blob: 83ed0a4c4f177c2ab3130c8195e56861b3b6e9b2 [file] [log] [blame]
//========================================================================
//
// SplashOutputDev.cc
//
// Copyright 2003 Glyph & Cog, LLC
//
//========================================================================
//========================================================================
//
// Modified under the Poppler project - http://poppler.freedesktop.org
//
// All changes made under the Poppler project to this file are licensed
// under GPL version 2 or later
//
// Copyright (C) 2005 Takashi Iwai <tiwai@suse.de>
// Copyright (C) 2006 Stefan Schweizer <genstef@gentoo.org>
// Copyright (C) 2006-2022, 2024 Albert Astals Cid <aacid@kde.org>
// Copyright (C) 2006 Krzysztof Kowalczyk <kkowalczyk@gmail.com>
// Copyright (C) 2006 Scott Turner <scotty1024@mac.com>
// Copyright (C) 2007 Koji Otani <sho@bbr.jp>
// Copyright (C) 2009 Petr Gajdos <pgajdos@novell.com>
// Copyright (C) 2009-2016, 2020, 2022, 2023 Thomas Freitag <Thomas.Freitag@alfa.de>
// Copyright (C) 2009 Carlos Garcia Campos <carlosgc@gnome.org>
// Copyright (C) 2009, 2014-2016, 2019 William Bader <williambader@hotmail.com>
// Copyright (C) 2010 Patrick Spendrin <ps_ml@gmx.de>
// Copyright (C) 2010 Brian Cameron <brian.cameron@oracle.com>
// Copyright (C) 2010 Paweł Wiejacha <pawel.wiejacha@gmail.com>
// Copyright (C) 2010 Christian Feuersänger <cfeuersaenger@googlemail.com>
// Copyright (C) 2011 Andreas Hartmetz <ahartmetz@gmail.com>
// Copyright (C) 2011 Andrea Canciani <ranma42@gmail.com>
// Copyright (C) 2011, 2012, 2017 Adrian Johnson <ajohnson@redneon.com>
// Copyright (C) 2013 Lu Wang <coolwanglu@gmail.com>
// Copyright (C) 2013 Li Junling <lijunling@sina.com>
// Copyright (C) 2014 Ed Porras <ed@moto-research.com>
// Copyright (C) 2014 Richard PALO <richard@netbsd.org>
// Copyright (C) 2015 Tamas Szekeres <szekerest@gmail.com>
// Copyright (C) 2015 Kenji Uno <ku@digitaldolphins.jp>
// Copyright (C) 2016 Takahiro Hashimoto <kenya888.en@gmail.com>
// Copyright (C) 2017, 2021, 2024 Even Rouault <even.rouault@spatialys.com>
// Copyright (C) 2018 Klarälvdalens Datakonsult AB, a KDAB Group company, <info@kdab.com>. Work sponsored by the LiMux project of the city of Munich
// Copyright (C) 2018, 2019 Stefan Brüns <stefan.bruens@rwth-aachen.de>
// Copyright (C) 2018 Adam Reichold <adam.reichold@t-online.de>
// Copyright (C) 2019 Christian Persch <chpe@src.gnome.org>
// Copyright (C) 2020-2022 Oliver Sander <oliver.sander@tu-dresden.de>
//
// To see a description of the changes please see the Changelog file that
// came with your tarball or type make ChangeLog if you are building from git
//
//========================================================================
#include <config.h>
#include <cstring>
#include <cmath>
#include <vector>
#include "goo/gfile.h"
#include "GlobalParams.h"
#include "Error.h"
#include "Object.h"
#include "Gfx.h"
#include "GfxFont.h"
#include "Page.h"
#include "PDFDoc.h"
#include "Link.h"
#include "FontEncodingTables.h"
#include "fofi/FoFiTrueType.h"
#include "splash/SplashBitmap.h"
#include "splash/SplashGlyphBitmap.h"
#include "splash/SplashPattern.h"
#include "splash/SplashScreen.h"
#include "splash/SplashPath.h"
#include "splash/SplashState.h"
#include "splash/SplashErrorCodes.h"
#include "splash/SplashFontEngine.h"
#include "splash/SplashFont.h"
#include "splash/SplashFontFile.h"
#include "splash/SplashFontFileID.h"
#include "splash/SplashMath.h"
#include "splash/Splash.h"
#include "SplashOutputDev.h"
#include <algorithm>
static const double s_minLineWidth = 0.0;
static inline void convertGfxColor(SplashColorPtr dest, const SplashColorMode colorMode, const GfxColorSpace *colorSpace, const GfxColor *src)
{
SplashColor color;
GfxGray gray;
GfxRGB rgb;
GfxCMYK cmyk;
GfxColor deviceN;
// make gcc happy
color[0] = color[1] = color[2] = 0;
color[3] = 0;
switch (colorMode) {
case splashModeMono1:
case splashModeMono8:
colorSpace->getGray(src, &gray);
color[0] = colToByte(gray);
break;
case splashModeXBGR8:
color[3] = 255;
// fallthrough
case splashModeBGR8:
case splashModeRGB8:
colorSpace->getRGB(src, &rgb);
color[0] = colToByte(rgb.r);
color[1] = colToByte(rgb.g);
color[2] = colToByte(rgb.b);
break;
case splashModeCMYK8:
colorSpace->getCMYK(src, &cmyk);
color[0] = colToByte(cmyk.c);
color[1] = colToByte(cmyk.m);
color[2] = colToByte(cmyk.y);
color[3] = colToByte(cmyk.k);
break;
case splashModeDeviceN8:
colorSpace->getDeviceN(src, &deviceN);
for (int i = 0; i < SPOT_NCOMPS + 4; i++) {
color[i] = colToByte(deviceN.c[i]);
}
break;
}
splashColorCopy(dest, color);
}
// Copy a color according to the color mode.
// Use convertGfxShortColor() below when the destination is a bitmap
// to avoid overwriting cells.
// Calling this in SplashGouraudPattern::getParameterizedColor() fixes bug 90570.
// Use convertGfxColor() above when the destination is an array of SPOT_NCOMPS+4 bytes,
// to ensure that everything is initialized.
static inline void convertGfxShortColor(SplashColorPtr dest, const SplashColorMode colorMode, const GfxColorSpace *colorSpace, const GfxColor *src)
{
switch (colorMode) {
case splashModeMono1:
case splashModeMono8: {
GfxGray gray;
colorSpace->getGray(src, &gray);
dest[0] = colToByte(gray);
} break;
case splashModeXBGR8:
dest[3] = 255;
// fallthrough
case splashModeBGR8:
case splashModeRGB8: {
GfxRGB rgb;
colorSpace->getRGB(src, &rgb);
dest[0] = colToByte(rgb.r);
dest[1] = colToByte(rgb.g);
dest[2] = colToByte(rgb.b);
} break;
case splashModeCMYK8: {
GfxCMYK cmyk;
colorSpace->getCMYK(src, &cmyk);
dest[0] = colToByte(cmyk.c);
dest[1] = colToByte(cmyk.m);
dest[2] = colToByte(cmyk.y);
dest[3] = colToByte(cmyk.k);
} break;
case splashModeDeviceN8: {
GfxColor deviceN;
colorSpace->getDeviceN(src, &deviceN);
for (int i = 0; i < SPOT_NCOMPS + 4; i++) {
dest[i] = colToByte(deviceN.c[i]);
}
} break;
}
}
//------------------------------------------------------------------------
// SplashGouraudPattern
//------------------------------------------------------------------------
SplashGouraudPattern::SplashGouraudPattern(bool bDirectColorTranslationA, GfxState *stateA, GfxGouraudTriangleShading *shadingA)
{
state = stateA;
shading = shadingA;
bDirectColorTranslation = bDirectColorTranslationA;
gfxMode = shadingA->getColorSpace()->getMode();
}
SplashGouraudPattern::~SplashGouraudPattern() { }
void SplashGouraudPattern::getNonParametrizedTriangle(int i, SplashColorMode mode, double *x0, double *y0, SplashColorPtr color0, double *x1, double *y1, SplashColorPtr color1, double *x2, double *y2, SplashColorPtr color2)
{
GfxColor c0, c1, c2;
shading->getTriangle(i, x0, y0, &c0, x1, y1, &c1, x2, y2, &c2);
const GfxColorSpace *srcColorSpace = shading->getColorSpace();
convertGfxColor(color0, mode, srcColorSpace, &c0);
convertGfxColor(color1, mode, srcColorSpace, &c1);
convertGfxColor(color2, mode, srcColorSpace, &c2);
}
void SplashGouraudPattern::getParameterizedColor(double colorinterp, SplashColorMode mode, SplashColorPtr dest)
{
GfxColor src;
shading->getParameterizedColor(colorinterp, &src);
if (bDirectColorTranslation) {
const int colorComps = splashColorModeNComps[mode];
for (int m = 0; m < colorComps; ++m) {
dest[m] = colToByte(src.c[m]);
}
} else {
GfxColorSpace *srcColorSpace = shading->getColorSpace();
convertGfxShortColor(dest, mode, srcColorSpace, &src);
}
}
//------------------------------------------------------------------------
// SplashFunctionPattern
//------------------------------------------------------------------------
SplashFunctionPattern::SplashFunctionPattern(SplashColorMode colorModeA, GfxState *stateA, GfxFunctionShading *shadingA)
{
Matrix ctm;
SplashColor defaultColor;
GfxColor srcColor;
const double *matrix = shadingA->getMatrix();
shading = shadingA;
state = stateA;
colorMode = colorModeA;
state->getCTM(&ctm);
double a1 = ctm.m[0];
double b1 = ctm.m[1];
double c1 = ctm.m[2];
double d1 = ctm.m[3];
ctm.m[0] = matrix[0] * a1 + matrix[1] * c1;
ctm.m[1] = matrix[0] * b1 + matrix[1] * d1;
ctm.m[2] = matrix[2] * a1 + matrix[3] * c1;
ctm.m[3] = matrix[2] * b1 + matrix[3] * d1;
ctm.m[4] = matrix[4] * a1 + matrix[5] * c1 + ctm.m[4];
ctm.m[5] = matrix[4] * b1 + matrix[5] * d1 + ctm.m[5];
ctm.invertTo(&ictm);
gfxMode = shadingA->getColorSpace()->getMode();
shadingA->getColorSpace()->getDefaultColor(&srcColor);
shadingA->getDomain(&xMin, &yMin, &xMax, &yMax);
convertGfxColor(defaultColor, colorModeA, shadingA->getColorSpace(), &srcColor);
}
SplashFunctionPattern::~SplashFunctionPattern() { }
bool SplashFunctionPattern::getColor(int x, int y, SplashColorPtr c)
{
GfxColor gfxColor;
double xc, yc;
ictm.transform(x, y, &xc, &yc);
if (xc < xMin || xc > xMax || yc < yMin || yc > yMax) {
return false;
}
shading->getColor(xc, yc, &gfxColor);
convertGfxColor(c, colorMode, shading->getColorSpace(), &gfxColor);
return true;
}
//------------------------------------------------------------------------
// SplashUnivariatePattern
//------------------------------------------------------------------------
SplashUnivariatePattern::SplashUnivariatePattern(SplashColorMode colorModeA, GfxState *stateA, GfxUnivariateShading *shadingA)
{
Matrix ctm;
double xMin, yMin, xMax, yMax;
shading = shadingA;
state = stateA;
colorMode = colorModeA;
state->getCTM(&ctm);
ctm.invertTo(&ictm);
// get the function domain
t0 = shading->getDomain0();
t1 = shading->getDomain1();
dt = t1 - t0;
stateA->getUserClipBBox(&xMin, &yMin, &xMax, &yMax);
shadingA->setupCache(&ctm, xMin, yMin, xMax, yMax);
gfxMode = shadingA->getColorSpace()->getMode();
}
SplashUnivariatePattern::~SplashUnivariatePattern() { }
bool SplashUnivariatePattern::getColor(int x, int y, SplashColorPtr c)
{
GfxColor gfxColor;
double xc, yc, t;
ictm.transform(x, y, &xc, &yc);
if (!getParameter(xc, yc, &t)) {
return false;
}
const int filled = shading->getColor(t, &gfxColor);
if (unlikely(filled < shading->getColorSpace()->getNComps())) {
for (int i = filled; i < shading->getColorSpace()->getNComps(); ++i) {
gfxColor.c[i] = 0;
}
}
convertGfxColor(c, colorMode, shading->getColorSpace(), &gfxColor);
return true;
}
bool SplashUnivariatePattern::testPosition(int x, int y)
{
double xc, yc, t;
ictm.transform(x, y, &xc, &yc);
if (!getParameter(xc, yc, &t)) {
return false;
}
return (t0 < t1) ? (t > t0 && t < t1) : (t > t1 && t < t0);
}
//------------------------------------------------------------------------
// SplashRadialPattern
//------------------------------------------------------------------------
#define RADIAL_EPSILON (1. / 1024 / 1024)
SplashRadialPattern::SplashRadialPattern(SplashColorMode colorModeA, GfxState *stateA, GfxRadialShading *shadingA) : SplashUnivariatePattern(colorModeA, stateA, shadingA)
{
SplashColor defaultColor;
GfxColor srcColor;
shadingA->getCoords(&x0, &y0, &r0, &dx, &dy, &dr);
dx -= x0;
dy -= y0;
dr -= r0;
a = dx * dx + dy * dy - dr * dr;
if (fabs(a) > RADIAL_EPSILON) {
inva = 1.0 / a;
}
shadingA->getColorSpace()->getDefaultColor(&srcColor);
convertGfxColor(defaultColor, colorModeA, shadingA->getColorSpace(), &srcColor);
}
SplashRadialPattern::~SplashRadialPattern() { }
bool SplashRadialPattern::getParameter(double xs, double ys, double *t)
{
double b, c, s0, s1;
// We want to solve this system of equations:
//
// 1. (x - xc(s))^2 + (y -yc(s))^2 = rc(s)^2
// 2. xc(s) = x0 + s * (x1 - xo)
// 3. yc(s) = y0 + s * (y1 - yo)
// 4. rc(s) = r0 + s * (r1 - ro)
//
// To simplify the system a little, we translate
// our coordinates to have the origin in (x0,y0)
xs -= x0;
ys -= y0;
// Then we have to solve the equation:
// A*s^2 - 2*B*s + C = 0
// where
// A = dx^2 + dy^2 - dr^2
// B = xs*dx + ys*dy + r0*dr
// C = xs^2 + ys^2 - r0^2
b = xs * dx + ys * dy + r0 * dr;
c = xs * xs + ys * ys - r0 * r0;
if (fabs(a) <= RADIAL_EPSILON) {
// A is 0, thus the equation simplifies to:
// -2*B*s + C = 0
// If B is 0, we can either have no solution or an indeterminate
// equation, thus we behave as if we had an invalid solution
if (fabs(b) <= RADIAL_EPSILON) {
return false;
}
s0 = s1 = 0.5 * c / b;
} else {
double d;
d = b * b - a * c;
if (d < 0) {
return false;
}
d = sqrt(d);
s0 = b + d;
s1 = b - d;
// If A < 0, one of the two solutions will have negative radius,
// thus it will be ignored. Otherwise we know that s1 <= s0
// (because d >=0 implies b - d <= b + d), so if both are valid it
// will be the true solution.
s0 *= inva;
s1 *= inva;
}
if (r0 + s0 * dr >= 0) {
if (0 <= s0 && s0 <= 1) {
*t = t0 + dt * s0;
return true;
} else if (s0 < 0 && shading->getExtend0()) {
*t = t0;
return true;
} else if (s0 > 1 && shading->getExtend1()) {
*t = t1;
return true;
}
}
if (r0 + s1 * dr >= 0) {
if (0 <= s1 && s1 <= 1) {
*t = t0 + dt * s1;
return true;
} else if (s1 < 0 && shading->getExtend0()) {
*t = t0;
return true;
} else if (s1 > 1 && shading->getExtend1()) {
*t = t1;
return true;
}
}
return false;
}
#undef RADIAL_EPSILON
//------------------------------------------------------------------------
// SplashAxialPattern
//------------------------------------------------------------------------
SplashAxialPattern::SplashAxialPattern(SplashColorMode colorModeA, GfxState *stateA, GfxAxialShading *shadingA) : SplashUnivariatePattern(colorModeA, stateA, shadingA)
{
SplashColor defaultColor;
GfxColor srcColor;
shadingA->getCoords(&x0, &y0, &x1, &y1);
dx = x1 - x0;
dy = y1 - y0;
const double mul_denominator = (dx * dx + dy * dy);
if (unlikely(mul_denominator == 0)) {
mul = 0;
} else {
mul = 1 / mul_denominator;
}
shadingA->getColorSpace()->getDefaultColor(&srcColor);
convertGfxColor(defaultColor, colorModeA, shadingA->getColorSpace(), &srcColor);
}
SplashAxialPattern::~SplashAxialPattern() { }
bool SplashAxialPattern::getParameter(double xc, double yc, double *t)
{
double s;
xc -= x0;
yc -= y0;
s = (xc * dx + yc * dy) * mul;
if (0 <= s && s <= 1) {
*t = t0 + dt * s;
} else if (s < 0 && shading->getExtend0()) {
*t = t0;
} else if (s > 1 && shading->getExtend1()) {
*t = t1;
} else {
return false;
}
return true;
}
//------------------------------------------------------------------------
// Type 3 font cache size parameters
#define type3FontCacheAssoc 8
#define type3FontCacheMaxSets 8
#define type3FontCacheSize (128 * 1024)
//------------------------------------------------------------------------
// Divide a 16-bit value (in [0, 255*255]) by 255, returning an 8-bit result.
