast<unsigned int>(exr_headers[i]->tile_size_y); |
| data[8] = tile_mode; |
| swap4(reinterpret_cast<unsigned int*>(&data[0])); |
| swap4(reinterpret_cast<unsigned int*>(&data[4])); |
| WriteAttributeToMemory( |
| &memory, "tiles", "tiledesc", |
| reinterpret_cast<const unsigned char*>(data), 9); |
| } |
| |
| // must be present for multi-part files - according to spec. |
| if (num_parts > 1) { |
| // name |
| { |
| size_t len = 0; |
| if ((len = strlen(exr_headers[i]->name)) > 0) { |
| #if TINYEXR_HAS_CXX11 |
| partnames.emplace(exr_headers[i]->name); |
| #else |
| partnames.insert(std::string(exr_headers[i]->name)); |
| #endif |
| if (partnames.size() != i + 1) { |
| SetErrorMessage("'name' attributes must be unique for a multi-part file", err); |
| return 0; |
| } |
| WriteAttributeToMemory( |
| &memory, "name", "string", |
| reinterpret_cast<const unsigned char*>(exr_headers[i]->name), |
| static_cast<int>(len)); |
| } else { |
| SetErrorMessage("Invalid 'name' attribute for a multi-part file", err); |
| return 0; |
| } |
| } |
| // type |
| { |
| const char* type = "scanlineimage"; |
| if (exr_images[i].tiles) type = "tiledimage"; |
| WriteAttributeToMemory( |
| &memory, "type", "string", |
| reinterpret_cast<const unsigned char*>(type), |
| static_cast<int>(strlen(type))); |
| } |
| // chunkCount |
| { |
| WriteAttributeToMemory( |
| &memory, "chunkCount", "int", |
| reinterpret_cast<const unsigned char*>(&chunk_count[i]), |
| 4); |
| } |
| } |
| |
| // Custom attributes |
| if (exr_headers[i]->num_custom_attributes > 0) { |
| for (int j = 0; j < exr_headers[i]->num_custom_attributes; j++) { |
| tinyexr::WriteAttributeToMemory( |
| &memory, exr_headers[i]->custom_attributes[j].name, |
| exr_headers[i]->custom_attributes[j].type, |
| reinterpret_cast<const unsigned char*>( |
| exr_headers[i]->custom_attributes[j].value), |
| exr_headers[i]->custom_attributes[j].size); |
| } |
| } |
| |
| { // end of header |
| memory.push_back(0); |
| } |
| } |
| } |
| if (num_parts > 1) { |
| // end of header list |
| memory.push_back(0); |
| } |
| |
| tinyexr_uint64 chunk_offset = memory.size() + size_t(total_chunk_count) * sizeof(tinyexr_uint64); |
| |
| tinyexr_uint64 total_size = 0; |
| std::vector< std::vector< std::vector<unsigned char> > > data_lists(num_parts); |
| for (unsigned int i = 0; i < num_parts; ++i) { |
| std::string e; |
| int ret = EncodeChunk(&exr_images[i], exr_headers[i], |
| channels[i], |
| chunk_count[i], |
| // starting offset of current chunk after part-number |
| chunk_offset, |
| num_parts > 1, |
| offset_data[i], // output: block offsets, must be initialized |
| data_lists[i], // output |
| total_size, // output |
| &e); |
| if (ret != TINYEXR_SUCCESS) { |
| if (!e.empty()) { |
| tinyexr::SetErrorMessage(e, err); |
| } |
| return 0; |
| } |
| chunk_offset = total_size; |
| } |
| |
| // Allocating required memory |
| if (total_size == 0) { // something went wrong |
| tinyexr::SetErrorMessage("Output memory size is zero", err); |
| return (size_t)TINYEXR_ERROR_INVALID_DATA; |
| } |
| (*memory_out) = static_cast<unsigned char*>(malloc(size_t(total_size))); |
| |
| // Writing header |
| memcpy((*memory_out), &memory[0], memory.size()); |
| unsigned char* memory_ptr = *memory_out + memory.size(); |
| size_t sum = memory.size(); |
| |
| // Writing offset data for chunks |
| for (unsigned int i = 0; i < num_parts; ++i) { |
| if (exr_images[i].tiles) { |
| const EXRImage* level_image = &exr_images[i]; |
| int num_levels = (exr_headers[i]->tile_level_mode != TINYEXR_TILE_RIPMAP_LEVELS) ? |
| offset_data[i].num_x_levels : (offset_data[i].num_x_levels * offset_data[i].num_y_levels); |
| for (int level_index = 0; level_index < num_levels; ++level_index) { |
| for (size_t j = 0; j < offset_data[i].offsets[level_index].size(); ++j) { |
| size_t num_bytes = sizeof(tinyexr_uint64) * offset_data[i].offsets[level_index][j].size(); |
| sum += num_bytes; |
| if (sum > total_size) { |
| tinyexr::SetErrorMessage("Invalid offset bytes in Tiled Part image.", err); |
| return (size_t)TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| memcpy(memory_ptr, |
| reinterpret_cast<unsigned char*>(&offset_data[i].offsets[level_index][j][0]), |
| num_bytes); |
| memory_ptr += num_bytes; |
| } |
| level_image = level_image->next_level; |
| } |
| } else { |
| size_t num_bytes = sizeof(tinyexr::tinyexr_uint64) * static_cast<size_t>(chunk_count[i]); |
| sum += num_bytes; |
| if (sum > total_size) { |
| tinyexr::SetErrorMessage("Invalid offset bytes in Part image.", err); |
| return (size_t)TINYEXR_ERROR_INVALID_DATA; |
| } |
| std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data[i].offsets[0][0]; |
| memcpy(memory_ptr, reinterpret_cast<unsigned char*>(&offsets[0]), num_bytes); |
| memory_ptr += num_bytes; |
| } |
| } |
| |
| // Writing chunk data |
| for (unsigned int i = 0; i < num_parts; ++i) { |
| for (size_t j = 0; j < static_cast<size_t>(chunk_count[i]); ++j) { |
| if (num_parts > 1) { |
| sum += 4; |
| if (sum > total_size) { |
| tinyexr::SetErrorMessage("Buffer overrun in reading Part image chunk data.", err); |
| return (size_t)TINYEXR_ERROR_INVALID_DATA; |
| } |
| unsigned int part_number = i; |
| swap4(&part_number); |
| memcpy(memory_ptr, &part_number, 4); |
| memory_ptr += 4; |
| } |
| sum += data_lists[i][j].size(); |
| if (sum > total_size) { |
| tinyexr::SetErrorMessage("Buffer overrun in reading Part image chunk data.", err); |
| return (size_t)TINYEXR_ERROR_INVALID_DATA; |
| } |
| memcpy(memory_ptr, &data_lists[i][j][0], data_lists[i][j].size()); |
| memory_ptr += data_lists[i][j].size(); |
| } |
| } |
| |
| if (sum != total_size) { |
| tinyexr::SetErrorMessage("Corrupted Part image chunk data.", err); |
| return (size_t)TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| return size_t(total_size); // OK |
| } |
| |
| #ifdef __clang__ |
| #pragma clang diagnostic pop |
| #endif |
| |
| } // tinyexr |
| |
| size_t SaveEXRImageToMemory(const EXRImage* exr_image, |
