| /**************************************************************************** |
| * |
| * afhints.c |
| * |
| * Auto-fitter hinting routines (body). |
| * |
| * Copyright (C) 2003-2022 by |
| * David Turner, Robert Wilhelm, and Werner Lemberg. |
| * |
| * This file is part of the FreeType project, and may only be used, |
| * modified, and distributed under the terms of the FreeType project |
| * license, LICENSE.TXT. By continuing to use, modify, or distribute |
| * this file you indicate that you have read the license and |
| * understand and accept it fully. |
| * |
| */ |
| |
| |
| #include "afhints.h" |
| #include "aferrors.h" |
| #include <freetype/internal/ftcalc.h> |
| #include <freetype/internal/ftdebug.h> |
| |
| |
| /************************************************************************** |
| * |
| * The macro FT_COMPONENT is used in trace mode. It is an implicit |
| * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log |
| * messages during execution. |
| */ |
| #undef FT_COMPONENT |
| #define FT_COMPONENT afhints |
| |
| |
| FT_LOCAL_DEF( void ) |
| af_sort_pos( FT_UInt count, |
| FT_Pos* table ) |
| { |
| FT_UInt i, j; |
| FT_Pos swap; |
| |
| |
| for ( i = 1; i < count; i++ ) |
| { |
| for ( j = i; j > 0; j-- ) |
| { |
| if ( table[j] >= table[j - 1] ) |
| break; |
| |
| swap = table[j]; |
| table[j] = table[j - 1]; |
| table[j - 1] = swap; |
| } |
| } |
| } |
| |
| |
| FT_LOCAL_DEF( void ) |
| af_sort_and_quantize_widths( FT_UInt* count, |
| AF_Width table, |
| FT_Pos threshold ) |
| { |
| FT_UInt i, j; |
| FT_UInt cur_idx; |
| FT_Pos cur_val; |
| FT_Pos sum; |
| AF_WidthRec swap; |
| |
| |
| if ( *count == 1 ) |
| return; |
| |
| /* sort */ |
| for ( i = 1; i < *count; i++ ) |
| { |
| for ( j = i; j > 0; j-- ) |
| { |
| if ( table[j].org >= table[j - 1].org ) |
| break; |
| |
| swap = table[j]; |
| table[j] = table[j - 1]; |
| table[j - 1] = swap; |
| } |
| } |
| |
| cur_idx = 0; |
| cur_val = table[cur_idx].org; |
| |
| /* compute and use mean values for clusters not larger than */ |
| /* `threshold'; this is very primitive and might not yield */ |
| /* the best result, but normally, using reference character */ |
| /* `o', `*count' is 2, so the code below is fully sufficient */ |
| for ( i = 1; i < *count; i++ ) |
| { |
| if ( table[i].org - cur_val > threshold || |
| i == *count - 1 ) |
| { |
| sum = 0; |
| |
| /* fix loop for end of array */ |
| if ( table[i].org - cur_val <= threshold && |
| i == *count - 1 ) |
| i++; |
| |
| for ( j = cur_idx; j < i; j++ ) |
| { |
| sum += table[j].org; |
| table[j].org = 0; |
| } |
| table[cur_idx].org = sum / (FT_Pos)j; |
| |
| if ( i < *count - 1 ) |
| { |
| cur_idx = i + 1; |
| cur_val = table[cur_idx].org; |
| } |
| } |
| } |
| |
| cur_idx = 1; |
| |
| /* compress array to remove zero values */ |
| for ( i = 1; i < *count; i++ ) |
| { |
| if ( table[i].org ) |
| table[cur_idx++] = table[i]; |
| } |
| |
| *count = cur_idx; |
| } |
| |
| /* Get new segment for given axis. */ |
| |
| FT_LOCAL_DEF( FT_Error ) |
| af_axis_hints_new_segment( AF_AxisHints axis, |
| FT_Memory memory, |
| AF_Segment *asegment ) |
| { |
| FT_Error error = FT_Err_Ok; |
| AF_Segment segment = NULL; |
| |
| |
| if ( axis->num_segments < AF_SEGMENTS_EMBEDDED ) |
| { |
| if ( !axis->segments ) |
| { |
| axis->segments = axis->embedded.segments; |
| axis->max_segments = AF_SEGMENTS_EMBEDDED; |
| } |
| } |
| else if ( axis->num_segments >= axis->max_segments ) |
| { |
| FT_UInt old_max = axis->max_segments; |
| FT_UInt new_max = old_max; |
| FT_UInt big_max = FT_INT_MAX / sizeof ( *segment ); |
| |
| |
| if ( old_max >= big_max ) |
| { |
| error = FT_THROW( Out_Of_Memory ); |
| goto Exit; |
| } |
| |
| new_max += ( new_max >> 2 ) + 4; |
| if ( new_max < old_max || new_max > big_max ) |
| new_max = big_max; |
| |
| if ( axis->segments == axis->embedded.segments ) |
| { |
| if ( FT_NEW_ARRAY( axis->segments, new_max ) ) |
| goto Exit; |
| ft_memcpy( axis->segments, axis->embedded.segments, |
| sizeof ( axis->embedded.segments ) ); |
| } |
| else |
| { |
| if ( FT_RENEW_ARRAY( axis->segments, old_max, new_max ) ) |
| goto Exit; |
| } |
| |
| axis->max_segments = new_max; |
| } |
| |
| segment = axis->segments + axis->num_segments++; |
| |
| Exit: |
| *asegment = segment; |
| return error; |
| } |
| |
| |
| /* Get new edge for given axis, direction, and position, */ |
| /* without initializing the edge itself. */ |
| |
| FT_LOCAL( FT_Error ) |
| af_axis_hints_new_edge( AF_AxisHints axis, |
| FT_Int fpos, |
| AF_Direction dir, |
| FT_Bool top_to_bottom_hinting, |
| FT_Memory memory, |
| AF_Edge *anedge ) |
| { |
| FT_Error error = FT_Err_Ok; |
| AF_Edge edge = NULL; |
| AF_Edge edges; |
| |
| |
| if ( axis->num_edges < AF_EDGES_EMBEDDED ) |
| { |
| if ( !axis->edges ) |
| { |
| axis->edges = axis->embedded.edges; |
| axis->max_edges = AF_EDGES_EMBEDDED; |
| } |
| } |
| else if ( axis->num_edges >= axis->max_edges ) |
| { |
| FT_UInt old_max = axis->max_edges; |
| FT_UInt new_max = old_max; |
| FT_UInt big_max = FT_INT_MAX / sizeof ( *edge ); |
| |