static inline unsigned char div255(int x)
{
return (unsigned char)((x + (x >> 8) + 0x80) >> 8);
}
//------------------------------------------------------------------------
// Blend functions
//------------------------------------------------------------------------
static void splashOutBlendMultiply(SplashColorPtr src, SplashColorPtr dest, SplashColorPtr blend, SplashColorMode cm)
{
int i;
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
}
}
{
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
blend[i] = (dest[i] * src[i]) / 255;
}
}
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
blend[i] = 255 - blend[i];
}
}
}
static void splashOutBlendScreen(SplashColorPtr src, SplashColorPtr dest, SplashColorPtr blend, SplashColorMode cm)
{
int i;
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
}
}
{
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
blend[i] = dest[i] + src[i] - (dest[i] * src[i]) / 255;
}
}
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
blend[i] = 255 - blend[i];
}
}
}
static void splashOutBlendOverlay(SplashColorPtr src, SplashColorPtr dest, SplashColorPtr blend, SplashColorMode cm)
{
int i;
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
}
}
{
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
blend[i] = dest[i] < 0x80 ? (src[i] * 2 * dest[i]) / 255 : 255 - 2 * ((255 - src[i]) * (255 - dest[i])) / 255;
}
}
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
blend[i] = 255 - blend[i];
}
}
}
static void splashOutBlendDarken(SplashColorPtr src, SplashColorPtr dest, SplashColorPtr blend, SplashColorMode cm)
{
int i;
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
}
}
{
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
blend[i] = dest[i] < src[i] ? dest[i] : src[i];
}
}
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
blend[i] = 255 - blend[i];
}
}
}
static void splashOutBlendLighten(SplashColorPtr src, SplashColorPtr dest, SplashColorPtr blend, SplashColorMode cm)
{
int i;
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
}
}
{
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
blend[i] = dest[i] > src[i] ? dest[i] : src[i];
}
}
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
blend[i] = 255 - blend[i];
}
}
}
static void splashOutBlendColorDodge(SplashColorPtr src, SplashColorPtr dest, SplashColorPtr blend, SplashColorMode cm)
{
int i, x;
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
}
}
{
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
if (src[i] == 255) {
blend[i] = 255;
} else {
x = (dest[i] * 255) / (255 - src[i]);
blend[i] = x <= 255 ? x : 255;
}
}
}
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
blend[i] = 255 - blend[i];
}
}
}
static void splashOutBlendColorBurn(SplashColorPtr src, SplashColorPtr dest, SplashColorPtr blend, SplashColorMode cm)
{
int i, x;
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
}
}
{
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
if (src[i] == 0) {
blend[i] = 0;
} else {
x = ((255 - dest[i]) * 255) / src[i];
blend[i] = x <= 255 ? 255 - x : 0;
}
}
}
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
blend[i] = 255 - blend[i];
}
}
}
static void splashOutBlendHardLight(SplashColorPtr src, SplashColorPtr dest, SplashColorPtr blend, SplashColorMode cm)
{
int i;
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
}
}
{
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
blend[i] = src[i] < 0x80 ? (dest[i] * 2 * src[i]) / 255 : 255 - 2 * ((255 - dest[i]) * (255 - src[i])) / 255;
}
}
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
blend[i] = 255 - blend[i];
}
}
}
static void splashOutBlendSoftLight(SplashColorPtr src, SplashColorPtr dest, SplashColorPtr blend, SplashColorMode cm)
{
int i, x;
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
}
}
{
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
if (src[i] < 0x80) {
blend[i] = dest[i] - (255 - 2 * src[i]) * dest[i] * (255 - dest[i]) / (255 * 255);
} else {
if (dest[i] < 0x40) {
x = (((((16 * dest[i] - 12 * 255) * dest[i]) / 255) + 4 * 255) * dest[i]) / 255;
} else {
x = (int)sqrt(255.0 * dest[i]);
}
blend[i] = dest[i] + (2 * src[i] - 255) * (x - dest[i]) / 255;
}
}
}
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
blend[i] = 255 - blend[i];
}
}
}
static void splashOutBlendDifference(SplashColorPtr src, SplashColorPtr dest, SplashColorPtr blend, SplashColorMode cm)
{
int i;
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
}
}
{
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
blend[i] = dest[i] < src[i] ? src[i] - dest[i] : dest[i] - src[i];
}
}
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
blend[i] = 255 - blend[i];
}
}
if (cm == splashModeDeviceN8) {
for (i = 4; i < splashColorModeNComps[cm]; ++i) {
if (dest[i] == 0 && src[i] == 0) {
blend[i] = 0;
}
}
}
}
static void splashOutBlendExclusion(SplashColorPtr src, SplashColorPtr dest, SplashColorPtr blend, SplashColorMode cm)
{
int i;
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
}
}
{
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
blend[i] = dest[i] + src[i] - (2 * dest[i] * src[i]) / 255;
}
}
if (cm == splashModeCMYK8 || cm == splashModeDeviceN8) {
for (i = 0; i < splashColorModeNComps[cm]; ++i) {
dest[i] = 255 - dest[i];
src[i] = 255 - src[i];
blend[i] = 255 - blend[i];
}
}
if (cm == splashModeDeviceN8) {
for (i = 4; i < splashColorModeNComps[cm]; ++i) {
if (dest[i] == 0 && src[i] == 0) {
blend[i] = 0;
}
}
}
}
static int getLum(int r, int g, int b)
{
// (int)(0.3 * r + 0.59 * g + 0.11 * b) =
// (int)(256 / 256 * 0.3 * r + 256 / 256 * 0.59 * g + 256 / 256 * 0.11 * b)
// (int)((77 * r + 151 * g + 28 * b) / 256) = // round!
return (int)((r * 77 + g * 151 + b * 28 + 0x80) >> 8);
}
static int getSat(int r, int g, int b)
{
int rgbMin = std::min({ r, g, b });
int rgbMax = std::max({ r, g, b });
return rgbMax - rgbMin;
}
static void clipColor(int rIn, int gIn, int bIn, unsigned char *rOut, unsigned char *gOut, unsigned char *bOut)
{
int lum = getLum(rIn, gIn, bIn);
int rgbMin = std::min({ rIn, bIn, gIn });
int rgbMax = std::max({ rIn, bIn, gIn });
if (rgbMin < 0) {
*rOut = (unsigned char)std::clamp(lum + ((rIn - lum) * lum) / (lum - rgbMin), 0, 255);
*gOut = (unsigned char)std::clamp(lum + ((gIn - lum) * lum) / (lum - rgbMin), 0, 255);
*bOut = (unsigned char)std::clamp(lum + ((bIn - lum) * lum) / (lum - rgbMin), 0, 255);
} else if (rgbMax > 255) {
*rOut = (unsigned char)std::clamp(lum + ((rIn - lum) * (255 - lum)) / (rgbMax - lum), 0, 255);
*gOut = (unsigned char)std::clamp(lum + ((gIn - lum) * (255 - lum)) / (rgbMax - lum), 0, 255);
*bOut = (unsigned char)std::clamp(lum + ((bIn - lum) * (255 - lum)) / (rgbMax - lum), 0, 255);
} else {
*rOut = rIn;
*gOut = gIn;
*bOut = bIn;
}
}
static void setLum(unsigned char rIn, unsigned char gIn, unsigned char bIn, int lum, unsigned char *rOut, unsigned char *gOut, unsigned char *bOut)
{
int d;
d = lum - getLum(rIn, gIn, bIn);
clipColor(rIn + d, gIn + d, bIn + d, rOut, gOut, bOut);
}
static void setSat(unsigned char rIn, unsigned char gIn, unsigned char bIn, int sat, unsigned char *rOut, unsigned char *gOut, unsigned char *bOut)
{
int rgbMin, rgbMid, rgbMax;
unsigned char *minOut, *midOut, *maxOut;
if (rIn < gIn) {
rgbMin = rIn;
minOut = rOut;
rgbMid = gIn;
midOut = gOut;
} else {
rgbMin = gIn;
minOut = gOut;
rgbMid = rIn;
midOut = rOut;
}
if (bIn > rgbMid) {
rgbMax = bIn;
maxOut = bOut;
} else if (bIn > rgbMin) {
rgbMax = rgbMid;
maxOut = midOut;
rgbMid = bIn;
midOut = bOut;
} else {
rgbMax = rgbMid;
maxOut = midOut;
rgbMid = rgbMin;
midOut = minOut;
rgbMin = bIn;
minOut = bOut;
}
if (rgbMax > rgbMin) {
*midOut = (unsigned char)std::clamp(((rgbMid - rgbMin) * sat) / (rgbMax - rgbMin), 0, 255);
*maxOut = (unsigned char)std::clamp(sat, 0, 255);
} else {
*midOut = *maxOut = 0;
}
*minOut = 0;
}
static void splashOutBlendHue(SplashColorPtr src, SplashColorPtr dest, SplashColorPtr blend, SplashColorMode cm)
{
unsigned char r0, g0, b0;
unsigned char r1, g1, b1;
int i;
SplashColor src2, dest2;
switch (cm) {
case splashModeMono1:
case splashModeMono8:
blend[0] = dest[0];
break;
case splashModeXBGR8:
src[3] = 255;
// fallthrough
case splashModeRGB8:
case splashModeBGR8:
setSat(src[0], src[1], src[2], getSat(dest[0], dest[1], dest[2]), &r0, &g0, &b0);
setLum(r0, g0, b0, getLum(dest[0], dest[1], dest[2]), &blend[0], &blend[1], &blend[2]);
break;
case splashModeCMYK8:
case splashModeDeviceN8:
for (i = 0; i < 4; i++) {
// convert to additive
src2[i] = 0xff - src[i];
dest2[i] = 0xff - dest[i];
}
// NB: inputs have already been converted to additive mode
setSat(src2[0], src2[1], src2[2], getSat(dest2[0], dest2[1], dest2[2]), &r0, &g0, &b0);
setLum(r0, g0, b0, getLum(dest2[0], dest2[1], dest2[2]), &r1, &g1, &b1);
blend[0] = r1;
blend[1] = g1;
blend[2] = b1;
blend[3] = dest2[3];
for (i = 0; i < 4; i++) {
// convert back to subtractive
blend[i] = 0xff - blend[i];
}
break;
}
}
static void splashOutBlendSaturation(SplashColorPtr src, SplashColorPtr dest, SplashColorPtr blend, SplashColorMode cm)
{
unsigned char r0, g0, b0;
unsigned char r1, g1, b1;
int i;
SplashColor src2, dest2;
switch (cm) {
case splashModeMono1:
case splashModeMono8:
blend[0] = dest[0];
break;
case splashModeXBGR8:
src[3] = 255;
// fallthrough
case splashModeRGB8:
case splashModeBGR8:
setSat(dest[0], dest[1], dest[2], getSat(src[0], src[1], src[2]), &r0, &g0, &b0);
setLum(r0, g0, b0, getLum(dest[0], dest[1], dest[2]), &blend[0], &blend[1], &blend[2]);
break;
case splashModeCMYK8:
case splashModeDeviceN8:
for (i = 0; i < 4; i++) {
// convert to additive
src2[i] = 0xff - src[i];
dest2[i] = 0xff - dest[i];
}
setSat(dest2[0], dest2[1], dest2[2], getSat(src2[0], src2[1], src2[2]), &r0, &g0, &b0);
setLum(r0, g0, b0, getLum(dest2[0], dest2[1], dest2[2]), &r1, &g1, &b1);
blend[0] = r1;
blend[1] = g1;
blend[2] = b1;
blend[3] = dest2[3];
for (i = 0; i < 4; i++) {
// convert back to subtractive
blend[i] = 0xff - blend[i];
}
break;
}
}
static void splashOutBlendColor(SplashColorPtr src, SplashColorPtr dest, SplashColorPtr blend, SplashColorMode cm)
{
unsigned char r, g, b;
int i;
SplashColor src2, dest2;
switch (cm) {
case splashModeMono1:
case splashModeMono8:
blend[0] = dest[0];
break;
case splashModeXBGR8:
src[3] = 255;
// fallthrough
case splashModeRGB8:
case splashModeBGR8:
setLum(src[0], src[1], src[2], getLum(dest[0], dest[1], dest[2]), &blend[0], &blend[1], &blend[2]);
break;
case splashModeCMYK8:
case splashModeDeviceN8:
for (i = 0; i < 4; i++) {
// convert to additive
src2[i] = 0xff - src[i];
dest2[i] = 0xff - dest[i];
}
setLum(src2[0], src2[1], src2[2], getLum(dest2[0], dest2[1], dest2[2]), &r, &g, &b);
blend[0] = r;
blend[1] = g;
blend[2] = b;
blend[3] = dest2[3];
for (i = 0; i < 4; i++) {
// convert back to subtractive
blend[i] = 0xff - blend[i];
}
break;
}
}
static void splashOutBlendLuminosity(SplashColorPtr src, SplashColorPtr dest, SplashColorPtr blend, SplashColorMode cm)
{
unsigned char r, g, b;
int i;
SplashColor src2, dest2;
switch (cm) {
case splashModeMono1:
case splashModeMono8:
blend[0] = dest[0];
break;
case splashModeXBGR8:
src[3] = 255;
// fallthrough
case splashModeRGB8:
case splashModeBGR8:
setLum(dest[0], dest[1], dest[2], getLum(src[0], src[1], src[2]), &blend[0], &blend[1], &blend[2]);
break;
case splashModeCMYK8:
case splashModeDeviceN8:
for (i = 0; i < 4; i++) {
// convert to additive
src2[i] = 0xff - src[i];
dest2[i] = 0xff - dest[i];
}
setLum(dest2[0], dest2[1], dest2[2], getLum(src2[0], src2[1], src2[2]), &r, &g, &b);
blend[0] = r;
blend[1] = g;
blend[2] = b;
blend[3] = src2[3];
for (i = 0; i < 4; i++) {
// convert back to subtractive
blend[i] = 0xff - blend[i];
}
break;
}
}
// NB: This must match the GfxBlendMode enum defined in GfxState.h.
static const SplashBlendFunc splashOutBlendFuncs[] = { nullptr,
&splashOutBlendMultiply,
&splashOutBlendScreen,
&splashOutBlendOverlay,
&splashOutBlendDarken,
&splashOutBlendLighten,
&splashOutBlendColorDodge,
&splashOutBlendColorBurn,
&splashOutBlendHardLight,
&splashOutBlendSoftLight,
&splashOutBlendDifference,
&splashOutBlendExclusion,
&splashOutBlendHue,
&splashOutBlendSaturation,
&splashOutBlendColor,
&splashOutBlendLuminosity };
//------------------------------------------------------------------------
// SplashOutFontFileID
//------------------------------------------------------------------------
class SplashOutFontFileID : public SplashFontFileID
{
public:
explicit SplashOutFontFileID(const Ref *rA) { r = *rA; }
~SplashOutFontFileID() override;
bool matches(SplashFontFileID *id) override { return ((SplashOutFontFileID *)id)->r == r; }
private:
Ref r;
};
SplashOutFontFileID::~SplashOutFontFileID() = default;
//------------------------------------------------------------------------
// T3FontCache
//------------------------------------------------------------------------
struct T3FontCacheTag
{
unsigned short code;
unsigned short mru; // valid bit (0x8000) and MRU index
};
class T3FontCache
{
public:
T3FontCache(const Ref *fontID, double m11A, double m12A, double m21A, double m22A, int glyphXA, int glyphYA, int glyphWA, int glyphHA, bool validBBoxA, bool aa);
~T3FontCache();
T3FontCache(const T3FontCache &) = delete;
T3FontCache &operator=(const T3FontCache &) = delete;
bool matches(const Ref *idA, double m11A, double m12A, double m21A, double m22A) { return fontID == *idA && m11 == m11A && m12 == m12A && m21 == m21A && m22 == m22A; }
Ref fontID; // PDF font ID
double m11, m12, m21, m22; // transform matrix
int glyphX, glyphY; // pixel offset of glyph bitmaps
int glyphW, glyphH; // size of glyph bitmaps, in pixels
bool validBBox; // false if the bbox was [0 0 0 0]
int glyphSize; // size of glyph bitmaps, in bytes
int cacheSets; // number of sets in cache
int cacheAssoc; // cache associativity (glyphs per set)
unsigned char *cacheData; // glyph pixmap cache
T3FontCacheTag *cacheTags; // cache tags, i.e., char codes
};
T3FontCache::T3FontCache(const Ref *fontIDA, double m11A, double m12A, double m21A, double m22A, int glyphXA, int glyphYA, int glyphWA, int glyphHA, bool validBBoxA, bool aa)
{
fontID = *fontIDA;
m11 = m11A;
m12 = m12A;
m21 = m21A;
m22 = m22A;
glyphX = glyphXA;
glyphY = glyphYA;
glyphW = glyphWA;
glyphH = glyphHA;
validBBox = validBBoxA;
// sanity check for excessively large glyphs (which most likely
// indicate an incorrect BBox)
if (glyphW > INT_MAX / glyphH || glyphW <= 0 || glyphH <= 0 || glyphW * glyphH > 100000) {
glyphW = glyphH = 100;
validBBox = false;
}
if (aa) {
glyphSize = glyphW * glyphH;
} else {
glyphSize = ((glyphW + 7) >> 3) * glyphH;
}
cacheAssoc = type3FontCacheAssoc;
for (cacheSets = type3FontCacheMaxSets; cacheSets > 1 && cacheSets * cacheAssoc * glyphSize > type3FontCacheSize; cacheSets >>= 1) {
;
}
if (glyphSize < 10485760 / cacheAssoc / cacheSets) {
cacheData = (unsigned char *)gmallocn_checkoverflow(cacheSets * cacheAssoc, glyphSize);
} else {
error(errSyntaxWarning, -1,
"Not creating cacheData for T3FontCache, it asked for too much memory.\n"
" This could teoretically result in wrong rendering,\n"
" but most probably the document is bogus.\n"
" Please report a bug if you think the rendering may be wrong because of this.");
cacheData = nullptr;
}
if (cacheData != nullptr) {
cacheTags = (T3FontCacheTag *)gmallocn(cacheSets * cacheAssoc, sizeof(T3FontCacheTag));
for (int i = 0; i < cacheSets * cacheAssoc; ++i) {
cacheTags[i].mru = i & (cacheAssoc - 1);
}
} else {
cacheTags = nullptr;
}
}
T3FontCache::~T3FontCache()
{
gfree(cacheData);
gfree(cacheTags);
}
struct T3GlyphStack
{
unsigned short code; // character code
bool haveDx; // set after seeing a d0/d1 operator
bool doNotCache; // set if we see a gsave/grestore before
// the d0/d1
//----- cache info
T3FontCache *cache; // font cache for the current font
T3FontCacheTag *cacheTag; // pointer to cache tag for the glyph
