blob: 618e646da4365f527905e86dda63f30b1d35a869 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBlitter.h"
#include "SkColor.h"
#include "SkColorFilter.h"
#include "SkHalf.h"
#include "SkPM4f.h"
#include "SkRasterPipeline.h"
#include "SkShader.h"
#include "SkSRGB.h"
#include "SkXfermode.h"
class SkRasterPipelineBlitter : public SkBlitter {
public:
static SkBlitter* Create(const SkPixmap&, const SkPaint&, SkTBlitterAllocator*);
SkRasterPipelineBlitter(SkPixmap dst,
SkRasterPipeline shader,
SkRasterPipeline colorFilter,
SkRasterPipeline xfermode,
SkPM4f paintColor)
: fDst(dst)
, fShader(shader)
, fColorFilter(colorFilter)
, fXfermode(xfermode)
, fPaintColor(paintColor)
{}
void blitH (int x, int y, int w) override;
void blitAntiH(int x, int y, const SkAlpha[], const int16_t[]) override;
void blitMask (const SkMask&, const SkIRect& clip) override;
// TODO: The default implementations of the other blits look fine,
// but some of them like blitV could probably benefit from custom
// blits using something like a SkRasterPipeline::runFew() method.
private:
void append_load_d(SkRasterPipeline*, const void*) const;
void append_store (SkRasterPipeline*, void*) const;
SkPixmap fDst;
SkRasterPipeline fShader, fColorFilter, fXfermode;
SkPM4f fPaintColor;
typedef SkBlitter INHERITED;
};
SkBlitter* SkCreateRasterPipelineBlitter(const SkPixmap& dst,
const SkPaint& paint,
SkTBlitterAllocator* alloc) {
return SkRasterPipelineBlitter::Create(dst, paint, alloc);
}
// Clamp colors into [0,1] premul (e.g. just before storing back to memory).
SK_RASTER_STAGE(clamp_01_premul) {
a = Sk4f::Max(a, 0.0f);
r = Sk4f::Max(r, 0.0f);
g = Sk4f::Max(g, 0.0f);
b = Sk4f::Max(b, 0.0f);
a = Sk4f::Min(a, 1.0f);
r = Sk4f::Min(r, a);
g = Sk4f::Min(g, a);
b = Sk4f::Min(b, a);
}
// The default shader produces a constant color (from the SkPaint).
SK_RASTER_STAGE(constant_color) {
auto color = (const SkPM4f*)ctx;
r = color->r();
g = color->g();
b = color->b();
a = color->a();
}
// The default transfer mode is srcover, s' = s + d*(1-sa).
SK_RASTER_STAGE(srcover) {
r += dr*(1.0f - a);
g += dg*(1.0f - a);
b += db*(1.0f - a);
a += da*(1.0f - a);
}
static Sk4f lerp(const Sk4f& from, const Sk4f& to, const Sk4f& cov) {
return from + (to-from)*cov;
}
// s' = d(1-c) + sc, for a constant c.
SK_RASTER_STAGE(lerp_constant_float) {
Sk4f c = *(const float*)ctx;
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
// s' = d(1-c) + sc, 4 pixels at a time for 8-bit coverage.
SK_RASTER_STAGE(lerp_a8) {
auto ptr = (const uint8_t*)ctx + x;
Sk4f c = SkNx_cast<float>(Sk4b::Load(ptr)) * (1/255.0f);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
// Tail variant of lerp_a8() handling 1 pixel at a time.