| const EXRHeader* exr_header, |
| unsigned char** memory_out, const char** err) { |
| return tinyexr::SaveEXRNPartImageToMemory(exr_image, &exr_header, 1, memory_out, err); |
| } |
| |
| int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *exr_header, |
| const char *filename, const char **err) { |
| if (exr_image == NULL || filename == NULL || |
| exr_header->compression_type < 0) { |
| tinyexr::SetErrorMessage("Invalid argument for SaveEXRImageToFile", err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| #if !TINYEXR_USE_PIZ |
| if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| tinyexr::SetErrorMessage("PIZ compression is not supported in this build", |
| err); |
| return TINYEXR_ERROR_UNSUPPORTED_FEATURE; |
| } |
| #endif |
| |
| #if !TINYEXR_USE_ZFP |
| if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| tinyexr::SetErrorMessage("ZFP compression is not supported in this build", |
| err); |
| return TINYEXR_ERROR_UNSUPPORTED_FEATURE; |
| } |
| #endif |
| |
| FILE *fp = NULL; |
| #ifdef _WIN32 |
| #if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang |
| errno_t errcode = |
| _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"wb"); |
| if (errcode != 0) { |
| tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename), |
| err); |
| return TINYEXR_ERROR_CANT_WRITE_FILE; |
| } |
| #else |
| // Unknown compiler or MinGW without MINGW_HAS_SECURE_API. |
| fp = fopen(filename, "wb"); |
| #endif |
| #else |
| fp = fopen(filename, "wb"); |
| #endif |
| if (!fp) { |
| tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename), |
| err); |
| return TINYEXR_ERROR_CANT_WRITE_FILE; |
| } |
| |
| unsigned char *mem = NULL; |
| size_t mem_size = SaveEXRImageToMemory(exr_image, exr_header, &mem, err); |
| if (mem_size == 0) { |
| fclose(fp); |
| return TINYEXR_ERROR_SERIALIZATION_FAILED; |
| } |
| |
| size_t written_size = 0; |
| if ((mem_size > 0) && mem) { |
| written_size = fwrite(mem, 1, mem_size, fp); |
| } |
| free(mem); |
| |
| fclose(fp); |
| |
| if (written_size != mem_size) { |
| tinyexr::SetErrorMessage("Cannot write a file", err); |
| return TINYEXR_ERROR_CANT_WRITE_FILE; |
| } |
| |
| return TINYEXR_SUCCESS; |
| } |
| |
| size_t SaveEXRMultipartImageToMemory(const EXRImage* exr_images, |
| const EXRHeader** exr_headers, |
| unsigned int num_parts, |
| unsigned char** memory_out, const char** err) { |
| if (exr_images == NULL || exr_headers == NULL || num_parts < 2 || |
| memory_out == NULL) { |
| tinyexr::SetErrorMessage("Invalid argument for SaveEXRNPartImageToMemory", |
| err); |
| return 0; |
| } |
| return tinyexr::SaveEXRNPartImageToMemory(exr_images, exr_headers, num_parts, memory_out, err); |
| } |
| |
| int SaveEXRMultipartImageToFile(const EXRImage* exr_images, |
| const EXRHeader** exr_headers, |
| unsigned int num_parts, |
| const char* filename, |
| const char** err) { |
| if (exr_images == NULL || exr_headers == NULL || num_parts < 2) { |
| tinyexr::SetErrorMessage("Invalid argument for SaveEXRMultipartImageToFile", |
| err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| FILE *fp = NULL; |
| #ifdef _WIN32 |
| #if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang. |
| errno_t errcode = |
| _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"wb"); |
| if (errcode != 0) { |
| tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename), |
| err); |
| return TINYEXR_ERROR_CANT_WRITE_FILE; |
| } |
| #else |
| // Unknown compiler or MinGW without MINGW_HAS_SECURE_API. |
| fp = fopen(filename, "wb"); |
| #endif |
| #else |
| fp = fopen(filename, "wb"); |
| #endif |
| if (!fp) { |
| tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename), |
| err); |
| return TINYEXR_ERROR_CANT_WRITE_FILE; |
| } |
| |
| unsigned char *mem = NULL; |
| size_t mem_size = SaveEXRMultipartImageToMemory(exr_images, exr_headers, num_parts, &mem, err); |
| if (mem_size == 0) { |
| fclose(fp); |
| return TINYEXR_ERROR_SERIALIZATION_FAILED; |
| } |
| |
| size_t written_size = 0; |
| if ((mem_size > 0) && mem) { |
| written_size = fwrite(mem, 1, mem_size, fp); |
| } |
| free(mem); |
| |
| fclose(fp); |
| |
| if (written_size != mem_size) { |
| tinyexr::SetErrorMessage("Cannot write a file", err); |
| return TINYEXR_ERROR_CANT_WRITE_FILE; |
| } |
| |
| return TINYEXR_SUCCESS; |
| } |
| |
| int LoadDeepEXR(DeepImage *deep_image, const char *filename, const char **err) { |
| if (deep_image == NULL) { |
| tinyexr::SetErrorMessage("Invalid argument for LoadDeepEXR", err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| MemoryMappedFile file(filename); |
| if (!file.valid()) { |
| tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err); |
| return TINYEXR_ERROR_CANT_OPEN_FILE; |
| } |
| |
| if (file.size == 0) { |
| tinyexr::SetErrorMessage("File size is zero : " + std::string(filename), |
| err); |
| return TINYEXR_ERROR_INVALID_FILE; |
| } |
| |
| const char *head = reinterpret_cast<const char *>(file.data); |
| const char *marker = reinterpret_cast<const char *>(file.data); |
| |
| // Header check. |
| { |
| const char header[] = {0x76, 0x2f, 0x31, 0x01}; |
| |
| if (memcmp(marker, header, 4) != 0) { |
| tinyexr::SetErrorMessage("Invalid magic number", err); |
| return TINYEXR_ERROR_INVALID_MAGIC_NUMBER; |
| } |
| marker += 4; |
| } |
| |
| // Version, scanline. |
| { |
| // ver 2.0, scanline, deep bit on(0x800) |
| // must be [2, 0, 0, 0] |
| if (marker[0] != 2 || marker[1] != 8 || marker[2] != 0 || marker[3] != 0) { |
| tinyexr::SetErrorMessage("Unsupported version or scanline", err); |
| return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| } |
| |
| marker += 4; |
| } |
| |
| int dx = -1; |
| int dy = -1; |
| int dw = -1; |
| int dh = -1; |
| int num_scanline_blocks = 1; // 16 for ZIP compression. |
| int compression_type = -1; |
| int num_channels = -1; |
| std::vector<tinyexr::ChannelInfo> channels; |
| |
| // Read attributes |
| size_t size = file.size - tinyexr::kEXRVersionSize; |
| for (;;) { |
| if (0 == size) { |
| return TINYEXR_ERROR_INVALID_DATA; |