unsigned char *cacheData; // pointer to cache data for the glyph
//----- saved state
SplashBitmap *origBitmap;
Splash *origSplash;
double origCTM4, origCTM5;
T3GlyphStack *next; // next object on stack
};
//------------------------------------------------------------------------
// SplashTransparencyGroup
//------------------------------------------------------------------------
struct SplashTransparencyGroup
{
int tx, ty; // translation coordinates
SplashBitmap *tBitmap; // bitmap for transparency group
SplashBitmap *softmask; // bitmap for softmasks
GfxColorSpace *blendingColorSpace;
bool isolated;
//----- for knockout
SplashBitmap *shape;
bool knockout;
SplashCoord knockoutOpacity;
bool fontAA;
//----- saved state
SplashBitmap *origBitmap;
Splash *origSplash;
SplashTransparencyGroup *next;
};
//------------------------------------------------------------------------
// SplashOutputDev
//------------------------------------------------------------------------
SplashOutputDev::SplashOutputDev(SplashColorMode colorModeA, int bitmapRowPadA, bool reverseVideoA, SplashColorPtr paperColorA, bool bitmapTopDownA, SplashThinLineMode thinLineMode, bool overprintPreviewA)
{
colorMode = colorModeA;
bitmapRowPad = bitmapRowPadA;
bitmapTopDown = bitmapTopDownA;
fontAntialias = true;
vectorAntialias = true;
overprintPreview = overprintPreviewA;
enableFreeType = true;
enableFreeTypeHinting = false;
enableSlightHinting = false;
setupScreenParams(72.0, 72.0);
reverseVideo = reverseVideoA;
if (paperColorA != nullptr) {
splashColorCopy(paperColor, paperColorA);
} else {
splashClearColor(paperColor);
}
skipHorizText = false;
skipRotatedText = false;
keepAlphaChannel = paperColorA == nullptr;
doc = nullptr;
bitmap = new SplashBitmap(1, 1, bitmapRowPad, colorMode, colorMode != splashModeMono1, bitmapTopDown);
splash = new Splash(bitmap, vectorAntialias, &screenParams);
splash->setMinLineWidth(s_minLineWidth);
splash->setThinLineMode(thinLineMode);
splash->clear(paperColor, 0);
fontEngine = nullptr;
nT3Fonts = 0;
t3GlyphStack = nullptr;
font = nullptr;
needFontUpdate = false;
textClipPath = nullptr;
transpGroupStack = nullptr;
xref = nullptr;
}
void SplashOutputDev::setupScreenParams(double hDPI, double vDPI)
{
screenParams.size = -1;
screenParams.dotRadius = -1;
screenParams.gamma = (SplashCoord)1.0;
screenParams.blackThreshold = (SplashCoord)0.0;
screenParams.whiteThreshold = (SplashCoord)1.0;
// use clustered dithering for resolution >= 300 dpi
// (compare to 299.9 to avoid floating point issues)
if (hDPI > 299.9 && vDPI > 299.9) {
screenParams.type = splashScreenStochasticClustered;
if (screenParams.size < 0) {
screenParams.size = 64;
}
if (screenParams.dotRadius < 0) {
screenParams.dotRadius = 2;
}
} else {
screenParams.type = splashScreenDispersed;
if (screenParams.size < 0) {
screenParams.size = 4;
}
}
}
SplashOutputDev::~SplashOutputDev()
{
int i;
for (i = 0; i < nT3Fonts; ++i) {
delete t3FontCache[i];
}
if (fontEngine) {
delete fontEngine;
}
if (splash) {
delete splash;
}
if (bitmap) {
delete bitmap;
}
delete textClipPath;
}
void SplashOutputDev::startDoc(PDFDoc *docA)
{
int i;
doc = docA;
if (fontEngine) {
delete fontEngine;
}
fontEngine = new SplashFontEngine(enableFreeType, enableFreeTypeHinting, enableSlightHinting, getFontAntialias() && colorMode != splashModeMono1);
for (i = 0; i < nT3Fonts; ++i) {
delete t3FontCache[i];
}
nT3Fonts = 0;
}
void SplashOutputDev::startPage(int pageNum, GfxState *state, XRef *xrefA)
{
int w, h;
SplashCoord mat[6];
SplashColor color;
xref = xrefA;
if (state) {
setupScreenParams(state->getHDPI(), state->getVDPI());
w = (int)(state->getPageWidth() + 0.5);
if (w <= 0) {
w = 1;
}
h = (int)(state->getPageHeight() + 0.5);
if (h <= 0) {
h = 1;
}
} else {
w = h = 1;
}
SplashThinLineMode thinLineMode = splashThinLineDefault;
if (splash) {
thinLineMode = splash->getThinLineMode();
delete splash;
splash = nullptr;
}
if (!bitmap || w != bitmap->getWidth() || h != bitmap->getHeight()) {
if (bitmap) {
delete bitmap;
bitmap = nullptr;
}
bitmap = new SplashBitmap(w, h, bitmapRowPad, colorMode, colorMode != splashModeMono1, bitmapTopDown);
if (!bitmap->getDataPtr()) {
delete bitmap;
w = h = 1;
bitmap = new SplashBitmap(w, h, bitmapRowPad, colorMode, colorMode != splashModeMono1, bitmapTopDown);
}
}
splash = new Splash(bitmap, vectorAntialias, &screenParams);
splash->setThinLineMode(thinLineMode);
splash->setMinLineWidth(s_minLineWidth);
if (state) {
const double *ctm = state->getCTM();
mat[0] = (SplashCoord)ctm[0];
mat[1] = (SplashCoord)ctm[1];
mat[2] = (SplashCoord)ctm[2];
mat[3] = (SplashCoord)ctm[3];
mat[4] = (SplashCoord)ctm[4];
mat[5] = (SplashCoord)ctm[5];
splash->setMatrix(mat);
}
switch (colorMode) {
case splashModeMono1:
case splashModeMono8:
color[0] = 0;
break;
case splashModeXBGR8:
color[3] = 255;
// fallthrough
case splashModeRGB8:
case splashModeBGR8:
color[0] = color[1] = color[2] = 0;
break;
case splashModeCMYK8:
color[0] = color[1] = color[2] = color[3] = 0;
break;
case splashModeDeviceN8:
splashClearColor(color);
break;
}
splash->setStrokePattern(new SplashSolidColor(color));
splash->setFillPattern(new SplashSolidColor(color));
splash->setLineCap(splashLineCapButt);
splash->setLineJoin(splashLineJoinMiter);
splash->setLineDash({}, 0);
splash->setMiterLimit(10);
splash->setFlatness(1);
// the SA parameter supposedly defaults to false, but Acrobat
// apparently hardwires it to true
splash->setStrokeAdjust(true);
splash->clear(paperColor, 0);
}
void SplashOutputDev::endPage()
{
if (colorMode != splashModeMono1 && !keepAlphaChannel) {
splash->compositeBackground(paperColor);
}
}
void SplashOutputDev::saveState(GfxState *state)
{
splash->saveState();
if (t3GlyphStack && !t3GlyphStack->haveDx) {
t3GlyphStack->doNotCache = true;
error(errSyntaxWarning, -1, "Save (q) operator before d0/d1 in Type 3 glyph");
}
}
void SplashOutputDev::restoreState(GfxState *state)
{
splash->restoreState();
needFontUpdate = true;
if (t3GlyphStack && !t3GlyphStack->haveDx) {
t3GlyphStack->doNotCache = true;
error(errSyntaxWarning, -1, "Restore (Q) operator before d0/d1 in Type 3 glyph");
}
}
void SplashOutputDev::updateAll(GfxState *state)
{
updateLineDash(state);
updateLineJoin(state);
updateLineCap(state);
updateLineWidth(state);
updateFlatness(state);
updateMiterLimit(state);
updateStrokeAdjust(state);
updateFillColorSpace(state);
updateFillColor(state);
updateStrokeColorSpace(state);
updateStrokeColor(state);
needFontUpdate = true;
}
void SplashOutputDev::updateCTM(GfxState *state, double m11, double m12, double m21, double m22, double m31, double m32)
{
SplashCoord mat[6];
const double *ctm = state->getCTM();
mat[0] = (SplashCoord)ctm[0];
mat[1] = (SplashCoord)ctm[1];
mat[2] = (SplashCoord)ctm[2];
mat[3] = (SplashCoord)ctm[3];
mat[4] = (SplashCoord)ctm[4];
mat[5] = (SplashCoord)ctm[5];
splash->setMatrix(mat);
}
void SplashOutputDev::updateLineDash(GfxState *state)
{
double dashStart;
const std::vector<double> &dashPattern = state->getLineDash(&dashStart);
std::vector<SplashCoord> dash(dashPattern.size());
for (std::vector<double>::size_type i = 0; i < dashPattern.size(); ++i) {
dash[i] = (SplashCoord)dashPattern[i];
if (dash[i] < 0) {
dash[i] = 0;
}
}
splash->setLineDash(std::move(dash), (SplashCoord)dashStart);
}
void SplashOutputDev::updateFlatness(GfxState *state)
{
#if 0 // Acrobat ignores the flatness setting, and always renders curves
// with a fairly small flatness value
splash->setFlatness(state->getFlatness());
#endif
}
void SplashOutputDev::updateLineJoin(GfxState *state)
{
splash->setLineJoin(state->getLineJoin());
}
void SplashOutputDev::updateLineCap(GfxState *state)
{
splash->setLineCap(state->getLineCap());
}
void SplashOutputDev::updateMiterLimit(GfxState *state)
{
splash->setMiterLimit(state->getMiterLimit());
}
void SplashOutputDev::updateLineWidth(GfxState *state)
{
splash->setLineWidth(state->getLineWidth());
}
void SplashOutputDev::updateStrokeAdjust(GfxState * /*state*/)
{
#if 0 // the SA parameter supposedly defaults to false, but Acrobat
// apparently hardwires it to true
splash->setStrokeAdjust(state->getStrokeAdjust());
#endif
}
void SplashOutputDev::updateFillColorSpace(GfxState *state)
{
if (colorMode == splashModeDeviceN8) {
state->getFillColorSpace()->createMapping(bitmap->getSeparationList(), SPOT_NCOMPS);
}
}
void SplashOutputDev::updateStrokeColorSpace(GfxState *state)
{
if (colorMode == splashModeDeviceN8) {
state->getStrokeColorSpace()->createMapping(bitmap->getSeparationList(), SPOT_NCOMPS);
}
}
void SplashOutputDev::updateFillColor(GfxState *state)
{
GfxGray gray;
GfxRGB rgb;
GfxCMYK cmyk;
GfxColor deviceN;
switch (colorMode) {
case splashModeMono1:
case splashModeMono8:
state->getFillGray(&gray);
splash->setFillPattern(getColor(gray));
break;
case splashModeXBGR8:
case splashModeRGB8:
case splashModeBGR8:
state->getFillRGB(&rgb);
splash->setFillPattern(getColor(&rgb));
break;
case splashModeCMYK8:
state->getFillCMYK(&cmyk);
splash->setFillPattern(getColor(&cmyk));
break;
case splashModeDeviceN8:
state->getFillDeviceN(&deviceN);
splash->setFillPattern(getColor(&deviceN));
break;
}
}
void SplashOutputDev::updateStrokeColor(GfxState *state)
{
GfxGray gray;
GfxRGB rgb;
GfxCMYK cmyk;
GfxColor deviceN;
switch (colorMode) {
case splashModeMono1:
case splashModeMono8:
state->getStrokeGray(&gray);
splash->setStrokePattern(getColor(gray));
break;
case splashModeXBGR8:
case splashModeRGB8:
case splashModeBGR8:
state->getStrokeRGB(&rgb);
splash->setStrokePattern(getColor(&rgb));
break;
case splashModeCMYK8:
state->getStrokeCMYK(&cmyk);
splash->setStrokePattern(getColor(&cmyk));
break;
case splashModeDeviceN8:
state->getStrokeDeviceN(&deviceN);
splash->setStrokePattern(getColor(&deviceN));
break;
}
}
SplashPattern *SplashOutputDev::getColor(GfxGray gray)
{
SplashColor color;
if (reverseVideo) {
gray = gfxColorComp1 - gray;
}
color[0] = colToByte(gray);
return new SplashSolidColor(color);
}
SplashPattern *SplashOutputDev::getColor(GfxRGB *rgb)
{
GfxColorComp r, g, b;
SplashColor color;
if (reverseVideo) {
r = gfxColorComp1 - rgb->r;
g = gfxColorComp1 - rgb->g;
b = gfxColorComp1 - rgb->b;
} else {
r = rgb->r;
g = rgb->g;
b = rgb->b;
}
color[0] = colToByte(r);
color[1] = colToByte(g);
color[2] = colToByte(b);
if (colorMode == splashModeXBGR8) {
color[3] = 255;
}
return new SplashSolidColor(color);
}
SplashPattern *SplashOutputDev::getColor(GfxCMYK *cmyk)
{
SplashColor color;
color[0] = colToByte(cmyk->c);
color[1] = colToByte(cmyk->m);
color[2] = colToByte(cmyk->y);
color[3] = colToByte(cmyk->k);
return new SplashSolidColor(color);
}
SplashPattern *SplashOutputDev::getColor(GfxColor *deviceN)
{
SplashColor color;
for (int i = 0; i < 4 + SPOT_NCOMPS; i++) {
color[i] = colToByte(deviceN->c[i]);
}
return new SplashSolidColor(color);
}
void SplashOutputDev::getMatteColor(SplashColorMode colorMode, GfxImageColorMap *colorMap, const GfxColor *matteColorIn, SplashColor matteColor)
{
GfxGray gray;
GfxRGB rgb;
GfxCMYK cmyk;
GfxColor deviceN;
switch (colorMode) {
case splashModeMono1:
case splashModeMono8:
colorMap->getColorSpace()->getGray(matteColorIn, &gray);
matteColor[0] = colToByte(gray);
break;
case splashModeRGB8:
case splashModeBGR8:
colorMap->getColorSpace()->getRGB(matteColorIn, &rgb);
matteColor[0] = colToByte(rgb.r);
matteColor[1] = colToByte(rgb.g);
matteColor[2] = colToByte(rgb.b);
break;
case splashModeXBGR8:
colorMap->getColorSpace()->getRGB(matteColorIn, &rgb);
matteColor[0] = colToByte(rgb.r);
matteColor[1] = colToByte(rgb.g);
matteColor[2] = colToByte(rgb.b);
matteColor[3] = 255;
break;
case splashModeCMYK8:
colorMap->getColorSpace()->getCMYK(matteColorIn, &cmyk);
matteColor[0] = colToByte(cmyk.c);
matteColor[1] = colToByte(cmyk.m);
matteColor[2] = colToByte(cmyk.y);
matteColor[3] = colToByte(cmyk.k);
break;
case splashModeDeviceN8:
colorMap->getColorSpace()->getDeviceN(matteColorIn, &deviceN);
for (int cp = 0; cp < SPOT_NCOMPS + 4; cp++) {
matteColor[cp] = colToByte(deviceN.c[cp]);
}
break;
}
}
void SplashOutputDev::setOverprintMask(GfxColorSpace *colorSpace, bool overprintFlag, int overprintMode, const GfxColor *singleColor, bool grayIndexed)
{
unsigned int mask;
GfxCMYK cmyk;
bool additive = false;
int i;
if (colorSpace->getMode() == csIndexed) {
setOverprintMask(((GfxIndexedColorSpace *)colorSpace)->getBase(), overprintFlag, overprintMode, singleColor, grayIndexed);
return;
}
if (overprintFlag && overprintPreview) {
mask = colorSpace->getOverprintMask();
if (singleColor && overprintMode && colorSpace->getMode() == csDeviceCMYK) {
colorSpace->getCMYK(singleColor, &cmyk);
if (cmyk.c == 0) {
mask &= ~1;
}
if (cmyk.m == 0) {
mask &= ~2;
}
if (cmyk.y == 0) {
mask &= ~4;
}
if (cmyk.k == 0) {
mask &= ~8;
}
}
if (grayIndexed && colorSpace->getMode() != csDeviceN) {
mask &= ~7;
} else if (colorSpace->getMode() == csSeparation) {
GfxSeparationColorSpace *deviceSep = (GfxSeparationColorSpace *)colorSpace;
additive = deviceSep->getName()->cmp("All") != 0 && mask == 0x0f && !deviceSep->isNonMarking();
} else if (colorSpace->getMode() == csDeviceN) {
GfxDeviceNColorSpace *deviceNCS = (GfxDeviceNColorSpace *)colorSpace;
additive = mask == 0x0f && !deviceNCS->isNonMarking();
for (i = 0; i < deviceNCS->getNComps() && additive; i++) {
if (deviceNCS->getColorantName(i) == "Cyan") {
additive = false;
} else if (deviceNCS->getColorantName(i) == "Magenta") {
additive = false;
} else if (deviceNCS->getColorantName(i) == "Yellow") {
additive = false;
} else if (deviceNCS->getColorantName(i) == "Black") {
additive = false;
}
}
}
} else {
mask = 0xffffffff;
}
splash->setOverprintMask(mask, additive);
}
void SplashOutputDev::updateBlendMode(GfxState *state)
{
splash->setBlendFunc(splashOutBlendFuncs[state->getBlendMode()]);
}
void SplashOutputDev::updateFillOpacity(GfxState *state)
{
splash->setFillAlpha((SplashCoord)state->getFillOpacity());
if (transpGroupStack != nullptr && (SplashCoord)state->getFillOpacity() < transpGroupStack->knockoutOpacity) {
transpGroupStack->knockoutOpacity = (SplashCoord)state->getFillOpacity();
}
}
void SplashOutputDev::updateStrokeOpacity(GfxState *state)
{
splash->setStrokeAlpha((SplashCoord)state->getStrokeOpacity());
if (transpGroupStack != nullptr && (SplashCoord)state->getStrokeOpacity() < transpGroupStack->knockoutOpacity) {
transpGroupStack->knockoutOpacity = (SplashCoord)state->getStrokeOpacity();
}
}
void SplashOutputDev::updatePatternOpacity(GfxState *state)
{
splash->setPatternAlpha((SplashCoord)state->getStrokeOpacity(), (SplashCoord)state->getFillOpacity());
}
void SplashOutputDev::clearPatternOpacity(GfxState *state)
{
splash->clearPatternAlpha();
}
void SplashOutputDev::updateFillOverprint(GfxState *state)
{
splash->setFillOverprint(state->getFillOverprint());
}
void SplashOutputDev::updateStrokeOverprint(GfxState *state)
{
splash->setStrokeOverprint(state->getStrokeOverprint());
}
void SplashOutputDev::updateOverprintMode(GfxState *state)
{
splash->setOverprintMode(state->getOverprintMode());
}
void SplashOutputDev::updateTransfer(GfxState *state)
{
Function **transfer;
unsigned char red[256], green[256], blue[256], gray[256];
double x, y;
int i;
transfer = state->getTransfer();
if (transfer[0] && transfer[0]->getInputSize() == 1 && transfer[0]->getOutputSize() == 1) {
if (transfer[1] && transfer[1]->getInputSize() == 1 && transfer[1]->getOutputSize() == 1 && transfer[2] && transfer[2]->getInputSize() == 1 && transfer[2]->getOutputSize() == 1 && transfer[3] && transfer[3]->getInputSize() == 1
&& transfer[3]->getOutputSize() == 1) {
for (i = 0; i < 256; ++i) {
x = i / 255.0;
transfer[0]->transform(&x, &y);
red[i] = (unsigned char)(y * 255.0 + 0.5);
transfer[1]->transform(&x, &y);
green[i] = (unsigned char)(y * 255.0 + 0.5);
transfer[2]->transform(&x, &y);
blue[i] = (unsigned char)(y * 255.0 + 0.5);