SK_RASTER_STAGE(lerp_a8_1) {
auto ptr = (const uint8_t*)ctx + x;
Sk4f c = *ptr * (1/255.0f);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
static void from_565(const Sk4h& _565, Sk4f* r, Sk4f* g, Sk4f* b) {
Sk4i _32_bit = SkNx_cast<int>(_565);
*r = SkNx_cast<float>(_32_bit & SK_R16_MASK_IN_PLACE) * (1.0f / SK_R16_MASK_IN_PLACE);
*g = SkNx_cast<float>(_32_bit & SK_G16_MASK_IN_PLACE) * (1.0f / SK_G16_MASK_IN_PLACE);
*b = SkNx_cast<float>(_32_bit & SK_B16_MASK_IN_PLACE) * (1.0f / SK_B16_MASK_IN_PLACE);
}
static Sk4h to_565(const Sk4f& r, const Sk4f& g, const Sk4f& b) {
return SkNx_cast<uint16_t>( Sk4f_round(r * SK_R16_MASK) << SK_R16_SHIFT
| Sk4f_round(g * SK_G16_MASK) << SK_G16_SHIFT
| Sk4f_round(b * SK_B16_MASK) << SK_B16_SHIFT);
}
// s' = d(1-c) + sc, 4 pixels at a time for 565 coverage.
SK_RASTER_STAGE(lerp_lcd16) {
auto ptr = (const uint16_t*)ctx + x;
Sk4f cr, cg, cb;
from_565(Sk4h::Load(ptr), &cr, &cg, &cb);
r = lerp(dr, r, cr);
g = lerp(dg, g, cg);
b = lerp(db, b, cb);
a = 1.0f;
}
// Tail variant of lerp_lcd16() handling 1 pixel at a time.
SK_RASTER_STAGE(lerp_lcd16_1) {
auto ptr = (const uint16_t*)ctx + x;
Sk4f cr, cg, cb;
from_565({*ptr,0,0,0}, &cr, &cg, &cb);
r = lerp(dr, r, cr);
g = lerp(dg, g, cg);
b = lerp(db, b, cb);
a = 1.0f;
}
// Load 4 565 dst pixels.
SK_RASTER_STAGE(load_d_565) {
auto ptr = (const uint16_t*)ctx + x;
from_565(Sk4h::Load(ptr), &dr,&dg,&db);
da = 1.0f;
}
// Load 1 565 dst pixel.
SK_RASTER_STAGE(load_d_565_1) {
auto ptr = (const uint16_t*)ctx + x;
from_565({*ptr,0,0,0}, &dr,&dg,&db);
da = 1.0f;
}
// Store 4 565 pixels.
SK_RASTER_STAGE(store_565) {
auto ptr = (uint16_t*)ctx + x;
to_565(r,g,b).store(ptr);
}
// Store 1 565 pixel.
SK_RASTER_STAGE(store_565_1) {
auto ptr = (uint16_t*)ctx + x;
*ptr = to_565(r,g,b)[0];
}
// Load 4 F16 pixels.
SK_RASTER_STAGE(load_d_f16) {
auto ptr = (const uint64_t*)ctx + x;
Sk4h rh, gh, bh, ah;
Sk4h_load4(ptr, &rh, &gh, &bh, &ah);
dr = SkHalfToFloat_finite_ftz(rh);
dg = SkHalfToFloat_finite_ftz(gh);
db = SkHalfToFloat_finite_ftz(bh);
da = SkHalfToFloat_finite_ftz(ah);
}
// Load 1 F16 pixel.
SK_RASTER_STAGE(load_d_f16_1) {
auto ptr = (const uint64_t*)ctx + x;
auto p0 = SkHalfToFloat_finite_ftz(ptr[0]);
dr = { p0[0],0,0,0 };
dg = { p0[1],0,0,0 };
db = { p0[2],0,0,0 };
da = { p0[3],0,0,0 };
}
// Store 4 F16 pixels.
SK_RASTER_STAGE(store_f16) {
auto ptr = (uint64_t*)ctx + x;
Sk4h_store4(ptr, SkFloatToHalf_finite_ftz(r), SkFloatToHalf_finite_ftz(g),
SkFloatToHalf_finite_ftz(b), SkFloatToHalf_finite_ftz(a));
}
// Store 1 F16 pixel.
SK_RASTER_STAGE(store_f16_1) {
auto ptr = (uint64_t*)ctx + x;
SkFloatToHalf_finite_ftz({r[0], g[0], b[0], a[0]}).store(ptr);
}
// Load 4 8-bit sRGB pixels from SkPMColor order to RGBA.
