blob: 67ef667e154a7e2d4bd0407a875122a87d0a2494 [file] [log] [blame]
/*****************************************************************************/
/* */
/* ftgrays.c - a new 'perfect' anti-aliasing renderer for FreeType 2 */
/* */
/* Copyright 2000 by The FreeType Project */
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
/* */
/* This file is part of the FreeType project, and may only be used */
/* modified and distributed under the terms of the FreeType project */
/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
/* this file you indicate that you have read the license and */
/* understand and accept it fully. */
/* */
/* This is a new anti-aliasing scan-converter for FreeType 2. The */
/* algorithm used here is _very_ different from the one in the standard */
/* "ftraster.c". Actually, "ftgrays.c" computes the _exact_ coverage of */
/* the outline on each pixel cell. */
/* */
/* It is based on ideas that I initially found in Raph Levien's excellent */
/* LibArt graphics library (see www.levien.com/libart for more information, */
/* though the web pages do not tell anything about the renderer, you'll */
/* have to dive in the source code to understand how it works..) */
/* */
/* Note however that this is a _very_ different implementation from */
/* Raph's. Coverage information is stored in a very different way, */
/* and I don't use sorted vector paths. Also, it doesn't use floating */
/* point values.. */
/* */
/* This renderer has the following advantages: */
/* */
/* - doesn't need an intermediate bitmap. Instead, one can supply */
/* a callback fuction that will be called by the renderer to */
/* draw gray spans on any target surface.. You can thus do direct */
/* composition on any kind of bitmap, provided that you give the */
/* renderer the right callback.. */
/* */
/* - perfect anti-aliaser, i.e. computes the _exact_ coverage on */
/* each pixel cell */
/* */
/* - performs a single pass on the outline (the 'standard' FT2 */
/* renderer performs two passes). */
/* */
/* - can easily be modified to render to _any_ number of gray levels */
/* cheaply.. */
/* */
/* - faster than the standard renderer for small (< 20) pixel sizes */
/* */
#include <freetype/ftgrays.h>
#include <string.h> /* for memcpy */
#define ErrRaster_Invalid_Outline -1
#ifdef _STANDALONE_
#error "implementation of FT_Outline_Decompose missing !!!"
#else
#include <freetype/freetype.h> /* to link to FT_Outline_Decompose */
#endif
/* define this to dump debugging information */
#define xxxDEBUG_GRAYS
/* as usual, for the speed hungry :-) */
#ifndef FT_STATIC_RASTER
#define RAS_ARG PRaster raster
#define RAS_ARG_ PRaster raster,
#define RAS_VAR raster
#define RAS_VAR_ raster,
#define ras (*raster)
#else
#define RAS_ARG
#define RAS_ARG_
#define RAS_VAR
#define RAS_VAR_
static TRaster ras;
#endif
/* must be at least 6 bits !! */
#define PIXEL_BITS 8
#define ONE_PIXEL (1L << PIXEL_BITS)
#define PIXEL_MASK (-1L << PIXEL_BITS)
#define TRUNC(x) ((x) >> PIXEL_BITS)
#define SUBPIXELS(x) ((x) << PIXEL_BITS)
#define FLOOR(x) ((x) & -ONE_PIXEL)
#define CEILING(x) (((x)+ONE_PIXEL-1) & -ONE_PIXEL)
#define ROUND(x) (((x)+ONE_PIXEL/2) & -ONE_PIXEL)
#if PIXEL_BITS >= 6
#define UPSCALE(x) ((x) << (PIXEL_BITS-6))
#define DOWNSCALE(x) ((x) >> (PIXEL_BITS-6))
#else
#define UPSCALE(x) ((x) >> (6-PIXEL_BITS))
#define DOWNSCALE(x) ((x) << (6-PIXEL_BITS))
#endif
/* define if you want to use more compact storage, this increases the number */
/* of cells available in the render pool but slows down the rendering a bit */
/* useful when you have a really tiny render pool */