transfer[3]->transform(&x, &y);
gray[i] = (unsigned char)(y * 255.0 + 0.5);
}
} else {
for (i = 0; i < 256; ++i) {
x = i / 255.0;
transfer[0]->transform(&x, &y);
red[i] = green[i] = blue[i] = gray[i] = (unsigned char)(y * 255.0 + 0.5);
}
}
} else {
for (i = 0; i < 256; ++i) {
red[i] = green[i] = blue[i] = gray[i] = (unsigned char)i;
}
}
splash->setTransfer(red, green, blue, gray);
}
void SplashOutputDev::updateFont(GfxState * /*state*/)
{
needFontUpdate = true;
}
void SplashOutputDev::doUpdateFont(GfxState *state)
{
GfxFontType fontType;
SplashOutFontFileID *id = nullptr;
SplashFontFile *fontFile;
SplashFontSrc *fontsrc = nullptr;
const double *textMat;
double m11, m12, m21, m22, fontSize;
int faceIndex = 0;
SplashCoord mat[4];
bool recreateFont = false;
bool doAdjustFontMatrix = false;
needFontUpdate = false;
font = nullptr;
GfxFont *const gfxFont = state->getFont().get();
if (!gfxFont) {
goto err1;
}
fontType = gfxFont->getType();
if (fontType == fontType3) {
goto err1;
}
// sanity-check the font size - skip anything larger than 10 inches
// (this avoids problems allocating memory for the font cache)
if (state->getTransformedFontSize() > 10 * (state->getHDPI() + state->getVDPI())) {
goto err1;
}
// check the font file cache
reload:
delete id;
if (fontsrc && !fontsrc->isFile) {
fontsrc->unref();
fontsrc = nullptr;
}
id = new SplashOutFontFileID(gfxFont->getID());
if ((fontFile = fontEngine->getFontFile(id))) {
delete id;
} else {
std::optional<GfxFontLoc> fontLoc = gfxFont->locateFont((xref) ? xref : doc->getXRef(), nullptr);
if (!fontLoc) {
error(errSyntaxError, -1, "Couldn't find a font for '{0:s}'", gfxFont->getName() ? gfxFont->getName()->c_str() : "(unnamed)");
goto err2;
}
// embedded font
std::string fileName;
std::optional<std::vector<unsigned char>> tmpBuf;
if (fontLoc->locType == gfxFontLocEmbedded) {
// if there is an embedded font, read it to memory
tmpBuf = gfxFont->readEmbFontFile((xref) ? xref : doc->getXRef());
if (!tmpBuf) {
goto err2;
}
// external font
} else { // gfxFontLocExternal
fileName = fontLoc->path;
fontType = fontLoc->fontType;
doAdjustFontMatrix = true;
}
fontsrc = new SplashFontSrc;
if (!fileName.empty()) {
fontsrc->setFile(fileName);
} else {
fontsrc->setBuf(std::move(tmpBuf.value()));
}
// load the font file
switch (fontType) {
case fontType1:
if (!(fontFile = fontEngine->loadType1Font(id, fontsrc, (const char **)((Gfx8BitFont *)gfxFont)->getEncoding()))) {
error(errSyntaxError, -1, "Couldn't create a font for '{0:s}'", gfxFont->getName() ? gfxFont->getName()->c_str() : "(unnamed)");
if (gfxFont->invalidateEmbeddedFont()) {
goto reload;
}
goto err2;
}
break;
case fontType1C:
if (!(fontFile = fontEngine->loadType1CFont(id, fontsrc, (const char **)((Gfx8BitFont *)gfxFont)->getEncoding()))) {
error(errSyntaxError, -1, "Couldn't create a font for '{0:s}'", gfxFont->getName() ? gfxFont->getName()->c_str() : "(unnamed)");
if (gfxFont->invalidateEmbeddedFont()) {
goto reload;
}
goto err2;
}
break;
case fontType1COT:
if (!(fontFile = fontEngine->loadOpenTypeT1CFont(id, fontsrc, (const char **)((Gfx8BitFont *)gfxFont)->getEncoding()))) {
error(errSyntaxError, -1, "Couldn't create a font for '{0:s}'", gfxFont->getName() ? gfxFont->getName()->c_str() : "(unnamed)");
if (gfxFont->invalidateEmbeddedFont()) {
goto reload;
}
goto err2;
}
break;
case fontTrueType:
case fontTrueTypeOT: {
std::unique_ptr<FoFiTrueType> ff;
if (!fileName.empty()) {
ff = FoFiTrueType::load(fileName.c_str());
} else {
ff = FoFiTrueType::make(fontsrc->buf.data(), fontsrc->buf.size());
}
int *codeToGID;
const int n = ff ? 256 : 0;
if (ff) {
codeToGID = ((Gfx8BitFont *)gfxFont)->getCodeToGIDMap(ff.get());
// if we're substituting for a non-TrueType font, we need to mark
// all notdef codes as "do not draw" (rather than drawing TrueType
// notdef glyphs)
if (gfxFont->getType() != fontTrueType && gfxFont->getType() != fontTrueTypeOT) {
for (int i = 0; i < 256; ++i) {
if (codeToGID[i] == 0) {
codeToGID[i] = -1;
}
}
}
} else {
codeToGID = nullptr;
}
if (!(fontFile = fontEngine->loadTrueTypeFont(id, fontsrc, codeToGID, n))) {
error(errSyntaxError, -1, "Couldn't create a font for '{0:s}'", gfxFont->getName() ? gfxFont->getName()->c_str() : "(unnamed)");
if (gfxFont->invalidateEmbeddedFont()) {
goto reload;
}
goto err2;
}
break;
}
case fontCIDType0:
case fontCIDType0C:
if (!(fontFile = fontEngine->loadCIDFont(id, fontsrc))) {
error(errSyntaxError, -1, "Couldn't create a font for '{0:s}'", gfxFont->getName() ? gfxFont->getName()->c_str() : "(unnamed)");
if (gfxFont->invalidateEmbeddedFont()) {
goto reload;
}
goto err2;
}
break;
case fontCIDType0COT: {
int *codeToGID;
int n;
if (((GfxCIDFont *)gfxFont)->getCIDToGID()) {
n = ((GfxCIDFont *)gfxFont)->getCIDToGIDLen();
codeToGID = (int *)gmallocn(n, sizeof(int));
memcpy(codeToGID, ((GfxCIDFont *)gfxFont)->getCIDToGID(), n * sizeof(int));
} else {
codeToGID = nullptr;
n = 0;
}
if (!(fontFile = fontEngine->loadOpenTypeCFFFont(id, fontsrc, codeToGID, n))) {
error(errSyntaxError, -1, "Couldn't create a font for '{0:s}'", gfxFont->getName() ? gfxFont->getName()->c_str() : "(unnamed)");
gfree(codeToGID);
if (gfxFont->invalidateEmbeddedFont()) {
goto reload;
}
goto err2;
}
break;
}
case fontCIDType2:
case fontCIDType2OT: {
int *codeToGID = nullptr;
int n = 0;
if (((GfxCIDFont *)gfxFont)->getCIDToGID()) {
n = ((GfxCIDFont *)gfxFont)->getCIDToGIDLen();
if (n) {
codeToGID = (int *)gmallocn(n, sizeof(int));
memcpy(codeToGID, ((GfxCIDFont *)gfxFont)->getCIDToGID(), n * sizeof(int));
}
} else {
std::unique_ptr<FoFiTrueType> ff;
if (!fileName.empty()) {
ff = FoFiTrueType::load(fileName.c_str());
} else {
ff = FoFiTrueType::make(fontsrc->buf.data(), fontsrc->buf.size());
}
if (!ff) {
error(errSyntaxError, -1, "Couldn't create a font for '{0:s}'", gfxFont->getName() ? gfxFont->getName()->c_str() : "(unnamed)");
goto err2;
}
codeToGID = ((GfxCIDFont *)gfxFont)->getCodeToGIDMap(ff.get(), &n);
}
if (!(fontFile = fontEngine->loadTrueTypeFont(id, fontsrc, codeToGID, n, faceIndex))) {
error(errSyntaxError, -1, "Couldn't create a font for '{0:s}'", gfxFont->getName() ? gfxFont->getName()->c_str() : "(unnamed)");
if (gfxFont->invalidateEmbeddedFont()) {
goto reload;
}
goto err2;
}
break;
}
default:
// this shouldn't happen
goto err2;
}
fontFile->doAdjustMatrix = doAdjustFontMatrix;
}
// get the font matrix
textMat = state->getTextMat();
fontSize = state->getFontSize();
m11 = textMat[0] * fontSize * state->getHorizScaling();
m12 = textMat[1] * fontSize * state->getHorizScaling();
m21 = textMat[2] * fontSize;
m22 = textMat[3] * fontSize;
// create the scaled font
mat[0] = m11;
mat[1] = m12;
mat[2] = m21;
mat[3] = m22;
font = fontEngine->getFont(fontFile, mat, splash->getMatrix());
// for substituted fonts: adjust the font matrix -- compare the
// width of 'm' in the original font and the substituted font
if (fontFile->doAdjustMatrix && !gfxFont->isCIDFont()) {
double w1, w2, w3;
CharCode code;
const char *name;
for (code = 0; code < 256; ++code) {
if ((name = ((Gfx8BitFont *)gfxFont)->getCharName(code)) && name[0] == 'm' && name[1] == '\0') {
break;
}
}
if (code < 256) {
w1 = ((Gfx8BitFont *)gfxFont)->getWidth(code);
w2 = font->getGlyphAdvance(code);
w3 = ((Gfx8BitFont *)gfxFont)->getWidth(0);
if (!gfxFont->isSymbolic() && w2 > 0 && w1 > w3) {
// if real font is substantially narrower than substituted
// font, reduce the font size accordingly
if (w1 > 0.01 && w1 < 0.9 * w2) {
w1 /= w2;
m11 *= w1;
m21 *= w1;
recreateFont = true;
}
}
}
}
if (recreateFont) {
mat[0] = m11;
mat[1] = m12;
mat[2] = m21;
mat[3] = m22;
font = fontEngine->getFont(fontFile, mat, splash->getMatrix());
}
if (fontsrc && !fontsrc->isFile) {
fontsrc->unref();
}
return;
err2:
delete id;
err1:
if (fontsrc && !fontsrc->isFile) {
fontsrc->unref();
}
return;
}
void SplashOutputDev::stroke(GfxState *state)
{
if (state->getStrokeColorSpace()->isNonMarking()) {
return;
}
setOverprintMask(state->getStrokeColorSpace(), state->getStrokeOverprint(), state->getOverprintMode(), state->getStrokeColor());
SplashPath path = convertPath(state, state->getPath(), false);
splash->stroke(&path);
}
void SplashOutputDev::fill(GfxState *state)
{
if (state->getFillColorSpace()->isNonMarking()) {
return;
}
setOverprintMask(state->getFillColorSpace(), state->getFillOverprint(), state->getOverprintMode(), state->getFillColor());
SplashPath path = convertPath(state, state->getPath(), true);
splash->fill(&path, false);
}
void SplashOutputDev::eoFill(GfxState *state)
{
if (state->getFillColorSpace()->isNonMarking()) {
return;
}
setOverprintMask(state->getFillColorSpace(), state->getFillOverprint(), state->getOverprintMode(), state->getFillColor());
SplashPath path = convertPath(state, state->getPath(), true);
splash->fill(&path, true);
}
void SplashOutputDev::clip(GfxState *state)
{
SplashPath path = convertPath(state, state->getPath(), true);
splash->clipToPath(&path, false);
}
void SplashOutputDev::eoClip(GfxState *state)
{
SplashPath path = convertPath(state, state->getPath(), true);
splash->clipToPath(&path, true);
}
void SplashOutputDev::clipToStrokePath(GfxState *state)
{
SplashPath *path2;
SplashPath path = convertPath(state, state->getPath(), false);
path2 = splash->makeStrokePath(&path, state->getLineWidth());
splash->clipToPath(path2, false);
delete path2;
}
SplashPath SplashOutputDev::convertPath(GfxState *state, const GfxPath *path, bool dropEmptySubpaths)
{
SplashPath sPath;
int n, i, j;
n = dropEmptySubpaths ? 1 : 0;
for (i = 0; i < path->getNumSubpaths(); ++i) {
const GfxSubpath *subpath = path->getSubpath(i);
if (subpath->getNumPoints() > n) {
sPath.reserve(subpath->getNumPoints() + 1);
sPath.moveTo((SplashCoord)subpath->getX(0), (SplashCoord)subpath->getY(0));
j = 1;
while (j < subpath->getNumPoints()) {
if (subpath->getCurve(j)) {
sPath.curveTo((SplashCoord)subpath->getX(j), (SplashCoord)subpath->getY(j), (SplashCoord)subpath->getX(j + 1), (SplashCoord)subpath->getY(j + 1), (SplashCoord)subpath->getX(j + 2), (SplashCoord)subpath->getY(j + 2));
j += 3;
} else {
sPath.lineTo((SplashCoord)subpath->getX(j), (SplashCoord)subpath->getY(j));
++j;
}
}
if (subpath->isClosed()) {
sPath.close();
}
}
}
return sPath;
}
void SplashOutputDev::drawChar(GfxState *state, double x, double y, double dx, double dy, double originX, double originY, CharCode code, int nBytes, const Unicode *u, int uLen)
{
SplashPath *path;
int render;
bool doFill, doStroke, doClip, strokeAdjust;
double m[4];
bool horiz;
if (skipHorizText || skipRotatedText) {
state->getFontTransMat(&m[0], &m[1], &m[2], &m[3]);
horiz = m[0] > 0 && fabs(m[1]) < 0.001 && fabs(m[2]) < 0.001 && m[3] < 0;
if ((skipHorizText && horiz) || (skipRotatedText && !horiz)) {
return;
}
}
// check for invisible text -- this is used by Acrobat Capture
render = state->getRender();
if (render == 3) {
return;
}
if (needFontUpdate) {
doUpdateFont(state);
}
if (!font) {
return;
}
x -= originX;
y -= originY;
doFill = !(render & 1) && !state->getFillColorSpace()->isNonMarking();
doStroke = ((render & 3) == 1 || (render & 3) == 2) && !state->getStrokeColorSpace()->isNonMarking();
doClip = render & 4;
path = nullptr;
SplashCoord lineWidth = splash->getLineWidth();
if (doStroke && lineWidth == 0.0) {
splash->setLineWidth(1 / state->getVDPI());
}
if (doStroke || doClip) {
if ((path = font->getGlyphPath(code))) {
path->offset((SplashCoord)x, (SplashCoord)y);
}
}
// don't use stroke adjustment when stroking text -- the results
// tend to be ugly (because characters with horizontal upper or
// lower edges get misaligned relative to the other characters)
strokeAdjust = false; // make gcc happy
if (doStroke) {
strokeAdjust = splash->getStrokeAdjust();
splash->setStrokeAdjust(false);
}
// fill and stroke
if (doFill && doStroke) {
if (path) {
setOverprintMask(state->getFillColorSpace(), state->getFillOverprint(), state->getOverprintMode(), state->getFillColor());
splash->fill(path, false);
setOverprintMask(state->getStrokeColorSpace(), state->getStrokeOverprint(), state->getOverprintMode(), state->getStrokeColor());
splash->stroke(path);
}
// fill
} else if (doFill) {
setOverprintMask(state->getFillColorSpace(), state->getFillOverprint(), state->getOverprintMode(), state->getFillColor());
splash->fillChar((SplashCoord)x, (SplashCoord)y, code, font);
// stroke
} else if (doStroke) {
if (path) {
setOverprintMask(state->getStrokeColorSpace(), state->getStrokeOverprint(), state->getOverprintMode(), state->getStrokeColor());
splash->stroke(path);
}
}
splash->setLineWidth(lineWidth);
// clip
if (doClip) {
if (path) {
if (textClipPath) {
textClipPath->append(path);
} else {
textClipPath = path;
path = nullptr;
}
}
}
if (doStroke) {
splash->setStrokeAdjust(strokeAdjust);
}
if (path) {
delete path;
}
}
bool SplashOutputDev::beginType3Char(GfxState *state, double x, double y, double dx, double dy, CharCode code, const Unicode *u, int uLen)
{
std::shared_ptr<const GfxFont> gfxFont;
const Ref *fontID;
const double *ctm, *bbox;
T3FontCache *t3Font;
T3GlyphStack *t3gs;
bool validBBox;
double m[4];
bool horiz;
double x1, y1, xMin, yMin, xMax, yMax, xt, yt;
int i, j;
// check for invisible text -- this is used by Acrobat Capture
if (state->getRender() == 3) {
// this is a bit of cheating, we say yes, font is already on cache
// so we actually skip the rendering of it
return true;
}
if (skipHorizText || skipRotatedText) {
state->getFontTransMat(&m[0], &m[1], &m[2], &m[3]);
horiz = m[0] > 0 && fabs(m[1]) < 0.001 && fabs(m[2]) < 0.001 && m[3] < 0;
if ((skipHorizText && horiz) || (skipRotatedText && !horiz)) {
return true;
}
}
if (!(gfxFont = state->getFont())) {
return false;
}
fontID = gfxFont->getID();
ctm = state->getCTM();
state->transform(0, 0, &xt, &yt);
// is it the first (MRU) font in the cache?
if (!(nT3Fonts > 0 && t3FontCache[0]->matches(fontID, ctm[0], ctm[1], ctm[2], ctm[3]))) {
// is the font elsewhere in the cache?
for (i = 1; i < nT3Fonts; ++i) {
if (t3FontCache[i]->matches(fontID, ctm[0], ctm[1], ctm[2], ctm[3])) {
t3Font = t3FontCache[i];
for (j = i; j > 0; --j) {
t3FontCache[j] = t3FontCache[j - 1];
}
t3FontCache[0] = t3Font;
break;
}
}
if (i >= nT3Fonts) {
// create new entry in the font cache
if (nT3Fonts == splashOutT3FontCacheSize) {
t3gs = t3GlyphStack;
while (t3gs != nullptr) {
if (t3gs->cache == t3FontCache[nT3Fonts - 1]) {
error(errSyntaxWarning, -1, "t3FontCache reaches limit but font still on stack in SplashOutputDev::beginType3Char");
return true;
}
t3gs = t3gs->next;
}
delete t3FontCache[nT3Fonts - 1];
--nT3Fonts;
}
for (j = nT3Fonts; j > 0; --j) {
t3FontCache[j] = t3FontCache[j - 1];
}
++nT3Fonts;
bbox = gfxFont->getFontBBox();
if (bbox[0] == 0 && bbox[1] == 0 && bbox[2] == 0 && bbox[3] == 0) {
// unspecified bounding box -- just take a guess
xMin = xt - 5;
xMax = xMin + 30;
yMax = yt + 15;
yMin = yMax - 45;
validBBox = false;
} else {
state->transform(bbox[0], bbox[1], &x1, &y1);
xMin = xMax = x1;
yMin = yMax = y1;
state->transform(bbox[0], bbox[3], &x1, &y1);
if (x1 < xMin) {
xMin = x1;
} else if (x1 > xMax) {
xMax = x1;
}
if (y1 < yMin) {
yMin = y1;
} else if (y1 > yMax) {
yMax = y1;
}
state->transform(bbox[2], bbox[1], &x1, &y1);
if (x1 < xMin) {
xMin = x1;
} else if (x1 > xMax) {
xMax = x1;
}
if (y1 < yMin) {
yMin = y1;
} else if (y1 > yMax) {
yMax = y1;
}
state->transform(bbox[2], bbox[3], &x1, &y1);
if (x1 < xMin) {
xMin = x1;
} else if (x1 > xMax) {
xMax = x1;
}
if (y1 < yMin) {
yMin = y1;
} else if (y1 > yMax) {
yMax = y1;
}
validBBox = true;
}
t3FontCache[0] = new T3FontCache(fontID, ctm[0], ctm[1], ctm[2], ctm[3], (int)floor(xMin - xt) - 2, (int)floor(yMin - yt) - 2, (int)ceil(xMax) - (int)floor(xMin) + 4, (int)ceil(yMax) - (int)floor(yMin) + 4, validBBox,
colorMode != splashModeMono1);
}
}
t3Font = t3FontCache[0];
// is the glyph in the cache?
