blob: 5628cb770e19f822f3a515829fa595bd7235b65c [file] [log] [blame]
//========================================================================
//
// Stream.cc
//
// Copyright 1996-2003 Glyph & Cog, LLC
//
//========================================================================
//========================================================================
//
// Modified under the Poppler project - http://poppler.freedesktop.org
//
// All changes made under the Poppler project to this file are licensed
// under GPL version 2 or later
//
// Copyright (C) 2005 Jeff Muizelaar <jeff@infidigm.net>
// Copyright (C) 2006-2010, 2012-2014, 2016-2021, 2023 Albert Astals Cid <aacid@kde.org>
// Copyright (C) 2007 Krzysztof Kowalczyk <kkowalczyk@gmail.com>
// Copyright (C) 2008 Julien Rebetez <julien@fhtagn.net>
// Copyright (C) 2009 Carlos Garcia Campos <carlosgc@gnome.org>
// Copyright (C) 2009 Glenn Ganz <glenn.ganz@uptime.ch>
// Copyright (C) 2009 Stefan Thomas <thomas@eload24.com>
// Copyright (C) 2010 Hib Eris <hib@hiberis.nl>
// Copyright (C) 2010 Tomas Hoger <thoger@redhat.com>
// Copyright (C) 2011, 2012, 2016, 2020 William Bader <williambader@hotmail.com>
// Copyright (C) 2012, 2013, 2020 Thomas Freitag <Thomas.Freitag@alfa.de>
// Copyright (C) 2012, 2021 Oliver Sander <oliver.sander@tu-dresden.de>
// Copyright (C) 2012 Fabio D'Urso <fabiodurso@hotmail.it>
// Copyright (C) 2012, 2024 Even Rouault <even.rouault@spatialys.com>
// Copyright (C) 2013, 2017, 2018 Adrian Johnson <ajohnson@redneon.com>
// Copyright (C) 2013, 2018 Adam Reichold <adamreichold@myopera.com>
// Copyright (C) 2013 Pino Toscano <pino@kde.org>
// Copyright (C) 2015 Suzuki Toshiya <mpsuzuki@hiroshima-u.ac.jp>
// Copyright (C) 2015 Jason Crain <jason@aquaticape.us>
// Copyright (C) 2017 Jose Aliste <jaliste@src.gnome.org>
// Copyright (C) 2017 Kay Dohmann <k.dohmann@gmx.net>
// Copyright (C) 2019 Christian Persch <chpe@src.gnome.org>
// Copyright (C) 2019 LE GARREC Vincent <legarrec.vincent@gmail.com>
// Copyright (C) 2019 Volker Krause <vkrause@kde.org>
// Copyright (C) 2019 Alexander Volkov <a.volkov@rusbitech.ru>
// Copyright (C) 2020 Philipp Knechtges <philipp-dev@knechtges.com>
// Copyright (C) 2021 Hubert Figuiere <hub@figuiere.net>
// Copyright (C) 2021 Georgiy Sgibnev <georgiy@sgibnev.com>. Work sponsored by lab50.net.
//
// To see a description of the changes please see the Changelog file that
// came with your tarball or type make ChangeLog if you are building from git
//
//========================================================================
#include <config.h>
#include <cstdio>
#include <cstdlib>
#include <cstddef>
#include <climits>
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#include <cstring>
#include <cctype>
#include "goo/gmem.h"
#include "goo/gfile.h"
#include "poppler-config.h"
#include "Error.h"
#include "Object.h"
#include "Lexer.h"
#include "GfxState.h"
#include "Stream.h"
#include "XRef.h"
#include "JBIG2Stream.h"
#include "Stream-CCITT.h"
#include "CachedFile.h"
#include "splash/SplashBitmap.h"
#ifdef ENABLE_LIBJPEG
# include "DCTStream.h"
#endif
#ifdef ENABLE_ZLIB_UNCOMPRESS
# include "FlateStream.h"
#endif
#ifdef ENABLE_LIBOPENJPEG
# include "JPEG2000Stream.h"
#else
# include "JPXStream.h"
#endif
#ifdef __DJGPP__
static bool setDJSYSFLAGS = false;
#endif
//------------------------------------------------------------------------
// Stream (base class)
//------------------------------------------------------------------------
Stream::Stream()
{
ref = 1;
}
Stream::~Stream() = default;
void Stream::close() { }
int Stream::getRawChar()
{
error(errInternal, -1, "Internal: called getRawChar() on non-predictor stream");
return EOF;
}
int Stream::getChars(int nChars, unsigned char *buffer)
{
error(errInternal, -1, "Internal: called getChars() on non-predictor stream");
return 0;
}
void Stream::getRawChars(int nChars, int *buffer)
{
error(errInternal, -1, "Internal: called getRawChars() on non-predictor stream");
}
char *Stream::getLine(char *buf, int size)
{
int i;
int c;
if (lookChar() == EOF || size < 0) {
return nullptr;
}
for (i = 0; i < size - 1; ++i) {
c = getChar();
if (c == EOF || c == '\n') {
break;
}
if (c == '\r') {
if ((c = lookChar()) == '\n') {
getChar();
}
break;
}
buf[i] = c;
}
buf[i] = '\0';
return buf;
}
unsigned int Stream::discardChars(unsigned int n)
{
unsigned char buf[4096];
unsigned int count, i, j;
count = 0;
while (count < n) {
if ((i = n - count) > sizeof(buf)) {
i = (unsigned int)sizeof(buf);
}
j = (unsigned int)doGetChars((int)i, buf);
count += j;
if (j != i) {
break;
}
}
return count;
}
GooString *Stream::getPSFilter(int psLevel, const char *indent)
{
return new GooString();
}
static Stream *wrapEOFStream(Stream *str)
{
if (dynamic_cast<EOFStream *>(str)) {
// str is already a EOFStream, no need to wrap it in another EOFStream
return str;
} else {
return new EOFStream(str);
}
}
Stream *Stream::addFilters(Dict *dict, int recursion)
{
Object obj, obj2;
Object params, params2;
Stream *str;
int i;
str = this;
obj = dict->lookup("Filter", recursion);
if (obj.isNull()) {
obj = dict->lookup("F", recursion);
}
params = dict->lookup("DecodeParms", recursion);
if (params.isNull()) {
params = dict->lookup("DP", recursion);
}
if (obj.isName()) {
str = makeFilter(obj.getName(), str, &params, recursion, dict);
} else if (obj.isArray()) {
for (i = 0; i < obj.arrayGetLength(); ++i) {
obj2 = obj.arrayGet(i, recursion);
if (params.isArray()) {
params2 = params.arrayGet(i, recursion);
} else {
params2.setToNull();
}
if (obj2.isName()) {
str = makeFilter(obj2.getName(), str, &params2, recursion);
} else {
error(errSyntaxError, getPos(), "Bad filter name");
str = wrapEOFStream(str);
}
}
} else if (!obj.isNull()) {
error(errSyntaxError, getPos(), "Bad 'Filter' attribute in stream");
}
return str;
}
bool Stream::isEncrypted() const
{
for (const Stream *str = this; str != nullptr; str = str->getNextStream()) {
if (str->getKind() == strCrypt) {
return true;
}
}
return false;
}
class BaseStreamStream : public Stream
{
public:
explicit BaseStreamStream(Stream *strA) : str(strA) { }
~BaseStreamStream() override;
StreamKind getKind() const override { return str->getBaseStream()->getKind(); }
void reset() override { str->getBaseStream()->reset(); }
int getChar() override { return str->getBaseStream()->getChar(); }
int lookChar() override { return str->getBaseStream()->lookChar(); }
bool isBinary(bool last = true) const override { return str->getBaseStream()->isBinary(); }
int getUnfilteredChar() override { return str->getBaseStream()->getUnfilteredChar(); }
void unfilteredReset() override { str->getBaseStream()->unfilteredReset(); }
Goffset getPos() override { return str->getBaseStream()->getPos(); }
void setPos(Goffset pos, int dir) override { str->getBaseStream()->setPos(pos, dir); }
BaseStream *getBaseStream() override { return str->getBaseStream()->getBaseStream(); }
Stream *getUndecodedStream() override { return str->getBaseStream()->getUndecodedStream(); }
Dict *getDict() override { return str->getBaseStream()->getDict(); }
Object *getDictObject() override { return str->getBaseStream()->getDictObject(); }
private:
std::unique_ptr<Stream> str;
};
BaseStreamStream::~BaseStreamStream() = default;
Stream *Stream::makeFilter(const char *name, Stream *str, Object *params, int recursion, Dict *dict)
{
int pred; // parameters
int colors;
int bits;
int early;
int encoding;
bool endOfLine, byteAlign, endOfBlock, black, damagedRowsBeforeError;
int columns, rows;
Object obj;
if (!strcmp(name, "ASCIIHexDecode") || !strcmp(name, "AHx")) {
str = new ASCIIHexStream(str);
} else if (!strcmp(name, "ASCII85Decode") || !strcmp(name, "A85")) {
str = new ASCII85Stream(str);
} else if (!strcmp(name, "LZWDecode") || !strcmp(name, "LZW")) {
pred = 1;
columns = 1;
colors = 1;
bits = 8;
early = 1;
if (params->isDict()) {
obj = params->dictLookup("Predictor", recursion);
if (obj.isInt()) {
pred = obj.getInt();
}
obj = params->dictLookup("Columns", recursion);
if (obj.isInt()) {
columns = obj.getInt();
}
obj = params->dictLookup("Colors", recursion);
if (obj.isInt()) {
colors = obj.getInt();
}
obj = params->dictLookup("BitsPerComponent", recursion);
if (obj.isInt()) {
bits = obj.getInt();
}
obj = params->dictLookup("EarlyChange", recursion);
if (obj.isInt()) {
early = obj.getInt();
}
}
str = new LZWStream(str, pred, columns, colors, bits, early);
} else if (!strcmp(name, "RunLengthDecode") || !strcmp(name, "RL")) {
str = new RunLengthStream(str);
} else if (!strcmp(name, "CCITTFaxDecode") || !strcmp(name, "CCF")) {
encoding = 0;
endOfLine = false;
byteAlign = false;
columns = 1728;
rows = 0;
endOfBlock = true;
black = false;
damagedRowsBeforeError = false;
if (params->isDict()) {
obj = params->dictLookup("K", recursion);
if (obj.isInt()) {
encoding = obj.getInt();
}
obj = params->dictLookup("EndOfLine", recursion);
if (obj.isBool()) {
endOfLine = obj.getBool();
}
obj = params->dictLookup("EncodedByteAlign", recursion);
if (obj.isBool()) {
byteAlign = obj.getBool();
}
obj = params->dictLookup("Columns", recursion);
if (obj.isInt()) {
columns = obj.getInt();
}
obj = params->dictLookup("Rows", recursion);
if (obj.isInt()) {
rows = obj.getInt();
}
obj = params->dictLookup("EndOfBlock", recursion);
if (obj.isBool()) {
endOfBlock = obj.getBool();
}
obj = params->dictLookup("BlackIs1", recursion);
if (obj.isBool()) {
black = obj.getBool();
}
obj = params->dictLookup("DamagedRowsBeforeError", recursion);
if (obj.isInt()) {
damagedRowsBeforeError = obj.getInt();
}
}
str = new CCITTFaxStream(str, encoding, endOfLine, byteAlign, columns, rows, endOfBlock, black, damagedRowsBeforeError);
} else if (!strcmp(name, "DCTDecode") || !strcmp(name, "DCT")) {
#ifdef HAVE_DCT_DECODER
int colorXform = -1;
if (params->isDict()) {
obj = params->dictLookup("ColorTransform", recursion);
if (obj.isInt()) {
colorXform = obj.getInt();
}
}
str = new DCTStream(str, colorXform, dict, recursion);
#else
error(errSyntaxError, getPos(), "Unknown filter '{0:s}'", name);
str = wrapEOFStream(str);
#endif
} else if (!strcmp(name, "FlateDecode") || !strcmp(name, "Fl")) {
pred = 1;
columns = 1;
colors = 1;
bits = 8;
if (params->isDict()) {
obj = params->dictLookup("Predictor", recursion);
if (obj.isInt()) {
pred = obj.getInt();
}
obj = params->dictLookup("Columns", recursion);
if (obj.isInt()) {
columns = obj.getInt();
}
obj = params->dictLookup("Colors", recursion);
if (obj.isInt()) {
colors = obj.getInt();
}
obj = params->dictLookup("BitsPerComponent", recursion);
if (obj.isInt()) {
bits = obj.getInt();
}
}
str = new FlateStream(str, pred, columns, colors, bits);
} else if (!strcmp(name, "JBIG2Decode")) {
Object globals;
if (params->isDict()) {
XRef *xref = params->getDict()->getXRef();
obj = params->dictLookupNF("JBIG2Globals").copy();
globals = obj.fetch(xref, recursion);
}
str = new JBIG2Stream(str, std::move(globals), &obj);
} else if (!strcmp(name, "JPXDecode")) {
#ifdef HAVE_JPX_DECODER
str = new JPXStream(str);
#else
error(errSyntaxError, getPos(), "Unknown filter '{0:s}'", name);
str = wrapEOFStream(str);
#endif
} else if (!strcmp(name, "Crypt")) {
if (str->getKind() == strCrypt) {
str = new BaseStreamStream(str);
} else {
error(errSyntaxError, getPos(), "Can't revert non decrypt streams");
}
} else {
error(errSyntaxError, getPos(), "Unknown filter '{0:s}'", name);
str = wrapEOFStream(str);
}
return str;
}
//------------------------------------------------------------------------
// OutStream
//------------------------------------------------------------------------
OutStream::OutStream() { }
OutStream::~OutStream() { }
//------------------------------------------------------------------------
// FileOutStream
//------------------------------------------------------------------------
FileOutStream::FileOutStream(FILE *fa, Goffset startA)
{
f = fa;
start = startA;
}
FileOutStream::~FileOutStream()
{
close();
}
void FileOutStream::close() { }
Goffset FileOutStream::getPos()
{
return Gftell(f);
}
void FileOutStream::put(char c)
{
fputc(c, f);
}
void FileOutStream::printf(const char *format, ...)
{
va_list argptr;
va_start(argptr, format);
vfprintf(f, format, argptr);
va_end(argptr);
}
//------------------------------------------------------------------------
// BaseStream
//------------------------------------------------------------------------
BaseStream::BaseStream(Object &&dictA, Goffset lengthA)
{
dict = std::move(dictA);
length = lengthA;
}
BaseStream::~BaseStream() { }
//------------------------------------------------------------------------
// BaseStream
//------------------------------------------------------------------------
BaseSeekInputStream::BaseSeekInputStream(Goffset startA, bool limitedA, Goffset lengthA, Object &&dictA)
: BaseStream(std::move(dictA), lengthA), start(startA), limited(limitedA), bufPtr(buf), bufEnd(buf), bufPos(start), savePos(0), saved(false)
{
}
BaseSeekInputStream::~BaseSeekInputStream() { }
void BaseSeekInputStream::reset()
{
savePos = currentPos();
setCurrentPos(start);
saved = true;
bufPtr = bufEnd = buf;
bufPos = start;
}
void BaseSeekInputStream::close()
{
if (!saved) {
return;
}
setCurrentPos(savePos);
saved = false;
}
void BaseSeekInputStream::setPos(Goffset pos, int dir)
{
if (dir >= 0) {
setCurrentPos(pos);
bufPos = pos;
} else {
if (pos > length) {
pos = length;
}
bufPos = length - pos;
setCurrentPos(bufPos);
}
bufPtr = bufEnd = buf;
}
void BaseSeekInputStream::moveStart(Goffset delta)
{
start += delta;
bufPtr = bufEnd = buf;
bufPos = start;
}
bool BaseSeekInputStream::fillBuf()
{
Goffset n;
bufPos += bufEnd - buf;
bufPtr = bufEnd = buf;
if (limited && bufPos >= start + length) {
return false;
}
if (limited && bufPos + seekInputStreamBufSize > start + length) {
n = start + length - bufPos;
} else {
n = seekInputStreamBufSize - (bufPos % seekInputStreamBufSize);
}
n = read(buf, n);
bufEnd = buf + n;
if (bufPtr >= bufEnd) {
return false;
}
return true;
}
int BaseSeekInputStream::getChars(int nChars, unsigned char *buffer)
{
int n, m;
n = 0;
while (n < nChars) {
if (bufPtr >= bufEnd) {
if (!fillBuf()) {
break;
}
}
m = (int)(bufEnd - bufPtr);
if (m > nChars - n) {
m = nChars - n;
}
memcpy(buffer + n, bufPtr, m);
bufPtr += m;
n += m;
}
return n;
}
//------------------------------------------------------------------------
// FilterStream
//------------------------------------------------------------------------
FilterStream::FilterStream(Stream *strA)
{
str = strA;
}
FilterStream::~FilterStream() { }
void FilterStream::close()
{
str->close();
}
void FilterStream::setPos(Goffset pos, int dir)
{
error(errInternal, -1, "Internal: called setPos() on FilterStream");
}
//------------------------------------------------------------------------
// ImageStream
//------------------------------------------------------------------------
ImageStream::ImageStream(Stream *strA, int widthA, int nCompsA, int nBitsA)
{
int imgLineSize;
str = strA;
width = widthA;
nComps = nCompsA;
nBits = nBitsA;
nVals = width * nComps;
inputLineSize = (nVals * nBits + 7) >> 3;
if (nComps <= 0 || nBits <= 0 || nVals > INT_MAX / nBits - 7 || width > INT_MAX / nComps) {
inputLineSize = -1;
}
inputLine = (unsigned char *)gmallocn_checkoverflow(inputLineSize, sizeof(char));
if (nBits == 8) {
imgLine = (unsigned char *)inputLine;
} else {
if (nBits == 1) {
imgLineSize = (nVals + 7) & ~7;
} else {
imgLineSize = nVals;
}
if (nComps <= 0 || width > INT_MAX / nComps) {
imgLineSize = -1;
}
imgLine = (unsigned char *)gmallocn_checkoverflow(imgLineSize, sizeof(unsigned char));
}
imgIdx = nVals;
}
ImageStream::~ImageStream()
{
if (imgLine != (unsigned char *)inputLine) {
gfree(imgLine);
}
gfree(inputLine);
}
void ImageStream::reset()
{
str->reset();
}
void ImageStream::close()
{
str->close();
}
bool ImageStream::getPixel(unsigned char *pix)
{
int i;
if (imgIdx >= nVals) {
if (!getLine()) {
return false;
}
imgIdx = 0;
}
for (i = 0; i < nComps; ++i) {
pix[i] = imgLine[imgIdx++];
}
return true;
}
unsigned char *ImageStream::getLine()
{
if (unlikely(inputLine == nullptr || imgLine == nullptr)) {
return nullptr;
}
int readChars = str->doGetChars(inputLineSize, inputLine);
if (unlikely(readChars == -1)) {
readChars = 0;
}
for (; readChars < inputLineSize; readChars++) {
inputLine[readChars] = EOF;
}
if (nBits == 1) {
unsigned char *p = inputLine;
for (int i = 0; i < nVals; i += 8) {
const int c = *p++;
imgLine[i + 0] = (unsigned char)((c >> 7) & 1);
imgLine[i + 1] = (unsigned char)((c >> 6) & 1);
imgLine[i + 2] = (unsigned char)((c >> 5) & 1);
imgLine[i + 3] = (unsigned char)((c >> 4) & 1);
imgLine[i + 4] = (unsigned char)((c >> 3) & 1);
imgLine[i + 5] = (unsigned char)((c >> 2) & 1);
imgLine[i + 6] = (unsigned char)((c >> 1) & 1);
imgLine[i + 7] = (unsigned char)(c & 1);
}
} else if (nBits == 8) {
// special case: imgLine == inputLine
} else if (nBits == 16) {
// this is a hack to support 16 bits images, everywhere
// we assume a component fits in 8 bits, with this hack
// we treat 16 bit images as 8 bit ones until it's fixed correctly.