| |
| if ( old_max >= big_max ) |
| { |
| error = FT_THROW( Out_Of_Memory ); |
| goto Exit; |
| } |
| |
| new_max += ( new_max >> 2 ) + 4; |
| if ( new_max < old_max || new_max > big_max ) |
| new_max = big_max; |
| |
| if ( axis->edges == axis->embedded.edges ) |
| { |
| if ( FT_NEW_ARRAY( axis->edges, new_max ) ) |
| goto Exit; |
| ft_memcpy( axis->edges, axis->embedded.edges, |
| sizeof ( axis->embedded.edges ) ); |
| } |
| else |
| { |
| if ( FT_RENEW_ARRAY( axis->edges, old_max, new_max ) ) |
| goto Exit; |
| } |
| |
| axis->max_edges = new_max; |
| } |
| |
| edges = axis->edges; |
| edge = edges + axis->num_edges; |
| |
| while ( edge > edges ) |
| { |
| if ( top_to_bottom_hinting ? ( edge[-1].fpos > fpos ) |
| : ( edge[-1].fpos < fpos ) ) |
| break; |
| |
| /* we want the edge with same position and minor direction */ |
| /* to appear before those in the major one in the list */ |
| if ( edge[-1].fpos == fpos && dir == axis->major_dir ) |
| break; |
| |
| edge[0] = edge[-1]; |
| edge--; |
| } |
| |
| axis->num_edges++; |
| |
| Exit: |
| *anedge = edge; |
| return error; |
| } |
| |
| |
| #ifdef FT_DEBUG_AUTOFIT |
| |
| #include FT_CONFIG_STANDARD_LIBRARY_H |
| |
| /* The dump functions are used in the `ftgrid' demo program, too. */ |
| #define AF_DUMP( varformat ) \ |
| do \ |
| { \ |
| if ( to_stdout ) \ |
| printf varformat; \ |
| else \ |
| FT_TRACE7( varformat ); \ |
| } while ( 0 ) |
| |
| |
| static const char* |
| af_dir_str( AF_Direction dir ) |
| { |
| const char* result; |
| |
| |
| switch ( dir ) |
| { |
| case AF_DIR_UP: |
| result = "up"; |
| break; |
| case AF_DIR_DOWN: |
| result = "down"; |
| break; |
| case AF_DIR_LEFT: |
| result = "left"; |
| break; |
| case AF_DIR_RIGHT: |
| result = "right"; |
| break; |
| default: |
| result = "none"; |
| } |
| |
| return result; |
| } |
| |
| |
| #define AF_INDEX_NUM( ptr, base ) (int)( (ptr) ? ( (ptr) - (base) ) : -1 ) |
| |
| |
| static char* |
| af_print_idx( char* p, |
| int idx ) |
| { |
| if ( idx == -1 ) |
| { |
| p[0] = '-'; |
| p[1] = '-'; |
| p[2] = '\0'; |
| } |
| else |
| ft_sprintf( p, "%d", idx ); |
| |
| return p; |
| } |
| |
| |
| static int |
| af_get_segment_index( AF_GlyphHints hints, |
| int point_idx, |
| int dimension ) |
| { |
| AF_AxisHints axis = &hints->axis[dimension]; |
| AF_Point point = hints->points + point_idx; |
| AF_Segment segments = axis->segments; |
| AF_Segment limit = segments + axis->num_segments; |
| AF_Segment segment; |
| |
| |
| for ( segment = segments; segment < limit; segment++ ) |
| { |
| if ( segment->first <= segment->last ) |
| { |
| if ( point >= segment->first && point <= segment->last ) |
| break; |
| } |
| else |
| { |
| AF_Point p = segment->first; |
| |
| |
| for (;;) |
| { |
| if ( point == p ) |
| goto Exit; |
| |
| if ( p == segment->last ) |
| break; |
| |
| p = p->next; |
| } |
| } |
| } |
| |
| Exit: |
| if ( segment == limit ) |
| return -1; |
| |
| return (int)( segment - segments ); |
| } |
| |
| |
| static int |
| af_get_edge_index( AF_GlyphHints hints, |
| int segment_idx, |
| int dimension ) |
| { |
| AF_AxisHints axis = &hints->axis[dimension]; |
| AF_Edge edges = axis->edges; |
| AF_Segment segment = axis->segments + segment_idx; |
| |
| |
| return segment_idx == -1 ? -1 : AF_INDEX_NUM( segment->edge, edges ); |
| } |
| |
| |
| static int |
| af_get_strong_edge_index( AF_GlyphHints hints, |
| AF_Edge* strong_edges, |
| int dimension ) |
| { |
| AF_AxisHints axis = &hints->axis[dimension]; |
| AF_Edge edges = axis->edges; |
| |
| |
| return AF_INDEX_NUM( strong_edges[dimension], edges ); |
| } |
| |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| void |
| af_glyph_hints_dump_points( AF_GlyphHints hints, |
| FT_Bool to_stdout ) |
| { |
| AF_Point points = hints->points; |
| AF_Point limit = points + hints->num_points; |
| AF_Point* contour = hints->contours; |
| AF_Point* climit = contour + hints->num_contours; |
| AF_Point point; |
| |
| |
| AF_DUMP(( "Table of points:\n" )); |
| |
| if ( hints->num_points ) |
| { |
| AF_DUMP(( " index hedge hseg vedge vseg flags " |
| /* " XXXXX XXXXX XXXXX XXXXX XXXXX XXXXXX" */ |
| " xorg yorg xscale yscale xfit yfit " |
| /* " XXXXX XXXXX XXXX.XX XXXX.XX XXXX.XX XXXX.XX" */ |
| " hbef haft vbef vaft" )); |
| /* " XXXXX XXXXX XXXXX XXXXX" */ |
| } |
| else |
| AF_DUMP(( " (none)\n" )); |
| |
| for ( point = points; point < limit; point++ ) |
| { |
| int point_idx = AF_INDEX_NUM( point, points ); |
| int segment_idx_0 = af_get_segment_index( hints, point_idx, 0 ); |
| int segment_idx_1 = af_get_segment_index( hints, point_idx, 1 ); |
| |
| char buf1[16], buf2[16], buf3[16], buf4[16]; |
| char buf5[16], buf6[16], buf7[16], buf8[16]; |
| |
| |
| /* insert extra newline at the beginning of a contour */ |
| if ( contour < climit && *contour == point ) |
| { |
| AF_DUMP(( "\n" )); |
| contour++; |
| } |
| |
| AF_DUMP(( " %5d %5s %5s %5s %5s %s" |
| " %5d %5d %7.2f %7.2f %7.2f %7.2f" |
| " %5s %5s %5s %5s\n", |
| point_idx, |
| af_print_idx( buf1, |
| af_get_edge_index( hints, segment_idx_1, 1 ) ), |