#define xxxGRAYS_COMPACT
/****************************************************************************/
/* */
/* TYPE DEFINITIONS */
/* */
typedef int TScan; /* integer scanline/pixel coordinate */
typedef long TPos; /* sub-pixel coordinate */
/* maximum number of gray spans in a call to the span callback */
#define FT_MAX_GRAY_SPANS 32
#ifdef GRAYS_COMPACT
typedef struct TCell_
{
short x : 14;
short y : 14;
int cover : PIXEL_BITS+2;
int area : PIXEL_BITS*2+2;
} TCell, *PCell;
#else
typedef struct TCell_
{
TScan x;
TScan y;
int cover;
int area;
} TCell, *PCell;
#endif
typedef struct TRaster_
{
PCell cells;
int max_cells;
int num_cells;
TScan min_ex, max_ex;
TScan min_ey, max_ey;
int area;
int cover;
int invalid;
TScan ex, ey;
TScan cx, cy;
TPos x, y;
TScan last_ey;
FT_Vector bez_stack[32*3];
int lev_stack[32];
FT_Outline outline;
FT_Bitmap target;
FT_Span gray_spans[ FT_MAX_GRAY_SPANS ];
int num_gray_spans;
FT_Raster_Span_Func render_span;
void* render_span_data;
int span_y;
int band_size;
int band_shoot;
int conic_level;
int cubic_level;
void* memory;
} TRaster, *PRaster;
/****************************************************************************/
/* */
/* INITIALIZE THE CELLS TABLE */
/* */
static
void init_cells( RAS_ARG_ void* buffer, long byte_size )
{
ras.cells = (PCell)buffer;
ras.max_cells = byte_size / sizeof(TCell);
ras.num_cells = 0;
ras.area = 0;
ras.cover = 0;
ras.invalid = 1;
}
/****************************************************************************/
/* */
/* COMPUTE THE OUTLINE BOUNDING BOX */
/* */
static
void compute_cbox( RAS_ARG_ FT_Outline* outline )
{
FT_Vector* vec = outline->points;
FT_Vector* limit = vec + outline->n_points;
if ( outline->n_points <= 0 )
{
ras.min_ex = ras.max_ex = 0;
ras.min_ey = ras.max_ey = 0;
return;
}
ras.min_ex = ras.max_ex = vec->x;
ras.min_ey = ras.max_ey = vec->y;
vec++;
for ( ; vec < limit; vec++ )
{
TPos x = vec->x;
TPos y = vec->y;
if ( x < ras.min_ex ) ras.min_ex = x;
if ( x > ras.max_ex ) ras.max_ex = x;
if ( y < ras.min_ey ) ras.min_ey = y;
if ( y > ras.max_ey ) ras.max_ey = y;
}
/* truncate the bounding box to integer pixels */
ras.min_ex = ras.min_ex >> 6;
ras.min_ey = ras.min_ey >> 6;
ras.max_ex = ( ras.max_ex+63 ) >> 6;
ras.max_ey = ( ras.max_ey+63 ) >> 6;
}
/****************************************************************************/
/* */
/* RECORD THE CURRENT CELL IN THE TABLE */
/* */
static
int record_cell( RAS_ARG )
{
PCell cell;
if (!ras.invalid && (ras.area | ras.cover))
{
if ( ras.num_cells >= ras.max_cells )
return 1;
cell = ras.cells + ras.num_cells++;
cell->x = (ras.ex - ras.min_ex);
cell->y = (ras.ey - ras.min_ey);
cell->area = ras.area;
cell->cover = ras.cover;
}
return 0;
}
/****************************************************************************/
/* */
/* SET THE CURRENT CELL TO A NEW POSITION */
/* */
static
int set_cell( RAS_ARG_ TScan ex, TScan ey )
{
int invalid, record, clean;
/* move the cell pointer to a new position. We set the "invalid" */
/* flag to indicate that the cell isn't part of those we're interested */
/* in during the render phase.. This means that: */
/* */
/* the new vertical position must be within min_ey..max_ey-1. */
/* the new horizontal position must be strictly less than max_ey */
/* */
/* Note that we a cell is to the left of the clipping region, it is */
/* actually set to the (min_ex-1) horizontal position */
/* */
record = 0;
clean = 1;
invalid = ( ey < ras.min_ey || ey >= ras.max_ey || ex >= ras.max_ex );
if (!invalid)
{
/* all cells that are on the left of the clipping region go to the */