// The hack has another part on GfxImageColorMap::GfxImageColorMap
unsigned char *p = inputLine;
for (int i = 0; i < nVals; ++i) {
imgLine[i] = *p++;
p++;
}
} else {
const unsigned long bitMask = (1 << nBits) - 1;
unsigned long buf = 0;
int bits = 0;
unsigned char *p = inputLine;
for (int i = 0; i < nVals; ++i) {
while (bits < nBits) {
buf = (buf << 8) | (*p++ & 0xff);
bits += 8;
}
imgLine[i] = (unsigned char)((buf >> (bits - nBits)) & bitMask);
bits -= nBits;
}
}
return imgLine;
}
void ImageStream::skipLine()
{
str->doGetChars(inputLineSize, inputLine);
}
//------------------------------------------------------------------------
// StreamPredictor
//------------------------------------------------------------------------
StreamPredictor::StreamPredictor(Stream *strA, int predictorA, int widthA, int nCompsA, int nBitsA)
{
str = strA;
predictor = predictorA;
width = widthA;
nComps = nCompsA;
nBits = nBitsA;
predLine = nullptr;
ok = false;
if (checkedMultiply(width, nComps, &nVals)) {
return;
}
if (width <= 0 || nComps <= 0 || nBits <= 0 || nComps > gfxColorMaxComps || nBits > 16 || nVals >= (INT_MAX - 7) / nBits) { // check for overflow in rowBytes
return;
}
pixBytes = (nComps * nBits + 7) >> 3;
rowBytes = ((nVals * nBits + 7) >> 3) + pixBytes;
predLine = (unsigned char *)gmalloc(rowBytes);
memset(predLine, 0, rowBytes);
predIdx = rowBytes;
ok = true;
}
StreamPredictor::~StreamPredictor()
{
gfree(predLine);
}
int StreamPredictor::lookChar()
{
if (predIdx >= rowBytes) {
if (!getNextLine()) {
return EOF;
}
}
return predLine[predIdx];
}
int StreamPredictor::getChar()
{
if (predIdx >= rowBytes) {
if (!getNextLine()) {
return EOF;
}
}
return predLine[predIdx++];
}
int StreamPredictor::getChars(int nChars, unsigned char *buffer)
{
int n, m;
n = 0;
while (n < nChars) {
if (predIdx >= rowBytes) {
if (!getNextLine()) {
break;
}
}
m = rowBytes - predIdx;
if (m > nChars - n) {
m = nChars - n;
}
memcpy(buffer + n, predLine + predIdx, m);
predIdx += m;
n += m;
}
return n;
}
bool StreamPredictor::getNextLine()
{
int curPred;
unsigned char upLeftBuf[gfxColorMaxComps * 2 + 1];
int left, up, upLeft, p, pa, pb, pc;
int c;
unsigned long inBuf, outBuf;
int inBits, outBits;
int i, j, k, kk;
// get PNG optimum predictor number
if (predictor >= 10) {
if ((curPred = str->getRawChar()) == EOF) {
return false;
}
curPred += 10;
} else {
curPred = predictor;
}
// read the raw line, apply PNG (byte) predictor
int *rawCharLine = new int[rowBytes - pixBytes];
str->getRawChars(rowBytes - pixBytes, rawCharLine);
memset(upLeftBuf, 0, pixBytes + 1);
for (i = pixBytes; i < rowBytes; ++i) {
for (j = pixBytes; j > 0; --j) {
upLeftBuf[j] = upLeftBuf[j - 1];
}
upLeftBuf[0] = predLine[i];
if ((c = rawCharLine[i - pixBytes]) == EOF) {
if (i > pixBytes) {
// this ought to return false, but some (broken) PDF files
// contain truncated image data, and Adobe apparently reads the
// last partial line
break;
}
delete[] rawCharLine;
return false;
}
switch (curPred) {
case 11: // PNG sub
predLine[i] = predLine[i - pixBytes] + (unsigned char)c;
break;
case 12: // PNG up
predLine[i] = predLine[i] + (unsigned char)c;
break;
case 13: // PNG average
predLine[i] = ((predLine[i - pixBytes] + predLine[i]) >> 1) + (unsigned char)c;
break;
case 14: // PNG Paeth
left = predLine[i - pixBytes];
up = predLine[i];
upLeft = upLeftBuf[pixBytes];
p = left + up - upLeft;
if ((pa = p - left) < 0) {
pa = -pa;
}
if ((pb = p - up) < 0) {
pb = -pb;
}
if ((pc = p - upLeft) < 0) {
pc = -pc;
}
if (pa <= pb && pa <= pc) {
predLine[i] = left + (unsigned char)c;
} else if (pb <= pc) {
predLine[i] = up + (unsigned char)c;
} else {
predLine[i] = upLeft + (unsigned char)c;
}
break;
case 10: // PNG none
default: // no predictor or TIFF predictor
predLine[i] = (unsigned char)c;
break;
}
}
delete[] rawCharLine;
// apply TIFF (component) predictor
if (predictor == 2) {
if (nBits == 1 && nComps == 1) {
inBuf = predLine[pixBytes - 1];
for (i = pixBytes; i < rowBytes; ++i) {
c = predLine[i] ^ inBuf;
c ^= c >> 1;
c ^= c >> 2;
c ^= c >> 4;
inBuf = (c & 1) << 7;
predLine[i] = c;
}
} else if (nBits == 8) {
for (i = pixBytes; i < rowBytes; ++i) {
predLine[i] += predLine[i - nComps];
}
} else {
memset(upLeftBuf, 0, nComps + 1);
const unsigned long bitMask = (1 << nBits) - 1;
inBuf = outBuf = 0;
inBits = outBits = 0;
j = k = pixBytes;
for (i = 0; i < width; ++i) {
for (kk = 0; kk < nComps; ++kk) {
while (inBits < nBits) {
inBuf = (inBuf << 8) | (predLine[j++] & 0xff);
inBits += 8;
}
upLeftBuf[kk] = (unsigned char)((upLeftBuf[kk] + (inBuf >> (inBits - nBits))) & bitMask);
inBits -= nBits;
outBuf = (outBuf << nBits) | upLeftBuf[kk];
outBits += nBits;
if (outBits >= 8) {
predLine[k++] = (unsigned char)(outBuf >> (outBits - 8));
outBits -= 8;
}
}
}
if (outBits > 0) {
predLine[k++] = (unsigned char)((outBuf << (8 - outBits)) + (inBuf & ((1 << (8 - outBits)) - 1)));
}
}
}
// reset to start of line
predIdx = pixBytes;
return true;
}
//------------------------------------------------------------------------
// FileStream
//------------------------------------------------------------------------
FileStream::FileStream(GooFile *fileA, Goffset startA, bool limitedA, Goffset lengthA, Object &&dictA) : BaseStream(std::move(dictA), lengthA)
{
file = fileA;
offset = start = startA;
limited = limitedA;
length = lengthA;
bufPtr = bufEnd = buf;
bufPos = start;
savePos = 0;
saved = false;
needsEncryptionOnSave = false;
}
FileStream::~FileStream()
{
close();
}
BaseStream *FileStream::copy()
{
return new FileStream(file, start, limited, length, dict.copy());
}
Stream *FileStream::makeSubStream(Goffset startA, bool limitedA, Goffset lengthA, Object &&dictA)
{
return new FileStream(file, startA, limitedA, lengthA, std::move(dictA));
}
void FileStream::reset()
{
savePos = offset;
offset = start;
saved = true;
bufPtr = bufEnd = buf;
bufPos = start;
}
void FileStream::close()
{
if (saved) {
offset = savePos;
saved = false;
}
}
bool FileStream::fillBuf()
{
int n;
bufPos += bufEnd - buf;
bufPtr = bufEnd = buf;
if (limited && bufPos >= start + length) {
return false;
}
if (limited && bufPos + fileStreamBufSize > start + length) {
n = start + length - bufPos;
} else {
n = fileStreamBufSize;
}
n = file->read(buf, n, offset);
if (n == -1) {
return false;
}
offset += n;
bufEnd = buf + n;
if (bufPtr >= bufEnd) {
return false;
}
return true;
}
void FileStream::setPos(Goffset pos, int dir)
{
Goffset size;
if (dir >= 0) {
offset = bufPos = pos;
} else {
size = file->size();
if (pos > size) {
pos = size;
}
offset = size - pos;
bufPos = offset;
}
bufPtr = bufEnd = buf;
}
void FileStream::moveStart(Goffset delta)
{
start += delta;
bufPtr = bufEnd = buf;
bufPos = start;
}
//------------------------------------------------------------------------
// CachedFileStream
//------------------------------------------------------------------------
CachedFileStream::CachedFileStream(CachedFile *ccA, Goffset startA, bool limitedA, Goffset lengthA, Object &&dictA) : BaseStream(std::move(dictA), lengthA)
{
cc = ccA;
start = startA;
limited = limitedA;
length = lengthA;
bufPtr = bufEnd = buf;
bufPos = start;
savePos = 0;
saved = false;
}
CachedFileStream::~CachedFileStream()
{
close();
cc->decRefCnt();
}
BaseStream *CachedFileStream::copy()
{
cc->incRefCnt();
return new CachedFileStream(cc, start, limited, length, dict.copy());
}
Stream *CachedFileStream::makeSubStream(Goffset startA, bool limitedA, Goffset lengthA, Object &&dictA)
{
cc->incRefCnt();
return new CachedFileStream(cc, startA, limitedA, lengthA, std::move(dictA));
}
void CachedFileStream::reset()
{
savePos = (unsigned int)cc->tell();
cc->seek(start, SEEK_SET);
saved = true;
bufPtr = bufEnd = buf;
bufPos = start;
}
void CachedFileStream::close()
{
if (saved) {
cc->seek(savePos, SEEK_SET);
saved = false;
}
}
bool CachedFileStream::fillBuf()
{
int n;
bufPos += bufEnd - buf;
bufPtr = bufEnd = buf;
if (limited && bufPos >= start + length) {
return false;
}
if (limited && bufPos + cachedStreamBufSize > start + length) {
n = start + length - bufPos;
} else {
n = cachedStreamBufSize - (bufPos % cachedStreamBufSize);
}
n = cc->read(buf, 1, n);
bufEnd = buf + n;
if (bufPtr >= bufEnd) {
return false;
}
return true;
}
void CachedFileStream::setPos(Goffset pos, int dir)
{
unsigned int size;
if (dir >= 0) {
cc->seek(pos, SEEK_SET);
bufPos = pos;
} else {
cc->seek(0, SEEK_END);
size = (unsigned int)cc->tell();
if (pos > size) {
pos = (unsigned int)size;
}
cc->seek(-(int)pos, SEEK_END);
bufPos = (unsigned int)cc->tell();
}
bufPtr = bufEnd = buf;
}
void CachedFileStream::moveStart(Goffset delta)
{
start += delta;
bufPtr = bufEnd = buf;
bufPos = start;
}
MemStream::~MemStream() = default;
AutoFreeMemStream::~AutoFreeMemStream()
{
gfree(buf);
}
bool AutoFreeMemStream::isFilterRemovalForbidden() const
{
return filterRemovalForbidden;
}
void AutoFreeMemStream::setFilterRemovalForbidden(bool forbidden)
{
filterRemovalForbidden = forbidden;
}
//------------------------------------------------------------------------
// EmbedStream
//------------------------------------------------------------------------
EmbedStream::EmbedStream(Stream *strA, Object &&dictA, bool limitedA, Goffset lengthA, bool reusableA) : BaseStream(std::move(dictA), lengthA)
{
str = strA;
limited = limitedA;
length = lengthA;
reusable = reusableA;
record = false;
replay = false;
start = str->getPos();
if (reusable) {
bufData = (unsigned char *)gmalloc(16384);
bufMax = 16384;
bufLen = 0;
record = true;
}
}
EmbedStream::~EmbedStream()
{
if (reusable) {
gfree(bufData);
}
}
void EmbedStream::reset()
{
if (str->getPos() != start) {
str->reset();
// Might be a FilterStream that does not support str->setPos(start)
while (str->getPos() < start) {
if (str->getChar() == EOF) {
break;
}
}
if (str->getPos() != start) {
error(errInternal, -1, "Failed to reset EmbedStream");
}
}
record = false;
replay = false;
bufPos = 0;
}
BaseStream *EmbedStream::copy()
{
error(errInternal, -1, "Called copy() on EmbedStream");
return nullptr;
}
Stream *EmbedStream::makeSubStream(Goffset startA, bool limitedA, Goffset lengthA, Object &&dictA)
{
error(errInternal, -1, "Called makeSubStream() on EmbedStream");
return nullptr;
}
void EmbedStream::rewind()
{
record = false;
replay = true;
bufPos = 0;
}
void EmbedStream::restore()
{
replay = false;
}
Goffset EmbedStream::getPos()
{
if (replay) {
return bufPos;
} else {
return str->getPos();
}
}
int EmbedStream::getChar()
{
if (replay) {
if (bufPos < bufLen) {
return bufData[bufPos++];
} else {
return EOF;
}
} else {
if (limited && !length) {
return EOF;
}
int c = str->getChar();
--length;
if (record) {
bufData[bufLen] = c;
bufLen++;
if (bufLen >= bufMax) {
bufMax *= 2;
bufData = (unsigned char *)grealloc(bufData, bufMax);
}
}
return c;
}
}
int EmbedStream::lookChar()
{
if (replay) {
if (bufPos < bufLen) {
return bufData[bufPos];
} else {
return EOF;
}
} else {
if (limited && !length) {
return EOF;
}
return str->lookChar();
}
}
int EmbedStream::getChars(int nChars, unsigned char *buffer)
{
int len;
if (nChars <= 0) {
return 0;
}
if (replay) {
if (bufPos >= bufLen) {
return EOF;
}
len = bufLen - bufPos;
if (nChars > len) {
nChars = len;
}
memcpy(buffer, bufData, nChars);
return len;
} else {
if (limited && length < nChars) {
nChars = length;
}
len = str->doGetChars(nChars, buffer);
if (record) {
if (bufLen + len >= bufMax) {
while (bufLen + len >= bufMax) {
bufMax *= 2;
}
bufData = (unsigned char *)grealloc(bufData, bufMax);
}
memcpy(bufData + bufLen, buffer, len);
bufLen += len;
}
}
return len;
}
void EmbedStream::setPos(Goffset pos, int dir)
{
error(errInternal, -1, "Internal: called setPos() on EmbedStream");
}
Goffset EmbedStream::getStart()
{
error(errInternal, -1, "Internal: called getStart() on EmbedStream");
return 0;
}
void EmbedStream::moveStart(Goffset delta)
{
error(errInternal, -1, "Internal: called moveStart() on EmbedStream");
}
//------------------------------------------------------------------------
// ASCIIHexStream
//------------------------------------------------------------------------
ASCIIHexStream::ASCIIHexStream(Stream *strA) : FilterStream(strA)
{
buf = EOF;
eof = false;
}
ASCIIHexStream::~ASCIIHexStream()
{
delete str;
}
void ASCIIHexStream::reset()
{
str->reset();
buf = EOF;
eof = false;
}
int ASCIIHexStream::lookChar()
{
int c1, c2, x;
if (buf != EOF) {
return buf;
}
if (eof) {
buf = EOF;
return EOF;
}
do {
c1 = str->getChar();
} while (isspace(c1));
if (c1 == '>') {
eof = true;
buf = EOF;
return buf;
}
do {
c2 = str->getChar();
} while (isspace(c2));
if (c2 == '>') {
eof = true;
c2 = '0';
}
if (c1 >= '0' && c1 <= '9') {
x = (c1 - '0') << 4;
} else if (c1 >= 'A' && c1 <= 'F') {
x = (c1 - 'A' + 10) << 4;
} else if (c1 >= 'a' && c1 <= 'f') {
x = (c1 - 'a' + 10) << 4;
} else if (c1 == EOF) {
eof = true;
x = 0;
} else {
error(errSyntaxError, getPos(), "Illegal character <{0:02x}> in ASCIIHex stream", c1);
x = 0;
}
if (c2 >= '0' && c2 <= '9') {
x += c2 - '0';
} else if (c2 >= 'A' && c2 <= 'F') {
x += c2 - 'A' + 10;
} else if (c2 >= 'a' && c2 <= 'f') {
x += c2 - 'a' + 10;
} else if (c2 == EOF) {
eof = true;
x = 0;
} else {
error(errSyntaxError, getPos(), "Illegal character <{0:02x}> in ASCIIHex stream", c2);
}
buf = x & 0xff;
return buf;
}
GooString *ASCIIHexStream::getPSFilter(int psLevel, const char *indent)
{
GooString *s;
if (psLevel < 2) {
return nullptr;
}
if (!(s = str->getPSFilter(psLevel, indent))) {
return nullptr;
}
s->append(indent)->append("/ASCIIHexDecode filter\n");
return s;
}
bool ASCIIHexStream::isBinary(bool last) const
{
return str->isBinary(false);
}
//------------------------------------------------------------------------
// ASCII85Stream
//------------------------------------------------------------------------
ASCII85Stream::ASCII85Stream(Stream *strA) : FilterStream(strA)
{
index = n = 0;
eof = false;
}
ASCII85Stream::~ASCII85Stream()
{
delete str;
}
void ASCII85Stream::reset()
{
str->reset();
index = n = 0;
eof = false;
}
int ASCII85Stream::lookChar()
{
int k;
unsigned long t;
if (index >= n) {
if (eof) {
return EOF;
}
index = 0;
do {
c[0] = str->getChar();
} while (Lexer::isSpace(c[0]));
if (c[0] == '~' || c[0] == EOF) {
eof = true;
n = 0;
return EOF;
} else if (c[0] == 'z') {
b[0] = b[1] = b[2] = b[3] = 0;
n = 4;
} else {
for (k = 1; k < 5; ++k) {
do {
c[k] = str->getChar();
} while (Lexer::isSpace(c[k]));
if (c[k] == '~' || c[k] == EOF) {
break;
}
}
n = k - 1;
if (k < 5 && (c[k] == '~' || c[k] == EOF)) {