| af_print_idx( buf2, segment_idx_1 ), |
| af_print_idx( buf3, |
| af_get_edge_index( hints, segment_idx_0, 0 ) ), |
| af_print_idx( buf4, segment_idx_0 ), |
| ( point->flags & AF_FLAG_NEAR ) |
| ? " near " |
| : ( point->flags & AF_FLAG_WEAK_INTERPOLATION ) |
| ? " weak " |
| : "strong", |
| |
| point->fx, |
| point->fy, |
| point->ox / 64.0, |
| point->oy / 64.0, |
| point->x / 64.0, |
| point->y / 64.0, |
| |
| af_print_idx( buf5, af_get_strong_edge_index( hints, |
| point->before, |
| 1 ) ), |
| af_print_idx( buf6, af_get_strong_edge_index( hints, |
| point->after, |
| 1 ) ), |
| af_print_idx( buf7, af_get_strong_edge_index( hints, |
| point->before, |
| 0 ) ), |
| af_print_idx( buf8, af_get_strong_edge_index( hints, |
| point->after, |
| 0 ) ) )); |
| } |
| AF_DUMP(( "\n" )); |
| } |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| |
| static const char* |
| af_edge_flags_to_string( FT_UInt flags ) |
| { |
| static char temp[32]; |
| int pos = 0; |
| |
| |
| if ( flags & AF_EDGE_ROUND ) |
| { |
| ft_memcpy( temp + pos, "round", 5 ); |
| pos += 5; |
| } |
| if ( flags & AF_EDGE_SERIF ) |
| { |
| if ( pos > 0 ) |
| temp[pos++] = ' '; |
| ft_memcpy( temp + pos, "serif", 5 ); |
| pos += 5; |
| } |
| if ( pos == 0 ) |
| return "normal"; |
| |
| temp[pos] = '\0'; |
| |
| return temp; |
| } |
| |
| |
| /* Dump the array of linked segments. */ |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| void |
| af_glyph_hints_dump_segments( AF_GlyphHints hints, |
| FT_Bool to_stdout ) |
| { |
| FT_Int dimension; |
| |
| |
| for ( dimension = 1; dimension >= 0; dimension-- ) |
| { |
| AF_AxisHints axis = &hints->axis[dimension]; |
| AF_Point points = hints->points; |
| AF_Edge edges = axis->edges; |
| AF_Segment segments = axis->segments; |
| AF_Segment limit = segments + axis->num_segments; |
| AF_Segment seg; |
| |
| char buf1[16], buf2[16], buf3[16]; |
| |
| |
| AF_DUMP(( "Table of %s segments:\n", |
| dimension == AF_DIMENSION_HORZ ? "vertical" |
| : "horizontal" )); |
| if ( axis->num_segments ) |
| { |
| AF_DUMP(( " index pos delta dir from to " |
| /* " XXXXX XXXXX XXXXX XXXXX XXXX XXXX" */ |
| " link serif edge" |
| /* " XXXX XXXXX XXXX" */ |
| " height extra flags\n" )); |
| /* " XXXXXX XXXXX XXXXXXXXXXX" */ |
| } |
| else |
| AF_DUMP(( " (none)\n" )); |
| |
| for ( seg = segments; seg < limit; seg++ ) |
| AF_DUMP(( " %5d %5d %5d %5s %4d %4d" |
| " %4s %5s %4s" |
| " %6d %5d %11s\n", |
| AF_INDEX_NUM( seg, segments ), |
| seg->pos, |
| seg->delta, |
| af_dir_str( (AF_Direction)seg->dir ), |
| AF_INDEX_NUM( seg->first, points ), |
| AF_INDEX_NUM( seg->last, points ), |
| |
| af_print_idx( buf1, AF_INDEX_NUM( seg->link, segments ) ), |
| af_print_idx( buf2, AF_INDEX_NUM( seg->serif, segments ) ), |
| af_print_idx( buf3, AF_INDEX_NUM( seg->edge, edges ) ), |
| |
| seg->height, |
| seg->height - ( seg->max_coord - seg->min_coord ), |
| af_edge_flags_to_string( seg->flags ) )); |
| AF_DUMP(( "\n" )); |
| } |
| } |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| |
| /* Fetch number of segments. */ |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| FT_Error |
| af_glyph_hints_get_num_segments( AF_GlyphHints hints, |
| FT_Int dimension, |
| FT_UInt* num_segments ) |
| { |
| AF_Dimension dim; |
| AF_AxisHints axis; |
| |
| |
| dim = ( dimension == 0 ) ? AF_DIMENSION_HORZ : AF_DIMENSION_VERT; |
| |
| axis = &hints->axis[dim]; |
| *num_segments = axis->num_segments; |
| |
| return FT_Err_Ok; |
| } |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| |
| /* Fetch offset of segments into user supplied offset array. */ |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| FT_Error |
| af_glyph_hints_get_segment_offset( AF_GlyphHints hints, |
| FT_Int dimension, |
| FT_UInt idx, |
| FT_Pos *offset, |
| FT_Bool *is_blue, |
| FT_Pos *blue_offset ) |
| { |
| AF_Dimension dim; |
| AF_AxisHints axis; |
| AF_Segment seg; |
| |
| |
| if ( !offset ) |
| return FT_THROW( Invalid_Argument ); |
| |
| dim = ( dimension == 0 ) ? AF_DIMENSION_HORZ : AF_DIMENSION_VERT; |
| |
| axis = &hints->axis[dim]; |
| |
| if ( idx >= axis->num_segments ) |
| return FT_THROW( Invalid_Argument ); |
| |
| seg = &axis->segments[idx]; |
| *offset = ( dim == AF_DIMENSION_HORZ ) ? seg->first->fx |
| : seg->first->fy; |
| if ( seg->edge ) |
| *is_blue = FT_BOOL( seg->edge->blue_edge ); |
| else |
| *is_blue = FALSE; |
| |
| if ( *is_blue ) |
| *blue_offset = seg->edge->blue_edge->org; |
| else |
| *blue_offset = 0; |
| |
| return FT_Err_Ok; |
| } |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| |
| /* Dump the array of linked edges. */ |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| void |
| af_glyph_hints_dump_edges( AF_GlyphHints hints, |
| FT_Bool to_stdout ) |
| { |
| FT_Int dimension; |
| |
| |
| for ( dimension = 1; dimension >= 0; dimension-- ) |
| { |
| AF_AxisHints axis = &hints->axis[dimension]; |
| AF_Edge edges = axis->edges; |
| AF_Edge limit = edges + axis->num_edges; |
| AF_Edge edge; |
| |
| char buf1[16], buf2[16]; |
| |
| |
| /* |
| * note: AF_DIMENSION_HORZ corresponds to _vertical_ edges |