i = (code & (t3Font->cacheSets - 1)) * t3Font->cacheAssoc;
for (j = 0; j < t3Font->cacheAssoc; ++j) {
if (t3Font->cacheTags != nullptr) {
if ((t3Font->cacheTags[i + j].mru & 0x8000) && t3Font->cacheTags[i + j].code == code) {
drawType3Glyph(state, t3Font, &t3Font->cacheTags[i + j], t3Font->cacheData + (i + j) * t3Font->glyphSize);
return true;
}
}
}
// push a new Type 3 glyph record
t3gs = new T3GlyphStack();
t3gs->next = t3GlyphStack;
t3GlyphStack = t3gs;
t3GlyphStack->code = code;
t3GlyphStack->cache = t3Font;
t3GlyphStack->cacheTag = nullptr;
t3GlyphStack->cacheData = nullptr;
t3GlyphStack->haveDx = false;
t3GlyphStack->doNotCache = false;
return false;
}
void SplashOutputDev::endType3Char(GfxState *state)
{
T3GlyphStack *t3gs;
if (t3GlyphStack->cacheTag) {
memcpy(t3GlyphStack->cacheData, bitmap->getDataPtr(), t3GlyphStack->cache->glyphSize);
delete bitmap;
delete splash;
bitmap = t3GlyphStack->origBitmap;
splash = t3GlyphStack->origSplash;
const double *ctm = state->getCTM();
state->setCTM(ctm[0], ctm[1], ctm[2], ctm[3], t3GlyphStack->origCTM4, t3GlyphStack->origCTM5);
updateCTM(state, 0, 0, 0, 0, 0, 0);
drawType3Glyph(state, t3GlyphStack->cache, t3GlyphStack->cacheTag, t3GlyphStack->cacheData);
}
t3gs = t3GlyphStack;
t3GlyphStack = t3gs->next;
delete t3gs;
}
void SplashOutputDev::type3D0(GfxState *state, double wx, double wy)
{
if (likely(t3GlyphStack != nullptr)) {
t3GlyphStack->haveDx = true;
} else {
error(errSyntaxWarning, -1, "t3GlyphStack was null in SplashOutputDev::type3D0");
}
}
void SplashOutputDev::type3D1(GfxState *state, double wx, double wy, double llx, double lly, double urx, double ury)
{
T3FontCache *t3Font;
SplashColor color;
double xt, yt, xMin, xMax, yMin, yMax, x1, y1;
int i, j;
// ignore multiple d0/d1 operators
if (!t3GlyphStack || t3GlyphStack->haveDx) {
return;
}
t3GlyphStack->haveDx = true;
// don't cache if we got a gsave/grestore before the d1
if (t3GlyphStack->doNotCache) {
return;
}
if (unlikely(t3GlyphStack == nullptr)) {
error(errSyntaxWarning, -1, "t3GlyphStack was null in SplashOutputDev::type3D1");
return;
}
if (unlikely(t3GlyphStack->origBitmap != nullptr)) {
error(errSyntaxWarning, -1, "t3GlyphStack origBitmap was not null in SplashOutputDev::type3D1");
return;
}
if (unlikely(t3GlyphStack->origSplash != nullptr)) {
error(errSyntaxWarning, -1, "t3GlyphStack origSplash was not null in SplashOutputDev::type3D1");
return;
}
t3Font = t3GlyphStack->cache;
// check for a valid bbox
state->transform(0, 0, &xt, &yt);
state->transform(llx, lly, &x1, &y1);
xMin = xMax = x1;
yMin = yMax = y1;
state->transform(llx, ury, &x1, &y1);
if (x1 < xMin) {
xMin = x1;
} else if (x1 > xMax) {
xMax = x1;
}
if (y1 < yMin) {
yMin = y1;
} else if (y1 > yMax) {
yMax = y1;
}
state->transform(urx, lly, &x1, &y1);
if (x1 < xMin) {
xMin = x1;
} else if (x1 > xMax) {
xMax = x1;
}
if (y1 < yMin) {
yMin = y1;
} else if (y1 > yMax) {
yMax = y1;
}
state->transform(urx, ury, &x1, &y1);
if (x1 < xMin) {
xMin = x1;
} else if (x1 > xMax) {
xMax = x1;
}
if (y1 < yMin) {
yMin = y1;
} else if (y1 > yMax) {
yMax = y1;
}
if (xMin - xt < t3Font->glyphX || yMin - yt < t3Font->glyphY || xMax - xt > t3Font->glyphX + t3Font->glyphW || yMax - yt > t3Font->glyphY + t3Font->glyphH) {
if (t3Font->validBBox) {
error(errSyntaxWarning, -1, "Bad bounding box in Type 3 glyph");
}
return;
}
if (t3Font->cacheTags == nullptr) {
return;
}
// allocate a cache entry
i = (t3GlyphStack->code & (t3Font->cacheSets - 1)) * t3Font->cacheAssoc;
for (j = 0; j < t3Font->cacheAssoc; ++j) {
if ((t3Font->cacheTags[i + j].mru & 0x7fff) == t3Font->cacheAssoc - 1) {
t3Font->cacheTags[i + j].mru = 0x8000;
t3Font->cacheTags[i + j].code = t3GlyphStack->code;
t3GlyphStack->cacheTag = &t3Font->cacheTags[i + j];
t3GlyphStack->cacheData = t3Font->cacheData + (i + j) * t3Font->glyphSize;
} else {
++t3Font->cacheTags[i + j].mru;
}
}
// save state
t3GlyphStack->origBitmap = bitmap;
t3GlyphStack->origSplash = splash;
const double *ctm = state->getCTM();
t3GlyphStack->origCTM4 = ctm[4];
t3GlyphStack->origCTM5 = ctm[5];
// create the temporary bitmap
if (colorMode == splashModeMono1) {
bitmap = new SplashBitmap(t3Font->glyphW, t3Font->glyphH, 1, splashModeMono1, false);
splash = new Splash(bitmap, false, t3GlyphStack->origSplash->getScreen());
color[0] = 0;
splash->clear(color);
color[0] = 0xff;
} else {
bitmap = new SplashBitmap(t3Font->glyphW, t3Font->glyphH, 1, splashModeMono8, false);
splash = new Splash(bitmap, vectorAntialias, t3GlyphStack->origSplash->getScreen());
color[0] = 0x00;
splash->clear(color);
color[0] = 0xff;
}
splash->setMinLineWidth(s_minLineWidth);
splash->setThinLineMode(splashThinLineDefault);
splash->setFillPattern(new SplashSolidColor(color));
splash->setStrokePattern(new SplashSolidColor(color));
//~ this should copy other state from t3GlyphStack->origSplash?
state->setCTM(ctm[0], ctm[1], ctm[2], ctm[3], -t3Font->glyphX, -t3Font->glyphY);
updateCTM(state, 0, 0, 0, 0, 0, 0);
}
void SplashOutputDev::drawType3Glyph(GfxState *state, T3FontCache *t3Font, T3FontCacheTag * /*tag*/, unsigned char *data)
{
SplashGlyphBitmap glyph;
setOverprintMask(state->getFillColorSpace(), state->getFillOverprint(), state->getOverprintMode(), state->getFillColor());
glyph.x = -t3Font->glyphX;
glyph.y = -t3Font->glyphY;
glyph.w = t3Font->glyphW;
glyph.h = t3Font->glyphH;
glyph.aa = colorMode != splashModeMono1;
glyph.data = data;
glyph.freeData = false;
splash->fillGlyph(0, 0, &glyph);
}
void SplashOutputDev::beginTextObject(GfxState *state) { }
void SplashOutputDev::endTextObject(GfxState *state)
{
if (textClipPath) {
splash->clipToPath(textClipPath, false);
delete textClipPath;
textClipPath = nullptr;
}
}
struct SplashOutImageMaskData
{
ImageStream *imgStr;
bool invert;
int width, height, y;
};
bool SplashOutputDev::imageMaskSrc(void *data, SplashColorPtr line)
{
SplashOutImageMaskData *imgMaskData = (SplashOutImageMaskData *)data;
unsigned char *p;
SplashColorPtr q;
int x;
if (imgMaskData->y == imgMaskData->height) {
return false;
}
if (!(p = imgMaskData->imgStr->getLine())) {
return false;
}
for (x = 0, q = line; x < imgMaskData->width; ++x) {
*q++ = *p++ ^ imgMaskData->invert;
}
++imgMaskData->y;
return true;
}
void SplashOutputDev::drawImageMask(GfxState *state, Object *ref, Stream *str, int width, int height, bool invert, bool interpolate, bool inlineImg)
{
SplashCoord mat[6];
SplashOutImageMaskData imgMaskData;
if (state->getFillColorSpace()->isNonMarking()) {
return;
}
setOverprintMask(state->getFillColorSpace(), state->getFillOverprint(), state->getOverprintMode(), state->getFillColor());
const double *ctm = state->getCTM();
for (int i = 0; i < 6; ++i) {
if (!std::isfinite(ctm[i])) {
return;
}
}
mat[0] = ctm[0];
mat[1] = ctm[1];
mat[2] = -ctm[2];
mat[3] = -ctm[3];
mat[4] = ctm[2] + ctm[4];
mat[5] = ctm[3] + ctm[5];
imgMaskData.imgStr = new ImageStream(str, width, 1, 1);
imgMaskData.imgStr->reset();
imgMaskData.invert = invert ? false : true;
imgMaskData.width = width;
imgMaskData.height = height;
imgMaskData.y = 0;
splash->fillImageMask(&imageMaskSrc, &imgMaskData, width, height, mat, t3GlyphStack != nullptr);
if (inlineImg) {
while (imgMaskData.y < height) {
if (!imgMaskData.imgStr->getLine()) {
break;
}
++imgMaskData.y;
}
}
delete imgMaskData.imgStr;
str->close();
}
void SplashOutputDev::setSoftMaskFromImageMask(GfxState *state, Object *ref, Stream *str, int width, int height, bool invert, bool inlineImg, double *baseMatrix)
{
const double *ctm;
SplashCoord mat[6];
SplashOutImageMaskData imgMaskData;
Splash *maskSplash;
SplashColor maskColor;
double bbox[4] = { 0, 0, 1, 1 }; // default;
if (state->getFillColorSpace()->isNonMarking()) {
return;
}
ctm = state->getCTM();
for (int i = 0; i < 6; ++i) {
if (!std::isfinite(ctm[i])) {
return;
}
}
beginTransparencyGroup(state, bbox, nullptr, false, false, false);
baseMatrix[4] -= transpGroupStack->tx;
baseMatrix[5] -= transpGroupStack->ty;
ctm = state->getCTM();
mat[0] = ctm[0];
mat[1] = ctm[1];
mat[2] = -ctm[2];
mat[3] = -ctm[3];
mat[4] = ctm[2] + ctm[4];
mat[5] = ctm[3] + ctm[5];
imgMaskData.imgStr = new ImageStream(str, width, 1, 1);
imgMaskData.imgStr->reset();
imgMaskData.invert = invert ? false : true;
imgMaskData.width = width;
imgMaskData.height = height;
imgMaskData.y = 0;
transpGroupStack->softmask = new SplashBitmap(bitmap->getWidth(), bitmap->getHeight(), 1, splashModeMono8, false);
maskSplash = new Splash(transpGroupStack->softmask, vectorAntialias);
maskColor[0] = 0;
maskSplash->clear(maskColor);
maskColor[0] = 0xff;
maskSplash->setFillPattern(new SplashSolidColor(maskColor));
maskSplash->fillImageMask(&imageMaskSrc, &imgMaskData, width, height, mat, t3GlyphStack != nullptr);
delete maskSplash;
delete imgMaskData.imgStr;
str->close();
}
void SplashOutputDev::unsetSoftMaskFromImageMask(GfxState *state, double *baseMatrix)
{
double bbox[4] = { 0, 0, 1, 1 }; // dummy
if (!transpGroupStack) {
return;
}
/* transfer mask to alpha channel! */
// memcpy(maskBitmap->getAlphaPtr(), maskBitmap->getDataPtr(), bitmap->getRowSize() * bitmap->getHeight());
// memset(maskBitmap->getDataPtr(), 0, bitmap->getRowSize() * bitmap->getHeight());
if (transpGroupStack->softmask != nullptr) {
unsigned char *dest = bitmap->getAlphaPtr();
unsigned char *src = transpGroupStack->softmask->getDataPtr();
for (int c = 0; c < transpGroupStack->softmask->getRowSize() * transpGroupStack->softmask->getHeight(); c++) {
dest[c] = src[c];
}
delete transpGroupStack->softmask;
transpGroupStack->softmask = nullptr;
}
endTransparencyGroup(state);
baseMatrix[4] += transpGroupStack->tx;
baseMatrix[5] += transpGroupStack->ty;
paintTransparencyGroup(state, bbox);
}
struct SplashOutImageData
{
ImageStream *imgStr;
GfxImageColorMap *colorMap;
SplashColorPtr lookup;
const int *maskColors;
SplashColorMode colorMode;
int width, height, y;
ImageStream *maskStr;
GfxImageColorMap *maskColorMap;
SplashColor matteColor;
};
#ifdef USE_CMS
bool SplashOutputDev::useIccImageSrc(void *data)
{
SplashOutImageData *imgData = (SplashOutImageData *)data;
if (!imgData->lookup && imgData->colorMap->getColorSpace()->getMode() == csICCBased && imgData->colorMap->getBits() != 1) {
GfxICCBasedColorSpace *colorSpace = (GfxICCBasedColorSpace *)imgData->colorMap->getColorSpace();
switch (imgData->colorMode) {
case splashModeMono1:
case splashModeMono8:
if (colorSpace->getAlt() != nullptr && colorSpace->getAlt()->getMode() == csDeviceGray) {
return true;
}
break;
case splashModeXBGR8:
case splashModeRGB8:
case splashModeBGR8:
if (colorSpace->getAlt() != nullptr && colorSpace->getAlt()->getMode() == csDeviceRGB) {
return true;
}
break;
case splashModeCMYK8:
if (colorSpace->getAlt() != nullptr && colorSpace->getAlt()->getMode() == csDeviceCMYK) {
return true;
}
break;
case splashModeDeviceN8:
if (colorSpace->getAlt() != nullptr && colorSpace->getAlt()->getMode() == csDeviceN) {
return true;
}
break;
}
}
return false;
}
#endif
// Clip x to lie in [0, 255].
static inline unsigned char clip255(int x)
{
return x < 0 ? 0 : x > 255 ? 255 : x;
}
bool SplashOutputDev::imageSrc(void *data, SplashColorPtr colorLine, unsigned char * /*alphaLine*/)
{
SplashOutImageData *imgData = (SplashOutImageData *)data;
unsigned char *p;
SplashColorPtr q, col;
GfxRGB rgb;
GfxGray gray;
GfxCMYK cmyk;
GfxColor deviceN;
int nComps, x;
if (imgData->y == imgData->height) {
return false;
}
if (!(p = imgData->imgStr->getLine())) {
int destComps = 1;
if (imgData->colorMode == splashModeRGB8 || imgData->colorMode == splashModeBGR8) {
destComps = 3;
} else if (imgData->colorMode == splashModeXBGR8) {
destComps = 4;
} else if (imgData->colorMode == splashModeCMYK8) {
destComps = 4;
} else if (imgData->colorMode == splashModeDeviceN8) {
destComps = SPOT_NCOMPS + 4;
}
memset(colorLine, 0, imgData->width * destComps);
return false;
}
nComps = imgData->colorMap->getNumPixelComps();
if (imgData->lookup) {
switch (imgData->colorMode) {
case splashModeMono1:
case splashModeMono8:
for (x = 0, q = colorLine; x < imgData->width; ++x, ++p) {
*q++ = imgData->lookup[*p];
}
break;
case splashModeRGB8:
case splashModeBGR8:
for (x = 0, q = colorLine; x < imgData->width; ++x, ++p) {
col = &imgData->lookup[3 * *p];
*q++ = col[0];
*q++ = col[1];
*q++ = col[2];
}
break;
case splashModeXBGR8:
for (x = 0, q = colorLine; x < imgData->width; ++x, ++p) {
col = &imgData->lookup[4 * *p];
*q++ = col[0];
*q++ = col[1];
*q++ = col[2];
*q++ = col[3];
}
break;
case splashModeCMYK8:
for (x = 0, q = colorLine; x < imgData->width; ++x, ++p) {
col = &imgData->lookup[4 * *p];
*q++ = col[0];
*q++ = col[1];
*q++ = col[2];
*q++ = col[3];
}
break;
case splashModeDeviceN8:
for (x = 0, q = colorLine; x < imgData->width; ++x, ++p) {
col = &imgData->lookup[(SPOT_NCOMPS + 4) * *p];
for (int cp = 0; cp < SPOT_NCOMPS + 4; cp++) {
*q++ = col[cp];
}
}
break;
}
} else {
switch (imgData->colorMode) {
case splashModeMono1:
case splashModeMono8:
for (x = 0, q = colorLine; x < imgData->width; ++x, p += nComps) {
imgData->colorMap->getGray(p, &gray);
*q++ = colToByte(gray);
}
break;
case splashModeRGB8:
case splashModeBGR8:
if (imgData->colorMap->useRGBLine()) {
imgData->colorMap->getRGBLine(p, (unsigned char *)colorLine, imgData->width);
} else {
for (x = 0, q = colorLine; x < imgData->width; ++x, p += nComps) {
imgData->colorMap->getRGB(p, &rgb);
*q++ = colToByte(rgb.r);
*q++ = colToByte(rgb.g);
*q++ = colToByte(rgb.b);
}
}
break;
case splashModeXBGR8:
if (imgData->colorMap->useRGBLine()) {
imgData->colorMap->getRGBXLine(p, (unsigned char *)colorLine, imgData->width);
} else {
for (x = 0, q = colorLine; x < imgData->width; ++x, p += nComps) {
imgData->colorMap->getRGB(p, &rgb);
*q++ = colToByte(rgb.r);
*q++ = colToByte(rgb.g);
*q++ = colToByte(rgb.b);
*q++ = 255;
}
}
break;
case splashModeCMYK8:
if (imgData->colorMap->useCMYKLine()) {
imgData->colorMap->getCMYKLine(p, (unsigned char *)colorLine, imgData->width);
} else {
for (x = 0, q = colorLine; x < imgData->width; ++x, p += nComps) {
imgData->colorMap->getCMYK(p, &cmyk);
*q++ = colToByte(cmyk.c);
*q++ = colToByte(cmyk.m);
*q++ = colToByte(cmyk.y);
*q++ = colToByte(cmyk.k);
}
}
break;
case splashModeDeviceN8:
if (imgData->colorMap->useDeviceNLine()) {
imgData->colorMap->getDeviceNLine(p, (unsigned char *)colorLine, imgData->width);
} else {
for (x = 0, q = colorLine; x < imgData->width; ++x, p += nComps) {
imgData->colorMap->getDeviceN(p, &deviceN);
for (int cp = 0; cp < SPOT_NCOMPS + 4; cp++) {
*q++ = colToByte(deviceN.c[cp]);
}
}
}
break;
}
}
if (imgData->maskStr != nullptr && (p = imgData->maskStr->getLine()) != nullptr) {
int destComps = splashColorModeNComps[imgData->colorMode];
int convComps = (imgData->colorMode == splashModeXBGR8) ? 3 : destComps;
imgData->maskColorMap->getGrayLine(p, p, imgData->width);
for (x = 0, q = colorLine; x < imgData->width; ++x, p++, q += destComps) {
for (int cp = 0; cp < convComps; cp++) {