for (++k; k < 5; ++k) {
c[k] = 0x21 + 84;
}
eof = true;
}
t = 0;
for (k = 0; k < 5; ++k) {
t = t * 85 + (c[k] - 0x21);
}
for (k = 3; k >= 0; --k) {
b[k] = (int)(t & 0xff);
t >>= 8;
}
}
}
return b[index];
}
GooString *ASCII85Stream::getPSFilter(int psLevel, const char *indent)
{
GooString *s;
if (psLevel < 2) {
return nullptr;
}
if (!(s = str->getPSFilter(psLevel, indent))) {
return nullptr;
}
s->append(indent)->append("/ASCII85Decode filter\n");
return s;
}
bool ASCII85Stream::isBinary(bool last) const
{
return str->isBinary(false);
}
//------------------------------------------------------------------------
// LZWStream
//------------------------------------------------------------------------
LZWStream::LZWStream(Stream *strA, int predictor, int columns, int colors, int bits, int earlyA) : FilterStream(strA)
{
if (predictor != 1) {
pred = new StreamPredictor(this, predictor, columns, colors, bits);
if (!pred->isOk()) {
delete pred;
pred = nullptr;
}
} else {
pred = nullptr;
}
early = earlyA;
eof = false;
inputBits = 0;
clearTable();
}
LZWStream::~LZWStream()
{
if (pred) {
delete pred;
}
delete str;
}
int LZWStream::getChar()
{
if (pred) {
return pred->getChar();
}
if (eof) {
return EOF;
}
if (seqIndex >= seqLength) {
if (!processNextCode()) {
return EOF;
}
}
return seqBuf[seqIndex++];
}
int LZWStream::lookChar()
{
if (pred) {
return pred->lookChar();
}
if (eof) {
return EOF;
}
if (seqIndex >= seqLength) {
if (!processNextCode()) {
return EOF;
}
}
return seqBuf[seqIndex];
}
void LZWStream::getRawChars(int nChars, int *buffer)
{
for (int i = 0; i < nChars; ++i) {
buffer[i] = doGetRawChar();
}
}
int LZWStream::getRawChar()
{
return doGetRawChar();
}
int LZWStream::getChars(int nChars, unsigned char *buffer)
{
int n, m;
if (pred) {
return pred->getChars(nChars, buffer);
}
if (eof) {
return 0;
}
n = 0;
while (n < nChars) {
if (seqIndex >= seqLength) {
if (!processNextCode()) {
break;
}
}
m = seqLength - seqIndex;
if (m > nChars - n) {
m = nChars - n;
}
memcpy(buffer + n, seqBuf + seqIndex, m);
seqIndex += m;
n += m;
}
return n;
}
void LZWStream::reset()
{
str->reset();
eof = false;
inputBits = 0;
clearTable();
}
bool LZWStream::processNextCode()
{
int code;
int nextLength;
int i, j;
// check for EOF
if (eof) {
return false;
}
// check for eod and clear-table codes
start:
code = getCode();
if (code == EOF || code == 257) {
eof = true;
return false;
}
if (code == 256) {
clearTable();
goto start;
}
// process the next code
nextLength = seqLength + 1;
if (code < 256) {
seqBuf[0] = code;
seqLength = 1;
} else if (code < nextCode) {
seqLength = table[code].length;
for (i = seqLength - 1, j = code; i > 0; --i) {
seqBuf[i] = table[j].tail;
j = table[j].head;
}
seqBuf[0] = j;
} else if (code == nextCode) {
seqBuf[seqLength] = newChar;
++seqLength;
} else {
error(errSyntaxError, getPos(), "Bad LZW stream - unexpected code");
eof = true;
return false;
}
newChar = seqBuf[0];
if (first) {
first = false;
} else {
if (nextCode < 4097) {
table[nextCode].length = nextLength;
table[nextCode].head = prevCode;
table[nextCode].tail = newChar;
++nextCode;
}
if (nextCode + early == 512) {
nextBits = 10;
} else if (nextCode + early == 1024) {
nextBits = 11;
} else if (nextCode + early == 2048) {
nextBits = 12;
}
}
prevCode = code;
// reset buffer
seqIndex = 0;
return true;
}
void LZWStream::clearTable()
{
nextCode = 258;
nextBits = 9;
seqIndex = seqLength = 0;
first = true;
newChar = 0;
}
int LZWStream::getCode()
{
int c;
int code;
while (inputBits < nextBits) {
if ((c = str->getChar()) == EOF) {
return EOF;
}
inputBuf = (inputBuf << 8) | static_cast<unsigned>(c & 0xff);
inputBits += 8;
}
code = static_cast<signed>((inputBuf >> (inputBits - nextBits)) & ((1 << nextBits) - 1));
inputBits -= nextBits;
return code;
}
GooString *LZWStream::getPSFilter(int psLevel, const char *indent)
{
GooString *s;
if (psLevel < 2 || pred) {
return nullptr;
}
if (!(s = str->getPSFilter(psLevel, indent))) {
return nullptr;
}
s->append(indent)->append("<< ");
if (!early) {
s->append("/EarlyChange 0 ");
}
s->append(">> /LZWDecode filter\n");
return s;
}
bool LZWStream::isBinary(bool last) const
{
return str->isBinary(true);
}
//------------------------------------------------------------------------
// RunLengthStream
//------------------------------------------------------------------------
RunLengthStream::RunLengthStream(Stream *strA) : FilterStream(strA)
{
bufPtr = bufEnd = buf;
eof = false;
}
RunLengthStream::~RunLengthStream()
{
delete str;
}
void RunLengthStream::reset()
{
str->reset();
bufPtr = bufEnd = buf;
eof = false;
}
int RunLengthStream::getChars(int nChars, unsigned char *buffer)
{
int n, m;
n = 0;
while (n < nChars) {
if (bufPtr >= bufEnd) {
if (!fillBuf()) {
break;
}
}
m = (int)(bufEnd - bufPtr);
if (m > nChars - n) {
m = nChars - n;
}
memcpy(buffer + n, bufPtr, m);
bufPtr += m;
n += m;
}
return n;
}
GooString *RunLengthStream::getPSFilter(int psLevel, const char *indent)
{
GooString *s;
if (psLevel < 2) {
return nullptr;
}
if (!(s = str->getPSFilter(psLevel, indent))) {
return nullptr;
}
s->append(indent)->append("/RunLengthDecode filter\n");
return s;
}
bool RunLengthStream::isBinary(bool last) const
{
return str->isBinary(true);
}
bool RunLengthStream::fillBuf()
{
int c;
int n, i;
if (eof) {
return false;
}
c = str->getChar();
if (c == 0x80 || c == EOF) {
eof = true;
return false;
}
if (c < 0x80) {
n = c + 1;
for (i = 0; i < n; ++i) {
buf[i] = (char)str->getChar();
}
} else {
n = 0x101 - c;
c = str->getChar();
for (i = 0; i < n; ++i) {
buf[i] = (char)c;
}
}
bufPtr = buf;
bufEnd = buf + n;
return true;
}
//------------------------------------------------------------------------
// CCITTFaxStream
//------------------------------------------------------------------------
CCITTFaxStream::CCITTFaxStream(Stream *strA, int encodingA, bool endOfLineA, bool byteAlignA, int columnsA, int rowsA, bool endOfBlockA, bool blackA, int damagedRowsBeforeErrorA) : FilterStream(strA)
{
encoding = encodingA;
endOfLine = endOfLineA;
byteAlign = byteAlignA;
columns = columnsA;
damagedRowsBeforeError = damagedRowsBeforeErrorA;
if (columns < 1) {
columns = 1;
} else if (columns > INT_MAX - 2) {
columns = INT_MAX - 2;
}
rows = rowsA;
endOfBlock = endOfBlockA;
black = blackA;
// 0 <= codingLine[0] < codingLine[1] < ... < codingLine[n] = columns
// ---> max codingLine size = columns + 1
// refLine has one extra guard entry at the end
// ---> max refLine size = columns + 2
codingLine = (int *)gmallocn_checkoverflow(columns + 1, sizeof(int));
refLine = (int *)gmallocn_checkoverflow(columns + 2, sizeof(int));
if (codingLine != nullptr && refLine != nullptr) {
eof = false;
codingLine[0] = columns;
} else {
eof = true;
}
row = 0;
nextLine2D = encoding < 0;
inputBits = 0;
a0i = 0;
outputBits = 0;
buf = EOF;
}
CCITTFaxStream::~CCITTFaxStream()
{
delete str;
gfree(refLine);
gfree(codingLine);
}
void CCITTFaxStream::ccittReset(bool unfiltered)
{
if (unfiltered) {
str->unfilteredReset();
} else {
str->reset();
}
row = 0;
nextLine2D = encoding < 0;
inputBits = 0;
a0i = 0;
outputBits = 0;
buf = EOF;
}
void CCITTFaxStream::unfilteredReset()
{
ccittReset(true);
}
void CCITTFaxStream::reset()
{
int code1;
ccittReset(false);
if (codingLine != nullptr && refLine != nullptr) {
eof = false;
codingLine[0] = columns;
} else {
eof = true;
}
// skip any initial zero bits and end-of-line marker, and get the 2D
// encoding tag
while ((code1 = lookBits(12)) == 0) {
eatBits(1);
}
if (code1 == 0x001) {
eatBits(12);
endOfLine = true;
}
if (encoding > 0) {
nextLine2D = !lookBits(1);
eatBits(1);
}
}
inline void CCITTFaxStream::addPixels(int a1, int blackPixels)
{
if (a1 > codingLine[a0i]) {
if (a1 > columns) {
error(errSyntaxError, getPos(), "CCITTFax row is wrong length ({0:d})", a1);
err = true;
a1 = columns;
}
if ((a0i & 1) ^ blackPixels) {
++a0i;
}
codingLine[a0i] = a1;
}
}
inline void CCITTFaxStream::addPixelsNeg(int a1, int blackPixels)
{
if (a1 > codingLine[a0i]) {
if (a1 > columns) {
error(errSyntaxError, getPos(), "CCITTFax row is wrong length ({0:d})", a1);
err = true;
a1 = columns;
}
if ((a0i & 1) ^ blackPixels) {
++a0i;
}
codingLine[a0i] = a1;
} else if (a1 < codingLine[a0i]) {
if (a1 < 0) {
error(errSyntaxError, getPos(), "Invalid CCITTFax code");
err = true;
a1 = columns;
}
while (a0i > 0 && a1 <= codingLine[a0i - 1]) {
--a0i;
}
codingLine[a0i] = a1;
}
}
int CCITTFaxStream::lookChar()
{
int code1, code2, code3;
int b1i, blackPixels, i, bits;
bool gotEOL;
if (buf != EOF) {
return buf;
}
// read the next row
if (outputBits == 0) {
// if at eof just return EOF
if (eof) {
return EOF;
}
err = false;
// 2-D encoding
if (nextLine2D) {
for (i = 0; i < columns && codingLine[i] < columns; ++i) {
refLine[i] = codingLine[i];
}
for (; i < columns + 2; ++i) {
refLine[i] = columns;
}
codingLine[0] = 0;
a0i = 0;
b1i = 0;
blackPixels = 0;
// invariant:
// refLine[b1i-1] <= codingLine[a0i] < refLine[b1i] < refLine[b1i+1]
// <= columns
// exception at left edge:
// codingLine[a0i = 0] = refLine[b1i = 0] = 0 is possible
// exception at right edge:
// refLine[b1i] = refLine[b1i+1] = columns is possible
while (codingLine[a0i] < columns && !err) {
code1 = getTwoDimCode();
switch (code1) {
case twoDimPass:
if (likely(b1i + 1 < columns + 2)) {
addPixels(refLine[b1i + 1], blackPixels);
if (refLine[b1i + 1] < columns) {
b1i += 2;
}
}
break;
case twoDimHoriz:
code1 = code2 = 0;
if (blackPixels) {
do {
code1 += code3 = getBlackCode();
} while (code3 >= 64);
do {
code2 += code3 = getWhiteCode();
} while (code3 >= 64);
} else {
do {
code1 += code3 = getWhiteCode();
} while (code3 >= 64);
do {
code2 += code3 = getBlackCode();
} while (code3 >= 64);
}
addPixels(codingLine[a0i] + code1, blackPixels);
if (codingLine[a0i] < columns) {
addPixels(codingLine[a0i] + code2, blackPixels ^ 1);
}
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
if (unlikely(b1i > columns + 1)) {
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
err = true;
break;
}
}
break;
case twoDimVertR3:
if (unlikely(b1i > columns + 1)) {
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
err = true;
break;
}
addPixels(refLine[b1i] + 3, blackPixels);
blackPixels ^= 1;
if (codingLine[a0i] < columns) {
++b1i;
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
if (unlikely(b1i > columns + 1)) {
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
err = true;
break;
}
}
}
break;
case twoDimVertR2:
if (unlikely(b1i > columns + 1)) {
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
err = true;
break;
}
addPixels(refLine[b1i] + 2, blackPixels);
blackPixels ^= 1;
if (codingLine[a0i] < columns) {
++b1i;
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
if (unlikely(b1i > columns + 1)) {
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
err = true;
break;
}
}
}
break;
case twoDimVertR1:
if (unlikely(b1i > columns + 1)) {
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
err = true;
break;
}
addPixels(refLine[b1i] + 1, blackPixels);
blackPixels ^= 1;
if (codingLine[a0i] < columns) {
++b1i;
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
if (unlikely(b1i > columns + 1)) {
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
err = true;
break;
}
}
}
break;
case twoDimVert0:
if (unlikely(b1i > columns + 1)) {
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
err = true;
break;
}
addPixels(refLine[b1i], blackPixels);
blackPixels ^= 1;
if (codingLine[a0i] < columns) {
++b1i;
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
if (unlikely(b1i > columns + 1)) {
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
err = true;
break;
}
}
}
break;
case twoDimVertL3:
if (unlikely(b1i > columns + 1)) {
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
err = true;
break;
}
addPixelsNeg(refLine[b1i] - 3, blackPixels);
blackPixels ^= 1;
if (codingLine[a0i] < columns) {
if (b1i > 0) {
--b1i;
} else {
++b1i;
}
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
if (unlikely(b1i > columns + 1)) {
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
err = true;
break;
}
}
}
break;
case twoDimVertL2:
if (unlikely(b1i > columns + 1)) {
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
err = true;
break;
}
addPixelsNeg(refLine[b1i] - 2, blackPixels);
blackPixels ^= 1;
if (codingLine[a0i] < columns) {
if (b1i > 0) {
--b1i;
} else {
++b1i;
}
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
if (unlikely(b1i > columns + 1)) {
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
err = true;
break;
}
}
}
break;
case twoDimVertL1:
if (unlikely(b1i > columns + 1)) {
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
err = true;
break;
}
addPixelsNeg(refLine[b1i] - 1, blackPixels);
blackPixels ^= 1;
if (codingLine[a0i] < columns) {
if (b1i > 0) {
--b1i;
} else {
++b1i;
}
while (refLine[b1i] <= codingLine[a0i] && refLine[b1i] < columns) {
b1i += 2;
if (unlikely(b1i > columns + 1)) {
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
err = true;
break;
}
}
}
break;
case EOF:
addPixels(columns, 0);
eof = true;
break;
default:
error(errSyntaxError, getPos(), "Bad 2D code {0:04x} in CCITTFax stream", code1);
addPixels(columns, 0);
err = true;
break;
}
}
// 1-D encoding
} else {
codingLine[0] = 0;
a0i = 0;
blackPixels = 0;
while (codingLine[a0i] < columns) {
code1 = 0;
if (blackPixels) {
do {
code1 += code3 = getBlackCode();
} while (code3 >= 64);
} else {
do {
code1 += code3 = getWhiteCode();
} while (code3 >= 64);
}
addPixels(codingLine[a0i] + code1, blackPixels);
blackPixels ^= 1;
}
}
// check for end-of-line marker, skipping over any extra zero bits
// (if EncodedByteAlign is true and EndOfLine is false, there can
// be "false" EOL markers -- i.e., if the last n unused bits in
// row i are set to zero, and the first 11-n bits in row i+1
// happen to be zero -- so we don't look for EOL markers in this
// case)
gotEOL = false;
if (!endOfBlock && row == rows - 1) {
eof = true;
} else if (endOfLine || !byteAlign) {
code1 = lookBits(12);
if (endOfLine) {
while (code1 != EOF && code1 != 0x001) {
eatBits(1);
code1 = lookBits(12);
}
} else {
while (code1 == 0) {
eatBits(1);
code1 = lookBits(12);
}
}
if (code1 == 0x001) {
eatBits(12);
gotEOL = true;
}
}
// byte-align the row
// (Adobe apparently doesn't do byte alignment after EOL markers
// -- I've seen CCITT image data streams in two different formats,
// both with the byteAlign flag set:
// 1. xx:x0:01:yy:yy
// 2. xx:00:1y:yy:yy
// where xx is the previous line, yy is the next line, and colons
// separate bytes.)
