blob: d8102d7b410bebb392eb09f7060dc0e7a3e7854c [file] [log] [blame]
/*
* Copyright © 2000 Keith Packard
* Copyright © 2005 Patrick Lam
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of the author(s) not be used in
* advertising or publicity pertaining to distribution of the software without
* specific, written prior permission. The authors make no
* representations about the suitability of this software for any purpose. It
* is provided "as is" without express or implied warranty.
*
* THE AUTHOR(S) DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "fcint.h"
#include "fcarch.h"
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <dirent.h>
#include <string.h>
#include <sys/types.h>
#include <time.h>
#include <assert.h>
#if defined(HAVE_MMAP) || defined(__CYGWIN__)
# include <unistd.h>
# include <sys/mman.h>
#elif defined(_WIN32)
# define _WIN32_WINNT 0x0500
# include <windows.h>
#endif
#ifndef O_BINARY
#define O_BINARY 0
#endif
struct MD5Context {
FcChar32 buf[4];
FcChar32 bits[2];
unsigned char in[64];
};
static void MD5Init(struct MD5Context *ctx);
static void MD5Update(struct MD5Context *ctx, const unsigned char *buf, unsigned len);
static void MD5Final(unsigned char digest[16], struct MD5Context *ctx);
static void MD5Transform(FcChar32 buf[4], FcChar32 in[16]);
#define CACHEBASE_LEN (1 + 32 + 1 + sizeof (FC_ARCHITECTURE) + sizeof (FC_CACHE_SUFFIX))
#ifdef _WIN32
#include <windows.h>
#ifdef __GNUC__
typedef long long INT64;
#define EPOCH_OFFSET 11644473600ll
#else
#define EPOCH_OFFSET 11644473600i64
typedef __int64 INT64;
#endif
/* Workaround for problems in the stat() in the Microsoft C library:
*
* 1) stat() uses FindFirstFile() to get the file
* attributes. Unfortunately this API doesn't return correct values
* for modification time of a directory until some time after a file
* or subdirectory has been added to the directory. (This causes
* run-test.sh to fail, for instance.) GetFileAttributesEx() is
* better, it returns the updated timestamp right away.
*
* 2) stat() does some strange things related to backward
* compatibility with the local time timestamps on FAT volumes and
* daylight saving time. This causes problems after the switches
* to/from daylight saving time. See
* http://bugzilla.gnome.org/show_bug.cgi?id=154968 , especially
* comment #30, and http://www.codeproject.com/datetime/dstbugs.asp .
* We don't need any of that, FAT and Win9x are as good as dead. So
* just use the UTC timestamps from NTFS, converted to the Unix epoch.
*/
int
FcStat (const FcChar8 *file, struct stat *statb)
{
WIN32_FILE_ATTRIBUTE_DATA wfad;
char full_path_name[MAX_PATH];
char *basename;
DWORD rc;
if (!GetFileAttributesEx (file, GetFileExInfoStandard, &wfad))
return -1;
statb->st_dev = 0;
/* Calculate a pseudo inode number as a hash of the full path name.
* Call GetLongPathName() to get the spelling of the path name as it
* is on disk.
*/
rc = GetFullPathName (file, sizeof (full_path_name), full_path_name, &basename);
if (rc == 0 || rc > sizeof (full_path_name))
return -1;
rc = GetLongPathName (full_path_name, full_path_name, sizeof (full_path_name));
statb->st_ino = FcStringHash (full_path_name);
statb->st_mode = _S_IREAD | _S_IWRITE;
statb->st_mode |= (statb->st_mode >> 3) | (statb->st_mode >> 6);
if (wfad.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)
statb->st_mode |= _S_IFDIR;
else
statb->st_mode |= _S_IFREG;
statb->st_nlink = 1;
statb->st_uid = statb->st_gid = 0;
statb->st_rdev = 0;
if (wfad.nFileSizeHigh > 0)
return -1;
statb->st_size = wfad.nFileSizeLow;
statb->st_atime = (*(INT64 *)&wfad.ftLastAccessTime)/10000000 - EPOCH_OFFSET;
statb->st_mtime = (*(INT64 *)&wfad.ftLastWriteTime)/10000000 - EPOCH_OFFSET;
statb->st_ctime = statb->st_mtime;
return 0;
}
#else
int
FcStat (const FcChar8 *file, struct stat *statb)
{
return stat ((char *) file, statb);
}
#endif
static const char bin2hex[] = { '0', '1', '2', '3',
'4', '5', '6', '7',
'8', '9', 'a', 'b',
'c', 'd', 'e', 'f' };
static FcChar8 *
FcDirCacheBasename (const FcChar8 * dir, FcChar8 cache_base[CACHEBASE_LEN])
{
unsigned char hash[16];
FcChar8 *hex_hash;
int cnt;
struct MD5Context ctx;
MD5Init (&ctx);
MD5Update (&ctx, (const unsigned char *)dir, strlen ((const char *) dir));
MD5Final (hash, &ctx);
cache_base[0] = '/';
hex_hash = cache_base + 1;
for (cnt = 0; cnt < 16; ++cnt)
{
hex_hash[2*cnt ] = bin2hex[hash[cnt] >> 4];
hex_hash[2*cnt+1] = bin2hex[hash[cnt] & 0xf];
}
hex_hash[2*cnt] = 0;
strcat ((char *) cache_base, "-" FC_ARCHITECTURE FC_CACHE_SUFFIX);
return cache_base;
}
FcBool
