blob: e0a4aa56ecdb6adabc50d529e65264b60f4c593c [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkNx_DEFINED
#define SkNx_DEFINED
#define SKNX_NO_SIMDx // Remove the x to disable SIMD for all SkNx types.
#include "SkScalar.h"
#include "SkTypes.h"
#include <math.h>
#define REQUIRE(x) static_assert(x, #x)
// The default implementations of SkNi<N,T> and SkNf<N,T> just fall back on a pair of size N/2.
template <int N, typename T>
class SkNi {
public:
// For now SkNi is a _very_ minimal sketch just to support comparison operators on SkNf.
SkNi() {}
SkNi(const SkNi<N/2, T>& lo, const SkNi<N/2, T>& hi) : fLo(lo), fHi(hi) {}
bool allTrue() const { return fLo.allTrue() && fHi.allTrue(); }
bool anyTrue() const { return fLo.anyTrue() || fHi.anyTrue(); }
private:
REQUIRE(0 == (N & (N-1)));
SkNi<N/2, T> fLo, fHi;
};
template <int N, typename T>
class SkNf {
static SkNi<N,int32_t> ToNi(float);
static SkNi<N,int64_t> ToNi(double);
typedef decltype(ToNi(T())) Ni;
public:
SkNf() {}
explicit SkNf(T val) : fLo(val), fHi(val) {}
static SkNf Load(const T vals[N]) {
return SkNf(SkNf<N/2,T>::Load(vals), SkNf<N/2,T>::Load(vals+N/2));
}
SkNf(T a, T b) : fLo(a), fHi(b) { REQUIRE(N==2); }
SkNf(T a, T b, T c, T d) : fLo(a,b), fHi(c,d) { REQUIRE(N==4); }
SkNf(T a, T b, T c, T d, T e, T f, T g, T h) : fLo(a,b,c,d), fHi(e,f,g,h) { REQUIRE(N==8); }
void store(T vals[N]) const {
fLo.store(vals);
fHi.store(vals+N/2);
}
SkNf operator + (const SkNf& o) const { return SkNf(fLo + o.fLo, fHi + o.fHi); }
SkNf operator - (const SkNf& o) const { return SkNf(fLo - o.fLo, fHi - o.fHi); }
SkNf operator * (const SkNf& o) const { return SkNf(fLo * o.fLo, fHi * o.fHi); }
SkNf operator / (const SkNf& o) const { return SkNf(fLo / o.fLo, fHi / o.fHi); }
Ni operator == (const SkNf& o) const { return Ni(fLo == o.fLo, fHi == o.fHi); }
Ni operator != (const SkNf& o) const { return Ni(fLo != o.fLo, fHi != o.fHi); }
Ni operator < (const SkNf& o) const { return Ni(fLo < o.fLo, fHi < o.fHi); }
Ni operator > (const SkNf& o) const { return Ni(fLo > o.fLo, fHi > o.fHi); }
Ni operator <= (const SkNf& o) const { return Ni(fLo <= o.fLo, fHi <= o.fHi); }
Ni operator >= (const SkNf& o) const { return Ni(fLo >= o.fLo, fHi >= o.fHi); }
static SkNf Min(const SkNf& l, const SkNf& r) {
return SkNf(SkNf<N/2,T>::Min(l.fLo, r.fLo), SkNf<N/2,T>::Min(l.fHi, r.fHi));
}
static SkNf Max(const SkNf& l, const SkNf& r) {
return SkNf(SkNf<N/2,T>::Max(l.fLo, r.fLo), SkNf<N/2,T>::Max(l.fHi, r.fHi));
}
SkNf sqrt() const { return SkNf(fLo. sqrt(), fHi. sqrt()); }
SkNf rsqrt() const { return SkNf(fLo.rsqrt(), fHi.rsqrt()); }
SkNf invert() const { return SkNf(fLo. invert(), fHi. invert()); }
SkNf approxInvert() const { return SkNf(fLo.approxInvert(), fHi.approxInvert()); }
T operator[] (int k) const {
SkASSERT(0 <= k && k < N);
return k < N/2 ? fLo[k] : fHi[k-N/2];
}
private:
REQUIRE(0 == (N & (N-1)));
SkNf(const SkNf<N/2, T>& lo, const SkNf<N/2, T>& hi) : fLo(lo), fHi(hi) {}
SkNf<N/2, T> fLo, fHi;
};
// Bottom out the default implementation with scalars when nothing's been specialized.