/* min_ex-1 horizontal position.. */
if (ex < ras.min_ex)
ex = ras.min_ex-1;
/* if our position is new, then record the previous cell */
if (ex != ras.ex || ey != ras.ey)
record = 1;
else
clean = ras.invalid; /* do not clean if we didn't move from */
/* a valid cell.. */
}
/* record the previous cell if needed (i.e. if we changed the cell */
/* position, of changed the 'invalid' flag..) */
if ( (ras.invalid != invalid || record) && record_cell( RAS_VAR ) )
return 1;
if (clean)
{
ras.area = 0;
ras.cover = 0;
}
ras.invalid = invalid;
ras.ex = ex;
ras.ey = ey;
return 0;
}
/****************************************************************************/
/* */
/* START A NEW CONTOUR AT A GIVEN CELL */
/* */
static
void start_cell( RAS_ARG_ TScan ex, TScan ey )
{
if (ex < ras.min_ex)
ex = ras.min_ex-1;
ras.area = 0;
ras.cover = 0;
ras.ex = ex;
ras.ey = ey;
ras.last_ey = SUBPIXELS(ey);
ras.invalid = 0;
(void)set_cell( RAS_VAR_ ex, ey );
}
/****************************************************************************/
/* */
/* RENDER A SCANLINE AS ONE OR MORE CELLS */
/* */
static
int render_scanline( RAS_ARG_ TScan ey, TPos x1, TScan y1,
TPos x2, TScan y2 )
{
TScan ex1, ex2, fx1, fx2, delta;
long p, first, dx;
int incr, lift, mod, rem;
dx = x2-x1;
ex1 = TRUNC(x1); /* if (ex1 >= ras.max_ex) ex1 = ras.max_ex-1; */
ex2 = TRUNC(x2); /* if (ex2 >= ras.max_ex) ex2 = ras.max_ex-1; */
fx1 = x1 - SUBPIXELS(ex1);
fx2 = x2 - SUBPIXELS(ex2);
/* trivial case. Happens often */
if (y1 == y2)
return set_cell( RAS_VAR_ ex2, ey );
/* everything is located in a single cell, that is easy ! */
/* */
if ( ex1 == ex2 )
{
delta = y2-y1;
ras.area += (fx1+fx2)*delta;
ras.cover += delta;
return 0;
}
/* ok, we'll have to render a run of adjacent cells on the same */
/* scanline.. */
/* */
p = (ONE_PIXEL-fx1)*(y2-y1);
first = ONE_PIXEL;
incr = 1;
if ( dx < 0 )
{
p = fx1*(y2-y1);
first = 0;
incr = -1;
dx = -dx;
}
delta = p / dx;
mod = p % dx;
if (mod < 0)
{
delta--;
mod += dx;
}
ras.area += (fx1+first)*delta;
ras.cover += delta;
ex1 += incr;
if (set_cell( RAS_VAR_ ex1, ey )) goto Error;
y1 += delta;
if (ex1 != ex2)
{
p = ONE_PIXEL*(y2-y1);
lift = p / dx;
rem = p % dx;
if (rem < 0)
{
lift--;
rem += dx;
}
mod -= dx;
while (ex1 != ex2)
{
delta = lift;
mod += rem;
if (mod >= 0)
{
mod -= dx;
delta++;
}
ras.area += ONE_PIXEL*delta;
ras.cover += delta;
y1 += delta;
ex1 += incr;
if (set_cell( RAS_VAR_ ex1, ey )) goto Error;
}
}
delta = y2-y1;
ras.area += (fx2+ONE_PIXEL-first)*delta;
ras.cover += delta;
return 0;
Error:
return 1;
}
/****************************************************************************/
/* */
/* RENDER A GIVEN LINE AS A SERIES OF SCANLINES */
/* */
static
int render_line( RAS_ARG_ TPos to_x, TPos to_y )
{
TScan ey1, ey2, fy1, fy2;
TPos dx, dy, x, x2;
int p, rem, mod, lift, delta, first, incr;
ey1 = TRUNC(ras.last_ey);
ey2 = TRUNC(to_y); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
fy1 = ras.y - ras.last_ey;
fy2 = to_y - SUBPIXELS(ey2);
dx = to_x - ras.x;
dy = to_y - ras.y;
/* we should do something about the trivial case where dx == 0, */
/* as it happens very often !! ... XXXXX */
/* perform vertical clipping */
{
TScan min, max;
min = ey1;
max = ey2;
if (ey1 > ey2)
{
min = ey2;
max = ey1;
}
if (min >= ras.max_ey || max < ras.min_ey)
goto Fin;
}
/* everything is on a single scanline */
if ( ey1 == ey2 )
{
if (render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 )) goto Error;
goto Fin;
}
/* ok, we'll have to render several scanlines */
p = (ONE_PIXEL-fy1)*dx;
first = ONE_PIXEL;
incr = 1;
if ( dy < 0 )