q[cp] = (*p) ? clip255(imgData->matteColor[cp] + (int)(q[cp] - imgData->matteColor[cp]) * 255 / *p) : imgData->matteColor[cp];
}
}
}
++imgData->y;
return true;
}
#ifdef USE_CMS
bool SplashOutputDev::iccImageSrc(void *data, SplashColorPtr colorLine, unsigned char * /*alphaLine*/)
{
SplashOutImageData *imgData = (SplashOutImageData *)data;
unsigned char *p;
int nComps;
if (imgData->y == imgData->height) {
return false;
}
if (!(p = imgData->imgStr->getLine())) {
int destComps = 1;
if (imgData->colorMode == splashModeRGB8 || imgData->colorMode == splashModeBGR8) {
destComps = 3;
} else if (imgData->colorMode == splashModeXBGR8) {
destComps = 4;
} else if (imgData->colorMode == splashModeCMYK8) {
destComps = 4;
} else if (imgData->colorMode == splashModeDeviceN8) {
destComps = SPOT_NCOMPS + 4;
}
memset(colorLine, 0, imgData->width * destComps);
return false;
}
if (imgData->colorMode == splashModeXBGR8) {
SplashColorPtr q;
int x;
for (x = 0, q = colorLine; x < imgData->width; ++x) {
*q++ = *p++;
*q++ = *p++;
*q++ = *p++;
*q++ = 255;
}
} else {
nComps = imgData->colorMap->getNumPixelComps();
memcpy(colorLine, p, imgData->width * nComps);
}
++imgData->y;
return true;
}
void SplashOutputDev::iccTransform(void *data, SplashBitmap *bitmap)
{
SplashOutImageData *imgData = (SplashOutImageData *)data;
int nComps = imgData->colorMap->getNumPixelComps();
unsigned char *colorLine = (unsigned char *)gmalloc(nComps * bitmap->getWidth());
unsigned char *rgbxLine = (imgData->colorMode == splashModeXBGR8) ? (unsigned char *)gmalloc(3 * bitmap->getWidth()) : nullptr;
for (int i = 0; i < bitmap->getHeight(); i++) {
unsigned char *p = bitmap->getDataPtr() + i * bitmap->getRowSize();
switch (imgData->colorMode) {
case splashModeMono1:
case splashModeMono8:
imgData->colorMap->getGrayLine(p, colorLine, bitmap->getWidth());
memcpy(p, colorLine, nComps * bitmap->getWidth());
break;
case splashModeRGB8:
case splashModeBGR8:
imgData->colorMap->getRGBLine(p, colorLine, bitmap->getWidth());
memcpy(p, colorLine, nComps * bitmap->getWidth());
break;
case splashModeCMYK8:
imgData->colorMap->getCMYKLine(p, colorLine, bitmap->getWidth());
memcpy(p, colorLine, nComps * bitmap->getWidth());
break;
case splashModeDeviceN8:
imgData->colorMap->getDeviceNLine(p, colorLine, bitmap->getWidth());
memcpy(p, colorLine, nComps * bitmap->getWidth());
break;
case splashModeXBGR8:
unsigned char *q;
unsigned char *b = p;
int x;
for (x = 0, q = rgbxLine; x < bitmap->getWidth(); ++x, b += 4) {
*q++ = b[2];
*q++ = b[1];
*q++ = b[0];
}
imgData->colorMap->getRGBLine(rgbxLine, colorLine, bitmap->getWidth());
b = p;
for (x = 0, q = colorLine; x < bitmap->getWidth(); ++x, b += 4) {
b[2] = *q++;
b[1] = *q++;
b[0] = *q++;
}
break;
}
}
gfree(colorLine);
if (rgbxLine != nullptr) {
gfree(rgbxLine);
}
}
#endif
bool SplashOutputDev::alphaImageSrc(void *data, SplashColorPtr colorLine, unsigned char *alphaLine)
{
SplashOutImageData *imgData = (SplashOutImageData *)data;
unsigned char *p, *aq;
SplashColorPtr q, col;
GfxRGB rgb;
GfxGray gray;
GfxCMYK cmyk;
GfxColor deviceN;
unsigned char alpha;
int nComps, x, i;
if (imgData->y == imgData->height) {
return false;
}
if (!(p = imgData->imgStr->getLine())) {
return false;
}
nComps = imgData->colorMap->getNumPixelComps();
for (x = 0, q = colorLine, aq = alphaLine; x < imgData->width; ++x, p += nComps) {
alpha = 0;
for (i = 0; i < nComps; ++i) {
if (p[i] < imgData->maskColors[2 * i] || p[i] > imgData->maskColors[2 * i + 1]) {
alpha = 0xff;
break;
}
}
if (imgData->lookup) {
switch (imgData->colorMode) {
case splashModeMono1:
case splashModeMono8:
*q++ = imgData->lookup[*p];
break;
case splashModeRGB8:
case splashModeBGR8:
col = &imgData->lookup[3 * *p];
*q++ = col[0];
*q++ = col[1];
*q++ = col[2];
break;
case splashModeXBGR8:
col = &imgData->lookup[4 * *p];
*q++ = col[0];
*q++ = col[1];
*q++ = col[2];
*q++ = 255;
break;
case splashModeCMYK8:
col = &imgData->lookup[4 * *p];
*q++ = col[0];
*q++ = col[1];
*q++ = col[2];
*q++ = col[3];
break;
case splashModeDeviceN8:
col = &imgData->lookup[(SPOT_NCOMPS + 4) * *p];
for (int cp = 0; cp < SPOT_NCOMPS + 4; cp++) {
*q++ = col[cp];
}
break;
}
*aq++ = alpha;
} else {
switch (imgData->colorMode) {
case splashModeMono1:
case splashModeMono8:
imgData->colorMap->getGray(p, &gray);
*q++ = colToByte(gray);
break;
case splashModeXBGR8:
case splashModeRGB8:
case splashModeBGR8:
imgData->colorMap->getRGB(p, &rgb);
*q++ = colToByte(rgb.r);
*q++ = colToByte(rgb.g);
*q++ = colToByte(rgb.b);
if (imgData->colorMode == splashModeXBGR8) {
*q++ = 255;
}
break;
case splashModeCMYK8:
imgData->colorMap->getCMYK(p, &cmyk);
*q++ = colToByte(cmyk.c);
*q++ = colToByte(cmyk.m);
*q++ = colToByte(cmyk.y);
*q++ = colToByte(cmyk.k);
break;
case splashModeDeviceN8:
imgData->colorMap->getDeviceN(p, &deviceN);
for (int cp = 0; cp < SPOT_NCOMPS + 4; cp++) {
*q++ = colToByte(deviceN.c[cp]);
}
break;
}
*aq++ = alpha;
}
}
++imgData->y;
return true;
}
struct TilingSplashOutBitmap
{
SplashBitmap *bitmap;
SplashPattern *pattern;
SplashColorMode colorMode;
int paintType;
int repeatX;
int repeatY;
int y;
};
bool SplashOutputDev::tilingBitmapSrc(void *data, SplashColorPtr colorLine, unsigned char *alphaLine)
{
TilingSplashOutBitmap *imgData = (TilingSplashOutBitmap *)data;
if (imgData->y == imgData->bitmap->getHeight()) {
imgData->repeatY--;
if (imgData->repeatY == 0) {
return false;
}
imgData->y = 0;
}
if (imgData->paintType == 1) {
const SplashColorMode cMode = imgData->bitmap->getMode();
SplashColorPtr q = colorLine;
// For splashModeBGR8 and splashModeXBGR8 we need to use getPixel
// for the others we can use raw access
if (cMode == splashModeBGR8 || cMode == splashModeXBGR8) {
for (int m = 0; m < imgData->repeatX; m++) {
for (int x = 0; x < imgData->bitmap->getWidth(); x++) {
imgData->bitmap->getPixel(x, imgData->y, q);
q += splashColorModeNComps[cMode];
}
}
} else {
const int n = imgData->bitmap->getRowSize();
SplashColorPtr p;
for (int m = 0; m < imgData->repeatX; m++) {
p = imgData->bitmap->getDataPtr() + imgData->y * imgData->bitmap->getRowSize();
for (int x = 0; x < n; ++x) {
*q++ = *p++;
}
}
}
if (alphaLine != nullptr) {
SplashColorPtr aq = alphaLine;
SplashColorPtr p;
const int n = imgData->bitmap->getWidth() - 1;
for (int m = 0; m < imgData->repeatX; m++) {
p = imgData->bitmap->getAlphaPtr() + imgData->y * imgData->bitmap->getWidth();
for (int x = 0; x < n; ++x) {
*aq++ = *p++;
}
// This is a hack, because of how Splash antialias works if we overwrite the
// last alpha pixel of the tile most/all of the files look much better
*aq++ = (n == 0) ? *p : *(p - 1);
}
}
} else {
SplashColor col, pat;
SplashColorPtr dest = colorLine;
for (int m = 0; m < imgData->repeatX; m++) {
for (int x = 0; x < imgData->bitmap->getWidth(); x++) {
imgData->bitmap->getPixel(x, imgData->y, col);
imgData->pattern->getColor(x, imgData->y, pat);
for (int i = 0; i < splashColorModeNComps[imgData->colorMode]; ++i) {
if (imgData->colorMode == splashModeCMYK8 || imgData->colorMode == splashModeDeviceN8) {
dest[i] = div255(pat[i] * (255 - col[0]));
} else {
dest[i] = 255 - div255((255 - pat[i]) * (255 - col[0]));
}
}
dest += splashColorModeNComps[imgData->colorMode];
}
}
if (alphaLine != nullptr) {
const int y = (imgData->y == imgData->bitmap->getHeight() - 1 && imgData->y > 50) ? imgData->y - 1 : imgData->y;
SplashColorPtr aq = alphaLine;
SplashColorPtr p;
const int n = imgData->bitmap->getWidth();
for (int m = 0; m < imgData->repeatX; m++) {
p = imgData->bitmap->getAlphaPtr() + y * imgData->bitmap->getWidth();
for (int x = 0; x < n; ++x) {
*aq++ = *p++;
}
}
}
}
++imgData->y;
return true;
}
void SplashOutputDev::drawImage(GfxState *state, Object *ref, Stream *str, int width, int height, GfxImageColorMap *colorMap, bool interpolate, const int *maskColors, bool inlineImg)
{
SplashCoord mat[6];
SplashOutImageData imgData;
SplashColorMode srcMode;
SplashImageSource src;
SplashICCTransform tf;
GfxGray gray;
GfxRGB rgb;
GfxCMYK cmyk;
bool grayIndexed = false;
GfxColor deviceN;
unsigned char pix;
int n, i;
const double *ctm = state->getCTM();
for (i = 0; i < 6; ++i) {
if (!std::isfinite(ctm[i])) {
return;
}
}
mat[0] = ctm[0];
mat[1] = ctm[1];
mat[2] = -ctm[2];
mat[3] = -ctm[3];
mat[4] = ctm[2] + ctm[4];
mat[5] = ctm[3] + ctm[5];
imgData.imgStr = new ImageStream(str, width, colorMap->getNumPixelComps(), colorMap->getBits());
imgData.imgStr->reset();
imgData.colorMap = colorMap;
imgData.maskColors = maskColors;
imgData.colorMode = colorMode;
imgData.width = width;
imgData.height = height;
imgData.maskStr = nullptr;
imgData.maskColorMap = nullptr;
imgData.y = 0;
// special case for one-channel (monochrome/gray/separation) images:
// build a lookup table here
imgData.lookup = nullptr;
if (colorMap->getNumPixelComps() == 1) {
n = 1 << colorMap->getBits();
switch (colorMode) {
case splashModeMono1:
case splashModeMono8:
imgData.lookup = (SplashColorPtr)gmalloc_checkoverflow(n);
if (likely(imgData.lookup != nullptr)) {
for (i = 0; i < n; ++i) {
pix = (unsigned char)i;
colorMap->getGray(&pix, &gray);
imgData.lookup[i] = colToByte(gray);
}
}
break;
case splashModeRGB8:
case splashModeBGR8:
imgData.lookup = (SplashColorPtr)gmallocn_checkoverflow(n, 3);
if (likely(imgData.lookup != nullptr)) {
for (i = 0; i < n; ++i) {
pix = (unsigned char)i;
colorMap->getRGB(&pix, &rgb);
imgData.lookup[3 * i] = colToByte(rgb.r);
imgData.lookup[3 * i + 1] = colToByte(rgb.g);
imgData.lookup[3 * i + 2] = colToByte(rgb.b);
}
}
break;
case splashModeXBGR8:
imgData.lookup = (SplashColorPtr)gmallocn_checkoverflow(n, 4);
if (likely(imgData.lookup != nullptr)) {
for (i = 0; i < n; ++i) {
pix = (unsigned char)i;
colorMap->getRGB(&pix, &rgb);
imgData.lookup[4 * i] = colToByte(rgb.r);
imgData.lookup[4 * i + 1] = colToByte(rgb.g);
imgData.lookup[4 * i + 2] = colToByte(rgb.b);
imgData.lookup[4 * i + 3] = 255;
}
}
break;
case splashModeCMYK8:
grayIndexed = colorMap->getColorSpace()->getMode() != csDeviceGray;
imgData.lookup = (SplashColorPtr)gmallocn_checkoverflow(n, 4);
if (likely(imgData.lookup != nullptr)) {
for (i = 0; i < n; ++i) {
pix = (unsigned char)i;
colorMap->getCMYK(&pix, &cmyk);
if (cmyk.c != 0 || cmyk.m != 0 || cmyk.y != 0) {
grayIndexed = false;
}
imgData.lookup[4 * i] = colToByte(cmyk.c);
imgData.lookup[4 * i + 1] = colToByte(cmyk.m);
imgData.lookup[4 * i + 2] = colToByte(cmyk.y);
imgData.lookup[4 * i + 3] = colToByte(cmyk.k);
}
}
break;
case splashModeDeviceN8:
colorMap->getColorSpace()->createMapping(bitmap->getSeparationList(), SPOT_NCOMPS);
grayIndexed = colorMap->getColorSpace()->getMode() != csDeviceGray;
imgData.lookup = (SplashColorPtr)gmallocn_checkoverflow(n, SPOT_NCOMPS + 4);
if (likely(imgData.lookup != nullptr)) {
for (i = 0; i < n; ++i) {
pix = (unsigned char)i;
colorMap->getCMYK(&pix, &cmyk);
if (cmyk.c != 0 || cmyk.m != 0 || cmyk.y != 0) {
grayIndexed = false;
}
colorMap->getDeviceN(&pix, &deviceN);
for (int cp = 0; cp < SPOT_NCOMPS + 4; cp++) {
imgData.lookup[(SPOT_NCOMPS + 4) * i + cp] = colToByte(deviceN.c[cp]);
}
}
}
break;
}
}
setOverprintMask(colorMap->getColorSpace(), state->getFillOverprint(), state->getOverprintMode(), nullptr, grayIndexed);
if (colorMode == splashModeMono1) {
srcMode = splashModeMono8;
} else {
srcMode = colorMode;
}
#ifdef USE_CMS
src = maskColors ? &alphaImageSrc : useIccImageSrc(&imgData) ? &iccImageSrc : &imageSrc;
tf = maskColors == nullptr && useIccImageSrc(&imgData) ? &iccTransform : nullptr;
#else
src = maskColors ? &alphaImageSrc : &imageSrc;
tf = nullptr;
#endif
splash->drawImage(src, tf, &imgData, srcMode, maskColors ? true : false, width, height, mat, interpolate);
if (inlineImg) {
while (imgData.y < height) {
imgData.imgStr->getLine();
++imgData.y;
}
}
gfree(imgData.lookup);
delete imgData.imgStr;
str->close();
}
struct SplashOutMaskedImageData
{
ImageStream *imgStr;
GfxImageColorMap *colorMap;
SplashBitmap *mask;
SplashColorPtr lookup;
SplashColorMode colorMode;
int width, height, y;
};
bool SplashOutputDev::maskedImageSrc(void *data, SplashColorPtr colorLine, unsigned char *alphaLine)
{
SplashOutMaskedImageData *imgData = (SplashOutMaskedImageData *)data;
unsigned char *p, *aq;
SplashColorPtr q, col;
GfxRGB rgb;
GfxGray gray;
GfxCMYK cmyk;
GfxColor deviceN;
unsigned char alpha;
unsigned char *maskPtr;
int maskBit;
int nComps, x;
if (imgData->y == imgData->height) {
return false;
}
if (!(p = imgData->imgStr->getLine())) {
return false;
}
nComps = imgData->colorMap->getNumPixelComps();
maskPtr = imgData->mask->getDataPtr() + imgData->y * imgData->mask->getRowSize();
maskBit = 0x80;
for (x = 0, q = colorLine, aq = alphaLine; x < imgData->width; ++x, p += nComps) {
alpha = (*maskPtr & maskBit) ? 0xff : 0x00;
if (!(maskBit >>= 1)) {
++maskPtr;
maskBit = 0x80;
}
if (imgData->lookup) {
switch (imgData->colorMode) {
case splashModeMono1:
case splashModeMono8:
*q++ = imgData->lookup[*p];
break;
case splashModeRGB8:
case splashModeBGR8:
col = &imgData->lookup[3 * *p];
*q++ = col[0];
*q++ = col[1];
*q++ = col[2];
break;
case splashModeXBGR8:
col = &imgData->lookup[4 * *p];
*q++ = col[0];
*q++ = col[1];
*q++ = col[2];
*q++ = 255;
break;
case splashModeCMYK8:
col = &imgData->lookup[4 * *p];
*q++ = col[0];
*q++ = col[1];
*q++ = col[2];
*q++ = col[3];
break;
case splashModeDeviceN8:
col = &imgData->lookup[(SPOT_NCOMPS + 4) * *p];
for (int cp = 0; cp < SPOT_NCOMPS + 4; cp++) {
*q++ = col[cp];
}
break;
}
*aq++ = alpha;
} else {
switch (imgData->colorMode) {
case splashModeMono1:
case splashModeMono8:
imgData->colorMap->getGray(p, &gray);
*q++ = colToByte(gray);
break;
case splashModeXBGR8:
case splashModeRGB8:
case splashModeBGR8:
imgData->colorMap->getRGB(p, &rgb);
*q++ = colToByte(rgb.r);
*q++ = colToByte(rgb.g);
*q++ = colToByte(rgb.b);
if (imgData->colorMode == splashModeXBGR8) {
*q++ = 255;
}
break;
case splashModeCMYK8:
imgData->colorMap->getCMYK(p, &cmyk);
*q++ = colToByte(cmyk.c);
*q++ = colToByte(cmyk.m);
*q++ = colToByte(cmyk.y);
*q++ = colToByte(cmyk.k);
break;
case splashModeDeviceN8:
imgData->colorMap->getDeviceN(p, &deviceN);
for (int cp = 0; cp < SPOT_NCOMPS + 4; cp++) {
*q++ = colToByte(deviceN.c[cp]);
}
break;
}
*aq++ = alpha;
}
}
++imgData->y;
return true;
}
void SplashOutputDev::drawMaskedImage(GfxState *state, Object *ref, Stream *str, int width, int height, GfxImageColorMap *colorMap, bool interpolate, Stream *maskStr, int maskWidth, int maskHeight, bool maskInvert, bool maskInterpolate)
{
GfxImageColorMap *maskColorMap;
SplashCoord mat[6];
SplashOutMaskedImageData imgData;
SplashOutImageMaskData imgMaskData;
SplashColorMode srcMode;
SplashBitmap *maskBitmap;
Splash *maskSplash;
SplashColor maskColor;
GfxGray gray;
GfxRGB rgb;
GfxCMYK cmyk;
GfxColor deviceN;
unsigned char pix;
int n, i;
colorMap->getColorSpace()->createMapping(bitmap->getSeparationList(), SPOT_NCOMPS);
setOverprintMask(colorMap->getColorSpace(), state->getFillOverprint(), state->getOverprintMode(), nullptr);
// If the mask is higher resolution than the image, use
// drawSoftMaskedImage() instead.