if (byteAlign && !gotEOL) {
inputBits &= ~7;
}
// check for end of stream
if (lookBits(1) == EOF) {
eof = true;
}
// get 2D encoding tag
if (!eof && encoding > 0) {
nextLine2D = !lookBits(1);
eatBits(1);
}
// check for end-of-block marker
if (endOfBlock && !endOfLine && byteAlign) {
// in this case, we didn't check for an EOL code above, so we
// need to check here
code1 = lookBits(24);
if (code1 == 0x001001) {
eatBits(12);
gotEOL = true;
}
}
if (endOfBlock && gotEOL) {
code1 = lookBits(12);
if (code1 == 0x001) {
eatBits(12);
if (encoding > 0) {
lookBits(1);
eatBits(1);
}
if (encoding >= 0) {
for (i = 0; i < 4; ++i) {
code1 = lookBits(12);
if (code1 != 0x001) {
error(errSyntaxError, getPos(), "Bad RTC code in CCITTFax stream");
}
eatBits(12);
if (encoding > 0) {
lookBits(1);
eatBits(1);
}
}
}
eof = true;
}
// look for an end-of-line marker after an error -- we only do
// this if we know the stream contains end-of-line markers because
// the "just plow on" technique tends to work better otherwise
} else if (err && endOfLine) {
while (true) {
code1 = lookBits(13);
if (code1 == EOF) {
eof = true;
return EOF;
}
if ((code1 >> 1) == 0x001) {
break;
}
eatBits(1);
}
eatBits(12);
if (encoding > 0) {
eatBits(1);
nextLine2D = !(code1 & 1);
}
}
// set up for output
if (codingLine[0] > 0) {
outputBits = codingLine[a0i = 0];
} else {
outputBits = codingLine[a0i = 1];
}
++row;
}
// get a byte
if (outputBits >= 8) {
buf = (a0i & 1) ? 0x00 : 0xff;
outputBits -= 8;
if (outputBits == 0 && codingLine[a0i] < columns) {
++a0i;
outputBits = codingLine[a0i] - codingLine[a0i - 1];
}
} else {
bits = 8;
buf = 0;
do {
if (outputBits > bits) {
buf <<= bits;
if (!(a0i & 1)) {
buf |= 0xff >> (8 - bits);
}
outputBits -= bits;
bits = 0;
} else {
buf <<= outputBits;
if (!(a0i & 1)) {
buf |= 0xff >> (8 - outputBits);
}
bits -= outputBits;
outputBits = 0;
if (codingLine[a0i] < columns) {
++a0i;
if (unlikely(a0i > columns)) {
error(errSyntaxError, getPos(), "Bad bits {0:04x} in CCITTFax stream", bits);
err = true;
break;
}
outputBits = codingLine[a0i] - codingLine[a0i - 1];
} else if (bits > 0) {
buf <<= bits;
bits = 0;
}
}
} while (bits);
}
if (black) {
buf ^= 0xff;
}
return buf;
}
short CCITTFaxStream::getTwoDimCode()
{
int code;
const CCITTCode *p;
int n;
code = 0; // make gcc happy
if (endOfBlock) {
if ((code = lookBits(7)) != EOF) {
p = &twoDimTab1[code];
if (p->bits > 0) {
eatBits(p->bits);
return p->n;
}
}
} else {
for (n = 1; n <= 7; ++n) {
if ((code = lookBits(n)) == EOF) {
break;
}
if (n < 7) {
code <<= 7 - n;
}
p = &twoDimTab1[code];
if (p->bits == n) {
eatBits(n);
return p->n;
}
}
}
error(errSyntaxError, getPos(), "Bad two dim code ({0:04x}) in CCITTFax stream", code);
return EOF;
}
short CCITTFaxStream::getWhiteCode()
{
short code;
const CCITTCode *p;
int n;
code = 0; // make gcc happy
if (endOfBlock) {
code = lookBits(12);
if (code == EOF) {
return 1;
}
if ((code >> 5) == 0) {
p = &whiteTab1[code];
} else {
p = &whiteTab2[code >> 3];
}
if (p->bits > 0) {
eatBits(p->bits);
return p->n;
}
} else {
for (n = 1; n <= 9; ++n) {
code = lookBits(n);
if (code == EOF) {
return 1;
}
if (n < 9) {
code <<= 9 - n;
}
p = &whiteTab2[code];
if (p->bits == n) {
eatBits(n);
return p->n;
}
}
for (n = 11; n <= 12; ++n) {
code = lookBits(n);
if (code == EOF) {
return 1;
}
if (n < 12) {
code <<= 12 - n;
}
p = &whiteTab1[code];
if (p->bits == n) {
eatBits(n);
return p->n;
}
}
}
error(errSyntaxError, getPos(), "Bad white code ({0:04x}) in CCITTFax stream", code);
// eat a bit and return a positive number so that the caller doesn't
// go into an infinite loop
eatBits(1);
return 1;
}
short CCITTFaxStream::getBlackCode()
{
short code;
const CCITTCode *p;
int n;
code = 0; // make gcc happy
if (endOfBlock) {
code = lookBits(13);
if (code == EOF) {
return 1;
}
if ((code >> 7) == 0) {
p = &blackTab1[code];
} else if ((code >> 9) == 0 && (code >> 7) != 0) {
p = &blackTab2[(code >> 1) - 64];
} else {
p = &blackTab3[code >> 7];
}
if (p->bits > 0) {
eatBits(p->bits);
return p->n;
}
} else {
for (n = 2; n <= 6; ++n) {
code = lookBits(n);
if (code == EOF) {
return 1;
}
if (n < 6) {
code <<= 6 - n;
}
p = &blackTab3[code];
if (p->bits == n) {
eatBits(n);
return p->n;
}
}
for (n = 7; n <= 12; ++n) {
code = lookBits(n);
if (code == EOF) {
return 1;
}
if (n < 12) {
code <<= 12 - n;
}
if (code >= 64) {
p = &blackTab2[code - 64];
if (p->bits == n) {
eatBits(n);
return p->n;
}
}
}
for (n = 10; n <= 13; ++n) {
code = lookBits(n);
if (code == EOF) {
return 1;
}
if (n < 13) {
code <<= 13 - n;
}
p = &blackTab1[code];
if (p->bits == n) {
eatBits(n);
return p->n;
}
}
}
error(errSyntaxError, getPos(), "Bad black code ({0:04x}) in CCITTFax stream", code);
// eat a bit and return a positive number so that the caller doesn't
// go into an infinite loop
eatBits(1);
return 1;
}
short CCITTFaxStream::lookBits(int n)
{
int c;
while (inputBits < n) {
if ((c = str->getChar()) == EOF) {
if (inputBits == 0) {
return EOF;
}
// near the end of the stream, the caller may ask for more bits
// than are available, but there may still be a valid code in
// however many bits are available -- we need to return correct
// data in this case
return (inputBuf << (n - inputBits)) & (0xffffffff >> (32 - n));
}
inputBuf = (inputBuf << 8) + c;
inputBits += 8;
}
return (inputBuf >> (inputBits - n)) & (0xffffffff >> (32 - n));
}
GooString *CCITTFaxStream::getPSFilter(int psLevel, const char *indent)
{
GooString *s;
char s1[50];
if (psLevel < 2) {
return nullptr;
}
if (!(s = str->getPSFilter(psLevel, indent))) {
return nullptr;
}
s->append(indent)->append("<< ");
if (encoding != 0) {
sprintf(s1, "/K %d ", encoding);
s->append(s1);
}
if (endOfLine) {
s->append("/EndOfLine true ");
}
if (byteAlign) {
s->append("/EncodedByteAlign true ");
}
sprintf(s1, "/Columns %d ", columns);
s->append(s1);
if (rows != 0) {
sprintf(s1, "/Rows %d ", rows);
s->append(s1);
}
if (!endOfBlock) {
s->append("/EndOfBlock false ");
}
if (black) {
s->append("/BlackIs1 true ");
}
s->append(">> /CCITTFaxDecode filter\n");
return s;
}
bool CCITTFaxStream::isBinary(bool last) const
{
return str->isBinary(true);
}
#ifndef ENABLE_LIBJPEG
//------------------------------------------------------------------------
// DCTStream
//------------------------------------------------------------------------
// IDCT constants (20.12 fixed point format)
# define dctCos1 4017 // cos(pi/16)
# define dctSin1 799 // sin(pi/16)
# define dctCos3 3406 // cos(3*pi/16)
# define dctSin3 2276 // sin(3*pi/16)
# define dctCos6 1567 // cos(6*pi/16)
# define dctSin6 3784 // sin(6*pi/16)
# define dctSqrt2 5793 // sqrt(2)
# define dctSqrt1d2 2896 // sqrt(2) / 2
// color conversion parameters (16.16 fixed point format)
# define dctCrToR 91881 // 1.4020
# define dctCbToG -22553 // -0.3441363
# define dctCrToG -46802 // -0.71413636
# define dctCbToB 116130 // 1.772
// clip [-256,511] --> [0,255]
# define dctClipOffset 256
# define dctClipLength 768
static unsigned char dctClip[dctClipLength];
static int dctClipInit = 0;
// zig zag decode map
static const int dctZigZag[64] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 };
DCTStream::DCTStream(Stream *strA, int colorXformA, Dict *dict, int recursion) : FilterStream(strA)
{
int i, j;
colorXform = colorXformA;
progressive = interleaved = false;
width = height = 0;
mcuWidth = mcuHeight = 0;
numComps = 0;
comp = 0;
x = y = dy = 0;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 32; ++j) {
rowBuf[i][j] = nullptr;
}
frameBuf[i] = nullptr;
}
if (!dctClipInit) {
for (i = -256; i < 0; ++i)
dctClip[dctClipOffset + i] = 0;
for (i = 0; i < 256; ++i)
dctClip[dctClipOffset + i] = i;
for (i = 256; i < 512; ++i)
dctClip[dctClipOffset + i] = 255;
dctClipInit = 1;
}
}
DCTStream::~DCTStream()
{
close();
delete str;
}
void DCTStream::dctReset(bool unfiltered)
{
if (unfiltered)
str->unfilteredReset();
else
str->reset();
progressive = interleaved = false;
width = height = 0;
numComps = 0;
numQuantTables = 0;
numDCHuffTables = 0;
numACHuffTables = 0;
gotJFIFMarker = false;
gotAdobeMarker = false;
restartInterval = 0;
}
void DCTStream::unfilteredReset()
{
dctReset(true);
}
void DCTStream::reset()
{
int i, j;
dctReset(false);
if (!readHeader()) {
y = height;
return;
}
// compute MCU size
if (numComps == 1) {
compInfo[0].hSample = compInfo[0].vSample = 1;
}
mcuWidth = compInfo[0].hSample;
mcuHeight = compInfo[0].vSample;
for (i = 1; i < numComps; ++i) {
if (compInfo[i].hSample > mcuWidth) {
mcuWidth = compInfo[i].hSample;
}
if (compInfo[i].vSample > mcuHeight) {
mcuHeight = compInfo[i].vSample;
}
}
mcuWidth *= 8;
mcuHeight *= 8;
// figure out color transform
if (colorXform == -1) {
if (numComps == 3) {
if (gotJFIFMarker) {
colorXform = 1;
} else if (compInfo[0].id == 82 && compInfo[1].id == 71 && compInfo[2].id == 66) { // ASCII "RGB"
colorXform = 0;
} else {
colorXform = 1;
}
} else {
colorXform = 0;
}
}
if (progressive || !interleaved) {
// allocate a buffer for the whole image
bufWidth = ((width + mcuWidth - 1) / mcuWidth) * mcuWidth;
bufHeight = ((height + mcuHeight - 1) / mcuHeight) * mcuHeight;
if (bufWidth <= 0 || bufHeight <= 0 || bufWidth > INT_MAX / bufWidth / (int)sizeof(int)) {
error(errSyntaxError, getPos(), "Invalid image size in DCT stream");
y = height;
return;
}
for (i = 0; i < numComps; ++i) {
frameBuf[i] = (int *)gmallocn(bufWidth * bufHeight, sizeof(int));
memset(frameBuf[i], 0, bufWidth * bufHeight * sizeof(int));
}
// read the image data
do {
restartMarker = 0xd0;
restart();
readScan();
} while (readHeader());
// decode
decodeImage();
// initialize counters
comp = 0;
x = 0;
y = 0;
} else {
// allocate a buffer for one row of MCUs
bufWidth = ((width + mcuWidth - 1) / mcuWidth) * mcuWidth;
for (i = 0; i < numComps; ++i) {
for (j = 0; j < mcuHeight; ++j) {
rowBuf[i][j] = (unsigned char *)gmallocn(bufWidth, sizeof(unsigned char));
}
}
// initialize counters
comp = 0;
x = 0;
y = 0;
dy = mcuHeight;
restartMarker = 0xd0;
restart();
}
}
void DCTStream::close()
{
int i, j;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 32; ++j) {
gfree(rowBuf[i][j]);
rowBuf[i][j] = nullptr;
}
gfree(frameBuf[i]);
frameBuf[i] = nullptr;
}
FilterStream::close();
}
int DCTStream::getChar()
{
int c;
if (y >= height) {
return EOF;
}
if (progressive || !interleaved) {
c = frameBuf[comp][y * bufWidth + x];
if (++comp == numComps) {
comp = 0;
if (++x == width) {
x = 0;
++y;
}
}
} else {
if (dy >= mcuHeight) {
if (!readMCURow()) {
y = height;
return EOF;
}
comp = 0;
x = 0;
dy = 0;
}
c = rowBuf[comp][dy][x];
if (++comp == numComps) {
comp = 0;
if (++x == width) {
x = 0;
++y;
++dy;
if (y == height) {
readTrailer();
}
}
}
}
return c;
}
int DCTStream::lookChar()
{
if (y >= height) {
return EOF;
}
if (progressive || !interleaved) {
return frameBuf[comp][y * bufWidth + x];
} else {
if (dy >= mcuHeight) {
if (!readMCURow()) {
y = height;
return EOF;
}
comp = 0;
x = 0;
dy = 0;
}
return rowBuf[comp][dy][x];
}
}
void DCTStream::restart()
{
int i;
inputBits = 0;
restartCtr = restartInterval;
for (i = 0; i < numComps; ++i) {
compInfo[i].prevDC = 0;
}
eobRun = 0;
}
// Read one row of MCUs from a sequential JPEG stream.
bool DCTStream::readMCURow()
{
int data1[64];
unsigned char data2[64];
unsigned char *p1, *p2;
int pY, pCb, pCr, pR, pG, pB;
int h, v, horiz, vert, hSub, vSub;
int x1, x2, y2, x3, y3, x4, y4, x5, y5, cc, i;
int c;
for (x1 = 0; x1 < width; x1 += mcuWidth) {
// deal with restart marker
if (restartInterval > 0 && restartCtr == 0) {
c = readMarker();
if (c != restartMarker) {
error(errSyntaxError, getPos(), "Bad DCT data: incorrect restart marker");
return false;
}
if (++restartMarker == 0xd8)
restartMarker = 0xd0;
restart();
}
// read one MCU
for (cc = 0; cc < numComps; ++cc) {
h = compInfo[cc].hSample;
v = compInfo[cc].vSample;
horiz = mcuWidth / h;
vert = mcuHeight / v;
hSub = horiz / 8;
vSub = vert / 8;
for (y2 = 0; y2 < mcuHeight; y2 += vert) {
for (x2 = 0; x2 < mcuWidth; x2 += horiz) {
if (unlikely(scanInfo.dcHuffTable[cc] >= 4) || unlikely(scanInfo.acHuffTable[cc] >= 4)) {
return false;
}
if (!readDataUnit(&dcHuffTables[scanInfo.dcHuffTable[cc]], &acHuffTables[scanInfo.acHuffTable[cc]], &compInfo[cc].prevDC, data1)) {
return false;
}
transformDataUnit(quantTables[compInfo[cc].quantTable], data1, data2);
if (hSub == 1 && vSub == 1) {
for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) {
p1 = &rowBuf[cc][y2 + y3][x1 + x2];
p1[0] = data2[i];
p1[1] = data2[i + 1];
p1[2] = data2[i + 2];
p1[3] = data2[i + 3];
p1[4] = data2[i + 4];
p1[5] = data2[i + 5];
p1[6] = data2[i + 6];
p1[7] = data2[i + 7];
}
} else if (hSub == 2 && vSub == 2) {
for (y3 = 0, i = 0; y3 < 16; y3 += 2, i += 8) {
p1 = &rowBuf[cc][y2 + y3][x1 + x2];
p2 = &rowBuf[cc][y2 + y3 + 1][x1 + x2];
p1[0] = p1[1] = p2[0] = p2[1] = data2[i];
p1[2] = p1[3] = p2[2] = p2[3] = data2[i + 1];
p1[4] = p1[5] = p2[4] = p2[5] = data2[i + 2];
p1[6] = p1[7] = p2[6] = p2[7] = data2[i + 3];
p1[8] = p1[9] = p2[8] = p2[9] = data2[i + 4];
p1[10] = p1[11] = p2[10] = p2[11] = data2[i + 5];
p1[12] = p1[13] = p2[12] = p2[13] = data2[i + 6];
p1[14] = p1[15] = p2[14] = p2[15] = data2[i + 7];
}
} else {
i = 0;
for (y3 = 0, y4 = 0; y3 < 8; ++y3, y4 += vSub) {
for (x3 = 0, x4 = 0; x3 < 8; ++x3, x4 += hSub) {
for (y5 = 0; y5 < vSub; ++y5)
for (x5 = 0; x5 < hSub; ++x5)
rowBuf[cc][y2 + y4 + y5][x1 + x2 + x4 + x5] = data2[i];
++i;
}
}
}
}
}
}
--restartCtr;
// color space conversion
if (colorXform) {
// convert YCbCr to RGB
if (numComps == 3) {
for (y2 = 0; y2 < mcuHeight; ++y2) {
for (x2 = 0; x2 < mcuWidth; ++x2) {
pY = rowBuf[0][y2][x1 + x2];
pCb = rowBuf[1][y2][x1 + x2] - 128;
pCr = rowBuf[2][y2][x1 + x2] - 128;
pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16;
rowBuf[0][y2][x1 + x2] = dctClip[dctClipOffset + pR];
pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr + 32768) >> 16;
rowBuf[1][y2][x1 + x2] = dctClip[dctClipOffset + pG];
pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16;
rowBuf[2][y2][x1 + x2] = dctClip[dctClipOffset + pB];
}
}
// convert YCbCrK to CMYK (K is passed through unchanged)
} else if (numComps == 4) {
for (y2 = 0; y2 < mcuHeight; ++y2) {
for (x2 = 0; x2 < mcuWidth; ++x2) {
pY = rowBuf[0][y2][x1 + x2];
pCb = rowBuf[1][y2][x1 + x2] - 128;
pCr = rowBuf[2][y2][x1 + x2] - 128;
pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16;
rowBuf[0][y2][x1 + x2] = 255 - dctClip[dctClipOffset + pR];
pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr + 32768) >> 16;
rowBuf[1][y2][x1 + x2] = 255 - dctClip[dctClipOffset + pG];
pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16;
rowBuf[2][y2][x1 + x2] = 255 - dctClip[dctClipOffset + pB];
}
}
}
}
}
return true;
}
// Read one scan from a progressive or non-interleaved JPEG stream.