{
p = fy1*dx;
first = 0;
incr = -1;
dy = -dy;
}
delta = p / dy;
mod = p % dy;
if (mod < 0)
{
delta--;
mod += dy;
}
x = ras.x + delta;
if (render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first )) goto Error;
ey1 += incr;
if (set_cell( RAS_VAR_ TRUNC(x), ey1 )) goto Error;
if (ey1 != ey2)
{
p = ONE_PIXEL*dx;
lift = p / dy;
rem = p % dy;
if (rem < 0)
{
lift--;
rem += dy;
}
mod -= dy;
while (ey1 != ey2)
{
delta = lift;
mod += rem;
if (mod >= 0)
{
mod -= dy;
delta++;
}
x2 = x + delta;
if (render_scanline( RAS_VAR_ ey1, x, ONE_PIXEL-first, x2, first )) goto Error;
x = x2;
ey1 += incr;
if (set_cell( RAS_VAR_ TRUNC(x), ey1 )) goto Error;
}
}
if (render_scanline( RAS_VAR_ ey1, x, ONE_PIXEL-first, to_x, fy2 )) goto Error;
Fin:
ras.x = to_x;
ras.y = to_y;
ras.last_ey = SUBPIXELS(ey2);
return 0;
Error:
return 1;
}
static
void split_conic( FT_Vector* base )
{
TPos a, b;
base[4].x = base[2].x;
b = base[1].x;
a = base[3].x = ( base[2].x + b )/2;
b = base[1].x = ( base[0].x + b )/2;
base[2].x = ( a + b ) / 2;
base[4].y = base[2].y;
b = base[1].y;
a = base[3].y = ( base[2].y + b )/2;
b = base[1].y = ( base[0].y + b )/2;
base[2].y = ( a + b ) / 2;
}
static
int render_conic( RAS_ARG_ FT_Vector* control, FT_Vector* to )
{
TPos dx, dy;
int top, level;
int* levels;
FT_Vector* arc;
dx = DOWNSCALE(ras.x) + to->x - (control->x << 1); if (dx < 0) dx = -dx;
dy = DOWNSCALE(ras.y) + to->y - (control->y << 1); if (dy < 0) dy = -dy;
if (dx < dy) dx = dy;
level = 1;
dx = dx/ras.conic_level;
while ( dx > 0 )
{
dx >>= 1;
level++;
}
/* a shortcut to speed things up */
if (level <= 1)
{
/* we compute the mid-point directly in order to avoid */
/* calling split_conic().. */
TPos to_x, to_y, mid_x, mid_y;
to_x = UPSCALE(to->x);
to_y = UPSCALE(to->y);
mid_x = (ras.x + to_x + 2*UPSCALE(control->x))/4;
mid_y = (ras.y + to_y + 2*UPSCALE(control->y))/4;
return render_line( RAS_VAR_ mid_x, mid_y ) ||
render_line( RAS_VAR_ to_x, to_y );
}
arc = ras.bez_stack;
levels = ras.lev_stack;
top = 0;
levels[0] = level;
arc[0].x = UPSCALE(to->x);
arc[0].y = UPSCALE(to->y);
arc[1].x = UPSCALE(control->x);
arc[1].y = UPSCALE(control->y);
arc[2].x = ras.x;
arc[2].y = ras.y;
while (top >= 0)
{
level = levels[top];
if (level > 1)
{
/* check that the arc crosses the current band */
TPos min, max, y;
min = max = arc[0].y;
y = arc[1].y;
if ( y < min ) min = y;
if ( y > max ) max = y;
y = arc[2].y;
if ( y < min ) min = y;
if ( y > max ) max = y;
if ( TRUNC(min) >= ras.max_ey || TRUNC(max) < 0 )
goto Draw;
split_conic(arc);
arc += 2;
top ++;
levels[top] = levels[top-1] = level-1;
continue;
}
Draw:
{
TPos to_x, to_y, mid_x, mid_y;
to_x = arc[0].x;
to_y = arc[0].y;
mid_x = (ras.x + to_x + 2*arc[1].x)/4;
mid_y = (ras.y + to_y + 2*arc[1].y)/4;
if ( render_line( RAS_VAR_ mid_x, mid_y ) ||
render_line( RAS_VAR_ to_x, to_y ) ) return 1;
top--;
arc -= 2;
}
}
return 0;
}
static
void split_cubic( FT_Vector* base )
{
TPos a, b, c, d;
base[6].x = base[3].x;
c = base[1].x;
d = base[2].x;
base[1].x = a = ( base[0].x + c ) / 2;
base[5].x = b = ( base[3].x + d ) / 2;
c = ( c + d ) / 2;
base[2].x = a = ( a + c ) / 2;
base[4].x = b = ( b + c ) / 2;
base[3].x = ( a + b ) / 2;
base[6].y = base[3].y;
c = base[1].y;
d = base[2].y;
base[1].y = a = ( base[0].y + c ) / 2;
base[5].y = b = ( base[3].y + d ) / 2;
c = ( c + d ) / 2;
base[2].y = a = ( a + c ) / 2;
base[4].y = b = ( b + c ) / 2;
base[3].y = ( a + b ) / 2;
}
static
int render_cubic( RAS_ARG_ FT_Vector* control1,
FT_Vector* control2,
FT_Vector* to )
{
TPos dx, dy, da, db;
int top, level;
int* levels;
FT_Vector* arc;
