blob: ba6ac97a5b4395807a22c482b05e95ccc985eb0c [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkLatticeIter.h"
#include "SkRect.h"
/**
* Divs must be in increasing order with no duplicates.
*/
static bool valid_divs(const int* divs, int count, int len) {
if (count <= 0) {
return false;
}
int prev = -1;
for (int i = 0; i < count; i++) {
if (prev >= divs[i] || divs[i] > len) {
return false;
}
}
return true;
}
bool SkLatticeIter::Valid(int width, int height, const SkCanvas::Lattice& lattice) {
return valid_divs(lattice.fXDivs, lattice.fXCount, width) &&
valid_divs(lattice.fYDivs, lattice.fYCount, height);
}
/**
* Count the number of pixels that are in "scalable" patches.
*/
static int count_scalable_pixels(const int32_t* divs, int numDivs, bool firstIsScalable,
int length) {
if (0 == numDivs) {
return firstIsScalable ? length : 0;
}
int i;
int count;
if (firstIsScalable) {
count = divs[0];
i = 1;
} else {
count = 0;
i = 0;
}
for (; i < numDivs; i += 2) {
// Alternatively, we could use |top| and |bottom| as variable names, instead of
// |left| and |right|.
int left = divs[i];
int right = (i + 1 < numDivs) ? divs[i + 1] : length;
count += right - left;
}
return count;
}
/**
* Set points for the src and dst rects on subsequent draw calls.
*/
static void set_points(float* dst, float* src, const int* divs, int divCount, int srcFixed,
int srcScalable, float dstStart, float dstStop, bool isScalable) {
float dstLen = dstStop - dstStart;
int srcLen = srcFixed + srcScalable;
float scale;
if (srcFixed <= dstLen) {
// This is the "normal" case, where we scale the "scalable" patches and leave
// the other patches fixed.
scale = (dstLen - ((float) srcFixed)) / ((float) srcScalable);
} else {
// In this case, we eliminate the "scalable" patches and scale the "fixed" patches.
scale = dstLen / ((float) srcFixed);
}
src[0] = 0.0f;
dst[0] = dstStart;
for (int i = 0; i < divCount; i++) {
src[i + 1] = (float) (divs[i]);
float srcDelta = src[i + 1] - src[i];
float dstDelta;
if (srcFixed <= dstLen) {
dstDelta = isScalable ? scale * srcDelta : srcDelta;
} else {
dstDelta = isScalable ? 0.0f : scale * srcDelta;
}
dst[i + 1] = dst[i] + dstDelta;
// Alternate between "scalable" and "fixed" patches.
isScalable = !isScalable;
}
src[divCount + 1] = (float) srcLen;
dst[divCount + 1] = dstStop;
}
SkLatticeIter::SkLatticeIter(int srcWidth, int srcHeight, const SkCanvas::Lattice& lattice,
const SkRect& dst)
{
const int* xDivs = lattice.fXDivs;
int xCount = lattice.fXCount;
const int* yDivs = lattice.fYDivs;
int yCount = lattice.fYCount;
// In the x-dimension, the first rectangle always starts at x = 0 and is "scalable".
// If xDiv[0] is 0, it indicates that the first rectangle is degenerate, so the
// first real rectangle "scalable" in the x-direction.
//
// The same interpretation applies to the y-dimension.
//
// As we move left to right across the image, alternating patches will be "fixed" or
// "scalable" in the x-direction. Similarly, as move top to bottom, alternating
// patches will be "fixed" or "scalable" in the y-direction.
SkASSERT(xCount > 0 && yCount > 0);
bool xIsScalable = (0 == xDivs[0]);
if (xIsScalable) {
// Once we've decided that the first patch is "scalable", we don't need the
// xDiv. It is always implied that we start at zero.
xDivs++;
xCount--;
}
bool yIsScalable = (0 == yDivs[0]);
if (yIsScalable) {
// Once we've decided that the first patch is "scalable", we don't need the
// yDiv. It is always implied that we start at zero.
yDivs++;
yCount--;
}
// We never need the final xDiv/yDiv if it is equal to the width/height. This is implied.
if (xCount > 0 && srcWidth == xDivs[xCount - 1]) {
xCount--;
}
if (yCount > 0 && srcHeight == yDivs[yCount - 1]) {
yCount--;
}
// Count "scalable" and "fixed" pixels in each dimension.