void DCTStream::readScan()
{
int data[64];
int x1, y1, dx1, dy1, x2, y2, y3, cc, i;
int h, v, horiz, vert, vSub;
int *p1;
int c;
if (scanInfo.numComps == 1) {
for (cc = 0; cc < numComps; ++cc) {
if (scanInfo.comp[cc]) {
break;
}
}
dx1 = mcuWidth / compInfo[cc].hSample;
dy1 = mcuHeight / compInfo[cc].vSample;
} else {
dx1 = mcuWidth;
dy1 = mcuHeight;
}
for (y1 = 0; y1 < height; y1 += dy1) {
for (x1 = 0; x1 < width; x1 += dx1) {
// deal with restart marker
if (restartInterval > 0 && restartCtr == 0) {
c = readMarker();
if (c != restartMarker) {
error(errSyntaxError, getPos(), "Bad DCT data: incorrect restart marker");
return;
}
if (++restartMarker == 0xd8) {
restartMarker = 0xd0;
}
restart();
}
// read one MCU
for (cc = 0; cc < numComps; ++cc) {
if (!scanInfo.comp[cc]) {
continue;
}
h = compInfo[cc].hSample;
v = compInfo[cc].vSample;
horiz = mcuWidth / h;
vert = mcuHeight / v;
vSub = vert / 8;
for (y2 = 0; y2 < dy1; y2 += vert) {
for (x2 = 0; x2 < dx1; x2 += horiz) {
// pull out the current values
p1 = &frameBuf[cc][(y1 + y2) * bufWidth + (x1 + x2)];
for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) {
data[i] = p1[0];
data[i + 1] = p1[1];
data[i + 2] = p1[2];
data[i + 3] = p1[3];
data[i + 4] = p1[4];
data[i + 5] = p1[5];
data[i + 6] = p1[6];
data[i + 7] = p1[7];
p1 += bufWidth * vSub;
}
// read one data unit
if (progressive) {
if (!readProgressiveDataUnit(&dcHuffTables[scanInfo.dcHuffTable[cc]], &acHuffTables[scanInfo.acHuffTable[cc]], &compInfo[cc].prevDC, data)) {
return;
}
} else {
if (!readDataUnit(&dcHuffTables[scanInfo.dcHuffTable[cc]], &acHuffTables[scanInfo.acHuffTable[cc]], &compInfo[cc].prevDC, data)) {
return;
}
}
// add the data unit into frameBuf
p1 = &frameBuf[cc][(y1 + y2) * bufWidth + (x1 + x2)];
for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) {
p1[0] = data[i];
p1[1] = data[i + 1];
p1[2] = data[i + 2];
p1[3] = data[i + 3];
p1[4] = data[i + 4];
p1[5] = data[i + 5];
p1[6] = data[i + 6];
p1[7] = data[i + 7];
p1 += bufWidth * vSub;
}
}
}
}
--restartCtr;
}
}
}
// Read one data unit from a sequential JPEG stream.
bool DCTStream::readDataUnit(DCTHuffTable *dcHuffTable, DCTHuffTable *acHuffTable, int *prevDC, int data[64])
{
int run, size, amp;
int c;
int i, j;
if ((size = readHuffSym(dcHuffTable)) == 9999) {
return false;
}
if (size > 0) {
if ((amp = readAmp(size)) == 9999) {
return false;
}
} else {
amp = 0;
}
data[0] = *prevDC += amp;
for (i = 1; i < 64; ++i) {
data[i] = 0;
}
i = 1;
while (i < 64) {
run = 0;
while ((c = readHuffSym(acHuffTable)) == 0xf0 && run < 0x30) {
run += 0x10;
}
if (c == 9999) {
return false;
}
if (c == 0x00) {
break;
} else {
run += (c >> 4) & 0x0f;
size = c & 0x0f;
amp = readAmp(size);
if (amp == 9999) {
return false;
}
i += run;
if (i < 64) {
j = dctZigZag[i++];
data[j] = amp;
}
}
}
return true;
}
// Read one data unit from a sequential JPEG stream.
bool DCTStream::readProgressiveDataUnit(DCTHuffTable *dcHuffTable, DCTHuffTable *acHuffTable, int *prevDC, int data[64])
{
int run, size, amp, bit, c;
int i, j, k;
// get the DC coefficient
i = scanInfo.firstCoeff;
if (i == 0) {
if (scanInfo.ah == 0) {
if ((size = readHuffSym(dcHuffTable)) == 9999) {
return false;
}
if (size > 0) {
if ((amp = readAmp(size)) == 9999) {
return false;
}
} else {
amp = 0;
}
data[0] += (*prevDC += amp) << scanInfo.al;
} else {
if ((bit = readBit()) == 9999) {
return false;
}
data[0] += bit << scanInfo.al;
}
++i;
}
if (scanInfo.lastCoeff == 0) {
return true;
}
// check for an EOB run
if (eobRun > 0) {
while (i <= scanInfo.lastCoeff) {
j = dctZigZag[i++];
if (data[j] != 0) {
if ((bit = readBit()) == EOF) {
return false;
}
if (bit) {
data[j] += 1 << scanInfo.al;
}
}
}
--eobRun;
return true;
}
// read the AC coefficients
while (i <= scanInfo.lastCoeff) {
if ((c = readHuffSym(acHuffTable)) == 9999) {
return false;
}
// ZRL
if (c == 0xf0) {
k = 0;
while (k < 16 && i <= scanInfo.lastCoeff) {
j = dctZigZag[i++];
if (data[j] == 0) {
++k;
} else {
if ((bit = readBit()) == EOF) {
return false;
}
if (bit) {
data[j] += 1 << scanInfo.al;
}
}
}
// EOB run
} else if ((c & 0x0f) == 0x00) {
j = c >> 4;
eobRun = 0;
for (k = 0; k < j; ++k) {
if ((bit = readBit()) == EOF) {
return false;
}
eobRun = (eobRun << 1) | bit;
}
eobRun += 1 << j;
while (i <= scanInfo.lastCoeff) {
j = dctZigZag[i++];
if (data[j] != 0) {
if ((bit = readBit()) == EOF) {
return false;
}
if (bit) {
data[j] += 1 << scanInfo.al;
}
}
}
--eobRun;
break;
// zero run and one AC coefficient
} else {
run = (c >> 4) & 0x0f;
size = c & 0x0f;
if ((amp = readAmp(size)) == 9999) {
return false;
}
j = 0; // make gcc happy
for (k = 0; k <= run && i <= scanInfo.lastCoeff; ++k) {
j = dctZigZag[i++];
while (data[j] != 0 && i <= scanInfo.lastCoeff) {
if ((bit = readBit()) == EOF) {
return false;
}
if (bit) {
data[j] += 1 << scanInfo.al;
}
j = dctZigZag[i++];
}
}
data[j] = amp << scanInfo.al;
}
}
return true;
}
// Decode a progressive JPEG image.
void DCTStream::decodeImage()
{
int dataIn[64];
unsigned char dataOut[64];
unsigned short *quantTable;
int pY, pCb, pCr, pR, pG, pB;
int x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, cc, i;
int h, v, horiz, vert, hSub, vSub;
int *p0, *p1, *p2;
for (y1 = 0; y1 < bufHeight; y1 += mcuHeight) {
for (x1 = 0; x1 < bufWidth; x1 += mcuWidth) {
for (cc = 0; cc < numComps; ++cc) {
quantTable = quantTables[compInfo[cc].quantTable];
h = compInfo[cc].hSample;
v = compInfo[cc].vSample;
horiz = mcuWidth / h;
vert = mcuHeight / v;
hSub = horiz / 8;
vSub = vert / 8;
for (y2 = 0; y2 < mcuHeight; y2 += vert) {
for (x2 = 0; x2 < mcuWidth; x2 += horiz) {
// pull out the coded data unit
p1 = &frameBuf[cc][(y1 + y2) * bufWidth + (x1 + x2)];
for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) {
dataIn[i] = p1[0];
dataIn[i + 1] = p1[1];
dataIn[i + 2] = p1[2];
dataIn[i + 3] = p1[3];
dataIn[i + 4] = p1[4];
dataIn[i + 5] = p1[5];
dataIn[i + 6] = p1[6];
dataIn[i + 7] = p1[7];
p1 += bufWidth * vSub;
}
// transform
transformDataUnit(quantTable, dataIn, dataOut);
// store back into frameBuf, doing replication for
// subsampled components
p1 = &frameBuf[cc][(y1 + y2) * bufWidth + (x1 + x2)];
if (hSub == 1 && vSub == 1) {
for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) {
p1[0] = dataOut[i] & 0xff;
p1[1] = dataOut[i + 1] & 0xff;
p1[2] = dataOut[i + 2] & 0xff;
p1[3] = dataOut[i + 3] & 0xff;
p1[4] = dataOut[i + 4] & 0xff;
p1[5] = dataOut[i + 5] & 0xff;
p1[6] = dataOut[i + 6] & 0xff;
p1[7] = dataOut[i + 7] & 0xff;
p1 += bufWidth;
}
} else if (hSub == 2 && vSub == 2) {
p2 = p1 + bufWidth;
for (y3 = 0, i = 0; y3 < 16; y3 += 2, i += 8) {
p1[0] = p1[1] = p2[0] = p2[1] = dataOut[i] & 0xff;
p1[2] = p1[3] = p2[2] = p2[3] = dataOut[i + 1] & 0xff;
p1[4] = p1[5] = p2[4] = p2[5] = dataOut[i + 2] & 0xff;
p1[6] = p1[7] = p2[6] = p2[7] = dataOut[i + 3] & 0xff;
p1[8] = p1[9] = p2[8] = p2[9] = dataOut[i + 4] & 0xff;
p1[10] = p1[11] = p2[10] = p2[11] = dataOut[i + 5] & 0xff;
p1[12] = p1[13] = p2[12] = p2[13] = dataOut[i + 6] & 0xff;
p1[14] = p1[15] = p2[14] = p2[15] = dataOut[i + 7] & 0xff;
p1 += bufWidth * 2;
p2 += bufWidth * 2;
}
} else {
i = 0;
for (y3 = 0, y4 = 0; y3 < 8; ++y3, y4 += vSub) {
for (x3 = 0, x4 = 0; x3 < 8; ++x3, x4 += hSub) {
p2 = p1 + x4;
for (y5 = 0; y5 < vSub; ++y5) {
for (x5 = 0; x5 < hSub; ++x5) {
p2[x5] = dataOut[i] & 0xff;
}
p2 += bufWidth;
}
++i;
}
p1 += bufWidth * vSub;
}
}
}
}
}
// color space conversion
if (colorXform) {
// convert YCbCr to RGB
if (numComps == 3) {
for (y2 = 0; y2 < mcuHeight; ++y2) {
p0 = &frameBuf[0][(y1 + y2) * bufWidth + x1];
p1 = &frameBuf[1][(y1 + y2) * bufWidth + x1];
p2 = &frameBuf[2][(y1 + y2) * bufWidth + x1];
for (x2 = 0; x2 < mcuWidth; ++x2) {
pY = *p0;
pCb = *p1 - 128;
pCr = *p2 - 128;
pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16;
*p0++ = dctClip[dctClipOffset + pR];
pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr + 32768) >> 16;
*p1++ = dctClip[dctClipOffset + pG];
pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16;
*p2++ = dctClip[dctClipOffset + pB];
}
}
// convert YCbCrK to CMYK (K is passed through unchanged)
} else if (numComps == 4) {
for (y2 = 0; y2 < mcuHeight; ++y2) {
p0 = &frameBuf[0][(y1 + y2) * bufWidth + x1];
p1 = &frameBuf[1][(y1 + y2) * bufWidth + x1];
p2 = &frameBuf[2][(y1 + y2) * bufWidth + x1];
for (x2 = 0; x2 < mcuWidth; ++x2) {
pY = *p0;
pCb = *p1 - 128;
pCr = *p2 - 128;
pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16;
*p0++ = 255 - dctClip[dctClipOffset + pR];
pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr + 32768) >> 16;
*p1++ = 255 - dctClip[dctClipOffset + pG];
pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16;
*p2++ = 255 - dctClip[dctClipOffset + pB];
}
}
}
}
}
}
}
// Transform one data unit -- this performs the dequantization and
// IDCT steps. This IDCT algorithm is taken from:
// Christoph Loeffler, Adriaan Ligtenberg, George S. Moschytz,
// "Practical Fast 1-D DCT Algorithms with 11 Multiplications",
// IEEE Intl. Conf. on Acoustics, Speech & Signal Processing, 1989,
// 988-991.
// The stage numbers mentioned in the comments refer to Figure 1 in this
// paper.
void DCTStream::transformDataUnit(unsigned short *quantTable, int dataIn[64], unsigned char dataOut[64])
{
int v0, v1, v2, v3, v4, v5, v6, v7, t;
int *p;
int i;
// dequant
for (i = 0; i < 64; ++i) {
dataIn[i] *= quantTable[i];
}
// inverse DCT on rows
for (i = 0; i < 64; i += 8) {
p = dataIn + i;
// check for all-zero AC coefficients
if (p[1] == 0 && p[2] == 0 && p[3] == 0 && p[4] == 0 && p[5] == 0 && p[6] == 0 && p[7] == 0) {
t = (dctSqrt2 * p[0] + 512) >> 10;
p[0] = t;
p[1] = t;
p[2] = t;
p[3] = t;
p[4] = t;
p[5] = t;
p[6] = t;
p[7] = t;
continue;
}
// stage 4
v0 = (dctSqrt2 * p[0] + 128) >> 8;
v1 = (dctSqrt2 * p[4] + 128) >> 8;
v2 = p[2];
v3 = p[6];
v4 = (dctSqrt1d2 * (p[1] - p[7]) + 128) >> 8;
v7 = (dctSqrt1d2 * (p[1] + p[7]) + 128) >> 8;
v5 = p[3] << 4;
v6 = p[5] << 4;
// stage 3
t = (v0 - v1 + 1) >> 1;
v0 = (v0 + v1 + 1) >> 1;
v1 = t;
t = (v2 * dctSin6 + v3 * dctCos6 + 128) >> 8;
v2 = (v2 * dctCos6 - v3 * dctSin6 + 128) >> 8;
v3 = t;
t = (v4 - v6 + 1) >> 1;
v4 = (v4 + v6 + 1) >> 1;
v6 = t;
t = (v7 + v5 + 1) >> 1;
v5 = (v7 - v5 + 1) >> 1;
v7 = t;
// stage 2
t = (v0 - v3 + 1) >> 1;
v0 = (v0 + v3 + 1) >> 1;
v3 = t;
t = (v1 - v2 + 1) >> 1;
v1 = (v1 + v2 + 1) >> 1;
v2 = t;
t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12;
v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12;
v7 = t;
t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12;
v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12;
v6 = t;
// stage 1
p[0] = v0 + v7;
p[7] = v0 - v7;
p[1] = v1 + v6;
p[6] = v1 - v6;
p[2] = v2 + v5;
p[5] = v2 - v5;
p[3] = v3 + v4;
p[4] = v3 - v4;
}
// inverse DCT on columns
for (i = 0; i < 8; ++i) {
p = dataIn + i;
// check for all-zero AC coefficients
if (p[1 * 8] == 0 && p[2 * 8] == 0 && p[3 * 8] == 0 && p[4 * 8] == 0 && p[5 * 8] == 0 && p[6 * 8] == 0 && p[7 * 8] == 0) {
t = (dctSqrt2 * dataIn[i + 0] + 8192) >> 14;
p[0 * 8] = t;
p[1 * 8] = t;
p[2 * 8] = t;
p[3 * 8] = t;
p[4 * 8] = t;
p[5 * 8] = t;
p[6 * 8] = t;
p[7 * 8] = t;
continue;
}
// stage 4
v0 = (dctSqrt2 * p[0 * 8] + 2048) >> 12;
v1 = (dctSqrt2 * p[4 * 8] + 2048) >> 12;
v2 = p[2 * 8];
v3 = p[6 * 8];
v4 = (dctSqrt1d2 * (p[1 * 8] - p[7 * 8]) + 2048) >> 12;
v7 = (dctSqrt1d2 * (p[1 * 8] + p[7 * 8]) + 2048) >> 12;
v5 = p[3 * 8];
v6 = p[5 * 8];
// stage 3
t = (v0 - v1 + 1) >> 1;
v0 = (v0 + v1 + 1) >> 1;
v1 = t;
t = (v2 * dctSin6 + v3 * dctCos6 + 2048) >> 12;
v2 = (v2 * dctCos6 - v3 * dctSin6 + 2048) >> 12;
v3 = t;
t = (v4 - v6 + 1) >> 1;
v4 = (v4 + v6 + 1) >> 1;
v6 = t;
t = (v7 + v5 + 1) >> 1;
v5 = (v7 - v5 + 1) >> 1;
v7 = t;
// stage 2
t = (v0 - v3 + 1) >> 1;
v0 = (v0 + v3 + 1) >> 1;
v3 = t;
t = (v1 - v2 + 1) >> 1;
v1 = (v1 + v2 + 1) >> 1;
v2 = t;
t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12;
v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12;
v7 = t;
t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12;
v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12;
v6 = t;
// stage 1
p[0 * 8] = v0 + v7;
p[7 * 8] = v0 - v7;
p[1 * 8] = v1 + v6;
p[6 * 8] = v1 - v6;
p[2 * 8] = v2 + v5;
p[5 * 8] = v2 - v5;
p[3 * 8] = v3 + v4;
p[4 * 8] = v3 - v4;
}
// convert to 8-bit integers
for (i = 0; i < 64; ++i) {
const int ix = dctClipOffset + 128 + ((dataIn[i] + 8) >> 4);
if (unlikely(ix < 0 || ix >= dctClipLength)) {
dataOut[i] = 0;
} else {
dataOut[i] = dctClip[ix];
}
}
}
int DCTStream::readHuffSym(DCTHuffTable *table)
{
unsigned short code;
int bit;
int codeBits;
code = 0;
codeBits = 0;
do {
// add a bit to the code
if ((bit = readBit()) == EOF) {
return 9999;
}
code = (code << 1) + bit;
++codeBits;
// look up code
if (code < table->firstCode[codeBits]) {
break;
}
if (code - table->firstCode[codeBits] < table->numCodes[codeBits]) {
code -= table->firstCode[codeBits];
return table->sym[table->firstSym[codeBits] + code];
}
} while (codeBits < 16);
error(errSyntaxError, getPos(), "Bad Huffman code in DCT stream");
return 9999;
}
int DCTStream::readAmp(int size)
{
int amp, bit;
int bits;
amp = 0;
for (bits = 0; bits < size; ++bits) {
if ((bit = readBit()) == EOF)
return 9999;
amp = (amp << 1) + bit;
}
if (amp < (1 << (size - 1)))
amp -= (1 << size) - 1;
return amp;
}
int DCTStream::readBit()
{
int bit;
int c, c2;
if (inputBits == 0) {
if ((c = str->getChar()) == EOF)
return EOF;
if (c == 0xff) {
do {
c2 = str->getChar();
} while (c2 == 0xff);
if (c2 != 0x00) {
error(errSyntaxError, getPos(), "Bad DCT data: missing 00 after ff");
return EOF;
}
}
inputBuf = c;
inputBits = 8;
}
bit = (inputBuf >> (inputBits - 1)) & 1;
--inputBits;
return bit;
}
bool DCTStream::readHeader()
{
bool doScan;
int n;
int c = 0;
int i;
// read headers
doScan = false;
while (!doScan) {
c = readMarker();
switch (c) {
case 0xc0: // SOF0 (sequential)
case 0xc1: // SOF1 (extended sequential)
if (!readBaselineSOF()) {
return false;
}
break;
case 0xc2: // SOF2 (progressive)
if (!readProgressiveSOF()) {
return false;
}
break;
case 0xc4: // DHT
if (!readHuffmanTables()) {
return false;
}
break;
case 0xd8: // SOI
break;
case 0xd9: // EOI
return false;
case 0xda: // SOS
if (!readScanInfo()) {
return false;
}
doScan = true;
break;
case 0xdb: // DQT
if (!readQuantTables()) {
return false;
}
break;
case 0xdd: // DRI
if (!readRestartInterval()) {
return false;
}
break;
case 0xe0: // APP0
if (!readJFIFMarker()) {
return false;
}
break;
case 0xee: // APP14
if (!readAdobeMarker()) {
return false;
}
break;
case EOF:
error(errSyntaxError, getPos(), "Bad DCT header");
return false;
default:
// skip APPn / COM / etc.