SK_RASTER_STAGE(load_d_srgb) {
auto ptr = (const uint32_t*)ctx + x;
dr = { sk_linear_from_srgb[(ptr[0] >> SK_R32_SHIFT) & 0xff],
sk_linear_from_srgb[(ptr[1] >> SK_R32_SHIFT) & 0xff],
sk_linear_from_srgb[(ptr[2] >> SK_R32_SHIFT) & 0xff],
sk_linear_from_srgb[(ptr[3] >> SK_R32_SHIFT) & 0xff] };
dg = { sk_linear_from_srgb[(ptr[0] >> SK_G32_SHIFT) & 0xff],
sk_linear_from_srgb[(ptr[1] >> SK_G32_SHIFT) & 0xff],
sk_linear_from_srgb[(ptr[2] >> SK_G32_SHIFT) & 0xff],
sk_linear_from_srgb[(ptr[3] >> SK_G32_SHIFT) & 0xff] };
db = { sk_linear_from_srgb[(ptr[0] >> SK_B32_SHIFT) & 0xff],
sk_linear_from_srgb[(ptr[1] >> SK_B32_SHIFT) & 0xff],
sk_linear_from_srgb[(ptr[2] >> SK_B32_SHIFT) & 0xff],
sk_linear_from_srgb[(ptr[3] >> SK_B32_SHIFT) & 0xff] };
da = SkNx_cast<float>(Sk4u::Load(ptr) >> SK_A32_SHIFT) * (1/255.0f);
}
// Tail variant of load_d_srgb() handling 1 pixel at a time.
SK_RASTER_STAGE(load_d_srgb_1) {
auto ptr = (const uint32_t*)ctx + x;
dr = { sk_linear_from_srgb[(*ptr >> SK_R32_SHIFT) & 0xff], 0,0,0 };
dg = { sk_linear_from_srgb[(*ptr >> SK_G32_SHIFT) & 0xff], 0,0,0 };
db = { sk_linear_from_srgb[(*ptr >> SK_B32_SHIFT) & 0xff], 0,0,0 };
da = { (1/255.0f) * (*ptr >> SK_A32_SHIFT) , 0,0,0 };
}
// Write out 4 pixels as 8-bit SkPMColor-order sRGB.
SK_RASTER_STAGE(store_srgb) {
auto ptr = (uint32_t*)ctx + x;
( sk_linear_to_srgb_noclamp(r) << SK_R32_SHIFT
| sk_linear_to_srgb_noclamp(g) << SK_G32_SHIFT
| sk_linear_to_srgb_noclamp(b) << SK_B32_SHIFT
| Sk4f_round(255.0f * a) << SK_A32_SHIFT).store(ptr);
}
// Tail variant of store_srgb() handling 1 pixel at a time.