if (maskWidth > width || maskHeight > height) {
Object maskDecode(new Array((xref) ? xref : doc->getXRef()));
maskDecode.arrayAdd(Object(maskInvert ? 0 : 1));
maskDecode.arrayAdd(Object(maskInvert ? 1 : 0));
maskColorMap = new GfxImageColorMap(1, &maskDecode, std::make_unique<GfxDeviceGrayColorSpace>());
drawSoftMaskedImage(state, ref, str, width, height, colorMap, interpolate, maskStr, maskWidth, maskHeight, maskColorMap, maskInterpolate);
delete maskColorMap;
} else {
//----- scale the mask image to the same size as the source image
mat[0] = (SplashCoord)width;
mat[1] = 0;
mat[2] = 0;
mat[3] = (SplashCoord)height;
mat[4] = 0;
mat[5] = 0;
imgMaskData.imgStr = new ImageStream(maskStr, maskWidth, 1, 1);
imgMaskData.imgStr->reset();
imgMaskData.invert = maskInvert ? false : true;
imgMaskData.width = maskWidth;
imgMaskData.height = maskHeight;
imgMaskData.y = 0;
maskBitmap = new SplashBitmap(width, height, 1, splashModeMono1, false);
if (!maskBitmap->getDataPtr()) {
delete maskBitmap;
width = height = 1;
maskBitmap = new SplashBitmap(width, height, 1, splashModeMono1, false);
}
maskSplash = new Splash(maskBitmap, false);
maskColor[0] = 0;
maskSplash->clear(maskColor);
maskColor[0] = 0xff;
maskSplash->setFillPattern(new SplashSolidColor(maskColor));
maskSplash->fillImageMask(&imageMaskSrc, &imgMaskData, maskWidth, maskHeight, mat, false);
delete imgMaskData.imgStr;
maskStr->close();
delete maskSplash;
//----- draw the source image
const double *ctm = state->getCTM();
for (i = 0; i < 6; ++i) {
if (!std::isfinite(ctm[i])) {
delete maskBitmap;
return;
}
}
mat[0] = ctm[0];
mat[1] = ctm[1];
mat[2] = -ctm[2];
mat[3] = -ctm[3];
mat[4] = ctm[2] + ctm[4];
mat[5] = ctm[3] + ctm[5];
imgData.imgStr = new ImageStream(str, width, colorMap->getNumPixelComps(), colorMap->getBits());
imgData.imgStr->reset();
imgData.colorMap = colorMap;
imgData.mask = maskBitmap;
imgData.colorMode = colorMode;
imgData.width = width;
imgData.height = height;
imgData.y = 0;
// special case for one-channel (monochrome/gray/separation) images:
// build a lookup table here
imgData.lookup = nullptr;
if (colorMap->getNumPixelComps() == 1) {
n = 1 << colorMap->getBits();
switch (colorMode) {
case splashModeMono1:
case splashModeMono8:
imgData.lookup = (SplashColorPtr)gmalloc(n);
for (i = 0; i < n; ++i) {
pix = (unsigned char)i;
colorMap->getGray(&pix, &gray);
imgData.lookup[i] = colToByte(gray);
}
break;
case splashModeRGB8:
case splashModeBGR8:
imgData.lookup = (SplashColorPtr)gmallocn(n, 3);
for (i = 0; i < n; ++i) {
pix = (unsigned char)i;
colorMap->getRGB(&pix, &rgb);
imgData.lookup[3 * i] = colToByte(rgb.r);
imgData.lookup[3 * i + 1] = colToByte(rgb.g);
imgData.lookup[3 * i + 2] = colToByte(rgb.b);
}
break;
case splashModeXBGR8:
imgData.lookup = (SplashColorPtr)gmallocn(n, 4);
for (i = 0; i < n; ++i) {
pix = (unsigned char)i;
colorMap->getRGB(&pix, &rgb);
imgData.lookup[4 * i] = colToByte(rgb.r);
imgData.lookup[4 * i + 1] = colToByte(rgb.g);
imgData.lookup[4 * i + 2] = colToByte(rgb.b);
imgData.lookup[4 * i + 3] = 255;
}
break;
case splashModeCMYK8:
imgData.lookup = (SplashColorPtr)gmallocn(n, 4);
for (i = 0; i < n; ++i) {
pix = (unsigned char)i;
colorMap->getCMYK(&pix, &cmyk);
imgData.lookup[4 * i] = colToByte(cmyk.c);
imgData.lookup[4 * i + 1] = colToByte(cmyk.m);
imgData.lookup[4 * i + 2] = colToByte(cmyk.y);
imgData.lookup[4 * i + 3] = colToByte(cmyk.k);
}
break;
case splashModeDeviceN8:
imgData.lookup = (SplashColorPtr)gmallocn(n, SPOT_NCOMPS + 4);
for (i = 0; i < n; ++i) {
pix = (unsigned char)i;
colorMap->getDeviceN(&pix, &deviceN);
for (int cp = 0; cp < SPOT_NCOMPS + 4; cp++) {
imgData.lookup[(SPOT_NCOMPS + 4) * i + cp] = colToByte(deviceN.c[cp]);
}
}
break;
}
}
if (colorMode == splashModeMono1) {
srcMode = splashModeMono8;
} else {
srcMode = colorMode;
}
splash->drawImage(&maskedImageSrc, nullptr, &imgData, srcMode, true, width, height, mat, interpolate);
delete maskBitmap;
gfree(imgData.lookup);
delete imgData.imgStr;
str->close();
}
}
void SplashOutputDev::drawSoftMaskedImage(GfxState *state, Object * /* ref */, Stream *str, int width, int height, GfxImageColorMap *colorMap, bool interpolate, Stream *maskStr, int maskWidth, int maskHeight, GfxImageColorMap *maskColorMap,
bool maskInterpolate)
{
SplashCoord mat[6];
SplashOutImageData imgData;
SplashOutImageData imgMaskData;
SplashColorMode srcMode;
SplashBitmap *maskBitmap;
Splash *maskSplash;
SplashColor maskColor;
GfxGray gray;
GfxRGB rgb;
GfxCMYK cmyk;
GfxColor deviceN;
unsigned char pix;
colorMap->getColorSpace()->createMapping(bitmap->getSeparationList(), SPOT_NCOMPS);
setOverprintMask(colorMap->getColorSpace(), state->getFillOverprint(), state->getOverprintMode(), nullptr);
const double *ctm = state->getCTM();
for (int i = 0; i < 6; ++i) {
if (!std::isfinite(ctm[i])) {
return;
}
}
mat[0] = ctm[0];
mat[1] = ctm[1];
mat[2] = -ctm[2];
mat[3] = -ctm[3];
mat[4] = ctm[2] + ctm[4];
mat[5] = ctm[3] + ctm[5];
//----- set up the soft mask
if (maskColorMap->getMatteColor() != nullptr) {
int maskChars;
if (checkedMultiply(maskWidth, maskHeight, &maskChars)) {
return;
}
unsigned char *data = (unsigned char *)gmalloc(maskChars);
maskStr->reset();
const int readChars = maskStr->doGetChars(maskChars, data);
if (unlikely(readChars < maskChars)) {
memset(&data[readChars], 0, maskChars - readChars);
}
maskStr->close();
maskStr = new AutoFreeMemStream((char *)data, 0, maskChars, maskStr->getDictObject()->copy());
}
imgMaskData.imgStr = new ImageStream(maskStr, maskWidth, maskColorMap->getNumPixelComps(), maskColorMap->getBits());
imgMaskData.imgStr->reset();
imgMaskData.colorMap = maskColorMap;
imgMaskData.maskColors = nullptr;
imgMaskData.colorMode = splashModeMono8;
imgMaskData.width = maskWidth;
imgMaskData.height = maskHeight;
imgMaskData.y = 0;
imgMaskData.maskStr = nullptr;
imgMaskData.maskColorMap = nullptr;
const unsigned imgMaskDataLookupSize = 1 << maskColorMap->getBits();
imgMaskData.lookup = (SplashColorPtr)gmalloc(imgMaskDataLookupSize);
for (unsigned i = 0; i < imgMaskDataLookupSize; ++i) {
pix = (unsigned char)i;
maskColorMap->getGray(&pix, &gray);
imgMaskData.lookup[i] = colToByte(gray);
}
maskBitmap = new SplashBitmap(bitmap->getWidth(), bitmap->getHeight(), 1, splashModeMono8, false);
maskSplash = new Splash(maskBitmap, vectorAntialias);
maskColor[0] = 0;
maskSplash->clear(maskColor);
maskSplash->drawImage(&imageSrc, nullptr, &imgMaskData, splashModeMono8, false, maskWidth, maskHeight, mat, maskInterpolate);
delete imgMaskData.imgStr;
if (maskColorMap->getMatteColor() == nullptr) {
maskStr->close();
}
gfree(imgMaskData.lookup);
delete maskSplash;
splash->setSoftMask(maskBitmap);
//----- draw the source image
imgData.imgStr = new ImageStream(str, width, colorMap->getNumPixelComps(), colorMap->getBits());
imgData.imgStr->reset();
imgData.colorMap = colorMap;
imgData.maskColors = nullptr;
imgData.colorMode = colorMode;
imgData.width = width;
imgData.height = height;
imgData.maskStr = nullptr;
imgData.maskColorMap = nullptr;
if (maskColorMap->getMatteColor() != nullptr) {
getMatteColor(colorMode, colorMap, maskColorMap->getMatteColor(), imgData.matteColor);
imgData.maskColorMap = maskColorMap;
imgData.maskStr = new ImageStream(maskStr, maskWidth, maskColorMap->getNumPixelComps(), maskColorMap->getBits());
imgData.maskStr->reset();
}
imgData.y = 0;
// special case for one-channel (monochrome/gray/separation) images:
// build a lookup table here
imgData.lookup = nullptr;
if (colorMap->getNumPixelComps() == 1) {
const unsigned n = 1 << colorMap->getBits();
switch (colorMode) {
case splashModeMono1:
case splashModeMono8:
imgData.lookup = (SplashColorPtr)gmalloc(n);
for (unsigned i = 0; i < n; ++i) {
pix = (unsigned char)i;
colorMap->getGray(&pix, &gray);
imgData.lookup[i] = colToByte(gray);
}
break;
case splashModeRGB8:
case splashModeBGR8:
imgData.lookup = (SplashColorPtr)gmallocn_checkoverflow(n, 3);
if (likely(imgData.lookup != nullptr)) {
for (unsigned i = 0; i < n; ++i) {
pix = (unsigned char)i;
colorMap->getRGB(&pix, &rgb);
imgData.lookup[3 * i] = colToByte(rgb.r);
imgData.lookup[3 * i + 1] = colToByte(rgb.g);
imgData.lookup[3 * i + 2] = colToByte(rgb.b);
}
}
break;
case splashModeXBGR8:
imgData.lookup = (SplashColorPtr)gmallocn_checkoverflow(n, 4);
if (likely(imgData.lookup != nullptr)) {
for (unsigned i = 0; i < n; ++i) {
pix = (unsigned char)i;
colorMap->getRGB(&pix, &rgb);
imgData.lookup[4 * i] = colToByte(rgb.r);
imgData.lookup[4 * i + 1] = colToByte(rgb.g);
imgData.lookup[4 * i + 2] = colToByte(rgb.b);
imgData.lookup[4 * i + 3] = 255;
}
}
break;
case splashModeCMYK8:
imgData.lookup = (SplashColorPtr)gmallocn_checkoverflow(n, 4);
if (likely(imgData.lookup != nullptr)) {
for (unsigned i = 0; i < n; ++i) {
pix = (unsigned char)i;
colorMap->getCMYK(&pix, &cmyk);
imgData.lookup[4 * i] = colToByte(cmyk.c);
imgData.lookup[4 * i + 1] = colToByte(cmyk.m);
imgData.lookup[4 * i + 2] = colToByte(cmyk.y);
imgData.lookup[4 * i + 3] = colToByte(cmyk.k);
}
}
break;
case splashModeDeviceN8:
imgData.lookup = (SplashColorPtr)gmallocn_checkoverflow(n, SPOT_NCOMPS + 4);
if (likely(imgData.lookup != nullptr)) {
for (unsigned i = 0; i < n; ++i) {
pix = (unsigned char)i;
colorMap->getDeviceN(&pix, &deviceN);
for (int cp = 0; cp < SPOT_NCOMPS + 4; cp++) {
imgData.lookup[(SPOT_NCOMPS + 4) * i + cp] = colToByte(deviceN.c[cp]);
}
}
}
break;
}
}
if (colorMode == splashModeMono1) {
srcMode = splashModeMono8;
} else {
srcMode = colorMode;
}
splash->drawImage(&imageSrc, nullptr, &imgData, srcMode, false, width, height, mat, interpolate);
splash->setSoftMask(nullptr);
gfree(imgData.lookup);
delete imgData.maskStr;
delete imgData.imgStr;
if (maskColorMap->getMatteColor() != nullptr) {
maskStr->close();
delete maskStr;
}
str->close();
}
bool SplashOutputDev::checkTransparencyGroup(GfxState *state, bool knockout)
{
if (state->getFillOpacity() != 1 || state->getStrokeOpacity() != 1 || state->getAlphaIsShape() || state->getBlendMode() != gfxBlendNormal || splash->getSoftMask() != nullptr || knockout) {
return true;
}
return transpGroupStack != nullptr && transpGroupStack->shape != nullptr;
}
void SplashOutputDev::beginTransparencyGroup(GfxState *state, const double *bbox, GfxColorSpace *blendingColorSpace, bool isolated, bool knockout, bool forSoftMask)
{
SplashTransparencyGroup *transpGroup;
SplashColor color;
double xMin, yMin, xMax, yMax, x, y;
int tx, ty, w, h;
// transform the bbox
state->transform(bbox[0], bbox[1], &x, &y);
xMin = xMax = x;
yMin = yMax = y;
state->transform(bbox[0], bbox[3], &x, &y);
if (x < xMin) {
xMin = x;
} else if (x > xMax) {
xMax = x;
}
if (y < yMin) {
yMin = y;
} else if (y > yMax) {
yMax = y;
}
state->transform(bbox[2], bbox[1], &x, &y);
if (x < xMin) {
xMin = x;
} else if (x > xMax) {
xMax = x;
}
if (y < yMin) {
yMin = y;
} else if (y > yMax) {
yMax = y;
}
state->transform(bbox[2], bbox[3], &x, &y);
if (x < xMin) {
xMin = x;
} else if (x > xMax) {
xMax = x;
}
if (y < yMin) {
yMin = y;
} else if (y > yMax) {
yMax = y;
}
tx = (int)floor(xMin);
if (tx < 0) {
tx = 0;
} else if (tx >= bitmap->getWidth()) {
tx = bitmap->getWidth() - 1;
}
ty = (int)floor(yMin);
if (ty < 0) {
ty = 0;
} else if (ty >= bitmap->getHeight()) {
ty = bitmap->getHeight() - 1;
}
w = (int)ceil(xMax) - tx + 1;
if (tx + w > bitmap->getWidth()) {
w = bitmap->getWidth() - tx;
}
if (w < 1) {
w = 1;
}
h = (int)ceil(yMax) - ty + 1;
if (ty + h > bitmap->getHeight()) {
h = bitmap->getHeight() - ty;
}
if (h < 1) {
h = 1;
}
// push a new stack entry
transpGroup = new SplashTransparencyGroup();
transpGroup->softmask = nullptr;
transpGroup->tx = tx;
transpGroup->ty = ty;
transpGroup->blendingColorSpace = blendingColorSpace;
transpGroup->isolated = isolated;
transpGroup->shape = (knockout && !isolated) ? SplashBitmap::copy(bitmap) : nullptr;
transpGroup->knockout = (knockout && isolated);
transpGroup->knockoutOpacity = 1.0;
transpGroup->next = transpGroupStack;
transpGroupStack = transpGroup;
// save state
transpGroup->origBitmap = bitmap;
transpGroup->origSplash = splash;
transpGroup->fontAA = fontEngine->getAA();
//~ this handles the blendingColorSpace arg for soft masks, but
//~ not yet for transparency groups
// switch to the blending color space
if (forSoftMask && isolated && blendingColorSpace) {
if (blendingColorSpace->getMode() == csDeviceGray || blendingColorSpace->getMode() == csCalGray || (blendingColorSpace->getMode() == csICCBased && blendingColorSpace->getNComps() == 1)) {
colorMode = splashModeMono8;
} else if (blendingColorSpace->getMode() == csDeviceRGB || blendingColorSpace->getMode() == csCalRGB || (blendingColorSpace->getMode() == csICCBased && blendingColorSpace->getNComps() == 3)) {
//~ does this need to use BGR8?