if (c >= 0xe0) {
n = read16() - 2;
for (i = 0; i < n; ++i) {
str->getChar();
}
} else {
error(errSyntaxError, getPos(), "Unknown DCT marker <{0:02x}>", c);
return false;
}
break;
}
}
return true;
}
bool DCTStream::readBaselineSOF()
{
int length;
int prec;
int i;
int c;
length = read16();
prec = str->getChar();
height = read16();
width = read16();
numComps = str->getChar();
if (numComps <= 0 || numComps > 4) {
error(errSyntaxError, getPos(), "Bad number of components in DCT stream");
numComps = 0;
return false;
}
if (prec != 8) {
error(errSyntaxError, getPos(), "Bad DCT precision {0:d}", prec);
return false;
}
for (i = 0; i < numComps; ++i) {
compInfo[i].id = str->getChar();
c = str->getChar();
compInfo[i].hSample = (c >> 4) & 0x0f;
compInfo[i].vSample = c & 0x0f;
compInfo[i].quantTable = str->getChar();
if (compInfo[i].hSample < 1 || compInfo[i].hSample > 4 || compInfo[i].vSample < 1 || compInfo[i].vSample > 4) {
error(errSyntaxError, getPos(), "Bad DCT sampling factor");
return false;
}
if (compInfo[i].quantTable < 0 || compInfo[i].quantTable > 3) {
error(errSyntaxError, getPos(), "Bad DCT quant table selector");
return false;
}
}
progressive = false;
return true;
}
bool DCTStream::readProgressiveSOF()
{
int length;
int prec;
int i;
int c;
length = read16();
prec = str->getChar();
height = read16();
width = read16();
numComps = str->getChar();
if (numComps <= 0 || numComps > 4) {
error(errSyntaxError, getPos(), "Bad number of components in DCT stream");
numComps = 0;
return false;
}
if (prec != 8) {
error(errSyntaxError, getPos(), "Bad DCT precision {0:d}", prec);
return false;
}
for (i = 0; i < numComps; ++i) {
compInfo[i].id = str->getChar();
c = str->getChar();
compInfo[i].hSample = (c >> 4) & 0x0f;
compInfo[i].vSample = c & 0x0f;
compInfo[i].quantTable = str->getChar();
if (compInfo[i].hSample < 1 || compInfo[i].hSample > 4 || compInfo[i].vSample < 1 || compInfo[i].vSample > 4) {
error(errSyntaxError, getPos(), "Bad DCT sampling factor");
return false;
}
if (compInfo[i].quantTable < 0 || compInfo[i].quantTable > 3) {
error(errSyntaxError, getPos(), "Bad DCT quant table selector");
return false;
}
}
progressive = true;
return true;
}
bool DCTStream::readScanInfo()
{
int length;
int id, c;
int i, j;
length = read16() - 2;
scanInfo.numComps = str->getChar();
if (scanInfo.numComps <= 0 || scanInfo.numComps > 4) {
error(errSyntaxError, getPos(), "Bad number of components in DCT stream");
scanInfo.numComps = 0;
return false;
}
--length;
if (length != 2 * scanInfo.numComps + 3) {
error(errSyntaxError, getPos(), "Bad DCT scan info block");
return false;
}
interleaved = scanInfo.numComps == numComps;
for (j = 0; j < numComps; ++j) {
scanInfo.comp[j] = false;
scanInfo.dcHuffTable[j] = 0;
scanInfo.acHuffTable[j] = 0;
}
for (i = 0; i < scanInfo.numComps; ++i) {
id = str->getChar();
// some (broken) DCT streams reuse ID numbers, but at least they
// keep the components in order, so we check compInfo[i] first to
// work around the problem
if (id == compInfo[i].id) {
j = i;
} else {
for (j = 0; j < numComps; ++j) {
if (id == compInfo[j].id) {
break;
}
}
if (j == numComps) {
error(errSyntaxError, getPos(), "Bad DCT component ID in scan info block");
return false;
}
}
scanInfo.comp[j] = true;
c = str->getChar();
scanInfo.dcHuffTable[j] = (c >> 4) & 0x0f;
scanInfo.acHuffTable[j] = c & 0x0f;
}
scanInfo.firstCoeff = str->getChar();
scanInfo.lastCoeff = str->getChar();
if (scanInfo.firstCoeff < 0 || scanInfo.lastCoeff > 63 || scanInfo.firstCoeff > scanInfo.lastCoeff) {
error(errSyntaxError, getPos(), "Bad DCT coefficient numbers in scan info block");
return false;
}
c = str->getChar();
scanInfo.ah = (c >> 4) & 0x0f;
scanInfo.al = c & 0x0f;
return true;
}
bool DCTStream::readQuantTables()
{
int length, prec, i, index;
length = read16() - 2;
while (length > 0) {
index = str->getChar();
prec = (index >> 4) & 0x0f;
index &= 0x0f;
if (prec > 1 || index >= 4) {
error(errSyntaxError, getPos(), "Bad DCT quantization table");
return false;
}
if (index == numQuantTables) {
numQuantTables = index + 1;
}
for (i = 0; i < 64; ++i) {
if (prec) {
quantTables[index][dctZigZag[i]] = read16();
} else {
quantTables[index][dctZigZag[i]] = str->getChar();
}
}
if (prec) {
length -= 129;
} else {
length -= 65;
}
}
return true;
}
bool DCTStream::readHuffmanTables()
{
DCTHuffTable *tbl;
int length;
int index;
unsigned short code;
unsigned char sym;
int i;
int c;
length = read16() - 2;
while (length > 0) {
index = str->getChar();
--length;
if ((index & 0x0f) >= 4) {
error(errSyntaxError, getPos(), "Bad DCT Huffman table");
return false;
}
if (index & 0x10) {
index &= 0x0f;
if (index >= numACHuffTables)
numACHuffTables = index + 1;
tbl = &acHuffTables[index];
} else {
index &= 0x0f;
if (index >= numDCHuffTables)
numDCHuffTables = index + 1;
tbl = &dcHuffTables[index];
}
sym = 0;
code = 0;
for (i = 1; i <= 16; ++i) {
c = str->getChar();
tbl->firstSym[i] = sym;
tbl->firstCode[i] = code;
tbl->numCodes[i] = c;
sym += c;
code = (code + c) << 1;
}
length -= 16;
for (i = 0; i < sym; ++i)
tbl->sym[i] = str->getChar();
length -= sym;
}
return true;
}
bool DCTStream::readRestartInterval()
{
int length;
length = read16();
if (length != 4) {
error(errSyntaxError, getPos(), "Bad DCT restart interval");
return false;
}
restartInterval = read16();
return true;
}
bool DCTStream::readJFIFMarker()
{
int length, i;
char buf[5];
int c;
length = read16();
length -= 2;
if (length >= 5) {
for (i = 0; i < 5; ++i) {
if ((c = str->getChar()) == EOF) {
error(errSyntaxError, getPos(), "Bad DCT APP0 marker");
return false;
}
buf[i] = c;
}
length -= 5;
if (!memcmp(buf, "JFIF\0", 5)) {
gotJFIFMarker = true;
}
}
while (length > 0) {
if (str->getChar() == EOF) {
error(errSyntaxError, getPos(), "Bad DCT APP0 marker");
return false;
}
--length;
}
return true;
}
bool DCTStream::readAdobeMarker()
{
int length, i;
char buf[12];
int c;
length = read16();
if (length < 14) {
goto err;
}
for (i = 0; i < 12; ++i) {
if ((c = str->getChar()) == EOF) {
goto err;
}
buf[i] = c;
}
if (strncmp(buf, "Adobe", 5)) {
goto err;
}
colorXform = buf[11];
gotAdobeMarker = true;
for (i = 14; i < length; ++i) {
if (str->getChar() == EOF) {
goto err;
}
}
return true;
err:
error(errSyntaxError, getPos(), "Bad DCT Adobe APP14 marker");
return false;
}
bool DCTStream::readTrailer()
{
int c;
c = readMarker();
if (c != 0xd9) { // EOI
error(errSyntaxError, getPos(), "Bad DCT trailer");
return false;
}
return true;
}
int DCTStream::readMarker()
{
int c;
do {
do {
c = str->getChar();
} while (c != 0xff && c != EOF);
while (c == 0xff) {
c = str->getChar();
}
} while (c == 0x00);
return c;
}
int DCTStream::read16()
{
int c1, c2;
if ((c1 = str->getChar()) == EOF)
return EOF;
if ((c2 = str->getChar()) == EOF)
return EOF;
return (c1 << 8) + c2;
}
GooString *DCTStream::getPSFilter(int psLevel, const char *indent)
{
GooString *s;
if (psLevel < 2) {
return nullptr;
}
if (!(s = str->getPSFilter(psLevel, indent))) {
return nullptr;
}
s->append(indent)->append("<< >> /DCTDecode filter\n");
return s;
}
bool DCTStream::isBinary(bool last) const
{
return str->isBinary(true);
}
#endif
#ifndef ENABLE_ZLIB_UNCOMPRESS
//------------------------------------------------------------------------
// FlateStream
//------------------------------------------------------------------------
const int FlateStream::codeLenCodeMap[flateMaxCodeLenCodes] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
const FlateDecode FlateStream::lengthDecode[flateMaxLitCodes - 257] = { { 0, 3 }, { 0, 4 }, { 0, 5 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 }, { 0, 10 }, { 1, 11 }, { 1, 13 }, { 1, 15 },
{ 1, 17 }, { 2, 19 }, { 2, 23 }, { 2, 27 }, { 2, 31 }, { 3, 35 }, { 3, 43 }, { 3, 51 }, { 3, 59 }, { 4, 67 }, { 4, 83 },
{ 4, 99 }, { 4, 115 }, { 5, 131 }, { 5, 163 }, { 5, 195 }, { 5, 227 }, { 0, 258 }, { 0, 258 }, { 0, 258 } };
const FlateDecode FlateStream::distDecode[flateMaxDistCodes] = { { 0, 1 }, { 0, 2 }, { 0, 3 }, { 0, 4 }, { 1, 5 }, { 1, 7 }, { 2, 9 }, { 2, 13 }, { 3, 17 }, { 3, 25 },
{ 4, 33 }, { 4, 49 }, { 5, 65 }, { 5, 97 }, { 6, 129 }, { 6, 193 }, { 7, 257 }, { 7, 385 }, { 8, 513 }, { 8, 769 },
{ 9, 1025 }, { 9, 1537 }, { 10, 2049 }, { 10, 3073 }, { 11, 4097 }, { 11, 6145 }, { 12, 8193 }, { 12, 12289 }, { 13, 16385 }, { 13, 24577 } };
static const FlateCode flateFixedLitCodeTabCodes[512] = {
{ 7, 0x0100 }, { 8, 0x0050 }, { 8, 0x0010 }, { 8, 0x0118 }, { 7, 0x0110 }, { 8, 0x0070 }, { 8, 0x0030 }, { 9, 0x00c0 }, { 7, 0x0108 }, { 8, 0x0060 }, { 8, 0x0020 }, { 9, 0x00a0 }, { 8, 0x0000 }, { 8, 0x0080 }, { 8, 0x0040 },
{ 9, 0x00e0 }, { 7, 0x0104 }, { 8, 0x0058 }, { 8, 0x0018 }, { 9, 0x0090 }, { 7, 0x0114 }, { 8, 0x0078 }, { 8, 0x0038 }, { 9, 0x00d0 }, { 7, 0x010c }, { 8, 0x0068 }, { 8, 0x0028 }, { 9, 0x00b0 }, { 8, 0x0008 }, { 8, 0x0088 },
{ 8, 0x0048 }, { 9, 0x00f0 }, { 7, 0x0102 }, { 8, 0x0054 }, { 8, 0x0014 }, { 8, 0x011c }, { 7, 0x0112 }, { 8, 0x0074 }, { 8, 0x0034 }, { 9, 0x00c8 }, { 7, 0x010a }, { 8, 0x0064 }, { 8, 0x0024 }, { 9, 0x00a8 }, { 8, 0x0004 },
{ 8, 0x0084 }, { 8, 0x0044 }, { 9, 0x00e8 }, { 7, 0x0106 }, { 8, 0x005c }, { 8, 0x001c }, { 9, 0x0098 }, { 7, 0x0116 }, { 8, 0x007c }, { 8, 0x003c }, { 9, 0x00d8 }, { 7, 0x010e }, { 8, 0x006c }, { 8, 0x002c }, { 9, 0x00b8 },
{ 8, 0x000c }, { 8, 0x008c }, { 8, 0x004c }, { 9, 0x00f8 }, { 7, 0x0101 }, { 8, 0x0052 }, { 8, 0x0012 }, { 8, 0x011a }, { 7, 0x0111 }, { 8, 0x0072 }, { 8, 0x0032 }, { 9, 0x00c4 }, { 7, 0x0109 }, { 8, 0x0062 }, { 8, 0x0022 },
{ 9, 0x00a4 }, { 8, 0x0002 }, { 8, 0x0082 }, { 8, 0x0042 }, { 9, 0x00e4 }, { 7, 0x0105 }, { 8, 0x005a }, { 8, 0x001a }, { 9, 0x0094 }, { 7, 0x0115 }, { 8, 0x007a }, { 8, 0x003a }, { 9, 0x00d4 }, { 7, 0x010d }, { 8, 0x006a },
{ 8, 0x002a }, { 9, 0x00b4 }, { 8, 0x000a }, { 8, 0x008a }, { 8, 0x004a }, { 9, 0x00f4 }, { 7, 0x0103 }, { 8, 0x0056 }, { 8, 0x0016 }, { 8, 0x011e }, { 7, 0x0113 }, { 8, 0x0076 }, { 8, 0x0036 }, { 9, 0x00cc }, { 7, 0x010b },
{ 8, 0x0066 }, { 8, 0x0026 }, { 9, 0x00ac }, { 8, 0x0006 }, { 8, 0x0086 }, { 8, 0x0046 }, { 9, 0x00ec }, { 7, 0x0107 }, { 8, 0x005e }, { 8, 0x001e }, { 9, 0x009c }, { 7, 0x0117 }, { 8, 0x007e }, { 8, 0x003e }, { 9, 0x00dc },
{ 7, 0x010f }, { 8, 0x006e }, { 8, 0x002e }, { 9, 0x00bc }, { 8, 0x000e }, { 8, 0x008e }, { 8, 0x004e }, { 9, 0x00fc }, { 7, 0x0100 }, { 8, 0x0051 }, { 8, 0x0011 }, { 8, 0x0119 }, { 7, 0x0110 }, { 8, 0x0071 }, { 8, 0x0031 },
{ 9, 0x00c2 }, { 7, 0x0108 }, { 8, 0x0061 }, { 8, 0x0021 }, { 9, 0x00a2 }, { 8, 0x0001 }, { 8, 0x0081 }, { 8, 0x0041 }, { 9, 0x00e2 }, { 7, 0x0104 }, { 8, 0x0059 }, { 8, 0x0019 }, { 9, 0x0092 }, { 7, 0x0114 }, { 8, 0x0079 },
{ 8, 0x0039 }, { 9, 0x00d2 }, { 7, 0x010c }, { 8, 0x0069 }, { 8, 0x0029 }, { 9, 0x00b2 }, { 8, 0x0009 }, { 8, 0x0089 }, { 8, 0x0049 }, { 9, 0x00f2 }, { 7, 0x0102 }, { 8, 0x0055 }, { 8, 0x0015 }, { 8, 0x011d }, { 7, 0x0112 },
{ 8, 0x0075 }, { 8, 0x0035 }, { 9, 0x00ca }, { 7, 0x010a }, { 8, 0x0065 }, { 8, 0x0025 }, { 9, 0x00aa }, { 8, 0x0005 }, { 8, 0x0085 }, { 8, 0x0045 }, { 9, 0x00ea }, { 7, 0x0106 }, { 8, 0x005d }, { 8, 0x001d }, { 9, 0x009a },
{ 7, 0x0116 }, { 8, 0x007d }, { 8, 0x003d }, { 9, 0x00da }, { 7, 0x010e }, { 8, 0x006d }, { 8, 0x002d }, { 9, 0x00ba }, { 8, 0x000d }, { 8, 0x008d }, { 8, 0x004d }, { 9, 0x00fa }, { 7, 0x0101 }, { 8, 0x0053 }, { 8, 0x0013 },
{ 8, 0x011b }, { 7, 0x0111 }, { 8, 0x0073 }, { 8, 0x0033 }, { 9, 0x00c6 }, { 7, 0x0109 }, { 8, 0x0063 }, { 8, 0x0023 }, { 9, 0x00a6 }, { 8, 0x0003 }, { 8, 0x0083 }, { 8, 0x0043 }, { 9, 0x00e6 }, { 7, 0x0105 }, { 8, 0x005b },
{ 8, 0x001b }, { 9, 0x0096 }, { 7, 0x0115 }, { 8, 0x007b }, { 8, 0x003b }, { 9, 0x00d6 }, { 7, 0x010d }, { 8, 0x006b }, { 8, 0x002b }, { 9, 0x00b6 }, { 8, 0x000b }, { 8, 0x008b }, { 8, 0x004b }, { 9, 0x00f6 }, { 7, 0x0103 },
{ 8, 0x0057 }, { 8, 0x0017 }, { 8, 0x011f }, { 7, 0x0113 }, { 8, 0x0077 }, { 8, 0x0037 }, { 9, 0x00ce }, { 7, 0x010b }, { 8, 0x0067 }, { 8, 0x0027 }, { 9, 0x00ae }, { 8, 0x0007 }, { 8, 0x0087 }, { 8, 0x0047 }, { 9, 0x00ee },
{ 7, 0x0107 }, { 8, 0x005f }, { 8, 0x001f }, { 9, 0x009e }, { 7, 0x0117 }, { 8, 0x007f }, { 8, 0x003f }, { 9, 0x00de }, { 7, 0x010f }, { 8, 0x006f }, { 8, 0x002f }, { 9, 0x00be }, { 8, 0x000f }, { 8, 0x008f }, { 8, 0x004f },