| } else if (marker[0] == '\0') { |
| marker++; |
| size--; |
| break; |
| } |
| |
| std::string attr_name; |
| std::string attr_type; |
| std::vector<unsigned char> data; |
| size_t marker_size; |
| if (!tinyexr::ReadAttribute(&attr_name, &attr_type, &data, &marker_size, |
| marker, size)) { |
| std::stringstream ss; |
| ss << "Failed to parse attribute\n"; |
| tinyexr::SetErrorMessage(ss.str(), err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| marker += marker_size; |
| size -= marker_size; |
| |
| if (attr_name.compare("compression") == 0) { |
| compression_type = data[0]; |
| if (compression_type > TINYEXR_COMPRESSIONTYPE_PIZ) { |
| std::stringstream ss; |
| ss << "Unsupported compression type : " << compression_type; |
| tinyexr::SetErrorMessage(ss.str(), err); |
| return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| } |
| |
| if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { |
| num_scanline_blocks = 16; |
| } |
| |
| } else if (attr_name.compare("channels") == 0) { |
| // name: zero-terminated string, from 1 to 255 bytes long |
| // pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2 |
| // pLinear: unsigned char, possible values are 0 and 1 |
| // reserved: three chars, should be zero |
| // xSampling: int |
| // ySampling: int |
| |
| if (!tinyexr::ReadChannelInfo(channels, data)) { |
| tinyexr::SetErrorMessage("Failed to parse channel info", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| num_channels = static_cast<int>(channels.size()); |
| |
| if (num_channels < 1) { |
| tinyexr::SetErrorMessage("Invalid channels format", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| } else if (attr_name.compare("dataWindow") == 0) { |
| memcpy(&dx, &data.at(0), sizeof(int)); |
| memcpy(&dy, &data.at(4), sizeof(int)); |
| memcpy(&dw, &data.at(8), sizeof(int)); |
| memcpy(&dh, &data.at(12), sizeof(int)); |
| tinyexr::swap4(&dx); |
| tinyexr::swap4(&dy); |
| tinyexr::swap4(&dw); |
| tinyexr::swap4(&dh); |
| |
| } else if (attr_name.compare("displayWindow") == 0) { |
| int x; |
| int y; |
| int w; |
| int h; |
| memcpy(&x, &data.at(0), sizeof(int)); |
| memcpy(&y, &data.at(4), sizeof(int)); |
| memcpy(&w, &data.at(8), sizeof(int)); |
| memcpy(&h, &data.at(12), sizeof(int)); |
| tinyexr::swap4(&x); |
| tinyexr::swap4(&y); |
| tinyexr::swap4(&w); |
| tinyexr::swap4(&h); |
| } |
| } |
| |
| TINYEXR_CHECK_AND_RETURN_C(dx >= 0, TINYEXR_ERROR_INVALID_DATA); |
| TINYEXR_CHECK_AND_RETURN_C(dy >= 0, TINYEXR_ERROR_INVALID_DATA); |
| TINYEXR_CHECK_AND_RETURN_C(dw >= 0, TINYEXR_ERROR_INVALID_DATA); |
| TINYEXR_CHECK_AND_RETURN_C(dh >= 0, TINYEXR_ERROR_INVALID_DATA); |
| TINYEXR_CHECK_AND_RETURN_C(num_channels >= 1, TINYEXR_ERROR_INVALID_DATA); |
| |
| int data_width = dw - dx + 1; |
| int data_height = dh - dy + 1; |
| |
| // Read offset tables. |
| int num_blocks = data_height / num_scanline_blocks; |
| if (num_blocks * num_scanline_blocks < data_height) { |
| num_blocks++; |
| } |
| |
| std::vector<tinyexr::tinyexr_int64> offsets(static_cast<size_t>(num_blocks)); |
| |
| for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) { |
| tinyexr::tinyexr_int64 offset; |
| memcpy(&offset, marker, sizeof(tinyexr::tinyexr_int64)); |
| tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offset)); |
| marker += sizeof(tinyexr::tinyexr_int64); // = 8 |
| offsets[y] = offset; |
| } |
| |
| #if TINYEXR_USE_PIZ |
| if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) || |
| (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) || |
| (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) || |
| (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) || |
| (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ)) { |
| #else |
| if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) || |
| (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) || |
| (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) || |
| (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) { |
| #endif |
| // OK |
| } else { |
| tinyexr::SetErrorMessage("Unsupported compression format", err); |
| return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| } |
| |
| deep_image->image = static_cast<float ***>( |
| malloc(sizeof(float **) * static_cast<size_t>(num_channels))); |
| for (int c = 0; c < num_channels; c++) { |
| deep_image->image[c] = static_cast<float **>( |
| malloc(sizeof(float *) * static_cast<size_t>(data_height))); |
| for (int y = 0; y < data_height; y++) { |
| } |
| } |
| |
| deep_image->offset_table = static_cast<int **>( |
| malloc(sizeof(int *) * static_cast<size_t>(data_height))); |
| for (int y = 0; y < data_height; y++) { |
| deep_image->offset_table[y] = static_cast<int *>( |
| malloc(sizeof(int) * static_cast<size_t>(data_width))); |
| } |
| |
| for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) { |
| const unsigned char *data_ptr = |
| reinterpret_cast<const unsigned char *>(head + offsets[y]); |
| |
| // int: y coordinate |
| // int64: packed size of pixel offset table |
| // int64: packed size of sample data |
| // int64: unpacked size of sample data |
| // compressed pixel offset table |
| // compressed sample data |
| int line_no; |
| tinyexr::tinyexr_int64 packedOffsetTableSize; |
| tinyexr::tinyexr_int64 packedSampleDataSize; |
| tinyexr::tinyexr_int64 unpackedSampleDataSize; |
| memcpy(&line_no, data_ptr, sizeof(int)); |
| memcpy(&packedOffsetTableSize, data_ptr + 4, |
| sizeof(tinyexr::tinyexr_int64)); |
| memcpy(&packedSampleDataSize, data_ptr + 12, |
| sizeof(tinyexr::tinyexr_int64)); |
| memcpy(&unpackedSampleDataSize, data_ptr + 20, |
| sizeof(tinyexr::tinyexr_int64)); |
| |
| tinyexr::swap4(&line_no); |
| tinyexr::swap8( |
| reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedOffsetTableSize)); |
| tinyexr::swap8( |
| reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedSampleDataSize)); |
| tinyexr::swap8( |
| reinterpret_cast<tinyexr::tinyexr_uint64 *>(&unpackedSampleDataSize)); |
| |