| * since they have a constant X coordinate. |
| */ |
| if ( dimension == AF_DIMENSION_HORZ ) |
| AF_DUMP(( "Table of %s edges (1px=%.2fu, 10u=%.2fpx):\n", |
| "vertical", |
| 65536.0 * 64.0 / hints->x_scale, |
| 10.0 * hints->x_scale / 65536.0 / 64.0 )); |
| else |
| AF_DUMP(( "Table of %s edges (1px=%.2fu, 10u=%.2fpx):\n", |
| "horizontal", |
| 65536.0 * 64.0 / hints->y_scale, |
| 10.0 * hints->y_scale / 65536.0 / 64.0 )); |
| |
| if ( axis->num_edges ) |
| { |
| AF_DUMP(( " index pos dir link serif" |
| /* " XXXXX XXXX.XX XXXXX XXXX XXXXX" */ |
| " blue opos pos flags\n" )); |
| /* " X XXXX.XX XXXX.XX XXXXXXXXXXX" */ |
| } |
| else |
| AF_DUMP(( " (none)\n" )); |
| |
| for ( edge = edges; edge < limit; edge++ ) |
| AF_DUMP(( " %5d %7.2f %5s %4s %5s" |
| " %c %7.2f %7.2f %11s\n", |
| AF_INDEX_NUM( edge, edges ), |
| (int)edge->opos / 64.0, |
| af_dir_str( (AF_Direction)edge->dir ), |
| af_print_idx( buf1, AF_INDEX_NUM( edge->link, edges ) ), |
| af_print_idx( buf2, AF_INDEX_NUM( edge->serif, edges ) ), |
| |
| edge->blue_edge ? 'y' : 'n', |
| edge->opos / 64.0, |
| edge->pos / 64.0, |
| af_edge_flags_to_string( edge->flags ) )); |
| AF_DUMP(( "\n" )); |
| } |
| } |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #undef AF_DUMP |
| |
| #endif /* !FT_DEBUG_AUTOFIT */ |
| |
| |
| /* Compute the direction value of a given vector. */ |
| |
| FT_LOCAL_DEF( AF_Direction ) |
| af_direction_compute( FT_Pos dx, |
| FT_Pos dy ) |
| { |
| FT_Pos ll, ss; /* long and short arm lengths */ |
| AF_Direction dir; /* candidate direction */ |
| |
| |
| if ( dy >= dx ) |
| { |
| if ( dy >= -dx ) |
| { |
| dir = AF_DIR_UP; |
| ll = dy; |
| ss = dx; |
| } |
| else |
| { |
| dir = AF_DIR_LEFT; |
| ll = -dx; |
| ss = dy; |
| } |
| } |
| else /* dy < dx */ |
| { |
| if ( dy >= -dx ) |
| { |
| dir = AF_DIR_RIGHT; |
| ll = dx; |
| ss = dy; |
| } |
| else |
| { |
| dir = AF_DIR_DOWN; |
| ll = -dy; |
| ss = dx; |
| } |
| } |
| |
| /* return no direction if arm lengths do not differ enough */ |
| /* (value 14 is heuristic, corresponding to approx. 4.1 degrees) */ |
| /* the long arm is never negative */ |
| if ( ll <= 14 * FT_ABS( ss ) ) |
| dir = AF_DIR_NONE; |
| |
| return dir; |
| } |
| |
| |
| FT_LOCAL_DEF( void ) |
| af_glyph_hints_init( AF_GlyphHints hints, |
| FT_Memory memory ) |
| { |
| /* no need to initialize the embedded items */ |
| FT_MEM_ZERO( hints, sizeof ( *hints ) - sizeof ( hints->embedded ) ); |
| hints->memory = memory; |
| } |
| |
| |
| FT_LOCAL_DEF( void ) |
| af_glyph_hints_done( AF_GlyphHints hints ) |
| { |
| FT_Memory memory; |
| int dim; |
| |
| |
| if ( !( hints && hints->memory ) ) |
| return; |
| |
| memory = hints->memory; |
| |
| /* |
| * note that we don't need to free the segment and edge |
| * buffers since they are really within the hints->points array |
| */ |
| for ( dim = 0; dim < AF_DIMENSION_MAX; dim++ ) |
| { |
| AF_AxisHints axis = &hints->axis[dim]; |
| |
| |
| axis->num_segments = 0; |
| axis->max_segments = 0; |
| if ( axis->segments != axis->embedded.segments ) |
| FT_FREE( axis->segments ); |
| |
| axis->num_edges = 0; |
| axis->max_edges = 0; |
| if ( axis->edges != axis->embedded.edges ) |
| FT_FREE( axis->edges ); |
| } |
| |
| if ( hints->contours != hints->embedded.contours ) |
| FT_FREE( hints->contours ); |
| hints->max_contours = 0; |
| hints->num_contours = 0; |
| |
| if ( hints->points != hints->embedded.points ) |
| FT_FREE( hints->points ); |
| hints->max_points = 0; |
| hints->num_points = 0; |
| |
| hints->memory = NULL; |
| } |
| |
| |
| /* Reset metrics. */ |
| |
| FT_LOCAL_DEF( void ) |
| af_glyph_hints_rescale( AF_GlyphHints hints, |
| AF_StyleMetrics metrics ) |
| { |
| hints->metrics = metrics; |
| hints->scaler_flags = metrics->scaler.flags; |
| } |
| |
| |
| /* Recompute all AF_Point in AF_GlyphHints from the definitions */ |
| /* in a source outline. */ |
| |
| FT_LOCAL_DEF( FT_Error ) |
| af_glyph_hints_reload( AF_GlyphHints hints, |
| FT_Outline* outline ) |
| { |
| FT_Error error = FT_Err_Ok; |
| AF_Point points; |
| FT_Int old_max, new_max; |
| FT_Fixed x_scale = hints->x_scale; |
| FT_Fixed y_scale = hints->y_scale; |
| FT_Pos x_delta = hints->x_delta; |
| FT_Pos y_delta = hints->y_delta; |
| FT_Memory memory = hints->memory; |
| |
| |
| hints->num_points = 0; |
| hints->num_contours = 0; |
| |
| hints->axis[0].num_segments = 0; |
| hints->axis[0].num_edges = 0; |
| hints->axis[1].num_segments = 0; |
| hints->axis[1].num_edges = 0; |
| |
| /* first of all, reallocate the contours array if necessary */ |
| new_max = outline->n_contours; |
| old_max = hints->max_contours; |
| |
| if ( new_max <= AF_CONTOURS_EMBEDDED ) |
| { |
| if ( !hints->contours ) |
| { |
| hints->contours = hints->embedded.contours; |
| hints->max_contours = AF_CONTOURS_EMBEDDED; |
| } |
| } |
| else if ( new_max > old_max ) |
| { |
| if ( hints->contours == hints->embedded.contours ) |
| hints->contours = NULL; |
| |
| new_max = ( new_max + 3 ) & ~3; /* round up to a multiple of 4 */ |
| |
| if ( FT_RENEW_ARRAY( hints->contours, old_max, new_max ) ) |