{ 9, 0x00fe }, { 7, 0x0100 }, { 8, 0x0050 }, { 8, 0x0010 }, { 8, 0x0118 }, { 7, 0x0110 }, { 8, 0x0070 }, { 8, 0x0030 }, { 9, 0x00c1 }, { 7, 0x0108 }, { 8, 0x0060 }, { 8, 0x0020 }, { 9, 0x00a1 }, { 8, 0x0000 }, { 8, 0x0080 },
{ 8, 0x0040 }, { 9, 0x00e1 }, { 7, 0x0104 }, { 8, 0x0058 }, { 8, 0x0018 }, { 9, 0x0091 }, { 7, 0x0114 }, { 8, 0x0078 }, { 8, 0x0038 }, { 9, 0x00d1 }, { 7, 0x010c }, { 8, 0x0068 }, { 8, 0x0028 }, { 9, 0x00b1 }, { 8, 0x0008 },
{ 8, 0x0088 }, { 8, 0x0048 }, { 9, 0x00f1 }, { 7, 0x0102 }, { 8, 0x0054 }, { 8, 0x0014 }, { 8, 0x011c }, { 7, 0x0112 }, { 8, 0x0074 }, { 8, 0x0034 }, { 9, 0x00c9 }, { 7, 0x010a }, { 8, 0x0064 }, { 8, 0x0024 }, { 9, 0x00a9 },
{ 8, 0x0004 }, { 8, 0x0084 }, { 8, 0x0044 }, { 9, 0x00e9 }, { 7, 0x0106 }, { 8, 0x005c }, { 8, 0x001c }, { 9, 0x0099 }, { 7, 0x0116 }, { 8, 0x007c }, { 8, 0x003c }, { 9, 0x00d9 }, { 7, 0x010e }, { 8, 0x006c }, { 8, 0x002c },
{ 9, 0x00b9 }, { 8, 0x000c }, { 8, 0x008c }, { 8, 0x004c }, { 9, 0x00f9 }, { 7, 0x0101 }, { 8, 0x0052 }, { 8, 0x0012 }, { 8, 0x011a }, { 7, 0x0111 }, { 8, 0x0072 }, { 8, 0x0032 }, { 9, 0x00c5 }, { 7, 0x0109 }, { 8, 0x0062 },
{ 8, 0x0022 }, { 9, 0x00a5 }, { 8, 0x0002 }, { 8, 0x0082 }, { 8, 0x0042 }, { 9, 0x00e5 }, { 7, 0x0105 }, { 8, 0x005a }, { 8, 0x001a }, { 9, 0x0095 }, { 7, 0x0115 }, { 8, 0x007a }, { 8, 0x003a }, { 9, 0x00d5 }, { 7, 0x010d },
{ 8, 0x006a }, { 8, 0x002a }, { 9, 0x00b5 }, { 8, 0x000a }, { 8, 0x008a }, { 8, 0x004a }, { 9, 0x00f5 }, { 7, 0x0103 }, { 8, 0x0056 }, { 8, 0x0016 }, { 8, 0x011e }, { 7, 0x0113 }, { 8, 0x0076 }, { 8, 0x0036 }, { 9, 0x00cd },
{ 7, 0x010b }, { 8, 0x0066 }, { 8, 0x0026 }, { 9, 0x00ad }, { 8, 0x0006 }, { 8, 0x0086 }, { 8, 0x0046 }, { 9, 0x00ed }, { 7, 0x0107 }, { 8, 0x005e }, { 8, 0x001e }, { 9, 0x009d }, { 7, 0x0117 }, { 8, 0x007e }, { 8, 0x003e },
{ 9, 0x00dd }, { 7, 0x010f }, { 8, 0x006e }, { 8, 0x002e }, { 9, 0x00bd }, { 8, 0x000e }, { 8, 0x008e }, { 8, 0x004e }, { 9, 0x00fd }, { 7, 0x0100 }, { 8, 0x0051 }, { 8, 0x0011 }, { 8, 0x0119 }, { 7, 0x0110 }, { 8, 0x0071 },
{ 8, 0x0031 }, { 9, 0x00c3 }, { 7, 0x0108 }, { 8, 0x0061 }, { 8, 0x0021 }, { 9, 0x00a3 }, { 8, 0x0001 }, { 8, 0x0081 }, { 8, 0x0041 }, { 9, 0x00e3 }, { 7, 0x0104 }, { 8, 0x0059 }, { 8, 0x0019 }, { 9, 0x0093 }, { 7, 0x0114 },
{ 8, 0x0079 }, { 8, 0x0039 }, { 9, 0x00d3 }, { 7, 0x010c }, { 8, 0x0069 }, { 8, 0x0029 }, { 9, 0x00b3 }, { 8, 0x0009 }, { 8, 0x0089 }, { 8, 0x0049 }, { 9, 0x00f3 }, { 7, 0x0102 }, { 8, 0x0055 }, { 8, 0x0015 }, { 8, 0x011d },
{ 7, 0x0112 }, { 8, 0x0075 }, { 8, 0x0035 }, { 9, 0x00cb }, { 7, 0x010a }, { 8, 0x0065 }, { 8, 0x0025 }, { 9, 0x00ab }, { 8, 0x0005 }, { 8, 0x0085 }, { 8, 0x0045 }, { 9, 0x00eb }, { 7, 0x0106 }, { 8, 0x005d }, { 8, 0x001d },
{ 9, 0x009b }, { 7, 0x0116 }, { 8, 0x007d }, { 8, 0x003d }, { 9, 0x00db }, { 7, 0x010e }, { 8, 0x006d }, { 8, 0x002d }, { 9, 0x00bb }, { 8, 0x000d }, { 8, 0x008d }, { 8, 0x004d }, { 9, 0x00fb }, { 7, 0x0101 }, { 8, 0x0053 },
{ 8, 0x0013 }, { 8, 0x011b }, { 7, 0x0111 }, { 8, 0x0073 }, { 8, 0x0033 }, { 9, 0x00c7 }, { 7, 0x0109 }, { 8, 0x0063 }, { 8, 0x0023 }, { 9, 0x00a7 }, { 8, 0x0003 }, { 8, 0x0083 }, { 8, 0x0043 }, { 9, 0x00e7 }, { 7, 0x0105 },
{ 8, 0x005b }, { 8, 0x001b }, { 9, 0x0097 }, { 7, 0x0115 }, { 8, 0x007b }, { 8, 0x003b }, { 9, 0x00d7 }, { 7, 0x010d }, { 8, 0x006b }, { 8, 0x002b }, { 9, 0x00b7 }, { 8, 0x000b }, { 8, 0x008b }, { 8, 0x004b }, { 9, 0x00f7 },
{ 7, 0x0103 }, { 8, 0x0057 }, { 8, 0x0017 }, { 8, 0x011f }, { 7, 0x0113 }, { 8, 0x0077 }, { 8, 0x0037 }, { 9, 0x00cf }, { 7, 0x010b }, { 8, 0x0067 }, { 8, 0x0027 }, { 9, 0x00af }, { 8, 0x0007 }, { 8, 0x0087 }, { 8, 0x0047 },
{ 9, 0x00ef }, { 7, 0x0107 }, { 8, 0x005f }, { 8, 0x001f }, { 9, 0x009f }, { 7, 0x0117 }, { 8, 0x007f }, { 8, 0x003f }, { 9, 0x00df }, { 7, 0x010f }, { 8, 0x006f }, { 8, 0x002f }, { 9, 0x00bf }, { 8, 0x000f }, { 8, 0x008f },
{ 8, 0x004f }, { 9, 0x00ff }
};
FlateHuffmanTab FlateStream::fixedLitCodeTab = { flateFixedLitCodeTabCodes, 9 };
static const FlateCode flateFixedDistCodeTabCodes[32] = { { 5, 0x0000 }, { 5, 0x0010 }, { 5, 0x0008 }, { 5, 0x0018 }, { 5, 0x0004 }, { 5, 0x0014 }, { 5, 0x000c }, { 5, 0x001c }, { 5, 0x0002 }, { 5, 0x0012 }, { 5, 0x000a },
{ 5, 0x001a }, { 5, 0x0006 }, { 5, 0x0016 }, { 5, 0x000e }, { 0, 0x0000 }, { 5, 0x0001 }, { 5, 0x0011 }, { 5, 0x0009 }, { 5, 0x0019 }, { 5, 0x0005 }, { 5, 0x0015 },
{ 5, 0x000d }, { 5, 0x001d }, { 5, 0x0003 }, { 5, 0x0013 }, { 5, 0x000b }, { 5, 0x001b }, { 5, 0x0007 }, { 5, 0x0017 }, { 5, 0x000f }, { 0, 0x0000 } };
FlateHuffmanTab FlateStream::fixedDistCodeTab = { flateFixedDistCodeTabCodes, 5 };
FlateStream::FlateStream(Stream *strA, int predictor, int columns, int colors, int bits) : FilterStream(strA)
{
if (predictor != 1) {
pred = new StreamPredictor(this, predictor, columns, colors, bits);
if (!pred->isOk()) {
delete pred;
pred = nullptr;
}
} else {
pred = nullptr;
}
litCodeTab.codes = nullptr;
distCodeTab.codes = nullptr;
memset(buf, 0, flateWindow);
}
FlateStream::~FlateStream()
{
if (litCodeTab.codes != fixedLitCodeTab.codes) {
gfree(const_cast<FlateCode *>(litCodeTab.codes));
}
if (distCodeTab.codes != fixedDistCodeTab.codes) {
gfree(const_cast<FlateCode *>(distCodeTab.codes));
}
if (pred) {
delete pred;
}
delete str;
}
void FlateStream::flateReset(bool unfiltered)
{
if (unfiltered) {
str->unfilteredReset();
} else {
str->reset();
}
index = 0;
remain = 0;
codeBuf = 0;
codeSize = 0;
compressedBlock = false;
endOfBlock = true;
eof = true;
}
void FlateStream::unfilteredReset()
{
flateReset(true);
}
void FlateStream::reset()
{
int cmf, flg;
flateReset(false);
// read header
//~ need to look at window size?
endOfBlock = eof = true;
cmf = str->getChar();
flg = str->getChar();
if (cmf == EOF || flg == EOF) {
return;
}
if ((cmf & 0x0f) != 0x08) {
error(errSyntaxError, getPos(), "Unknown compression method in flate stream");
return;
}
if ((((cmf << 8) + flg) % 31) != 0) {
error(errSyntaxError, getPos(), "Bad FCHECK in flate stream");
return;
}
if (flg & 0x20) {
error(errSyntaxError, getPos(), "FDICT bit set in flate stream");
return;
}
eof = false;
}
int FlateStream::getChar()
{
if (pred) {
return pred->getChar();
}
return doGetRawChar();
}
int FlateStream::getChars(int nChars, unsigned char *buffer)
{
if (pred) {
return pred->getChars(nChars, buffer);
} else {
for (int i = 0; i < nChars; ++i) {
const int c = doGetRawChar();
if (likely(c != EOF)) {
buffer[i] = c;
} else {
return i;
}
}
return nChars;
}
}
int FlateStream::lookChar()
{
int c;
if (pred) {
return pred->lookChar();
}
while (remain == 0) {
if (endOfBlock && eof) {
return EOF;
}
readSome();
}
c = buf[index];
return c;
}
void FlateStream::getRawChars(int nChars, int *buffer)
{
for (int i = 0; i < nChars; ++i) {
buffer[i] = doGetRawChar();
}
}
int FlateStream::getRawChar()
{
return doGetRawChar();
}
GooString *FlateStream::getPSFilter(int psLevel, const char *indent)
{
GooString *s;
if (psLevel < 3 || pred) {
return nullptr;
}
if (!(s = str->getPSFilter(psLevel, indent))) {
return nullptr;
}
s->append(indent)->append("<< >> /FlateDecode filter\n");
return s;
}
bool FlateStream::isBinary(bool last) const
{
return str->isBinary(true);
}
void FlateStream::readSome()
{
int code1, code2;
int len, dist;
int i, j, k;
int c;
if (endOfBlock) {
if (!startBlock()) {
return;
}
}
if (compressedBlock) {
if ((code1 = getHuffmanCodeWord(&litCodeTab)) == EOF) {
goto err;
}
if (code1 < 256) {
buf[index] = code1;
remain = 1;
} else if (code1 == 256) {
endOfBlock = true;
remain = 0;
} else {
code1 -= 257;
code2 = lengthDecode[code1].bits;
if (code2 > 0 && (code2 = getCodeWord(code2)) == EOF) {
goto err;
}
len = lengthDecode[code1].first + code2;
if ((code1 = getHuffmanCodeWord(&distCodeTab)) == EOF) {
goto err;
}
code2 = distDecode[code1].bits;
if (code2 > 0 && (code2 = getCodeWord(code2)) == EOF) {
goto err;
}
dist = distDecode[code1].first + code2;
i = index;
j = (index - dist) & flateMask;
for (k = 0; k < len; ++k) {
buf[i] = buf[j];
i = (i + 1) & flateMask;
j = (j + 1) & flateMask;
}
remain = len;
}
} else {
len = (blockLen < flateWindow) ? blockLen : flateWindow;
for (i = 0, j = index; i < len; ++i, j = (j + 1) & flateMask) {
if ((c = str->getChar()) == EOF) {
endOfBlock = eof = true;
break;
}
buf[j] = c & 0xff;
}
remain = i;
blockLen -= len;
if (blockLen == 0) {
endOfBlock = true;
}
}
return;
err:
error(errSyntaxError, getPos(), "Unexpected end of file in flate stream");
endOfBlock = eof = true;
remain = 0;
}
bool FlateStream::startBlock()
{
int blockHdr;
int c;
int check;
// free the code tables from the previous block
if (litCodeTab.codes != fixedLitCodeTab.codes) {
gfree(const_cast<FlateCode *>(litCodeTab.codes));
}
litCodeTab.codes = nullptr;
if (distCodeTab.codes != fixedDistCodeTab.codes) {
gfree(const_cast<FlateCode *>(distCodeTab.codes));
}
distCodeTab.codes = nullptr;
// read block header
blockHdr = getCodeWord(3);
if (blockHdr & 1) {
eof = true;
}
blockHdr >>= 1;
// uncompressed block
if (blockHdr == 0) {
compressedBlock = false;
if ((c = str->getChar()) == EOF) {
goto err;
}
blockLen = c & 0xff;
if ((c = str->getChar()) == EOF) {
goto err;
}
blockLen |= (c & 0xff) << 8;
if ((c = str->getChar()) == EOF) {
goto err;
}
check = c & 0xff;
if ((c = str->getChar()) == EOF) {
goto err;
}
check |= (c & 0xff) << 8;
if (check != (~blockLen & 0xffff)) {
error(errSyntaxError, getPos(), "Bad uncompressed block length in flate stream");
}
codeBuf = 0;
codeSize = 0;
// compressed block with fixed codes
} else if (blockHdr == 1) {
compressedBlock = true;
loadFixedCodes();
// compressed block with dynamic codes
} else if (blockHdr == 2) {
compressedBlock = true;
if (!readDynamicCodes()) {
goto err;
}
// unknown block type
} else {
goto err;
}
endOfBlock = false;
return true;
err:
error(errSyntaxError, getPos(), "Bad block header in flate stream");
endOfBlock = eof = true;
return false;
}
void FlateStream::loadFixedCodes()
{
litCodeTab.codes = fixedLitCodeTab.codes;
litCodeTab.maxLen = fixedLitCodeTab.maxLen;
distCodeTab.codes = fixedDistCodeTab.codes;
distCodeTab.maxLen = fixedDistCodeTab.maxLen;
}
bool FlateStream::readDynamicCodes()
{
int numCodeLenCodes;
int numLitCodes;
int numDistCodes;
int codeLenCodeLengths[flateMaxCodeLenCodes];
FlateHuffmanTab codeLenCodeTab;
int len, repeat, code;
int i;
codeLenCodeTab.codes = nullptr;
// read lengths
if ((numLitCodes = getCodeWord(5)) == EOF) {
goto err;
}
numLitCodes += 257;
if ((numDistCodes = getCodeWord(5)) == EOF) {
goto err;
}
numDistCodes += 1;
if ((numCodeLenCodes = getCodeWord(4)) == EOF) {
goto err;
}
numCodeLenCodes += 4;
if (numLitCodes > flateMaxLitCodes || numDistCodes > flateMaxDistCodes || numCodeLenCodes > flateMaxCodeLenCodes) {
goto err;
}
// build the code length code table
for (i = 0; i < flateMaxCodeLenCodes; ++i) {
codeLenCodeLengths[i] = 0;
}
for (i = 0; i < numCodeLenCodes; ++i) {
if ((codeLenCodeLengths[codeLenCodeMap[i]] = getCodeWord(3)) == -1) {
goto err;
}
}
codeLenCodeTab.codes = compHuffmanCodes(codeLenCodeLengths, flateMaxCodeLenCodes, &codeLenCodeTab.maxLen);
// build the literal and distance code tables
len = 0;
repeat = 0;
i = 0;
while (i < numLitCodes + numDistCodes) {
if ((code = getHuffmanCodeWord(&codeLenCodeTab)) == EOF) {
goto err;
}
if (code == 16) {
if ((repeat = getCodeWord(2)) == EOF) {
goto err;
}
repeat += 3;
if (i + repeat > numLitCodes + numDistCodes) {
goto err;
}
for (; repeat > 0; --repeat) {
codeLengths[i++] = len;
}
} else if (code == 17) {
if ((repeat = getCodeWord(3)) == EOF) {
goto err;
}
repeat += 3;
if (i + repeat > numLitCodes + numDistCodes) {
goto err;
}
len = 0;
for (; repeat > 0; --repeat) {
codeLengths[i++] = 0;
}
} else if (code == 18) {
if ((repeat = getCodeWord(7)) == EOF) {
goto err;
}
repeat += 11;
if (i + repeat > numLitCodes + numDistCodes) {
goto err;
}
len = 0;
for (; repeat > 0; --repeat) {
codeLengths[i++] = 0;
}
} else {
codeLengths[i++] = len = code;
}
}
litCodeTab.codes = compHuffmanCodes(codeLengths, numLitCodes, &litCodeTab.maxLen);
distCodeTab.codes = compHuffmanCodes(codeLengths + numLitCodes, numDistCodes, &distCodeTab.maxLen);
gfree(const_cast<FlateCode *>(codeLenCodeTab.codes));
return true;
err:
error(errSyntaxError, getPos(), "Bad dynamic code table in flate stream");
gfree(const_cast<FlateCode *>(codeLenCodeTab.codes));
return false;
}
// Convert an array <lengths> of <n> lengths, in value order, into a
// Huffman code lookup table.