dx = DOWNSCALE(ras.x) + to->x - (control1->x << 1); if (dx < 0) dx = -dx;
dy = DOWNSCALE(ras.y) + to->y - (control1->y << 1); if (dy < 0) dy = -dy;
if (dx < dy) dx = dy;
da = dx;
dx = DOWNSCALE(ras.x) + to->x - 3*(control1->x + control2->x); if (dx < 0) dx = -dx;
dy = DOWNSCALE(ras.y) + to->y - 3*(control1->x + control2->y); if (dy < 0) dy = -dy;
if (dx < dy) dx = dy;
db = dx;
level = 1;
da = da/ras.cubic_level;
db = db/ras.conic_level;
while ( da > 0 || db > 0 )
{
da >>= 1;
db >>= 2;
level++;
}
if (level <= 1)
{
TPos to_x, to_y, mid_x, mid_y;
to_x = UPSCALE(to->x);
to_y = UPSCALE(to->y);
mid_x = (ras.x + to_x + 3*UPSCALE(control1->x+control2->x))/8;
mid_y = (ras.y + to_y + 3*UPSCALE(control1->y+control2->y))/8;
return render_line( RAS_VAR_ mid_x, mid_y ) ||
render_line( RAS_VAR_ to_x, to_y );
}
arc = ras.bez_stack;
arc[0].x = UPSCALE(to->x);
arc[0].y = UPSCALE(to->y);
arc[1].x = UPSCALE(control2->x);
arc[1].y = UPSCALE(control2->y);
arc[2].x = UPSCALE(control1->x);
arc[2].y = UPSCALE(control1->y);
arc[3].x = ras.x;
arc[3].y = ras.y;
levels = ras.lev_stack;
top = 0;
levels[0] = level;
while (top >= 0)
{
level = levels[top];
if (level > 1)
{
/* check that the arc crosses the current band */
TPos min, max, y;
min = max = arc[0].y;
y = arc[1].y;
if ( y < min ) min = y;
if ( y > max ) max = y;
y = arc[2].y;
if ( y < min ) min = y;
if ( y > max ) max = y;
y = arc[3].y;
if ( y < min ) min = y;
if ( y > max ) max = y;
if ( TRUNC(min) >= ras.max_ey || TRUNC(max) < 0 )
goto Draw;
split_cubic(arc);
arc += 3;
top ++;
levels[top] = levels[top-1] = level-1;
continue;
}
Draw:
{
TPos to_x, to_y, mid_x, mid_y;
to_x = arc[0].x;
to_y = arc[0].y;
mid_x = (ras.x + to_x + 3*(arc[1].x+arc[2].x))/8;
mid_y = (ras.y + to_y + 3*(arc[1].y+arc[2].y))/8;
if ( render_line( RAS_VAR_ mid_x, mid_y ) ||
render_line( RAS_VAR_ to_x, to_y ) ) return 1;
top --;
arc -= 3;
}
}
return 0;
}
/* a macro comparing two cell pointers. returns true if a <= b */
#if 1
#define PACK(a) ( ((long)(a)->y << 16) | (a)->x )
#define LESS_THAN(a,b) ( PACK(a) < PACK(b) )
#else
#define LESS_THAN(a,b) ( (a)->y<(b)->y || ((a)->y==(b)->y && (a)->x < (b)->x) )
#endif
#define SWAP_CELLS(a,b,temp) { temp = *(a); *(a) = *(b); *(b) = temp; }
#define DEBUG_SORT
#define QUICK_SORT
#ifdef SHELL_SORT
/* A simple shell sort algorithm that works directly on our */
/* cells table.. */
static
void shell_sort ( PCell cells,
int count )
{
PCell i, j, limit = cells + count;
TCell temp;
int gap;
/* compute initial gap */
for (gap = 0; ++gap < count; gap *=3 );
while ( gap /= 3 )
{
for ( i = cells+gap; i < limit; i++ )
{
for ( j = i-gap; ; j -= gap )
{
PCell k = j+gap;
if ( LESS_THAN(j,k) )
break;
SWAP_CELLS(j,k,temp);
if ( j < cells+gap )
break;
}
}
}
}
#endif
#ifdef QUICK_SORT
/* this is a non-recursive quicksort that directly process our cells array */
/* it should be faster than calling the stdlib qsort(), and we can even */
/* tailor our insertion threshold... */
#define QSORT_THRESHOLD 9 /* below this size, a sub-array will be sorted */
/* through a normal insertion sort.. */
static
void quick_sort( PCell cells,
int count )
{
PCell stack[40]; /* should be enough ;-) */
PCell* top; /* top of stack */
PCell base, limit;
TCell temp;
limit = cells + count;
base = cells;
top = stack;
for (;;)
{
int len = limit-base;
PCell i, j, pivot;
if ( len > QSORT_THRESHOLD)
{
/* we use base+len/2 as the pivot */
pivot = base + len/2;
SWAP_CELLS( base, pivot, temp );
i = base + 1;
j = limit-1;
/* now ensure that *i <= *base <= *j */
if (LESS_THAN(j,i))
SWAP_CELLS( i, j, temp );
if (LESS_THAN(base,i))