template <typename T>
class SkNi<1,T> {
public:
SkNi() {}
explicit SkNi(T val) : fVal(val) {}
bool allTrue() const { return (bool)fVal; }
bool anyTrue() const { return (bool)fVal; }
private:
T fVal;
};
template <typename T>
class SkNf<1,T> {
static SkNi<1,int32_t> ToNi(float);
static SkNi<1,int64_t> ToNi(double);
typedef decltype(ToNi(T())) Ni;
public:
SkNf() {}
explicit SkNf(T val) : fVal(val) {}
static SkNf Load(const T vals[1]) { return SkNf(vals[0]); }
void store(T vals[1]) const { vals[0] = fVal; }
SkNf operator + (const SkNf& o) const { return SkNf(fVal + o.fVal); }
SkNf operator - (const SkNf& o) const { return SkNf(fVal - o.fVal); }
SkNf operator * (const SkNf& o) const { return SkNf(fVal * o.fVal); }
SkNf operator / (const SkNf& o) const { return SkNf(fVal / o.fVal); }
Ni operator == (const SkNf& o) const { return Ni(fVal == o.fVal); }
Ni operator != (const SkNf& o) const { return Ni(fVal != o.fVal); }
Ni operator < (const SkNf& o) const { return Ni(fVal < o.fVal); }
Ni operator > (const SkNf& o) const { return Ni(fVal > o.fVal); }
Ni operator <= (const SkNf& o) const { return Ni(fVal <= o.fVal); }
Ni operator >= (const SkNf& o) const { return Ni(fVal >= o.fVal); }
static SkNf Min(const SkNf& l, const SkNf& r) { return SkNf(SkTMin(l.fVal, r.fVal)); }
static SkNf Max(const SkNf& l, const SkNf& r) { return SkNf(SkTMax(l.fVal, r.fVal)); }
SkNf sqrt() const { return SkNf(Sqrt(fVal)); }
SkNf rsqrt() const { return SkNf((T)1 / Sqrt(fVal)); }
SkNf invert() const { return SkNf((T)1 / fVal); }
SkNf approxInvert() const { return this->invert(); }
T operator[] (int SkDEBUGCODE(k)) const {
SkASSERT(k == 0);
return fVal;
}
private:
// We do double sqrts natively, or via floats for any other type.
template <typename U>
static U Sqrt(U val) { return (U) ::sqrtf((float)val); }
static double Sqrt(double val) { return ::sqrt ( val); }
T fVal;
};
// Generic syntax sugar that should work equally well for all SkNi and SkNf implementations.
template <typename SkNx> SkNx operator - (const SkNx& l) { return SkNx((decltype(l[0]))0) - l; }
template <typename SkNx> SkNx& operator += (SkNx& l, const SkNx& r) { return (l = l + r); }
template <typename SkNx> SkNx& operator -= (SkNx& l, const SkNx& r) { return (l = l - r); }
template <typename SkNx> SkNx& operator *= (SkNx& l, const SkNx& r) { return (l = l * r); }
template <typename SkNx> SkNx& operator /= (SkNx& l, const SkNx& r) { return (l = l / r); }
// Include platform specific specializations if available.
#ifndef SKNX_NO_SIMD
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#include "../opts/SkNx_sse.h"
#elif defined(SK_ARM_HAS_NEON)
#include "../opts/SkNx_neon.h"
#endif
#endif
#undef REQUIRE
typedef SkNf<2, float> Sk2f;
typedef SkNf<2, double> Sk2d;
typedef SkNf<2, SkScalar> Sk2s;
typedef SkNf<4, float> Sk4f;
typedef SkNf<4, double> Sk4d;
typedef SkNf<4, SkScalar> Sk4s;
typedef SkNi<4, int32_t> Sk4i;
#endif//SkNx_DEFINED