| goto Exit; |
| |
| hints->max_contours = new_max; |
| } |
| |
| /* |
| * then reallocate the points arrays if necessary -- |
| * note that we reserve two additional point positions, used to |
| * hint metrics appropriately |
| */ |
| new_max = outline->n_points + 2; |
| old_max = hints->max_points; |
| |
| if ( new_max <= AF_POINTS_EMBEDDED ) |
| { |
| if ( !hints->points ) |
| { |
| hints->points = hints->embedded.points; |
| hints->max_points = AF_POINTS_EMBEDDED; |
| } |
| } |
| else if ( new_max > old_max ) |
| { |
| if ( hints->points == hints->embedded.points ) |
| hints->points = NULL; |
| |
| new_max = ( new_max + 2 + 7 ) & ~7; /* round up to a multiple of 8 */ |
| |
| if ( FT_RENEW_ARRAY( hints->points, old_max, new_max ) ) |
| goto Exit; |
| |
| hints->max_points = new_max; |
| } |
| |
| hints->num_points = outline->n_points; |
| hints->num_contours = outline->n_contours; |
| |
| /* We can't rely on the value of `FT_Outline.flags' to know the fill */ |
| /* direction used for a glyph, given that some fonts are broken (e.g., */ |
| /* the Arphic ones). We thus recompute it each time we need to. */ |
| /* */ |
| hints->axis[AF_DIMENSION_HORZ].major_dir = AF_DIR_UP; |
| hints->axis[AF_DIMENSION_VERT].major_dir = AF_DIR_LEFT; |
| |
| if ( FT_Outline_Get_Orientation( outline ) == FT_ORIENTATION_POSTSCRIPT ) |
| { |
| hints->axis[AF_DIMENSION_HORZ].major_dir = AF_DIR_DOWN; |
| hints->axis[AF_DIMENSION_VERT].major_dir = AF_DIR_RIGHT; |
| } |
| |
| hints->x_scale = x_scale; |
| hints->y_scale = y_scale; |
| hints->x_delta = x_delta; |
| hints->y_delta = y_delta; |
| |
| points = hints->points; |
| if ( hints->num_points == 0 ) |
| goto Exit; |
| |
| { |
| AF_Point point; |
| AF_Point point_limit = points + hints->num_points; |
| |
| /* value 20 in `near_limit' is heuristic */ |
| FT_UInt units_per_em = hints->metrics->scaler.face->units_per_EM; |
| FT_Int near_limit = 20 * units_per_em / 2048; |
| |
| |
| /* compute coordinates & Bezier flags, next and prev */ |
| { |
| FT_Vector* vec = outline->points; |
| char* tag = outline->tags; |
| FT_Short endpoint = outline->contours[0]; |
| AF_Point end = points + endpoint; |
| AF_Point prev = end; |
| FT_Int contour_index = 0; |
| |
| |
| for ( point = points; point < point_limit; point++, vec++, tag++ ) |
| { |
| FT_Pos out_x, out_y; |
| |
| |
| point->in_dir = (FT_Char)AF_DIR_NONE; |
| point->out_dir = (FT_Char)AF_DIR_NONE; |
| |
| point->fx = (FT_Short)vec->x; |
| point->fy = (FT_Short)vec->y; |
| point->ox = point->x = FT_MulFix( vec->x, x_scale ) + x_delta; |
| point->oy = point->y = FT_MulFix( vec->y, y_scale ) + y_delta; |
| |
| end->fx = (FT_Short)outline->points[endpoint].x; |
| end->fy = (FT_Short)outline->points[endpoint].y; |
| |
| switch ( FT_CURVE_TAG( *tag ) ) |
| { |
| case FT_CURVE_TAG_CONIC: |
| point->flags = AF_FLAG_CONIC; |
| break; |
| case FT_CURVE_TAG_CUBIC: |
| point->flags = AF_FLAG_CUBIC; |
| break; |
| default: |
| point->flags = AF_FLAG_NONE; |
| } |
| |
| out_x = point->fx - prev->fx; |
| out_y = point->fy - prev->fy; |
| |
| if ( FT_ABS( out_x ) + FT_ABS( out_y ) < near_limit ) |
| prev->flags |= AF_FLAG_NEAR; |
| |
| point->prev = prev; |
| prev->next = point; |
| prev = point; |
| |
| if ( point == end ) |
| { |
| if ( ++contour_index < outline->n_contours ) |
| { |
| endpoint = outline->contours[contour_index]; |
| end = points + endpoint; |
| prev = end; |
| } |
| } |
| |
| #ifdef FT_DEBUG_AUTOFIT |
| point->before[0] = NULL; |
| point->before[1] = NULL; |
| point->after[0] = NULL; |
| point->after[1] = NULL; |
| #endif |
| |
| } |
| } |
| |
| /* set up the contours array */ |
| { |
| AF_Point* contour = hints->contours; |
| AF_Point* contour_limit = contour + hints->num_contours; |
| short* end = outline->contours; |
| short idx = 0; |
| |
| |
| for ( ; contour < contour_limit; contour++, end++ ) |
| { |
| contour[0] = points + idx; |
| idx = (short)( end[0] + 1 ); |
| } |
| } |
| |
| { |
| /* |
| * Compute directions of `in' and `out' vectors. |
| * |
| * Note that distances between points that are very near to each |
| * other are accumulated. In other words, the auto-hinter either |
| * prepends the small vectors between near points to the first |
| * non-near vector, or the sum of small vector lengths exceeds a |
| * threshold, thus `grouping' the small vectors. All intermediate |
| * points are tagged as weak; the directions are adjusted also to |
| * be equal to the accumulated one. |
| */ |
| |
| FT_Int near_limit2 = 2 * near_limit - 1; |
| |
| AF_Point* contour; |
| AF_Point* contour_limit = hints->contours + hints->num_contours; |
| |
| |
| for ( contour = hints->contours; contour < contour_limit; contour++ ) |
| { |
| AF_Point first = *contour; |
| AF_Point next, prev, curr; |
| |
| FT_Pos out_x, out_y; |
| |
| |
| /* since the first point of a contour could be part of a */ |
| /* series of near points, go backwards to find the first */ |
| /* non-near point and adjust `first' */ |
| |
| point = first; |
| prev = first->prev; |
| |
| while ( prev != first ) |
| { |