SWAP_CELLS( base, i, temp );
if (LESS_THAN(j,base))
SWAP_CELLS( base, j, temp );
for (;;)
{
do i++; while (LESS_THAN(i,base));
do j--; while (LESS_THAN(base,j));
if (i > j)
break;
SWAP_CELLS( i,j, temp );
}
SWAP_CELLS( base, j, temp );
/* now, push the largest sub-array */
if ( j - base > limit -i )
{
top[0] = base;
top[1] = j;
base = i;
}
else
{
top[0] = i;
top[1] = limit;
limit = j;
}
top += 2;
}
else
{
/* the sub-array is small, perform insertion sort */
j = base;
i = j+1;
for ( ; i < limit; j = i, i++ )
{
for ( ; LESS_THAN(j+1,j); j-- )
{
SWAP_CELLS( j+1, j, temp );
if (j == base)
break;
}
}
if (top > stack)
{
top -= 2;
base = top[0];
limit = top[1];
}
else
break;
}
}
}
#endif
#ifdef DEBUG_GRAYS
#ifdef DEBUG_SORT
static
int check_sort( PCell cells, int count )
{
PCell p, q;
for ( p = cells + count-2; p >= cells; p-- )
{
q = p+1;
if (!LESS_THAN(p,q))
return 0;
}
return 1;
}
#endif
#endif
static
int Move_To( FT_Vector* to,
FT_Raster raster )
{
TPos x, y;
/* record current cell, if any */
record_cell( (PRaster)raster );
/* start to a new position */
x = UPSCALE(to->x);
y = UPSCALE(to->y);
start_cell( (PRaster)raster, TRUNC(x), TRUNC(y) );
((PRaster)raster)->x = x;
((PRaster)raster)->y = y;
return 0;
}
static
int Line_To( FT_Vector* to,
FT_Raster raster )
{
return render_line( (PRaster)raster, UPSCALE(to->x), UPSCALE(to->y) );
}
static
int Conic_To( FT_Vector* control,
FT_Vector* to,
FT_Raster raster )
{
return render_conic( (PRaster)raster, control, to );
}
static
int Cubic_To( FT_Vector* control1,
FT_Vector* control2,
FT_Vector* to,
FT_Raster raster )
{
return render_cubic( (PRaster)raster, control1, control2, to );
}
static
void grays_render_span( int y, int count, FT_Span* spans, PRaster raster )
{
unsigned char *p;
FT_Bitmap* map = &raster->target;
/* first of all, compute the scanline offset */
p = (unsigned char*)map->buffer - y*map->pitch;
if (map->pitch >= 0)
p += (map->rows-1)*map->pitch;
for ( ; count > 0; count--, spans++ )
{
if (spans->coverage)
#if 1
memset( p + spans->x, (spans->coverage+1) >> 1, spans->len );
#else
{
q = p + spans->x;
limit = q + spans->len;
for ( ; q < limit; q++ )
q[0] = (spans->coverage+1) >> 1;
}
#endif
}
}
#ifdef DEBUG_GRAYS
#include <stdio.h>
static
void dump_cells( RAS_ARG )
{
PCell cell, limit;
int y = -1;
cell = ras.cells;
limit = cell + ras.num_cells;
for ( ; cell < limit; cell++ )
{
if ( cell->y != y )
{
fprintf( stderr, "\n%2d: ", cell->y );
y = cell->y;
}
fprintf( stderr, "[%d %d %d]",
cell->x, cell->area, cell->cover );
}
fprintf(stderr, "\n" );
}
#endif
static
void grays_hline( RAS_ARG_ TScan x, TScan y, TPos area, int acount )
{
FT_Span* span;
int count;
int coverage;
/* compute the coverage line's coverage, depending on the */
/* outline fill rule.. */
/* */
/* The coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
/* */
coverage = area >> (PIXEL_BITS*2+1-8); /* use range 0..256 */
if ( ras.outline.flags & ft_outline_even_odd_fill )
{
if (coverage < 0)
coverage = -coverage;
while (coverage >= 512)
coverage -= 512;
if (coverage > 256)
coverage = 0;
else if (coverage == 256)
coverage = 255;
}
else
{
/* normal non-zero winding rule */
if (coverage < 0)
coverage = -coverage;
if (coverage >= 256)
coverage = 255;
}
y += ras.min_ey;
if (coverage)
{
/* see if we can add this span to the current list */
count = ras.num_gray_spans;
span = ras.gray_spans + count-1;
if (count > 0 && ras.span_y == y && (int)span->x + span->len == (int)x &&
span->coverage == coverage)
{
span->len += acount;
return;
}
if ( ras.span_y != y || count >= FT_MAX_GRAY_SPANS)
{
if (ras.render_span)