SK_RASTER_STAGE(store_srgb_1) {
auto ptr = (uint32_t*)ctx + x;
Sk4i rgb = sk_linear_to_srgb_noclamp(swizzle_rb_if_bgra({ r[0], g[0], b[0], 0.0f }));
uint32_t rgba;
SkNx_cast<uint8_t>(rgb).store(&rgba);
rgba |= (uint32_t)(255.0f * a[0] + 0.5f) << 24;
*ptr = rgba;
}
static bool supported(const SkImageInfo& info) {
switch (info.colorType()) {
case kN32_SkColorType: return info.gammaCloseToSRGB();
case kRGBA_F16_SkColorType: return true;
case kRGB_565_SkColorType: return true;
default: return false;
}
}
template <typename Effect>
static bool append_effect_stages(const Effect* effect, SkRasterPipeline* pipeline) {
return !effect || effect->appendStages(pipeline);
}
SkBlitter* SkRasterPipelineBlitter::Create(const SkPixmap& dst,
const SkPaint& paint,
SkTBlitterAllocator* alloc) {
if (!supported(dst.info())) {
return nullptr;
}
if (paint.getShader()) {
return nullptr; // TODO: need to work out how shaders and their contexts work
}
SkRasterPipeline shader, colorFilter, xfermode;
if (!append_effect_stages(paint.getColorFilter(), &colorFilter) ||
!append_effect_stages(paint.getXfermode(), &xfermode )) {
return nullptr;
}
uint32_t paintColor = paint.getColor();
SkColor4f color;
if (SkImageInfoIsGammaCorrect(dst.info())) {
color = SkColor4f::FromColor(paintColor);
} else {
swizzle_rb(SkNx_cast<float>(Sk4b::Load(&paintColor)) * (1/255.0f)).store(&color);
}
auto blitter = alloc->createT<SkRasterPipelineBlitter>(
dst,
shader, colorFilter, xfermode,
color.premul());
if (!paint.getShader()) {
blitter->fShader.append<constant_color>(&blitter->fPaintColor);
}
if (!paint.getXfermode()) {
blitter->fXfermode.append<srcover>();
}
return blitter;
}
void SkRasterPipelineBlitter::append_load_d(SkRasterPipeline* p, const void* dst) const {
SkASSERT(supported(fDst.info()));
switch (fDst.info().colorType()) {
case kN32_SkColorType:
if (fDst.info().gammaCloseToSRGB()) {
p->append<load_d_srgb, load_d_srgb_1>(dst);
}
break;
case kRGBA_F16_SkColorType:
p->append<load_d_f16, load_d_f16_1>(dst);
break;
case kRGB_565_SkColorType:
p->append<load_d_565, load_d_565_1>(dst);
break;
default: break;
}
}
void SkRasterPipelineBlitter::append_store(SkRasterPipeline* p, void* dst) const {
SkASSERT(supported(fDst.info()));
p->append<clamp_01_premul>();
switch (fDst.info().colorType()) {
case kN32_SkColorType:
if (fDst.info().gammaCloseToSRGB()) {
p->append<store_srgb, store_srgb_1>(dst);
}
break;
case kRGBA_F16_SkColorType:
p->append<store_f16, store_f16_1>(dst);
break;
case kRGB_565_SkColorType:
p->append<store_565, store_565_1>(dst);
break;
default: break;
}
}
void SkRasterPipelineBlitter::blitH(int x, int y, int w) {
auto dst = fDst.writable_addr(0,y);
SkRasterPipeline p;
p.extend(fShader);
p.extend(fColorFilter);
this->append_load_d(&p, dst);
p.extend(fXfermode);
this->append_store(&p, dst);
p.run(x, w);
}
void SkRasterPipelineBlitter::blitAntiH(int x, int y, const SkAlpha aa[], const int16_t runs[]) {
auto dst = fDst.writable_addr(0,y);
float coverage;
SkRasterPipeline p;
p.extend(fShader);
p.extend(fColorFilter);
this->append_load_d(&p, dst);
p.extend(fXfermode);
p.append<lerp_constant_float>(&coverage);
this->append_store(&p, dst);
for (int16_t run = *runs; run > 0; run = *runs) {
coverage = *aa * (1/255.0f);
p.run(x, run);
x += run;
runs += run;
aa += run;
}
}
void SkRasterPipelineBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {
if (mask.fFormat == SkMask::kBW_Format) {
// TODO: native BW masks?
return INHERITED::blitMask(mask, clip);
}
int x = clip.left();
for (int y = clip.top(); y < clip.bottom(); y++) {
auto dst = fDst.writable_addr(0,y);
SkRasterPipeline p;
p.extend(fShader);
p.extend(fColorFilter);
this->append_load_d(&p, dst);
p.extend(fXfermode);
switch (mask.fFormat) {
case SkMask::kA8_Format:
p.append<lerp_a8, lerp_a8_1>(mask.getAddr8(x,y)-x);
break;
case SkMask::kLCD16_Format:
p.append<lerp_lcd16, lerp_lcd16_1>(mask.getAddrLCD16(x,y)-x);
break;
default: break;
}
this->append_store(&p, dst);
p.run(x, clip.width());
}
}