| out_x = point->fx - prev->fx; |
| out_y = point->fy - prev->fy; |
| |
| /* |
| * We use Taxicab metrics to measure the vector length. |
| * |
| * Note that the accumulated distances so far could have the |
| * opposite direction of the distance measured here. For this |
| * reason we use `near_limit2' for the comparison to get a |
| * non-near point even in the worst case. |
| */ |
| if ( FT_ABS( out_x ) + FT_ABS( out_y ) >= near_limit2 ) |
| break; |
| |
| point = prev; |
| prev = prev->prev; |
| } |
| |
| /* adjust first point */ |
| first = point; |
| |
| /* now loop over all points of the contour to get */ |
| /* `in' and `out' vector directions */ |
| |
| curr = first; |
| |
| /* |
| * We abuse the `u' and `v' fields to store index deltas to the |
| * next and previous non-near point, respectively. |
| * |
| * To avoid problems with not having non-near points, we point to |
| * `first' by default as the next non-near point. |
| * |
| */ |
| curr->u = (FT_Pos)( first - curr ); |
| first->v = -curr->u; |
| |
| out_x = 0; |
| out_y = 0; |
| |
| next = first; |
| do |
| { |
| AF_Direction out_dir; |
| |
| |
| point = next; |
| next = point->next; |
| |
| out_x += next->fx - point->fx; |
| out_y += next->fy - point->fy; |
| |
| if ( FT_ABS( out_x ) + FT_ABS( out_y ) < near_limit ) |
| { |
| next->flags |= AF_FLAG_WEAK_INTERPOLATION; |
| continue; |
| } |
| |
| curr->u = (FT_Pos)( next - curr ); |
| next->v = -curr->u; |
| |
| out_dir = af_direction_compute( out_x, out_y ); |
| |
| /* adjust directions for all points inbetween; */ |
| /* the loop also updates position of `curr' */ |
| curr->out_dir = (FT_Char)out_dir; |
| for ( curr = curr->next; curr != next; curr = curr->next ) |
| { |
| curr->in_dir = (FT_Char)out_dir; |
| curr->out_dir = (FT_Char)out_dir; |
| } |
| next->in_dir = (FT_Char)out_dir; |
| |
| curr->u = (FT_Pos)( first - curr ); |
| first->v = -curr->u; |
| |
| out_x = 0; |
| out_y = 0; |
| |
| } while ( next != first ); |
| } |
| |
| /* |
| * The next step is to `simplify' an outline's topology so that we |
| * can identify local extrema more reliably: A series of |
| * non-horizontal or non-vertical vectors pointing into the same |
| * quadrant are handled as a single, long vector. From a |
| * topological point of the view, the intermediate points are of no |
| * interest and thus tagged as weak. |
| */ |
| |
| for ( point = points; point < point_limit; point++ ) |
| { |
| if ( point->flags & AF_FLAG_WEAK_INTERPOLATION ) |
| continue; |
| |
| if ( point->in_dir == AF_DIR_NONE && |
| point->out_dir == AF_DIR_NONE ) |
| { |
| /* check whether both vectors point into the same quadrant */ |
| |
| FT_Pos in_x, in_y; |
| FT_Pos out_x, out_y; |
| |
| AF_Point next_u = point + point->u; |
| AF_Point prev_v = point + point->v; |
| |
| |
| in_x = point->fx - prev_v->fx; |
| in_y = point->fy - prev_v->fy; |
| |
| out_x = next_u->fx - point->fx; |
| out_y = next_u->fy - point->fy; |
| |
| if ( ( in_x ^ out_x ) >= 0 && ( in_y ^ out_y ) >= 0 ) |
| { |
| /* yes, so tag current point as weak */ |
| /* and update index deltas */ |
| |
| point->flags |= AF_FLAG_WEAK_INTERPOLATION; |
| |
| prev_v->u = (FT_Pos)( next_u - prev_v ); |
| next_u->v = -prev_v->u; |
| } |
| } |
| } |
| |
| /* |
| * Finally, check for remaining weak points. Everything else not |
| * collected in edges so far is then implicitly classified as strong |
| * points. |
| */ |
| |
| for ( point = points; point < point_limit; point++ ) |
| { |
| if ( point->flags & AF_FLAG_WEAK_INTERPOLATION ) |
| continue; |
| |
| if ( point->flags & AF_FLAG_CONTROL ) |
| { |
| /* control points are always weak */ |
| Is_Weak_Point: |
| point->flags |= AF_FLAG_WEAK_INTERPOLATION; |
| } |
| else if ( point->out_dir == point->in_dir ) |
| { |
| if ( point->out_dir != AF_DIR_NONE ) |
| { |
| /* current point lies on a horizontal or */ |
| /* vertical segment (but doesn't start or end it) */ |
| goto Is_Weak_Point; |
| } |
| |
| { |
| AF_Point next_u = point + point->u; |
| AF_Point prev_v = point + point->v; |
| |
| |
| if ( ft_corner_is_flat( point->fx - prev_v->fx, |
| point->fy - prev_v->fy, |
| next_u->fx - point->fx, |
| next_u->fy - point->fy ) ) |
| { |
| /* either the `in' or the `out' vector is much more */ |
| /* dominant than the other one, so tag current point */ |
| /* as weak and update index deltas */ |
| |
| prev_v->u = (FT_Pos)( next_u - prev_v ); |
| next_u->v = -prev_v->u; |
| |
| goto Is_Weak_Point; |
| } |
| } |
| } |
| else if ( point->in_dir == -point->out_dir ) |
| { |
| /* current point forms a spike */ |
| goto Is_Weak_Point; |
| } |
| } |
| } |
| } |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /* Store the hinted outline in an FT_Outline structure. */ |
| |
| FT_LOCAL_DEF( void ) |
| af_glyph_hints_save( AF_GlyphHints hints, |
| FT_Outline* outline ) |
| { |
| AF_Point point = hints->points; |
| AF_Point limit = point + hints->num_points; |
| FT_Vector* vec = outline->points; |
| char* tag = outline->tags; |
| |
| |
| for ( ; point < limit; point++, vec++, tag++ ) |
| { |
| vec->x = point->x; |