| std::vector<int> pixelOffsetTable(static_cast<size_t>(data_width)); |
| |
| // decode pixel offset table. |
| { |
| unsigned long dstLen = |
| static_cast<unsigned long>(pixelOffsetTable.size() * sizeof(int)); |
| if (!tinyexr::DecompressZip( |
| reinterpret_cast<unsigned char *>(&pixelOffsetTable.at(0)), |
| &dstLen, data_ptr + 28, |
| static_cast<unsigned long>(packedOffsetTableSize))) { |
| return false; |
| } |
| |
| TINYEXR_CHECK_AND_RETURN_C(dstLen == pixelOffsetTable.size() * sizeof(int), TINYEXR_ERROR_INVALID_DATA); |
| for (size_t i = 0; i < static_cast<size_t>(data_width); i++) { |
| deep_image->offset_table[y][i] = pixelOffsetTable[i]; |
| } |
| } |
| |
| std::vector<unsigned char> sample_data( |
| static_cast<size_t>(unpackedSampleDataSize)); |
| |
| // decode sample data. |
| { |
| unsigned long dstLen = static_cast<unsigned long>(unpackedSampleDataSize); |
| if (dstLen) { |
| if (!tinyexr::DecompressZip( |
| reinterpret_cast<unsigned char *>(&sample_data.at(0)), &dstLen, |
| data_ptr + 28 + packedOffsetTableSize, |
| static_cast<unsigned long>(packedSampleDataSize))) { |
| return false; |
| } |
| TINYEXR_CHECK_AND_RETURN_C(dstLen == static_cast<unsigned long>(unpackedSampleDataSize), TINYEXR_ERROR_INVALID_DATA); |
| } |
| } |
| |
| // decode sample |
| int sampleSize = -1; |
| std::vector<int> channel_offset_list(static_cast<size_t>(num_channels)); |
| { |
| int channel_offset = 0; |
| for (size_t i = 0; i < static_cast<size_t>(num_channels); i++) { |
| channel_offset_list[i] = channel_offset; |
| if (channels[i].pixel_type == TINYEXR_PIXELTYPE_UINT) { // UINT |
| channel_offset += 4; |
| } else if (channels[i].pixel_type == TINYEXR_PIXELTYPE_HALF) { // half |
| channel_offset += 2; |
| } else if (channels[i].pixel_type == |
| TINYEXR_PIXELTYPE_FLOAT) { // float |
| channel_offset += 4; |
| } else { |
| tinyexr::SetErrorMessage("Invalid pixel_type in chnnels.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| } |
| sampleSize = channel_offset; |
| } |
| TINYEXR_CHECK_AND_RETURN_C(sampleSize >= 2, TINYEXR_ERROR_INVALID_DATA); |
| |
| TINYEXR_CHECK_AND_RETURN_C(static_cast<size_t>( |
| pixelOffsetTable[static_cast<size_t>(data_width - 1)] * |
| sampleSize) == sample_data.size(), TINYEXR_ERROR_INVALID_DATA); |
| int samples_per_line = static_cast<int>(sample_data.size()) / sampleSize; |
| |
| // |
| // Alloc memory |
| // |
| |
| // |
| // pixel data is stored as image[channels][pixel_samples] |
| // |
| { |
| tinyexr::tinyexr_uint64 data_offset = 0; |
| for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| deep_image->image[c][y] = static_cast<float *>( |
| malloc(sizeof(float) * static_cast<size_t>(samples_per_line))); |
| |
| if (channels[c].pixel_type == 0) { // UINT |
| for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) { |
| unsigned int ui; |
| unsigned int *src_ptr = reinterpret_cast<unsigned int *>( |
| &sample_data.at(size_t(data_offset) + x * sizeof(int))); |
| tinyexr::cpy4(&ui, src_ptr); |
| deep_image->image[c][y][x] = static_cast<float>(ui); // @fixme |
| } |
| data_offset += |
| sizeof(unsigned int) * static_cast<size_t>(samples_per_line); |
| } else if (channels[c].pixel_type == 1) { // half |
| for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) { |
| tinyexr::FP16 f16; |
| const unsigned short *src_ptr = reinterpret_cast<unsigned short *>( |
| &sample_data.at(size_t(data_offset) + x * sizeof(short))); |
| tinyexr::cpy2(&(f16.u), src_ptr); |
| tinyexr::FP32 f32 = half_to_float(f16); |
| deep_image->image[c][y][x] = f32.f; |
| } |
| data_offset += sizeof(short) * static_cast<size_t>(samples_per_line); |
| } else { // float |
| for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) { |
| float f; |
| const float *src_ptr = reinterpret_cast<float *>( |
| &sample_data.at(size_t(data_offset) + x * sizeof(float))); |
| tinyexr::cpy4(&f, src_ptr); |
| deep_image->image[c][y][x] = f; |
| } |
| data_offset += sizeof(float) * static_cast<size_t>(samples_per_line); |
| } |
| } |
| } |
| } // y |
| |
| deep_image->width = data_width; |
| deep_image->height = data_height; |
| |
| deep_image->channel_names = static_cast<const char **>( |
| malloc(sizeof(const char *) * static_cast<size_t>(num_channels))); |
| for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| #ifdef _WIN32 |
| deep_image->channel_names[c] = _strdup(channels[c].name.c_str()); |
| #else |
| deep_image->channel_names[c] = strdup(channels[c].name.c_str()); |
| #endif |
| } |
| deep_image->num_channels = num_channels; |
| |
| return TINYEXR_SUCCESS; |
| } |
| |
| void InitEXRImage(EXRImage *exr_image) { |
| if (exr_image == NULL) { |
| return; |
| } |
| |
| exr_image->width = 0; |
| exr_image->height = 0; |
| exr_image->num_channels = 0; |
| |
| exr_image->images = NULL; |
| exr_image->tiles = NULL; |
| exr_image->next_level = NULL; |
| exr_image->level_x = 0; |
| exr_image->level_y = 0; |
| |
| exr_image->num_tiles = 0; |
| } |
| |
| void FreeEXRErrorMessage(const char *msg) { |
| if (msg) { |
| free(reinterpret_cast<void *>(const_cast<char *>(msg))); |
| } |
| return; |
| } |
| |
| void InitEXRHeader(EXRHeader *exr_header) { |
| if (exr_header == NULL) { |
| return; |
| } |
| |
| memset(exr_header, 0, sizeof(EXRHeader)); |
| } |
| |
| int FreeEXRHeader(EXRHeader *exr_header) { |
| if (exr_header == NULL) { |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| if (exr_header->channels) { |
| free(exr_header->channels); |
| } |
| |
| if (exr_header->pixel_types) { |
| free(exr_header->pixel_types); |
| } |
| |
| if (exr_header->requested_pixel_types) { |
| free(exr_header->requested_pixel_types); |
| } |
| |
| for (int i = 0; i < exr_header->num_custom_attributes; i++) { |
| if (exr_header->custom_attributes[i].value) { |
| free(exr_header->custom_attributes[i].value); |
| } |
| } |
| |
| if (exr_header->custom_attributes) { |
| free(exr_header->custom_attributes); |
| } |
| |
| EXRSetNameAttr(exr_header, NULL); |
| |
| return TINYEXR_SUCCESS; |
| } |
| |
| void EXRSetNameAttr(EXRHeader* exr_header, const char* name) { |