ras.render_span( ras.span_y, count, ras.gray_spans,
ras.render_span_data );
/* ras.render_span( span->y, ras.gray_spans, count ); */
#ifdef DEBUG_GRAYS
if (ras.span_y >= 0)
{
int n;
fprintf( stderr, "y=%3d ", ras.span_y );
span = ras.gray_spans;
for (n = 0; n < count; n++, span++)
fprintf( stderr, "[%d..%d]:%02x ",
span->x, span->x + span->len-1, span->coverage );
fprintf( stderr, "\n" );
}
#endif
ras.num_gray_spans = 0;
ras.span_y = y;
count = 0;
span = ras.gray_spans;
}
else
span++;
/* add a gray span to the current list */
span->x = (short)x;
span->len = (unsigned short)acount;
span->coverage = (unsigned char)coverage;
ras.num_gray_spans++;
}
}
static
void grays_sweep( RAS_ARG_ FT_Bitmap* target )
{
TScan x, y, cover, area;
PCell start, cur, limit;
target=target;
cur = ras.cells;
limit = cur + ras.num_cells;
cover = 0;
ras.span_y = -1;
ras.num_gray_spans = 0;
for (;;)
{
start = cur;
y = start->y;
x = start->x;
area = start->area;
cover += start->cover;
/* accumulate all start cells */
for (;;)
{
++cur;
if (cur >= limit || cur->y != start->y || cur->x != start->x)
break;
area += cur->area;
cover += cur->cover;
}
/* if the start cell has a non-null area, we must draw an */
/* individual gray pixel there.. */
if (area && x >= 0)
{
grays_hline( RAS_VAR_ x, y, cover*(ONE_PIXEL*2)-area, 1 );
x++;
}
if (x < 0)
x = 0;
if (cur < limit && start->y == cur->y)
{
/* draw a gray span between the start cell and the current one */
if (cur->x > x)
grays_hline( RAS_VAR_ x, y, cover*(ONE_PIXEL*2), cur->x - x );
}
else
{
/* draw a gray span until the end of the clipping region */
if (cover && x < ras.max_ex)
grays_hline( RAS_VAR_ x, y, cover*(ONE_PIXEL*2), ras.max_ex - x );
cover = 0;
}
if (cur >= limit)
break;
}
if (ras.render_span && ras.num_gray_spans > 0)
ras.render_span( ras.span_y, ras.num_gray_spans,
ras.gray_spans, ras.render_span_data );
#ifdef DEBUG_GRAYS
{
int n;
FT_Span* span;
fprintf( stderr, "y=%3d ", ras.span_y );
span = ras.gray_spans;
for (n = 0; n < ras.num_gray_spans; n++, span++)
fprintf( stderr, "[%d..%d]:%02x ", span->x, span->x+span->len-1,span->coverage );
fprintf( stderr, "\n" );
}
#endif
}
typedef struct TBand_
{
FT_Pos min, max;
} TBand;
static
int grays_convert_glyph( RAS_ARG_ FT_Outline* outline )
{
static
FT_Outline_Funcs interface =
{
(FT_Outline_MoveTo_Func)Move_To,
(FT_Outline_LineTo_Func)Line_To,
(FT_Outline_ConicTo_Func)Conic_To,
(FT_Outline_CubicTo_Func)Cubic_To,
0,
0
};
TBand bands[40], *band;
int n, num_bands;
TPos min, max, max_y;
/* Set up state in the raster object */
compute_cbox( RAS_VAR_ outline );
/* clip to target bitmap, exit if nothing to do */
if ( ras.max_ex <= 0 || ras.min_ex >= ras.target.width ||
ras.max_ey <= 0 || ras.min_ey >= ras.target.rows )
return 0;
if (ras.min_ex < 0) ras.min_ex = 0;
if (ras.min_ey < 0) ras.min_ey = 0;
if (ras.max_ex > ras.target.width) ras.max_ex = ras.target.width;
if (ras.max_ey > ras.target.rows) ras.max_ey = ras.target.rows;
/* simple heuristic used to speed-up the bezier decomposition */
/* see the code in render_conic and render_cubic for more details */
ras.conic_level = 32;
ras.cubic_level = 16;
{
int level = 0;
if (ras.max_ex > 24 || ras.max_ey > 24)
level++;
if (ras.max_ex > 120 || ras.max_ey > 120)
level+=2;
ras.conic_level <<= level;
ras.cubic_level <<= level;
}
/* setup vertical bands */
num_bands = (ras.max_ey - ras.min_ey)/ras.band_size;
if (num_bands == 0) num_bands = 1;
if (num_bands >= 39) num_bands = 39;
ras.band_shoot = 0;
min = ras.min_ey;
max_y = ras.max_ey;
for ( n = 0; n < num_bands; n++, min = max )
{
max = min + ras.band_size;