| vec->y = point->y; |
| |
| if ( point->flags & AF_FLAG_CONIC ) |
| tag[0] = FT_CURVE_TAG_CONIC; |
| else if ( point->flags & AF_FLAG_CUBIC ) |
| tag[0] = FT_CURVE_TAG_CUBIC; |
| else |
| tag[0] = FT_CURVE_TAG_ON; |
| } |
| } |
| |
| |
| /**************************************************************** |
| * |
| * EDGE POINT GRID-FITTING |
| * |
| ****************************************************************/ |
| |
| |
| /* Align all points of an edge to the same coordinate value, */ |
| /* either horizontally or vertically. */ |
| |
| FT_LOCAL_DEF( void ) |
| af_glyph_hints_align_edge_points( AF_GlyphHints hints, |
| AF_Dimension dim ) |
| { |
| AF_AxisHints axis = & hints->axis[dim]; |
| AF_Segment segments = axis->segments; |
| AF_Segment segment_limit = FT_OFFSET( segments, axis->num_segments ); |
| AF_Segment seg; |
| |
| |
| if ( dim == AF_DIMENSION_HORZ ) |
| { |
| for ( seg = segments; seg < segment_limit; seg++ ) |
| { |
| AF_Edge edge = seg->edge; |
| AF_Point point, first, last; |
| |
| |
| if ( !edge ) |
| continue; |
| |
| first = seg->first; |
| last = seg->last; |
| point = first; |
| for (;;) |
| { |
| point->x = edge->pos; |
| point->flags |= AF_FLAG_TOUCH_X; |
| |
| if ( point == last ) |
| break; |
| |
| point = point->next; |
| } |
| } |
| } |
| else |
| { |
| for ( seg = segments; seg < segment_limit; seg++ ) |
| { |
| AF_Edge edge = seg->edge; |
| AF_Point point, first, last; |
| |
| |
| if ( !edge ) |
| continue; |
| |
| first = seg->first; |
| last = seg->last; |
| point = first; |
| for (;;) |
| { |
| point->y = edge->pos; |
| point->flags |= AF_FLAG_TOUCH_Y; |
| |
| if ( point == last ) |
| break; |
| |
| point = point->next; |
| } |
| } |
| } |
| } |
| |
| |
| /**************************************************************** |
| * |
| * STRONG POINT INTERPOLATION |
| * |
| ****************************************************************/ |
| |
| |
| /* Hint the strong points -- this is equivalent to the TrueType `IP' */ |
| /* hinting instruction. */ |
| |
| FT_LOCAL_DEF( void ) |
| af_glyph_hints_align_strong_points( AF_GlyphHints hints, |
| AF_Dimension dim ) |
| { |
| AF_Point points = hints->points; |
| AF_Point point_limit = points + hints->num_points; |
| AF_AxisHints axis = &hints->axis[dim]; |
| AF_Edge edges = axis->edges; |
| AF_Edge edge_limit = FT_OFFSET( edges, axis->num_edges ); |
| FT_UInt touch_flag; |
| |
| |
| if ( dim == AF_DIMENSION_HORZ ) |
| touch_flag = AF_FLAG_TOUCH_X; |
| else |
| touch_flag = AF_FLAG_TOUCH_Y; |
| |
| if ( edges < edge_limit ) |
| { |
| AF_Point point; |
| AF_Edge edge; |
| |
| |
| for ( point = points; point < point_limit; point++ ) |
| { |
| FT_Pos u, ou, fu; /* point position */ |
| FT_Pos delta; |
| |
| |
| if ( point->flags & touch_flag ) |
| continue; |
| |
| /* if this point is candidate to weak interpolation, we */ |
| /* interpolate it after all strong points have been processed */ |
| |
| if ( ( point->flags & AF_FLAG_WEAK_INTERPOLATION ) ) |
| continue; |
| |
| if ( dim == AF_DIMENSION_VERT ) |
| { |
| u = point->fy; |
| ou = point->oy; |
| } |
| else |
| { |
| u = point->fx; |
| ou = point->ox; |
| } |
| |
| fu = u; |
| |
| /* is the point before the first edge? */ |
| edge = edges; |
| delta = edge->fpos - u; |
| if ( delta >= 0 ) |
| { |
| u = edge->pos - ( edge->opos - ou ); |
| |
| #ifdef FT_DEBUG_AUTOFIT |
| point->before[dim] = edge; |
| point->after[dim] = NULL; |
| #endif |
| |
| goto Store_Point; |
| } |
| |
| /* is the point after the last edge? */ |
| edge = edge_limit - 1; |
| delta = u - edge->fpos; |
| if ( delta >= 0 ) |
| { |
| u = edge->pos + ( ou - edge->opos ); |
| |
| #ifdef FT_DEBUG_AUTOFIT |
| point->before[dim] = NULL; |
| point->after[dim] = edge; |
| #endif |
| |
| goto Store_Point; |
| } |
| |
| { |
| FT_PtrDist min, max, mid; |
| FT_Pos fpos; |
| |
| |
| /* find enclosing edges */ |
| min = 0; |
| max = edge_limit - edges; |
| |
| #if 1 |
| /* for a small number of edges, a linear search is better */ |
| if ( max <= 8 ) |
| { |
| FT_PtrDist nn; |
| |
| |
| for ( nn = 0; nn < max; nn++ ) |
| if ( edges[nn].fpos >= u ) |
| break; |
| |
| if ( edges[nn].fpos == u ) |
| { |
| u = edges[nn].pos; |
| goto Store_Point; |
| } |
| min = nn; |
| } |
| else |
| #endif |
| while ( min < max ) |
| { |
| mid = ( max + min ) >> 1; |
| edge = edges + mid; |
| fpos = edge->fpos; |
| |
| if ( u < fpos ) |
| max = mid; |
| else if ( u > fpos ) |
| min = mid + 1; |
| else |
| { |
| /* we are on the edge */ |
| u = edge->pos; |
| |
| #ifdef FT_DEBUG_AUTOFIT |
| point->before[dim] = NULL; |
| point->after[dim] = NULL; |
| #endif |
| |
| goto Store_Point; |
| } |
| } |
| |
| /* point is not on an edge */ |
| { |
| AF_Edge before = edges + min - 1; |
| AF_Edge after = edges + min + 0; |
| |
| |
| #ifdef FT_DEBUG_AUTOFIT |
| point->before[dim] = before; |
| point->after[dim] = after; |
| #endif |
| |
| /* assert( before && after && before != after ) */ |
| if ( before->scale == 0 ) |
| before->scale = FT_DivFix( after->pos - before->pos, |
| after->fpos - before->fpos ); |
| |