int xCountScalable = count_scalable_pixels(xDivs, xCount, xIsScalable, srcWidth);
int xCountFixed = srcWidth - xCountScalable;
int yCountScalable = count_scalable_pixels(yDivs, yCount, yIsScalable, srcHeight);
int yCountFixed = srcHeight - yCountScalable;
fSrcX.reset(xCount + 2);
fDstX.reset(xCount + 2);
set_points(fDstX.begin(), fSrcX.begin(), xDivs, xCount, xCountFixed, xCountScalable,
dst.fLeft, dst.fRight, xIsScalable);
fSrcY.reset(yCount + 2);
fDstY.reset(yCount + 2);
set_points(fDstY.begin(), fSrcY.begin(), yDivs, yCount, yCountFixed, yCountScalable,
dst.fTop, dst.fBottom, yIsScalable);
fCurrX = fCurrY = 0;
fDone = false;
fNumRects = (xCount + 1) * (yCount + 1);
}
bool SkLatticeIter::Valid(int width, int height, const SkIRect& center) {
return !center.isEmpty() && SkIRect::MakeWH(width, height).contains(center);
}
SkLatticeIter::SkLatticeIter(int w, int h, const SkIRect& c, const SkRect& dst) {
SkASSERT(SkIRect::MakeWH(w, h).contains(c));
fSrcX.reset(4);
fSrcY.reset(4);
fDstX.reset(4);
fDstY.reset(4);
fSrcX[0] = 0;
fSrcX[1] = SkIntToScalar(c.fLeft);
fSrcX[2] = SkIntToScalar(c.fRight);
fSrcX[3] = SkIntToScalar(w);
fSrcY[0] = 0;
fSrcY[1] = SkIntToScalar(c.fTop);
fSrcY[2] = SkIntToScalar(c.fBottom);
fSrcY[3] = SkIntToScalar(h);
fDstX[0] = dst.fLeft;
fDstX[1] = dst.fLeft + SkIntToScalar(c.fLeft);
fDstX[2] = dst.fRight - SkIntToScalar(w - c.fRight);
fDstX[3] = dst.fRight;
fDstY[0] = dst.fTop;
fDstY[1] = dst.fTop + SkIntToScalar(c.fTop);
fDstY[2] = dst.fBottom - SkIntToScalar(h - c.fBottom);
fDstY[3] = dst.fBottom;
if (fDstX[1] > fDstX[2]) {
fDstX[1] = fDstX[0] + (fDstX[3] - fDstX[0]) * c.fLeft / (w - c.width());
fDstX[2] = fDstX[1];
}
if (fDstY[1] > fDstY[2]) {
fDstY[1] = fDstY[0] + (fDstY[3] - fDstY[0]) * c.fTop / (h - c.height());
fDstY[2] = fDstY[1];
}
fCurrX = fCurrY = 0;
fDone = false;
fNumRects = 9;
}
bool SkLatticeIter::next(SkRect* src, SkRect* dst) {
if (fDone) {
return false;
}
const int x = fCurrX;
const int y = fCurrY;
SkASSERT(x >= 0 && x < fSrcX.count() - 1);
SkASSERT(y >= 0 && y < fSrcY.count() - 1);
src->set(fSrcX[x], fSrcY[y], fSrcX[x + 1], fSrcY[y + 1]);
dst->set(fDstX[x], fDstY[y], fDstX[x + 1], fDstY[y + 1]);
if (fSrcX.count() - 1 == ++fCurrX) {
fCurrX = 0;
fCurrY += 1;
if (fCurrY >= fSrcY.count() - 1) {
fDone = true;
}
}
return true;
}
void SkLatticeIter::mapDstScaleTranslate(const SkMatrix& matrix) {
SkASSERT(matrix.isScaleTranslate());
SkScalar tx = matrix.getTranslateX();
SkScalar sx = matrix.getScaleX();
for (int i = 0; i < fDstX.count(); i++) {
fDstX[i] = fDstX[i] * sx + tx;
}
SkScalar ty = matrix.getTranslateY();
SkScalar sy = matrix.getScaleY();
for (int i = 0; i < fDstY.count(); i++) {
fDstY[i] = fDstY[i] * sy + ty;
}
}