| if (exr_header == NULL) { |
| return; |
| } |
| memset(exr_header->name, 0, 256); |
| if (name != NULL) { |
| size_t len = std::min(strlen(name), size_t(255)); |
| if (len) { |
| memcpy(exr_header->name, name, len); |
| } |
| } |
| } |
| |
| int EXRNumLevels(const EXRImage* exr_image) { |
| if (exr_image == NULL) return 0; |
| if(exr_image->images) return 1; // scanlines |
| int levels = 1; |
| const EXRImage* level_image = exr_image; |
| |
| #if 0 |
| while ((level_image = level_image->next_level)) |
| ++levels; |
| #else |
| for (; ;) |
| { |
| level_image = level_image->next_level; |
| if (!level_image) |
| break; |
| ++levels; |
| } |
| #endif |
| |
| return levels; |
| } |
| |
| int FreeEXRImage(EXRImage *exr_image) { |
| if (exr_image == NULL) { |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| if (exr_image->next_level) { |
| FreeEXRImage(exr_image->next_level); |
| delete exr_image->next_level; |
| } |
| |
| for (int i = 0; i < exr_image->num_channels; i++) { |
| if (exr_image->images && exr_image->images[i]) { |
| free(exr_image->images[i]); |
| } |
| } |
| |
| if (exr_image->images) { |
| free(exr_image->images); |
| } |
| |
| if (exr_image->tiles) { |
| for (int tid = 0; tid < exr_image->num_tiles; tid++) { |
| for (int i = 0; i < exr_image->num_channels; i++) { |
| if (exr_image->tiles[tid].images && exr_image->tiles[tid].images[i]) { |
| free(exr_image->tiles[tid].images[i]); |
| } |
| } |
| if (exr_image->tiles[tid].images) { |
| free(exr_image->tiles[tid].images); |
| } |
| } |
| free(exr_image->tiles); |
| } |
| |
| return TINYEXR_SUCCESS; |
| } |
| |
| int ParseEXRHeaderFromFile(EXRHeader *exr_header, const EXRVersion *exr_version, |
| const char *filename, const char **err) { |
| if (exr_header == NULL || exr_version == NULL || filename == NULL) { |
| tinyexr::SetErrorMessage("Invalid argument for ParseEXRHeaderFromFile", |
| err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| MemoryMappedFile file(filename); |
| if (!file.valid()) { |
| tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err); |
| return TINYEXR_ERROR_CANT_OPEN_FILE; |
| } |
| |
| return ParseEXRHeaderFromMemory(exr_header, exr_version, file.data, file.size, |
| err); |
| } |
| |
| int ParseEXRMultipartHeaderFromMemory(EXRHeader ***exr_headers, |
| int *num_headers, |
| const EXRVersion *exr_version, |
| const unsigned char *memory, size_t size, |
| const char **err) { |
| if (memory == NULL || exr_headers == NULL || num_headers == NULL || |
| exr_version == NULL) { |
| // Invalid argument |
| tinyexr::SetErrorMessage( |
| "Invalid argument for ParseEXRMultipartHeaderFromMemory", err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| if (size < tinyexr::kEXRVersionSize) { |
| tinyexr::SetErrorMessage("Data size too short", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| const unsigned char *marker = memory + tinyexr::kEXRVersionSize; |
| size_t marker_size = size - tinyexr::kEXRVersionSize; |
| |
| std::vector<tinyexr::HeaderInfo> infos; |
| |
| for (;;) { |
| tinyexr::HeaderInfo info; |
| info.clear(); |
| |
| std::string err_str; |
| bool empty_header = false; |
| int ret = ParseEXRHeader(&info, &empty_header, exr_version, &err_str, |
| marker, marker_size); |
| |
| if (ret != TINYEXR_SUCCESS) { |
| |
| // Free malloc-allocated memory here. |
| for (size_t i = 0; i < info.attributes.size(); i++) { |
| if (info.attributes[i].value) { |
| free(info.attributes[i].value); |
| } |
| } |
| |
| tinyexr::SetErrorMessage(err_str, err); |
| return ret; |
| } |
| |
| if (empty_header) { |
| marker += 1; // skip '\0' |
| break; |
| } |
| |
| // `chunkCount` must exist in the header. |
| if (info.chunk_count == 0) { |
| |
| // Free malloc-allocated memory here. |
| for (size_t i = 0; i < info.attributes.size(); i++) { |
| if (info.attributes[i].value) { |
| free(info.attributes[i].value); |
| } |
| } |
| |
| tinyexr::SetErrorMessage( |
| "`chunkCount' attribute is not found in the header.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| infos.push_back(info); |
| |
| // move to next header. |
| marker += info.header_len; |
| size -= info.header_len; |
| } |
| |
| // allocate memory for EXRHeader and create array of EXRHeader pointers. |
| (*exr_headers) = |
| static_cast<EXRHeader **>(malloc(sizeof(EXRHeader *) * infos.size())); |
| |
| |
| int retcode = TINYEXR_SUCCESS; |
| |
| for (size_t i = 0; i < infos.size(); i++) { |
| EXRHeader *exr_header = static_cast<EXRHeader *>(malloc(sizeof(EXRHeader))); |
| memset(exr_header, 0, sizeof(EXRHeader)); |
| |
| std::string warn; |
| std::string _err; |
| if (!ConvertHeader(exr_header, infos[i], &warn, &_err)) { |
| |
| // Free malloc-allocated memory here. |
| for (size_t k = 0; k < infos[i].attributes.size(); k++) { |
| if (infos[i].attributes[k].value) { |
| free(infos[i].attributes[k].value); |
| } |
| } |
| |
| if (!_err.empty()) { |
| tinyexr::SetErrorMessage( |
| _err, err); |
| } |
| // continue to converting headers |
| retcode = TINYEXR_ERROR_INVALID_HEADER; |
| } |
| |
| exr_header->multipart = exr_version->multipart ? 1 : 0; |
| |
| (*exr_headers)[i] = exr_header; |
| } |
| |
| (*num_headers) = static_cast<int>(infos.size()); |
| |
| return retcode; |
| } |
| |
| int ParseEXRMultipartHeaderFromFile(EXRHeader ***exr_headers, int *num_headers, |
| const EXRVersion *exr_version, |
| const char *filename, const char **err) { |
| if (exr_headers == NULL || num_headers == NULL || exr_version == NULL || |
| filename == NULL) { |
| tinyexr::SetErrorMessage( |
| "Invalid argument for ParseEXRMultipartHeaderFromFile()", err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| MemoryMappedFile file(filename); |
| if (!file.valid()) { |
| tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err); |
| return TINYEXR_ERROR_CANT_OPEN_FILE; |
| } |
| |
| return ParseEXRMultipartHeaderFromMemory( |
| exr_headers, num_headers, exr_version, file.data, file.size, err); |
| } |
| |
| int ParseEXRVersionFromMemory(EXRVersion *version, const unsigned char *memory, |