| u = before->pos + FT_MulFix( fu - before->fpos, |
| before->scale ); |
| } |
| } |
| |
| Store_Point: |
| /* save the point position */ |
| if ( dim == AF_DIMENSION_HORZ ) |
| point->x = u; |
| else |
| point->y = u; |
| |
| point->flags |= touch_flag; |
| } |
| } |
| } |
| |
| |
| /**************************************************************** |
| * |
| * WEAK POINT INTERPOLATION |
| * |
| ****************************************************************/ |
| |
| |
| /* Shift the original coordinates of all points between `p1' and */ |
| /* `p2' to get hinted coordinates, using the same difference as */ |
| /* given by `ref'. */ |
| |
| static void |
| af_iup_shift( AF_Point p1, |
| AF_Point p2, |
| AF_Point ref ) |
| { |
| AF_Point p; |
| FT_Pos delta = ref->u - ref->v; |
| |
| |
| if ( delta == 0 ) |
| return; |
| |
| for ( p = p1; p < ref; p++ ) |
| p->u = p->v + delta; |
| |
| for ( p = ref + 1; p <= p2; p++ ) |
| p->u = p->v + delta; |
| } |
| |
| |
| /* Interpolate the original coordinates of all points between `p1' and */ |
| /* `p2' to get hinted coordinates, using `ref1' and `ref2' as the */ |
| /* reference points. The `u' and `v' members are the current and */ |
| /* original coordinate values, respectively. */ |
| /* */ |
| /* Details can be found in the TrueType bytecode specification. */ |
| |
| static void |
| af_iup_interp( AF_Point p1, |
| AF_Point p2, |
| AF_Point ref1, |
| AF_Point ref2 ) |
| { |
| AF_Point p; |
| FT_Pos u, v1, v2, u1, u2, d1, d2; |
| |
| |
| if ( p1 > p2 ) |
| return; |
| |
| if ( ref1->v > ref2->v ) |
| { |
| p = ref1; |
| ref1 = ref2; |
| ref2 = p; |
| } |
| |
| v1 = ref1->v; |
| v2 = ref2->v; |
| u1 = ref1->u; |
| u2 = ref2->u; |
| d1 = u1 - v1; |
| d2 = u2 - v2; |
| |
| if ( u1 == u2 || v1 == v2 ) |
| { |
| for ( p = p1; p <= p2; p++ ) |
| { |
| u = p->v; |
| |
| if ( u <= v1 ) |
| u += d1; |
| else if ( u >= v2 ) |
| u += d2; |
| else |
| u = u1; |
| |
| p->u = u; |
| } |
| } |
| else |
| { |
| FT_Fixed scale = FT_DivFix( u2 - u1, v2 - v1 ); |
| |
| |
| for ( p = p1; p <= p2; p++ ) |
| { |
| u = p->v; |
| |
| if ( u <= v1 ) |
| u += d1; |
| else if ( u >= v2 ) |
| u += d2; |
| else |
| u = u1 + FT_MulFix( u - v1, scale ); |
| |
| p->u = u; |
| } |
| } |
| } |
| |
| |
| /* Hint the weak points -- this is equivalent to the TrueType `IUP' */ |
| /* hinting instruction. */ |
| |
| FT_LOCAL_DEF( void ) |
| af_glyph_hints_align_weak_points( AF_GlyphHints hints, |
| AF_Dimension dim ) |
| { |
| AF_Point points = hints->points; |
| AF_Point point_limit = points + hints->num_points; |
| AF_Point* contour = hints->contours; |
| AF_Point* contour_limit = contour + hints->num_contours; |
| FT_UInt touch_flag; |
| AF_Point point; |
| AF_Point end_point; |
| AF_Point first_point; |
| |
| |
| /* PASS 1: Move segment points to edge positions */ |
| |
| if ( dim == AF_DIMENSION_HORZ ) |
| { |
| touch_flag = AF_FLAG_TOUCH_X; |
| |
| for ( point = points; point < point_limit; point++ ) |
| { |
| point->u = point->x; |
| point->v = point->ox; |
| } |
| } |
| else |
| { |
| touch_flag = AF_FLAG_TOUCH_Y; |
| |
| for ( point = points; point < point_limit; point++ ) |
| { |
| point->u = point->y; |
| point->v = point->oy; |
| } |
| } |
| |
| for ( ; contour < contour_limit; contour++ ) |
| { |
| AF_Point first_touched, last_touched; |
| |
| |
| point = *contour; |
| end_point = point->prev; |
| first_point = point; |
| |
| /* find first touched point */ |
| for (;;) |
| { |
| if ( point > end_point ) /* no touched point in contour */ |
| goto NextContour; |
| |
| if ( point->flags & touch_flag ) |
| break; |
| |
| point++; |
| } |
| |
| first_touched = point; |
| |
| for (;;) |
| { |
| FT_ASSERT( point <= end_point && |
| ( point->flags & touch_flag ) != 0 ); |
| |
| /* skip any touched neighbours */ |
| while ( point < end_point && |
| ( point[1].flags & touch_flag ) != 0 ) |
| point++; |
| |
| last_touched = point; |
| |
| /* find the next touched point, if any */ |
| point++; |
| for (;;) |
| { |
| if ( point > end_point ) |
| goto EndContour; |
| |
| if ( ( point->flags & touch_flag ) != 0 ) |
| break; |
| |
| point++; |
| } |
| |
| /* interpolate between last_touched and point */ |
| af_iup_interp( last_touched + 1, point - 1, |
| last_touched, point ); |
| } |
| |
| EndContour: |
| /* special case: only one point was touched */ |
| if ( last_touched == first_touched ) |
| af_iup_shift( first_point, end_point, first_touched ); |
| |
| else /* interpolate the last part */ |
| { |
| if ( last_touched < end_point ) |
| af_iup_interp( last_touched + 1, end_point, |
| last_touched, first_touched ); |
| |
| if ( first_touched > points ) |
| af_iup_interp( first_point, first_touched - 1, |
| last_touched, first_touched ); |
| } |
| |
| NextContour: |
| ; |
| } |
| |
| /* now save the interpolated values back to x/y */ |
| if ( dim == AF_DIMENSION_HORZ ) |
| { |
| for ( point = points; point < point_limit; point++ ) |
| point->x = point->u; |
| } |
| else |
| { |
| for ( point = points; point < point_limit; point++ ) |
| point->y = point->u; |
| } |
| } |
| |
| |
| /* END */ |