FlateCode *FlateStream::compHuffmanCodes(const int *lengths, int n, int *maxLen)
{
int len, code, code2, skip, val, i, t;
// find max code length
*maxLen = 0;
for (val = 0; val < n; ++val) {
if (lengths[val] > *maxLen) {
*maxLen = lengths[val];
}
}
// allocate the table
const int tabSize = 1 << *maxLen;
FlateCode *codes = (FlateCode *)gmallocn(tabSize, sizeof(FlateCode));
// clear the table
for (i = 0; i < tabSize; ++i) {
codes[i].len = 0;
codes[i].val = 0;
}
// build the table
for (len = 1, code = 0, skip = 2; len <= *maxLen; ++len, code <<= 1, skip <<= 1) {
for (val = 0; val < n; ++val) {
if (lengths[val] == len) {
// bit-reverse the code
code2 = 0;
t = code;
for (i = 0; i < len; ++i) {
code2 = (code2 << 1) | (t & 1);
t >>= 1;
}
// fill in the table entries
for (i = code2; i < tabSize; i += skip) {
codes[i].len = (unsigned short)len;
codes[i].val = (unsigned short)val;
}
++code;
}
}
}
return codes;
}
int FlateStream::getHuffmanCodeWord(FlateHuffmanTab *tab)
{
const FlateCode *code;
int c;
while (codeSize < tab->maxLen) {
if ((c = str->getChar()) == EOF) {
break;
}
codeBuf |= (c & 0xff) << codeSize;
codeSize += 8;
}
code = &tab->codes[codeBuf & ((1 << tab->maxLen) - 1)];
if (codeSize == 0 || codeSize < code->len || code->len == 0) {
return EOF;
}
codeBuf >>= code->len;
codeSize -= code->len;
return (int)code->val;
}
int FlateStream::getCodeWord(int bits)
{
int c;
while (codeSize < bits) {
if ((c = str->getChar()) == EOF) {
return EOF;
}
codeBuf |= (c & 0xff) << codeSize;
codeSize += 8;
}
c = codeBuf & ((1 << bits) - 1);
codeBuf >>= bits;
codeSize -= bits;
return c;
}
#endif
//------------------------------------------------------------------------
// EOFStream
//------------------------------------------------------------------------
EOFStream::EOFStream(Stream *strA) : FilterStream(strA) { }
EOFStream::~EOFStream()
{
delete str;
}
//------------------------------------------------------------------------
// BufStream
//------------------------------------------------------------------------
BufStream::BufStream(Stream *strA, int bufSizeA) : FilterStream(strA)
{
bufSize = bufSizeA;
buf = (int *)gmallocn(bufSize, sizeof(int));
}
BufStream::~BufStream()
{
gfree(buf);
delete str;
}
void BufStream::reset()
{
int i;
str->reset();
for (i = 0; i < bufSize; ++i) {
buf[i] = str->getChar();
}
}
int BufStream::getChar()
{
int c, i;
c = buf[0];
for (i = 1; i < bufSize; ++i) {
buf[i - 1] = buf[i];
}
buf[bufSize - 1] = str->getChar();
return c;
}
int BufStream::lookChar()
{
return buf[0];
}
int BufStream::lookChar(int idx)
{
return buf[idx];
}
bool BufStream::isBinary(bool last) const
{
return str->isBinary(true);
}
//------------------------------------------------------------------------
// FixedLengthEncoder
//------------------------------------------------------------------------
FixedLengthEncoder::FixedLengthEncoder(Stream *strA, int lengthA) : FilterStream(strA)
{
length = lengthA;
count = 0;
}
FixedLengthEncoder::~FixedLengthEncoder()
{
if (str->isEncoder()) {
delete str;
}
}
void FixedLengthEncoder::reset()
{
str->reset();
count = 0;
}
int FixedLengthEncoder::getChar()
{
if (length >= 0 && count >= length) {
return EOF;
}
++count;
return str->getChar();
}
int FixedLengthEncoder::lookChar()
{
if (length >= 0 && count >= length) {
return EOF;
}
return str->getChar();
}
bool FixedLengthEncoder::isBinary(bool last) const
{
return str->isBinary(true);
}
//------------------------------------------------------------------------
// ASCIIHexEncoder
//------------------------------------------------------------------------
ASCIIHexEncoder::ASCIIHexEncoder(Stream *strA) : FilterStream(strA)
{
bufPtr = bufEnd = buf;
lineLen = 0;
eof = false;
}
ASCIIHexEncoder::~ASCIIHexEncoder()
{
if (str->isEncoder()) {
delete str;
}
}
void ASCIIHexEncoder::reset()
{
str->reset();
bufPtr = bufEnd = buf;
lineLen = 0;
eof = false;
}
bool ASCIIHexEncoder::fillBuf()
{
static const char *hex = "0123456789abcdef";
int c;
if (eof) {
return false;
}
bufPtr = bufEnd = buf;
if ((c = str->getChar()) == EOF) {
*bufEnd++ = '>';
eof = true;
} else {
if (lineLen >= 64) {
*bufEnd++ = '\n';
lineLen = 0;
}
*bufEnd++ = hex[(c >> 4) & 0x0f];
*bufEnd++ = hex[c & 0x0f];
lineLen += 2;
}
return true;
}
//------------------------------------------------------------------------
// ASCII85Encoder
//------------------------------------------------------------------------
ASCII85Encoder::ASCII85Encoder(Stream *strA) : FilterStream(strA)
{
bufPtr = bufEnd = buf;
lineLen = 0;
eof = false;
}
ASCII85Encoder::~ASCII85Encoder()
{
if (str->isEncoder()) {
delete str;
}
}
void ASCII85Encoder::reset()
{
str->reset();
bufPtr = bufEnd = buf;
lineLen = 0;
eof = false;
}
bool ASCII85Encoder::fillBuf()
{
unsigned int t;
char buf1[5];
int c0, c1, c2, c3;
int n, i;
if (eof) {
return false;
}
c0 = str->getChar();
c1 = str->getChar();
c2 = str->getChar();
c3 = str->getChar();
bufPtr = bufEnd = buf;
if (c3 == EOF) {
if (c0 == EOF) {
n = 0;
t = 0;
} else {
if (c1 == EOF) {
n = 1;
t = c0 << 24;
} else if (c2 == EOF) {
n = 2;
t = (c0 << 24) | (c1 << 16);
} else {
n = 3;
t = (c0 << 24) | (c1 << 16) | (c2 << 8);
}
for (i = 4; i >= 0; --i) {
buf1[i] = (char)(t % 85 + 0x21);
t /= 85;
}
for (i = 0; i <= n; ++i) {
*bufEnd++ = buf1[i];
if (++lineLen == 65) {
*bufEnd++ = '\n';
lineLen = 0;
}
}
}
*bufEnd++ = '~';
*bufEnd++ = '>';
eof = true;
} else {
t = (c0 << 24) | (c1 << 16) | (c2 << 8) | c3;
if (t == 0) {
*bufEnd++ = 'z';
if (++lineLen == 65) {
*bufEnd++ = '\n';
lineLen = 0;
}
} else {
for (i = 4; i >= 0; --i) {
buf1[i] = (char)(t % 85 + 0x21);
t /= 85;
}
for (i = 0; i <= 4; ++i) {
*bufEnd++ = buf1[i];
if (++lineLen == 65) {
*bufEnd++ = '\n';
lineLen = 0;
}
}
}
}
return true;
}
//------------------------------------------------------------------------
// RunLengthEncoder
//------------------------------------------------------------------------
RunLengthEncoder::RunLengthEncoder(Stream *strA) : FilterStream(strA)
{
bufPtr = bufEnd = nextEnd = buf;
eof = false;
}
RunLengthEncoder::~RunLengthEncoder()
{
if (str->isEncoder()) {
delete str;
}
}
void RunLengthEncoder::reset()
{
str->reset();
bufPtr = bufEnd = nextEnd = buf;
eof = false;
}
//
// When fillBuf finishes, buf[] looks like this:
// +-----+--------------+-----------------+--
// + tag | ... data ... | next 0, 1, or 2 |
// +-----+--------------+-----------------+--
// ^ ^ ^
// bufPtr bufEnd nextEnd
//
bool RunLengthEncoder::fillBuf()
{
int c, c1, c2;
int n;
// already hit EOF?
if (eof) {
return false;
}
// grab two bytes
if (nextEnd < bufEnd + 1) {
if ((c1 = str->getChar()) == EOF) {
eof = true;
return false;
}
} else {
c1 = bufEnd[0] & 0xff;
}
if (nextEnd < bufEnd + 2) {
if ((c2 = str->getChar()) == EOF) {
eof = true;
buf[0] = 0;
buf[1] = c1;
bufPtr = buf;
bufEnd = &buf[2];
return true;
}
} else {
c2 = bufEnd[1] & 0xff;
}
// check for repeat
c = 0; // make gcc happy
if (c1 == c2) {
n = 2;
while (n < 128 && (c = str->getChar()) == c1) {
++n;
}
buf[0] = (char)(257 - n);
buf[1] = c1;
bufEnd = &buf[2];
if (c == EOF) {
eof = true;
} else if (n < 128) {
buf[2] = c;
nextEnd = &buf[3];
} else {
nextEnd = bufEnd;
}
// get up to 128 chars
} else {
buf[1] = c1;
buf[2] = c2;
n = 2;
while (n < 128) {
if ((c = str->getChar()) == EOF) {
eof = true;
break;
}
++n;
buf[n] = c;
if (buf[n] == buf[n - 1]) {
break;
}
}
if (buf[n] == buf[n - 1]) {
buf[0] = (char)(n - 2 - 1);
bufEnd = &buf[n - 1];
nextEnd = &buf[n + 1];
} else {
buf[0] = (char)(n - 1);
bufEnd = nextEnd = &buf[n + 1];
}
}
bufPtr = buf;
return true;
}
//------------------------------------------------------------------------
// LZWEncoder
//------------------------------------------------------------------------
LZWEncoder::LZWEncoder(Stream *strA) : FilterStream(strA)
{
inBufLen = 0;
outBufLen = 0;
}
LZWEncoder::~LZWEncoder()
{
if (str->isEncoder()) {
delete str;
}
}
void LZWEncoder::reset()
{
int i;
str->reset();
// initialize code table
for (i = 0; i < 256; ++i) {
table[i].byte = i;
table[i].next = nullptr;
table[i].children = nullptr;
}
nextSeq = 258;
codeLen = 9;
// initialize input buffer
inBufLen = str->doGetChars(sizeof(inBuf), inBuf);
// initialize output buffer with a clear-table code
outBuf = 256;
outBufLen = 9;
needEOD = false;
}
int LZWEncoder::getChar()
{
int ret;
if (inBufLen == 0 && !needEOD && outBufLen == 0) {
return EOF;
}
if (outBufLen < 8 && (inBufLen > 0 || needEOD)) {
fillBuf();
}
if (outBufLen >= 8) {
ret = (outBuf >> (outBufLen - 8)) & 0xff;
outBufLen -= 8;
} else {
ret = (outBuf << (8 - outBufLen)) & 0xff;
outBufLen = 0;
}
return ret;
}
int LZWEncoder::lookChar()
{
if (inBufLen == 0 && !needEOD && outBufLen == 0) {
return EOF;
}
if (outBufLen < 8 && (inBufLen > 0 || needEOD)) {
fillBuf();
}
if (outBufLen >= 8) {
return (outBuf >> (outBufLen - 8)) & 0xff;
} else {
return (outBuf << (8 - outBufLen)) & 0xff;
}
}
// On input, outBufLen < 8.
// This function generates, at most, 2 12-bit codes
// --> outBufLen < 8 + 12 + 12 = 32
void LZWEncoder::fillBuf()
{
LZWEncoderNode *p0, *p1;
int seqLen, code, i;
if (needEOD) {
outBuf = (outBuf << codeLen) | 257;
outBufLen += codeLen;
needEOD = false;
return;
}
// find longest matching sequence (if any)
p0 = table + inBuf[0];
seqLen = 1;
while (inBufLen > seqLen) {
for (p1 = p0->children; p1; p1 = p1->next) {
if (p1->byte == inBuf[seqLen]) {
break;
}
}
if (!p1) {
break;
}
p0 = p1;
++seqLen;
}
code = (int)(p0 - table);
// generate an output code
outBuf = (outBuf << codeLen) | code;
outBufLen += codeLen;
// update the table
table[nextSeq].byte = seqLen < inBufLen ? inBuf[seqLen] : 0;
table[nextSeq].children = nullptr;
if (table[code].children) {
table[nextSeq].next = table[code].children;
} else {
table[nextSeq].next = nullptr;
}
table[code].children = table + nextSeq;
++nextSeq;
// update the input buffer
memmove(inBuf, inBuf + seqLen, inBufLen - seqLen);
inBufLen -= seqLen;
inBufLen += str->doGetChars(sizeof(inBuf) - inBufLen, inBuf + inBufLen);
// increment codeLen; generate clear-table code
if (nextSeq == (1 << codeLen)) {
++codeLen;
if (codeLen == 13) {
outBuf = (outBuf << 12) | 256;
outBufLen += 12;
for (i = 0; i < 256; ++i) {
table[i].next = nullptr;
table[i].children = nullptr;
}
nextSeq = 258;
codeLen = 9;
}
}
// generate EOD next time
if (inBufLen == 0) {
needEOD = true;
}
}
//------------------------------------------------------------------------
// CMYKGrayEncoder
//------------------------------------------------------------------------
CMYKGrayEncoder::CMYKGrayEncoder(Stream *strA) : FilterStream(strA)
{
bufPtr = bufEnd = buf;
eof = false;
}
CMYKGrayEncoder::~CMYKGrayEncoder()
{
if (str->isEncoder()) {
delete str;
}
}
void CMYKGrayEncoder::reset()
{
str->reset();
bufPtr = bufEnd = buf;
eof = false;
}
bool CMYKGrayEncoder::fillBuf()
{
int c0, c1, c2, c3;
int i;
if (eof) {
return false;
}
c0 = str->getChar();
c1 = str->getChar();
c2 = str->getChar();
c3 = str->getChar();
if (c3 == EOF) {
eof = true;
return false;
}
i = (3 * c0 + 6 * c1 + c2) / 10 + c3;
if (i > 255) {
i = 255;
}
bufPtr = bufEnd = buf;
*bufEnd++ = (char)i;
return true;
}
//------------------------------------------------------------------------
// RGBGrayEncoder
//------------------------------------------------------------------------
RGBGrayEncoder::RGBGrayEncoder(Stream *strA) : FilterStream(strA)
{
bufPtr = bufEnd = buf;
eof = false;
}
RGBGrayEncoder::~RGBGrayEncoder()
{
if (str->isEncoder()) {
delete str;
}
}
void RGBGrayEncoder::reset()
{
str->reset();
bufPtr = bufEnd = buf;
eof = false;
}
bool RGBGrayEncoder::fillBuf()
{
int c0, c1, c2;
int i;
if (eof) {
return false;
}
c0 = str->getChar();
c1 = str->getChar();
c2 = str->getChar();
if (c2 == EOF) {
eof = true;
return false;
}
i = 255 - (3 * c0 + 6 * c1 + c2) / 10;
if (i < 0) {
i = 0;
}
bufPtr = bufEnd = buf;
*bufEnd++ = (char)i;
return true;
}
//------------------------------------------------------------------------
// SplashBitmapCMYKEncoder
//------------------------------------------------------------------------
SplashBitmapCMYKEncoder::SplashBitmapCMYKEncoder(SplashBitmap *bitmapA) : bitmap(bitmapA)
{
width = (size_t)4 * bitmap->getWidth();
height = bitmap->getHeight();
buf.resize(width);
bufPtr = width;
curLine = height - 1;
}
SplashBitmapCMYKEncoder::~SplashBitmapCMYKEncoder() { }
void SplashBitmapCMYKEncoder::reset()
{
bufPtr = width;
curLine = height - 1;
}
int SplashBitmapCMYKEncoder::lookChar()
{
if (bufPtr >= width && !fillBuf()) {
return EOF;
}
return buf[bufPtr];
}
int SplashBitmapCMYKEncoder::getChar()
{
int ret = lookChar();
bufPtr++;
return ret;
}
bool SplashBitmapCMYKEncoder::fillBuf()
{
if (curLine < 0) {
return false;
}
if (bufPtr < width) {
return true;
}
bitmap->getCMYKLine(curLine, &buf[0]);
bufPtr = 0;
curLine--;
return true;
}
Goffset SplashBitmapCMYKEncoder::getPos()
{
return (height - 1 - curLine) * width + bufPtr;
}
void SplashBitmapCMYKEncoder::setPos(Goffset pos, int dir)
{
// This code is mostly untested!
if (dir < 0) {
curLine = pos / width;
} else {
curLine = height - 1 - pos / width;
}
bufPtr = width;
fillBuf();
if (dir < 0) {
bufPtr = width - 1 - pos % width;
} else {
bufPtr = pos % width;
}
}