| size_t size) { |
| if (version == NULL || memory == NULL) { |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| if (size < tinyexr::kEXRVersionSize) { |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| const unsigned char *marker = memory; |
| |
| // Header check. |
| { |
| const char header[] = {0x76, 0x2f, 0x31, 0x01}; |
| |
| if (memcmp(marker, header, 4) != 0) { |
| return TINYEXR_ERROR_INVALID_MAGIC_NUMBER; |
| } |
| marker += 4; |
| } |
| |
| version->tiled = false; |
| version->long_name = false; |
| version->non_image = false; |
| version->multipart = false; |
| |
| // Parse version header. |
| { |
| // must be 2 |
| if (marker[0] != 2) { |
| return TINYEXR_ERROR_INVALID_EXR_VERSION; |
| } |
| |
| if (version == NULL) { |
| return TINYEXR_SUCCESS; // May OK |
| } |
| |
| version->version = 2; |
| |
| if (marker[1] & 0x2) { // 9th bit |
| version->tiled = true; |
| } |
| if (marker[1] & 0x4) { // 10th bit |
| version->long_name = true; |
| } |
| if (marker[1] & 0x8) { // 11th bit |
| version->non_image = true; // (deep image) |
| } |
| if (marker[1] & 0x10) { // 12th bit |
| version->multipart = true; |
| } |
| } |
| |
| return TINYEXR_SUCCESS; |
| } |
| |
| int ParseEXRVersionFromFile(EXRVersion *version, const char *filename) { |
| if (filename == NULL) { |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| FILE *fp = NULL; |
| #ifdef _WIN32 |
| #if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang. |
| errno_t err = _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb"); |
| if (err != 0) { |
| // TODO(syoyo): return wfopen_s erro code |
| return TINYEXR_ERROR_CANT_OPEN_FILE; |
| } |
| #else |
| // Unknown compiler or MinGW without MINGW_HAS_SECURE_API. |
| fp = fopen(filename, "rb"); |
| #endif |
| #else |
| fp = fopen(filename, "rb"); |
| #endif |
| if (!fp) { |
| return TINYEXR_ERROR_CANT_OPEN_FILE; |
| } |
| |
| // Try to read kEXRVersionSize bytes; if the file is shorter than |
| // kEXRVersionSize, this will produce an error. This avoids a call to |
| // fseek(fp, 0, SEEK_END), which is not required to be supported by C |
| // implementations. |
| unsigned char buf[tinyexr::kEXRVersionSize]; |
| size_t ret = fread(&buf[0], 1, tinyexr::kEXRVersionSize, fp); |
| fclose(fp); |
| |
| if (ret != tinyexr::kEXRVersionSize) { |
| return TINYEXR_ERROR_INVALID_FILE; |
| } |
| |
| return ParseEXRVersionFromMemory(version, buf, tinyexr::kEXRVersionSize); |
| } |
| |
| int LoadEXRMultipartImageFromMemory(EXRImage *exr_images, |
| const EXRHeader **exr_headers, |
| unsigned int num_parts, |
| const unsigned char *memory, |
| const size_t size, const char **err) { |
| if (exr_images == NULL || exr_headers == NULL || num_parts == 0 || |
| memory == NULL || (size <= tinyexr::kEXRVersionSize)) { |
| tinyexr::SetErrorMessage( |
| "Invalid argument for LoadEXRMultipartImageFromMemory()", err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| // compute total header size. |
| size_t total_header_size = 0; |
| for (unsigned int i = 0; i < num_parts; i++) { |
| if (exr_headers[i]->header_len == 0) { |
| tinyexr::SetErrorMessage("EXRHeader variable is not initialized.", err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| total_header_size += exr_headers[i]->header_len; |
| } |
| |
| const char *marker = reinterpret_cast<const char *>( |
| memory + total_header_size + 4 + |
| 4); // +8 for magic number and version header. |
| |
| marker += 1; // Skip empty header. |
| |
| // NOTE 1: |
| // In multipart image, There is 'part number' before chunk data. |
| // 4 byte : part number |
| // 4+ : chunk |
| // |
| // NOTE 2: |
| // EXR spec says 'part number' is 'unsigned long' but actually this is |
| // 'unsigned int(4 bytes)' in OpenEXR implementation... |
| // http://www.openexr.com/openexrfilelayout.pdf |
| |
| // Load chunk offset table. |
| std::vector<tinyexr::OffsetData> chunk_offset_table_list; |
| chunk_offset_table_list.reserve(num_parts); |
| for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) { |
| chunk_offset_table_list.resize(chunk_offset_table_list.size() + 1); |
| tinyexr::OffsetData& offset_data = chunk_offset_table_list.back(); |
| if (!exr_headers[i]->tiled || exr_headers[i]->tile_level_mode == TINYEXR_TILE_ONE_LEVEL) { |
| tinyexr::InitSingleResolutionOffsets(offset_data, size_t(exr_headers[i]->chunk_count)); |
| std::vector<tinyexr::tinyexr_uint64>& offset_table = offset_data.offsets[0][0]; |
| |
| for (size_t c = 0; c < offset_table.size(); c++) { |
| tinyexr::tinyexr_uint64 offset; |
| memcpy(&offset, marker, 8); |
| tinyexr::swap8(&offset); |
| |
| if (offset >= size) { |
| tinyexr::SetErrorMessage("Invalid offset size in EXR header chunks.", |
| err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| |
| offset_table[c] = offset + 4; // +4 to skip 'part number' |
| marker += 8; |
| } |
| } else { |
| { |
| std::vector<int> num_x_tiles, num_y_tiles; |
| if (!tinyexr::PrecalculateTileInfo(num_x_tiles, num_y_tiles, exr_headers[i])) { |
| tinyexr::SetErrorMessage("Invalid tile info.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| int num_blocks = InitTileOffsets(offset_data, exr_headers[i], num_x_tiles, num_y_tiles); |
| if (num_blocks != exr_headers[i]->chunk_count) { |
| tinyexr::SetErrorMessage("Invalid offset table size.", err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| } |
| for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) { |
| for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) { |
| for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) { |
| tinyexr::tinyexr_uint64 offset; |
| memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64)); |
| tinyexr::swap8(&offset); |
| if (offset >= size) { |
| tinyexr::SetErrorMessage("Invalid offset size in EXR header chunks.", |
| err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| offset_data.offsets[l][dy][dx] = offset + 4; // +4 to skip 'part number' |
| marker += sizeof(tinyexr::tinyexr_uint64); // = 8 |
| } |