colorMode = splashModeRGB8;
} else if (blendingColorSpace->getMode() == csDeviceCMYK || (blendingColorSpace->getMode() == csICCBased && blendingColorSpace->getNComps() == 4)) {
colorMode = splashModeCMYK8;
}
}
// create the temporary bitmap
bitmap = new SplashBitmap(w, h, bitmapRowPad, colorMode, true, bitmapTopDown, bitmap->getSeparationList());
if (!bitmap->getDataPtr()) {
delete bitmap;
w = h = 1;
bitmap = new SplashBitmap(w, h, bitmapRowPad, colorMode, true, bitmapTopDown);
}
splash = new Splash(bitmap, vectorAntialias, transpGroup->origSplash->getScreen());
if (transpGroup->next != nullptr && transpGroup->next->knockout) {
fontEngine->setAA(false);
}
splash->setThinLineMode(transpGroup->origSplash->getThinLineMode());
splash->setMinLineWidth(s_minLineWidth);
//~ Acrobat apparently copies at least the fill and stroke colors, and
//~ maybe other state(?) -- but not the clipping path (and not sure
//~ what else)
//~ [this is likely the same situation as in type3D1()]
splash->setFillPattern(transpGroup->origSplash->getFillPattern()->copy());
splash->setStrokePattern(transpGroup->origSplash->getStrokePattern()->copy());
if (isolated) {
splashClearColor(color);
if (colorMode == splashModeXBGR8) {
color[3] = 255;
}
splash->clear(color, 0);
} else {
SplashBitmap *shape = (knockout) ? transpGroup->shape : (transpGroup->next != nullptr && transpGroup->next->shape != nullptr) ? transpGroup->next->shape : transpGroup->origBitmap;
int shapeTx = (knockout) ? tx : (transpGroup->next != nullptr && transpGroup->next->shape != nullptr) ? transpGroup->next->tx + tx : tx;
int shapeTy = (knockout) ? ty : (transpGroup->next != nullptr && transpGroup->next->shape != nullptr) ? transpGroup->next->ty + ty : ty;
splash->blitTransparent(transpGroup->origBitmap, tx, ty, 0, 0, w, h);
splash->setInNonIsolatedGroup(shape, shapeTx, shapeTy);
}
transpGroup->tBitmap = bitmap;
state->shiftCTMAndClip(-tx, -ty);
updateCTM(state, 0, 0, 0, 0, 0, 0);
}
void SplashOutputDev::endTransparencyGroup(GfxState *state)
{
// restore state
delete splash;
bitmap = transpGroupStack->origBitmap;
colorMode = bitmap->getMode();
splash = transpGroupStack->origSplash;
state->shiftCTMAndClip(transpGroupStack->tx, transpGroupStack->ty);
updateCTM(state, 0, 0, 0, 0, 0, 0);
}
void SplashOutputDev::paintTransparencyGroup(GfxState *state, const double *bbox)
{
SplashBitmap *tBitmap;
SplashTransparencyGroup *transpGroup;
bool isolated;
int tx, ty;
tx = transpGroupStack->tx;
ty = transpGroupStack->ty;
tBitmap = transpGroupStack->tBitmap;
isolated = transpGroupStack->isolated;
// paint the transparency group onto the parent bitmap
// - the clip path was set in the parent's state)
if (tx < bitmap->getWidth() && ty < bitmap->getHeight()) {
SplashCoord knockoutOpacity = (transpGroupStack->next != nullptr) ? transpGroupStack->next->knockoutOpacity : transpGroupStack->knockoutOpacity;
splash->setOverprintMask(0xffffffff, false);
splash->composite(tBitmap, 0, 0, tx, ty, tBitmap->getWidth(), tBitmap->getHeight(), false, !isolated, transpGroupStack->next != nullptr && transpGroupStack->next->knockout, knockoutOpacity);
fontEngine->setAA(transpGroupStack->fontAA);
if (transpGroupStack->next != nullptr && transpGroupStack->next->shape != nullptr) {
transpGroupStack->next->knockout = true;
}
}
// pop the stack
transpGroup = transpGroupStack;
transpGroupStack = transpGroup->next;
if (transpGroupStack != nullptr && transpGroup->knockoutOpacity < transpGroupStack->knockoutOpacity) {
transpGroupStack->knockoutOpacity = transpGroup->knockoutOpacity;
}
delete transpGroup->shape;
delete transpGroup;
delete tBitmap;
}
void SplashOutputDev::setSoftMask(GfxState *state, const double *bbox, bool alpha, Function *transferFunc, GfxColor *backdropColor)
{
SplashBitmap *tBitmap;
Splash *tSplash;
SplashTransparencyGroup *transpGroup;
SplashColor color;
SplashColorPtr p;
GfxGray gray;
GfxRGB rgb;
GfxCMYK cmyk;
GfxColor deviceN;
double lum, lum2;
int tx, ty, x, y;
tx = transpGroupStack->tx;
ty = transpGroupStack->ty;
tBitmap = transpGroupStack->tBitmap;
// composite with backdrop color
if (!alpha && tBitmap->getMode() != splashModeMono1) {
//~ need to correctly handle the case where no blending color
//~ space is given
if (transpGroupStack->blendingColorSpace) {
tSplash = new Splash(tBitmap, vectorAntialias, transpGroupStack->origSplash->getScreen());
switch (tBitmap->getMode()) {
case splashModeMono1:
// transparency is not supported in mono1 mode
break;
case splashModeMono8:
transpGroupStack->blendingColorSpace->getGray(backdropColor, &gray);
color[0] = colToByte(gray);
tSplash->compositeBackground(color);
break;
case splashModeXBGR8:
color[3] = 255;
// fallthrough
case splashModeRGB8:
case splashModeBGR8:
transpGroupStack->blendingColorSpace->getRGB(backdropColor, &rgb);
color[0] = colToByte(rgb.r);
color[1] = colToByte(rgb.g);
color[2] = colToByte(rgb.b);
tSplash->compositeBackground(color);
break;
case splashModeCMYK8:
transpGroupStack->blendingColorSpace->getCMYK(backdropColor, &cmyk);
color[0] = colToByte(cmyk.c);
color[1] = colToByte(cmyk.m);
color[2] = colToByte(cmyk.y);
color[3] = colToByte(cmyk.k);
tSplash->compositeBackground(color);
break;
case splashModeDeviceN8:
transpGroupStack->blendingColorSpace->getDeviceN(backdropColor, &deviceN);
for (int cp = 0; cp < SPOT_NCOMPS + 4; cp++) {
color[cp] = colToByte(deviceN.c[cp]);
}
tSplash->compositeBackground(color);
break;
}
delete tSplash;
}
}
SplashBitmap *softMask = new SplashBitmap(bitmap->getWidth(), bitmap->getHeight(), 1, splashModeMono8, false);
if (!softMask->getDataPtr()) {
delete softMask;
softMask = new SplashBitmap(1, 1, 1, splashModeMono8, false);
}
unsigned char fill = 0;
if (transpGroupStack->blendingColorSpace) {
transpGroupStack->blendingColorSpace->getGray(backdropColor, &gray);
fill = colToByte(gray);
}
memset(softMask->getDataPtr(), fill, softMask->getRowSize() * softMask->getHeight());
p = softMask->getDataPtr() + ty * softMask->getRowSize() + tx;
int xMax = tBitmap->getWidth();
int yMax = tBitmap->getHeight();
if (xMax > softMask->getWidth() - tx) {
xMax = softMask->getWidth() - tx;
}
if (yMax > softMask->getHeight() - ty) {
yMax = softMask->getHeight() - ty;
}
for (y = 0; y < yMax; ++y) {
for (x = 0; x < xMax; ++x) {
if (alpha) {
if (transferFunc) {
lum = tBitmap->getAlpha(x, y) / 255.0;
transferFunc->transform(&lum, &lum2);
p[x] = (int)(lum2 * 255.0 + 0.5);
} else {
p[x] = tBitmap->getAlpha(x, y);
}
} else {
tBitmap->getPixel(x, y, color);
// convert to luminosity
switch (tBitmap->getMode()) {
case splashModeMono1:
case splashModeMono8:
lum = color[0] / 255.0;
break;
case splashModeXBGR8:
case splashModeRGB8:
case splashModeBGR8:
lum = (0.3 / 255.0) * color[0] + (0.59 / 255.0) * color[1] + (0.11 / 255.0) * color[2];
break;
case splashModeCMYK8:
case splashModeDeviceN8:
lum = (1 - color[3] / 255.0) - (0.3 / 255.0) * color[0] - (0.59 / 255.0) * color[1] - (0.11 / 255.0) * color[2];
if (lum < 0) {
lum = 0;
}
break;
}
if (transferFunc) {
transferFunc->transform(&lum, &lum2);
} else {
lum2 = lum;
}
p[x] = (int)(lum2 * 255.0 + 0.5);
}
}
p += softMask->getRowSize();
}
splash->setSoftMask(softMask);
// pop the stack
transpGroup = transpGroupStack;
transpGroupStack = transpGroup->next;
delete transpGroup;
delete tBitmap;
}
void SplashOutputDev::clearSoftMask(GfxState *state)
{
splash->setSoftMask(nullptr);
}
void SplashOutputDev::setPaperColor(SplashColorPtr paperColorA)
{
splashColorCopy(paperColor, paperColorA);
}
int SplashOutputDev::getBitmapWidth()
{
return bitmap->getWidth();
}
int SplashOutputDev::getBitmapHeight()
{
return bitmap->getHeight();
}
SplashBitmap *SplashOutputDev::takeBitmap()
{
SplashBitmap *ret;
ret = bitmap;
bitmap = new SplashBitmap(1, 1, bitmapRowPad, colorMode, colorMode != splashModeMono1, bitmapTopDown);
return ret;
}
#if 1 //~tmp: turn off anti-aliasing temporarily
bool SplashOutputDev::getVectorAntialias()
{
return splash->getVectorAntialias();
}
void SplashOutputDev::setVectorAntialias(bool vaa)
{
vaa = vaa && colorMode != splashModeMono1;
vectorAntialias = vaa;
splash->setVectorAntialias(vaa);
}
#endif
void SplashOutputDev::setFreeTypeHinting(bool enable, bool enableSlightHintingA)
{
enableFreeTypeHinting = enable;
enableSlightHinting = enableSlightHintingA;
}
bool SplashOutputDev::tilingPatternFill(GfxState *state, Gfx *gfxA, Catalog *catalog, GfxTilingPattern *tPat, const double *mat, int x0, int y0, int x1, int y1, double xStep, double yStep)
{
PDFRectangle box;
Splash *formerSplash = splash;
SplashBitmap *formerBitmap = bitmap;
double width, height;
int surface_width, surface_height, result_width, result_height, i;
int repeatX, repeatY;
SplashCoord matc[6];
Matrix m1;
const double *ctm;
double savedCTM[6];
double kx, ky, sx, sy;
bool retValue = false;
const double *bbox = tPat->getBBox();
const double *ptm = tPat->getMatrix();
const int paintType = tPat->getPaintType();
Dict *resDict = tPat->getResDict();
width = bbox[2] - bbox[0];
height = bbox[3] - bbox[1];
if (xStep != width || yStep != height) {
return false;
}
// calculate offsets
ctm = state->getCTM();
for (i = 0; i < 6; ++i) {
savedCTM[i] = ctm[i];
}
state->concatCTM(mat[0], mat[1], mat[2], mat[3], mat[4], mat[5]);
state->concatCTM(1, 0, 0, 1, bbox[0], bbox[1]);
ctm = state->getCTM();
for (i = 0; i < 6; ++i) {
if (!std::isfinite(ctm[i])) {
state->setCTM(savedCTM[0], savedCTM[1], savedCTM[2], savedCTM[3], savedCTM[4], savedCTM[5]);
return false;
}
}
matc[4] = x0 * xStep * ctm[0] + y0 * yStep * ctm[2] + ctm[4];
matc[5] = x0 * xStep * ctm[1] + y0 * yStep * ctm[3] + ctm[5];
if (splashAbs(ctm[1]) > splashAbs(ctm[0])) {
kx = -ctm[1];
ky = ctm[2] - (ctm[0] * ctm[3]) / ctm[1];
} else {
kx = ctm[0];
ky = ctm[3] - (ctm[1] * ctm[2]) / ctm[0];
}
result_width = (int)ceil(fabs(kx * width * (x1 - x0)));
result_height = (int)ceil(fabs(ky * height * (y1 - y0)));
kx = state->getHDPI() / 72.0;
ky = state->getVDPI() / 72.0;
m1.m[0] = std::max(fabs(ptm[0]), fabs(ptm[2])) * kx;
m1.m[1] = 0;
m1.m[2] = 0;
m1.m[3] = std::max(fabs(ptm[1]), fabs(ptm[3])) * ky;
m1.m[4] = 0;
m1.m[5] = 0;
m1.transform(width, height, &kx, &ky);
surface_width = (int)ceil(fabs(kx));
surface_height = (int)ceil(fabs(ky));
sx = (double)result_width / (surface_width * (x1 - x0));
sy = (double)result_height / (surface_height * (y1 - y0));
m1.m[0] *= sx;
m1.m[3] *= sy;
m1.transform(width, height, &kx, &ky);
if (fabs(kx) < 1 && fabs(ky) < 1) {
kx = std::min<double>(kx, ky);
ky = 2 / kx;
m1.m[0] *= ky;
m1.m[3] *= ky;
m1.transform(width, height, &kx, &ky);
surface_width = (int)ceil(fabs(kx));
surface_height = (int)ceil(fabs(ky));
repeatX = x1 - x0;
repeatY = y1 - y0;
while ((unsigned long)repeatX * repeatY > 0x800000L) {
// try to avoid bogus memory allocation size
if (repeatX > 1) {
repeatX /= 2;
}
if (repeatY > 1) {
repeatY /= 2;
}
}
} else {
if ((unsigned long)surface_width * surface_height > 0x800000L) {
state->setCTM(savedCTM[0], savedCTM[1], savedCTM[2], savedCTM[3], savedCTM[4], savedCTM[5]);
return false;
}
while (fabs(kx) > 16384 || fabs(ky) > 16384) {
// limit pattern bitmap size
m1.m[0] /= 2;
m1.m[3] /= 2;
m1.transform(width, height, &kx, &ky);
}
surface_width = (int)ceil(fabs(kx));
surface_height = (int)ceil(fabs(ky));
// adjust repeat values to completely fill region
if (unlikely(surface_width == 0 || surface_height == 0)) {
state->setCTM(savedCTM[0], savedCTM[1], savedCTM[2], savedCTM[3], savedCTM[4], savedCTM[5]);
return false;
}
repeatX = result_width / surface_width;
repeatY = result_height / surface_height;
if (surface_width * repeatX < result_width) {
repeatX++;
}
if (surface_height * repeatY < result_height) {
repeatY++;
}
if (x1 - x0 > repeatX) {
repeatX = x1 - x0;
}
if (y1 - y0 > repeatY) {
repeatY = y1 - y0;
}
}
// restore CTM and calculate rotate and scale with rounded matrix
state->setCTM(savedCTM[0], savedCTM[1], savedCTM[2], savedCTM[3], savedCTM[4], savedCTM[5]);
state->concatCTM(mat[0], mat[1], mat[2], mat[3], mat[4], mat[5]);
state->concatCTM(width * repeatX, 0, 0, height * repeatY, bbox[0], bbox[1]);
ctm = state->getCTM();
matc[0] = ctm[0];
matc[1] = ctm[1];
matc[2] = ctm[2];
matc[3] = ctm[3];
if (surface_width == 0 || surface_height == 0 || repeatX * repeatY <= 4) {
state->setCTM(savedCTM[0], savedCTM[1], savedCTM[2], savedCTM[3], savedCTM[4], savedCTM[5]);
return false;
}
m1.transform(bbox[0], bbox[1], &kx, &ky);
m1.m[4] = -kx;
m1.m[5] = -ky;
box.x1 = bbox[0];
box.y1 = bbox[1];
box.x2 = bbox[2];
box.y2 = bbox[3];
std::unique_ptr<Gfx> gfx = std::make_unique<Gfx>(doc, this, resDict, &box, nullptr, nullptr, nullptr, gfxA);
// set pattern transformation matrix
gfx->getState()->setCTM(m1.m[0], m1.m[1], m1.m[2], m1.m[3], m1.m[4], m1.m[5]);
if (splashAbs(matc[1]) > splashAbs(matc[0])) {
kx = -matc[1];
ky = matc[2] - (matc[0] * matc[3]) / matc[1];
} else {
kx = matc[0];
ky = matc[3] - (matc[1] * matc[2]) / matc[0];
}
result_width = surface_width * repeatX;
result_height = surface_height * repeatY;
kx = result_width / (fabs(kx) + 1);
ky = result_height / (fabs(ky) + 1);
state->concatCTM(kx, 0, 0, ky, 0, 0);
ctm = state->getCTM();
matc[0] = ctm[0];
matc[1] = ctm[1];
matc[2] = ctm[2];
matc[3] = ctm[3];
const bool doFastBlit = matc[0] > 0 && matc[1] == 0 && matc[2] == 0 && matc[3] > 0;
bitmap = new SplashBitmap(surface_width, surface_height, 1, (paintType == 1 || doFastBlit) ? colorMode : splashModeMono8, true);
if (bitmap->getDataPtr() == nullptr) {
SplashBitmap *tBitmap = bitmap;
bitmap = formerBitmap;
delete tBitmap;
state->setCTM(savedCTM[0], savedCTM[1], savedCTM[2], savedCTM[3], savedCTM[4], savedCTM[5]);
return false;
}
splash = new Splash(bitmap, true);
updateCTM(gfx->getState(), m1.m[0], m1.m[1], m1.m[2], m1.m[3], m1.m[4], m1.m[5]);
if (paintType == 2) {
SplashColor clearColor;
clearColor[0] = (colorMode == splashModeCMYK8 || colorMode == splashModeDeviceN8) ? 0x00 : 0xFF;
splash->clear(clearColor, 0);
} else {
splash->clear(paperColor, 0);
}
splash->setThinLineMode(formerSplash->getThinLineMode());
splash->setMinLineWidth(s_minLineWidth);
if (doFastBlit) {
// drawImage would colorize the greyscale pattern in tilingBitmapSrc buffer accessor while tiling.
// blitImage can't, it has no buffer accessor. We instead colorize the pattern prototype in advance.
splash->setFillPattern(formerSplash->getFillPattern()->copy());
splash->setStrokePattern(formerSplash->getStrokePattern()->copy());
}
gfx->display(tPat->getContentStream());
delete splash;
splash = formerSplash;
TilingSplashOutBitmap imgData;
imgData.bitmap = bitmap;
imgData.paintType = paintType;
imgData.pattern = splash->getFillPattern();
imgData.colorMode = colorMode;
imgData.y = 0;
imgData.repeatX = repeatX;
imgData.repeatY = repeatY;
SplashBitmap *tBitmap = bitmap;
bitmap = formerBitmap;
if (doFastBlit) {
// draw the tiles
for (int y = 0; y < imgData.repeatY; ++y) {
for (int x = 0; x < imgData.repeatX; ++x) {
x0 = splashFloor(matc[4]) + x * tBitmap->getWidth();
y0 = splashFloor(matc[5]) + y * tBitmap->getHeight();
splash->blitImage(tBitmap, true, x0, y0);
}
}
retValue = true;
} else {
retValue = splash->drawImage(&tilingBitmapSrc, nullptr, &imgData, colorMode, true, result_width, result_height, matc, false, true) == splashOk;
}
delete tBitmap;
if (!retValue) {
state->setCTM(savedCTM[0], savedCTM[1], savedCTM[2], savedCTM[3], savedCTM[4], savedCTM[5]);
}
return retValue;
}
bool SplashOutputDev::gouraudTriangleShadedFill(GfxState *state, GfxGouraudTriangleShading *shading)
{
GfxColorSpaceMode shadingMode = shading->getColorSpace()->getMode();
bool bDirectColorTranslation = false; // triggers an optimization.
switch (colorMode) {
case splashModeRGB8:
bDirectColorTranslation = (shadingMode == csDeviceRGB);
break;
case splashModeCMYK8:
case splashModeDeviceN8:
bDirectColorTranslation = (shadingMode == csDeviceCMYK);
break;
default:
break;
}
// restore vector antialias because we support it here
SplashGouraudPattern splashShading(bDirectColorTranslation, state, shading);
const bool vaa = getVectorAntialias();
setVectorAntialias(true);
const bool retVal = splash->gouraudTriangleShadedFill(&splashShading);
setVectorAntialias(vaa);
return retVal;
}
bool SplashOutputDev::univariateShadedFill(GfxState *state, SplashUnivariatePattern *pattern, double tMin, double tMax)
{
double xMin, yMin, xMax, yMax;
bool vaa = getVectorAntialias();
// restore vector antialias because we support it here
setVectorAntialias(true);
bool retVal = false;
// get the clip region bbox
if (pattern->getShading()->getHasBBox()) {
pattern->getShading()->getBBox(&xMin, &yMin, &xMax, &yMax);
} else {
state->getClipBBox(&xMin, &yMin, &xMax, &yMax);
xMin = floor(xMin);
yMin = floor(yMin);
xMax = ceil(xMax);
yMax = ceil(yMax);
{
Matrix ctm, ictm;
double x[4], y[4];
int i;
state->getCTM(&ctm);
ctm.invertTo(&ictm);
ictm.transform(xMin, yMin, &x[0], &y[0]);
ictm.transform(xMax, yMin, &x[1], &y[1]);
ictm.transform(xMin, yMax, &x[2], &y[2]);
ictm.transform(xMax, yMax, &x[3], &y[3]);
xMin = xMax = x[0];
yMin = yMax = y[0];
for (i = 1; i < 4; i++) {
xMin = std::min<double>(xMin, x[i]);
yMin = std::min<double>(yMin, y[i]);
xMax = std::max<double>(xMax, x[i]);
yMax = std::max<double>(yMax, y[i]);
}
}
}
// fill the region
state->moveTo(xMin, yMin);
state->lineTo(xMax, yMin);
state->lineTo(xMax, yMax);
state->lineTo(xMin, yMax);
state->closePath();
SplashPath path = convertPath(state, state->getPath(), true);
pattern->getShading()->getColorSpace()->createMapping(bitmap->getSeparationList(), SPOT_NCOMPS);
setOverprintMask(pattern->getShading()->getColorSpace(), state->getFillOverprint(), state->getOverprintMode(), nullptr);
// If state->getStrokePattern() is set, then the current clipping region
// is a stroke path.
retVal = (splash->shadedFill(&path, pattern->getShading()->getHasBBox(), pattern, (state->getStrokePattern() != nullptr)) == splashOk);
state->clearPath();
setVectorAntialias(vaa);
return retVal;
}
bool SplashOutputDev::functionShadedFill(GfxState *state, GfxFunctionShading *shading)
{
SplashFunctionPattern *pattern = new SplashFunctionPattern(colorMode, state, shading);
double xMin, yMin, xMax, yMax;
bool vaa = getVectorAntialias();
// restore vector antialias because we support it here
setVectorAntialias(true);
bool retVal = false;
// get the clip region bbox
if (pattern->getShading()->getHasBBox()) {
pattern->getShading()->getBBox(&xMin, &yMin, &xMax, &yMax);
} else {
state->getClipBBox(&xMin, &yMin, &xMax, &yMax);
xMin = floor(xMin);
yMin = floor(yMin);
xMax = ceil(xMax);
yMax = ceil(yMax);
{
Matrix ctm, ictm;
double x[4], y[4];
int i;
state->getCTM(&ctm);
ctm.invertTo(&ictm);
ictm.transform(xMin, yMin, &x[0], &y[0]);
ictm.transform(xMax, yMin, &x[1], &y[1]);
ictm.transform(xMin, yMax, &x[2], &y[2]);
ictm.transform(xMax, yMax, &x[3], &y[3]);
xMin = xMax = x[0];
yMin = yMax = y[0];
for (i = 1; i < 4; i++) {
xMin = std::min<double>(xMin, x[i]);
yMin = std::min<double>(yMin, y[i]);
xMax = std::max<double>(xMax, x[i]);
yMax = std::max<double>(yMax, y[i]);
}
}
}
// fill the region
state->moveTo(xMin, yMin);
state->lineTo(xMax, yMin);
state->lineTo(xMax, yMax);
state->lineTo(xMin, yMax);
state->closePath();
SplashPath path = convertPath(state, state->getPath(), true);
pattern->getShading()->getColorSpace()->createMapping(bitmap->getSeparationList(), SPOT_NCOMPS);
setOverprintMask(pattern->getShading()->getColorSpace(), state->getFillOverprint(), state->getOverprintMode(), nullptr);
// If state->getStrokePattern() is set, then the current clipping region
// is a stroke path.
retVal = (splash->shadedFill(&path, pattern->getShading()->getHasBBox(), pattern, (state->getStrokePattern() != nullptr)) == splashOk);
state->clearPath();
setVectorAntialias(vaa);
delete pattern;
return retVal;
}
bool SplashOutputDev::axialShadedFill(GfxState *state, GfxAxialShading *shading, double tMin, double tMax)
{
SplashAxialPattern *pattern = new SplashAxialPattern(colorMode, state, shading);
bool retVal = univariateShadedFill(state, pattern, tMin, tMax);
delete pattern;
return retVal;
}
bool SplashOutputDev::radialShadedFill(GfxState *state, GfxRadialShading *shading, double tMin, double tMax)
{
SplashRadialPattern *pattern = new SplashRadialPattern(colorMode, state, shading);
bool retVal = univariateShadedFill(state, pattern, tMin, tMax);
delete pattern;
return retVal;
}