if (n == num_bands-1 || max > max_y)
max = max_y;
bands[0].min = min;
bands[0].max = max;
band = bands;
while (band >= bands)
{
FT_Pos bottom, top, middle;
int error;
ras.num_cells = 0;
ras.invalid = 1;
ras.min_ey = band->min;
ras.max_ey = band->max;
error = FT_Outline_Decompose( outline, &interface, &ras ) ||
record_cell( RAS_VAR );
if (!error)
{
#ifdef SHELL_SORT
shell_sort( ras.cells, ras.num_cells );
#else
quick_sort( ras.cells, ras.num_cells );
#endif
#ifdef DEBUG_GRAYS
check_sort( ras.cells, ras.num_cells );
dump_cells( RAS_VAR );
#endif
grays_sweep( RAS_VAR_ &ras.target );
band--;
continue;
}
/* render pool overflow, we will reduce the render band by half */
bottom = band->min;
top = band->max;
middle = bottom + ((top-bottom) >> 1);
/* waoow !! this is too complex for a single scanline, something */
/* must be really rotten here !! */
if (middle == bottom)
{
#ifdef DEBUG_GRAYS
fprintf( stderr, "Rotten glyph !!\n" );
#endif
return 1;
}
if (bottom-top >= ras.band_size)
ras.band_shoot++;
band[1].min = bottom;
band[1].max = middle;
band[0].min = middle;
band[0].max = top;
band++;
}
}
if (ras.band_shoot > 8 && ras.band_size > 16)
ras.band_size = ras.band_size/2;
return 0;
}
extern
int grays_raster_render( PRaster raster,
FT_Raster_Params* params )
{
FT_Outline* outline = (FT_Outline*)params->source;
FT_Bitmap* target_map = params->target;
if ( !raster || !raster->cells || !raster->max_cells )
return -1;
/* return immediately if the outline is empty */
if ( outline->n_points == 0 || outline->n_contours <= 0 )
return 0;
if ( !outline || !outline->contours || !outline->points )
return -1;
if ( outline->n_points != outline->contours[outline->n_contours - 1] + 1 )
return -1;
if ( !target_map || !target_map->buffer )
return -1;
/* XXXX: this version does not support monochrome rendering yet ! */
if ( !(params->flags & ft_raster_flag_aa) )
return -1;
ras.outline = *outline;
ras.target = *target_map;
ras.num_cells = 0;
ras.invalid = 1;
ras.render_span = (FT_Raster_Span_Func)grays_render_span;
ras.render_span_data = &ras;
if ( params->flags & ft_raster_flag_direct )
{
ras.render_span = (FT_Raster_Span_Func)params->gray_spans;
ras.render_span_data = params->user;
}
return grays_convert_glyph( (PRaster)raster, outline );
}
/**** RASTER OBJECT CREATION : in standalone mode, we simply use *****/
/**** a static object .. *****/
#ifdef _STANDALONE_
static
int grays_raster_new( void* memory, FT_Raster *araster )
{
static FT_RasterRec_ the_raster;
*araster = &the_raster;
memset( &the_raster, sizeof(the_raster), 0 );
return 0;
}
static
void grays_raster_done( FT_Raster raster )
{
/* nothing */
(void)raster;
}
#else
#include <freetype/internal/ftobjs.h>
static
int grays_raster_new( FT_Memory memory, FT_Raster* araster )
{
FT_Error error;
PRaster raster;
*araster = 0;
if ( !ALLOC( raster, sizeof(TRaster) ))
{
raster->memory = memory;
*araster = (FT_Raster)raster;
}
return error;
}
static
void grays_raster_done( FT_Raster raster )
{
FT_Memory memory = (FT_Memory)((PRaster)raster)->memory;
FREE( raster );
}
#endif
static
void grays_raster_reset( FT_Raster raster,
const char* pool_base,
long pool_size )
{
PRaster rast = (PRaster)raster;
if (raster && pool_base && pool_size >= 4096)
init_cells( rast, (char*)pool_base, pool_size );
rast->band_size = (pool_size / sizeof(TCell))/8;
}
FT_Raster_Funcs ft_grays_raster =
{
ft_glyph_format_outline,
(FT_Raster_New_Func) grays_raster_new,
(FT_Raster_Reset_Func) grays_raster_reset,
(FT_Raster_Set_Mode_Func) 0,
(FT_Raster_Render_Func) grays_raster_render,
(FT_Raster_Done_Func) grays_raster_done
};