| } |
| } |
| } |
| } |
| |
| // Decode image. |
| for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) { |
| tinyexr::OffsetData &offset_data = chunk_offset_table_list[i]; |
| |
| // First check 'part number' is identical to 'i' |
| for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) |
| for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) |
| for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) { |
| |
| const unsigned char *part_number_addr = |
| memory + offset_data.offsets[l][dy][dx] - 4; // -4 to move to 'part number' field. |
| unsigned int part_no; |
| memcpy(&part_no, part_number_addr, sizeof(unsigned int)); // 4 |
| tinyexr::swap4(&part_no); |
| |
| if (part_no != i) { |
| tinyexr::SetErrorMessage("Invalid `part number' in EXR header chunks.", |
| err); |
| return TINYEXR_ERROR_INVALID_DATA; |
| } |
| } |
| |
| std::string e; |
| int ret = tinyexr::DecodeChunk(&exr_images[i], exr_headers[i], offset_data, |
| memory, size, &e); |
| if (ret != TINYEXR_SUCCESS) { |
| if (!e.empty()) { |
| tinyexr::SetErrorMessage(e, err); |
| } |
| return ret; |
| } |
| } |
| |
| return TINYEXR_SUCCESS; |
| } |
| |
| int LoadEXRMultipartImageFromFile(EXRImage *exr_images, |
| const EXRHeader **exr_headers, |
| unsigned int num_parts, const char *filename, |
| const char **err) { |
| if (exr_images == NULL || exr_headers == NULL || num_parts == 0) { |
| tinyexr::SetErrorMessage( |
| "Invalid argument for LoadEXRMultipartImageFromFile", err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| MemoryMappedFile file(filename); |
| if (!file.valid()) { |
| tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err); |
| return TINYEXR_ERROR_CANT_OPEN_FILE; |
| } |
| |
| return LoadEXRMultipartImageFromMemory(exr_images, exr_headers, num_parts, |
| file.data, file.size, err); |
| } |
| |
| int SaveEXRToMemory(const float *data, int width, int height, int components, |
| const int save_as_fp16, const unsigned char **outbuf, const char **err) { |
| |
| if ((components == 1) || components == 3 || components == 4) { |
| // OK |
| } else { |
| std::stringstream ss; |
| ss << "Unsupported component value : " << components << std::endl; |
| |
| tinyexr::SetErrorMessage(ss.str(), err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| EXRHeader header; |
| InitEXRHeader(&header); |
| |
| if ((width < 16) && (height < 16)) { |
| // No compression for small image. |
| header.compression_type = TINYEXR_COMPRESSIONTYPE_NONE; |
| } else { |
| header.compression_type = TINYEXR_COMPRESSIONTYPE_ZIP; |
| } |
| |
| EXRImage image; |
| InitEXRImage(&image); |
| |
| image.num_channels = components; |
| |
| std::vector<float> images[4]; |
| |
| if (components == 1) { |
| images[0].resize(static_cast<size_t>(width * height)); |
| memcpy(images[0].data(), data, sizeof(float) * size_t(width * height)); |
| } else { |
| images[0].resize(static_cast<size_t>(width * height)); |
| images[1].resize(static_cast<size_t>(width * height)); |
| images[2].resize(static_cast<size_t>(width * height)); |
| images[3].resize(static_cast<size_t>(width * height)); |
| |
| // Split RGB(A)RGB(A)RGB(A)... into R, G and B(and A) layers |
| for (size_t i = 0; i < static_cast<size_t>(width * height); i++) { |
| images[0][i] = data[static_cast<size_t>(components) * i + 0]; |
| images[1][i] = data[static_cast<size_t>(components) * i + 1]; |
| images[2][i] = data[static_cast<size_t>(components) * i + 2]; |
| if (components == 4) { |
| images[3][i] = data[static_cast<size_t>(components) * i + 3]; |
| } |
| } |
| } |
| |
| float *image_ptr[4] = {0, 0, 0, 0}; |
| if (components == 4) { |
| image_ptr[0] = &(images[3].at(0)); // A |
| image_ptr[1] = &(images[2].at(0)); // B |
| image_ptr[2] = &(images[1].at(0)); // G |
| image_ptr[3] = &(images[0].at(0)); // R |
| } else if (components == 3) { |
| image_ptr[0] = &(images[2].at(0)); // B |
| image_ptr[1] = &(images[1].at(0)); // G |
| image_ptr[2] = &(images[0].at(0)); // R |
| } else if (components == 1) { |
| image_ptr[0] = &(images[0].at(0)); // A |
| } |
| |
| image.images = reinterpret_cast<unsigned char **>(image_ptr); |
| image.width = width; |
| image.height = height; |
| |
| header.num_channels = components; |
| header.channels = static_cast<EXRChannelInfo *>(malloc( |
| sizeof(EXRChannelInfo) * static_cast<size_t>(header.num_channels))); |
| // Must be (A)BGR order, since most of EXR viewers expect this channel order. |
| if (components == 4) { |
| #ifdef _MSC_VER |
| strncpy_s(header.channels[0].name, "A", 255); |
| strncpy_s(header.channels[1].name, "B", 255); |
| strncpy_s(header.channels[2].name, "G", 255); |
| strncpy_s(header.channels[3].name, "R", 255); |
| #else |
| strncpy(header.channels[0].name, "A", 255); |
| strncpy(header.channels[1].name, "B", 255); |
| strncpy(header.channels[2].name, "G", 255); |
| strncpy(header.channels[3].name, "R", 255); |
| #endif |
| header.channels[0].name[strlen("A")] = '\0'; |
| header.channels[1].name[strlen("B")] = '\0'; |
| header.channels[2].name[strlen("G")] = '\0'; |
| header.channels[3].name[strlen("R")] = '\0'; |
| } else if (components == 3) { |
| #ifdef _MSC_VER |
| strncpy_s(header.channels[0].name, "B", 255); |
| strncpy_s(header.channels[1].name, "G", 255); |
| strncpy_s(header.channels[2].name, "R", 255); |
| #else |
| strncpy(header.channels[0].name, "B", 255); |
| strncpy(header.channels[1].name, "G", 255); |
| strncpy(header.channels[2].name, "R", 255); |
| #endif |
| header.channels[0].name[strlen("B")] = '\0'; |
| header.channels[1].name[strlen("G")] = '\0'; |
| header.channels[2].name[strlen("R")] = '\0'; |
| } else { |
| #ifdef _MSC_VER |
| strncpy_s(header.channels[0].name, "A", 255); |
| #else |
| strncpy(header.channels[0].name, "A", 255); |
| #endif |
| header.channels[0].name[strlen("A")] = '\0'; |
| } |
| |
| header.pixel_types = static_cast<int *>( |
| malloc(sizeof(int) * static_cast<size_t>(header.num_channels))); |
| header.requested_pixel_types = static_cast<int *>( |
| malloc(sizeof(int) * static_cast<size_t>(header.num_channels))); |
| for (int i = 0; i < header.num_channels; i++) { |
| header.pixel_types[i] = |
| TINYEXR_PIXELTYPE_FLOAT; // pixel type of input image |
| |
| if (save_as_fp16 > 0) { |
| header.requested_pixel_types[i] = |
| TINYEXR_PIXELTYPE_HALF; // save with half(fp16) pixel format |
| } else { |
| header.requested_pixel_types[i] = |
| TINYEXR_PIXELTYPE_FLOAT; // save with float(fp32) pixel format(i.e. |
| // no precision reduction) |
| } |
| } |
| |
| |
| unsigned char *mem_buf; |
| size_t mem_size = SaveEXRImageToMemory(&image, &header, &mem_buf, err); |
| |
| if (mem_size == 0) { |
| return TINYEXR_ERROR_SERIALIZATION_FAILED; |
| } |
| |
| free(header.channels); |
| free(header.pixel_types); |
| free(header.requested_pixel_types); |
| |
| if (mem_size > size_t(std::numeric_limits<int>::max())) { |
| free(mem_buf); |
| return TINYEXR_ERROR_DATA_TOO_LARGE; |
| } |
| |
| (*outbuf) = mem_buf; |
| |
| return int(mem_size); |
| } |
| |
| int SaveEXR(const float *data, int width, int height, int components, |
| const int save_as_fp16, const char *outfilename, const char **err) { |
| if ((components == 1) || components == 3 || components == 4) { |
| // OK |
| } else { |
| std::stringstream ss; |
| ss << "Unsupported component value : " << components << std::endl; |
| |
| tinyexr::SetErrorMessage(ss.str(), err); |
| return TINYEXR_ERROR_INVALID_ARGUMENT; |
| } |
| |
| EXRHeader header; |
| InitEXRHeader(&header); |
| |
| if ((width < 16) && (height < 16)) { |
| // No compression for small image. |
| header.compression_type = TINYEXR_COMPRESSIONTYPE_NONE; |
| } else { |
| header.compression_type = TINYEXR_COMPRESSIONTYPE_ZIP; |
| } |
| |
| EXRImage image; |
| InitEXRImage(&image); |
| |
| image.num_channels = components; |
| |
| std::vector<float> images[4]; |
| const size_t pixel_count = |
| static_cast<size_t>(width) * static_cast<size_t>(height); |
| |
| if (components == 1) { |
| images[0].resize(pixel_count); |
| memcpy(images[0].data(), data, sizeof(float) * pixel_count); |
| } else { |
| images[0].resize(pixel_count); |
| images[1].resize(pixel_count); |
| images[2].resize(pixel_count); |
| images[3].resize(pixel_count); |
| |
| // Split RGB(A)RGB(A)RGB(A)... into R, G and B(and A) layers |
| for (size_t i = 0; i < pixel_count; i++) { |
| images[0][i] = data[static_cast<size_t>(components) * i + 0]; |
| images[1][i] = data[static_cast<size_t>(components) * i + 1]; |
| images[2][i] = data[static_cast<size_t>(components) * i + 2]; |
| if (components == 4) { |
| images[3][i] = data[static_cast<size_t>(components) * i + 3]; |
| } |
| } |
| } |
| |
| float *image_ptr[4] = {0, 0, 0, 0}; |
| if (components == 4) { |
| image_ptr[0] = &(images[3].at(0)); // A |
| image_ptr[1] = &(images[2].at(0)); // B |
| image_ptr[2] = &(images[1].at(0)); // G |
| image_ptr[3] = &(images[0].at(0)); // R |
| } else if (components == 3) { |
| image_ptr[0] = &(images[2].at(0)); // B |
| image_ptr[1] = &(images[1].at(0)); // G |
| image_ptr[2] = &(images[0].at(0)); // R |
| } else if (components == 1) { |
| image_ptr[0] = &(images[0].at(0)); // A |
| } |
| |
| image.images = reinterpret_cast<unsigned char **>(image_ptr); |
| image.width = width; |
| image.height = height; |
| |
| header.num_channels = components; |
| header.channels = static_cast<EXRChannelInfo *>(malloc( |
| sizeof(EXRChannelInfo) * static_cast<size_t>(header.num_channels))); |
| // Must be (A)BGR order, since most of EXR viewers expect this channel order. |
| if (components == 4) { |
| #ifdef _MSC_VER |
| strncpy_s(header.channels[0].name, "A", 255); |
| strncpy_s(header.channels[1].name, "B", 255); |
| strncpy_s(header.channels[2].name, "G", 255); |
| strncpy_s(header.channels[3].name, "R", 255); |
| #else |
| strncpy(header.channels[0].name, "A", 255); |
| strncpy(header.channels[1].name, "B", 255); |
| strncpy(header.channels[2].name, "G", 255); |
| strncpy(header.channels[3].name, "R", 255); |
| #endif |
| header.channels[0].name[strlen("A")] = '\0'; |
| header.channels[1].name[strlen("B")] = '\0'; |
| header.channels[2].name[strlen("G")] = '\0'; |
| header.channels[3].name[strlen("R")] = '\0'; |
| } else if (components == 3) { |
| #ifdef _MSC_VER |
| strncpy_s(header.channels[0].name, "B", 255); |
| strncpy_s(header.channels[1].name, "G", 255); |
| strncpy_s(header.channels[2].name, "R", 255); |
| #else |
| strncpy(header.channels[0].name, "B", 255); |
| strncpy(header.channels[1].name, "G", 255); |
| strncpy(header.channels[2].name, "R", 255); |
| #endif |
| header.channels[0].name[strlen("B")] = '\0'; |
| header.channels[1].name[strlen("G")] = '\0'; |
| header.channels[2].name[strlen("R")] = '\0'; |
| } else { |
| #ifdef _MSC_VER |
| strncpy_s(header.channels[0].name, "A", 255); |
| #else |
| strncpy(header.channels[0].name, "A", 255); |
| #endif |
| header.channels[0].name[strlen("A")] = '\0'; |
| } |
| |
| header.pixel_types = static_cast<int *>( |
| malloc(sizeof(int) * static_cast<size_t>(header.num_channels))); |
| header.requested_pixel_types = static_cast<int *>( |
| malloc(sizeof(int) * static_cast<size_t>(header.num_channels))); |
| for (int i = 0; i < header.num_channels; i++) { |
| header.pixel_types[i] = |
| TINYEXR_PIXELTYPE_FLOAT; // pixel type of input image |
| |
| if (save_as_fp16 > 0) { |
| header.requested_pixel_types[i] = |
| TINYEXR_PIXELTYPE_HALF; // save with half(fp16) pixel format |
| } else { |
| header.requested_pixel_types[i] = |
| TINYEXR_PIXELTYPE_FLOAT; // save with float(fp32) pixel format(i.e. |
| // no precision reduction) |
| } |
| } |
| |
| int ret = SaveEXRImageToFile(&image, &header, outfilename, err); |
| if (ret != TINYEXR_SUCCESS) { |
| return ret; |
| } |
| |
| free(header.channels); |
| free(header.pixel_types); |
| free(header.requested_pixel_types); |
| |
| return ret; |
| } |
| |
| #ifdef __clang__ |
| // zero-as-null-pointer-constant |
| #pragma clang diagnostic pop |
| #endif |
| |
| #endif // TINYEXR_IMPLEMENTATION_DEFINED |
| #endif // TINYEXR_IMPLEMENTATION |