FcDirCacheUnlink (const FcChar8 *dir, FcConfig *config)
{
FcChar8 *cache_hashed = NULL;
FcChar8 cache_base[CACHEBASE_LEN];
FcStrList *list;
FcChar8 *cache_dir;
FcDirCacheBasename (dir, cache_base);
list = FcStrListCreate (config->cacheDirs);
if (!list)
return FcFalse;
while ((cache_dir = FcStrListNext (list)))
{
cache_hashed = FcStrPlus (cache_dir, cache_base);
if (!cache_hashed)
break;
(void) unlink ((char *) cache_hashed);
FcStrFree (cache_hashed);
}
FcStrListDone (list);
/* return FcFalse if something went wrong */
if (cache_dir)
return FcFalse;
return FcTrue;
}
static int
FcDirCacheOpenFile (const FcChar8 *cache_file, struct stat *file_stat)
{
int fd;
#ifdef _WIN32
if (FcStat (cache_file, file_stat) < 0)
return -1;
#endif
fd = open((char *) cache_file, O_RDONLY | O_BINARY);
if (fd < 0)
return fd;
#ifndef _WIN32
if (fstat (fd, file_stat) < 0)
{
close (fd);
return -1;
}
#endif
return fd;
}
/*
* Look for a cache file for the specified dir. Attempt
* to use each one we find, stopping when the callback
* indicates success
*/
static FcBool
FcDirCacheProcess (FcConfig *config, const FcChar8 *dir,
FcBool (*callback) (int fd, struct stat *fd_stat,
struct stat *dir_stat, void *closure),
void *closure, FcChar8 **cache_file_ret)
{
int fd = -1;
FcChar8 cache_base[CACHEBASE_LEN];
FcStrList *list;
FcChar8 *cache_dir;
struct stat file_stat, dir_stat;
FcBool ret = FcFalse;
if (FcStat (dir, &dir_stat) < 0)
return FcFalse;
FcDirCacheBasename (dir, cache_base);
list = FcStrListCreate (config->cacheDirs);
if (!list)
return FcFalse;
while ((cache_dir = FcStrListNext (list)))
{
FcChar8 *cache_hashed = FcStrPlus (cache_dir, cache_base);
if (!cache_hashed)
break;
fd = FcDirCacheOpenFile (cache_hashed, &file_stat);
if (fd >= 0) {
ret = (*callback) (fd, &file_stat, &dir_stat, closure);
close (fd);
if (ret)
{
if (cache_file_ret)
*cache_file_ret = cache_hashed;
else
FcStrFree (cache_hashed);
break;
}
}
FcStrFree (cache_hashed);
}
FcStrListDone (list);
return ret;
}
#define FC_CACHE_MIN_MMAP 1024
/*
* Skip list element, make sure the 'next' pointer is the last thing
* in the structure, it will be allocated large enough to hold all
* of the necessary pointers
*/
typedef struct _FcCacheSkip FcCacheSkip;
struct _FcCacheSkip {
FcCache *cache;
int ref;
intptr_t size;
dev_t cache_dev;
ino_t cache_ino;
time_t cache_mtime;
FcCacheSkip *next[1];
};
/*
* The head of the skip list; pointers for every possible level
* in the skip list, plus the largest level in the list
*/
#define FC_CACHE_MAX_LEVEL 16
static FcCacheSkip *fcCacheChains[FC_CACHE_MAX_LEVEL];
static int fcCacheMaxLevel;
static int32_t
FcRandom(void)
{
int32_t result;
#if HAVE_RANDOM_R
static struct random_data fcrandbuf;
static char statebuf[256];
static FcBool initialized = FcFalse;
if (initialized != FcTrue)
{
initstate_r(time(NULL), statebuf, 256, &fcrandbuf);
initialized = FcTrue;
}
random_r(&fcrandbuf, &result);
#elif HAVE_RANDOM
static char statebuf[256];
char *state;
static FcBool initialized = FcFalse;
if (initialized != FcTrue)
{
state = initstate(time(NULL), statebuf, 256);
initialized = FcTrue;
}
else
state = setstate(statebuf);
result = random();
setstate(state);
#elif HAVE_LRAND48
result = lrand48();
#elif HAVE_RAND_R
static unsigned int seed = time(NULL);
result = rand_r(&seed);
#elif HAVE_RAND
static FcBool initialized = FcFalse;
if (initialized != FcTrue)
{
srand(time(NULL));
initialized = FcTrue;
}
result = rand();
#else
# error no random number generator function available.
#endif
return result;
}
/*
* Generate a random level number, distributed
* so that each level is 1/4 as likely as the one before
*
* Note that level numbers run 1 <= level <= MAX_LEVEL
*/
static int
random_level (void)
{
/* tricky bit -- each bit is '1' 75% of the time */
long int bits = FcRandom () | FcRandom ();
int level = 0;
while (++level < FC_CACHE_MAX_LEVEL)
{
if (bits & 1)
break;
bits >>= 1;
}
return level;
}
/*
* Insert cache into the list
*/
static FcBool
FcCacheInsert (FcCache *cache, struct stat *cache_stat)
{
FcCacheSkip **update[FC_CACHE_MAX_LEVEL];
FcCacheSkip *s, **next;
int i, level;
/*
* Find links along each chain
*/
next = fcCacheChains;
for (i = fcCacheMaxLevel; --i >= 0; )
{
for (; (s = next[i]); next = s->next)
if (s->cache > cache)
break;
update[i] = &next[i];
}
/*
* Create new list element
*/
level = random_level ();
if (level > fcCacheMaxLevel)
{
level = fcCacheMaxLevel + 1;
update[fcCacheMaxLevel] = &fcCacheChains[fcCacheMaxLevel];
fcCacheMaxLevel = level;
}
s = malloc (sizeof (FcCacheSkip) + (level - 1) * sizeof (FcCacheSkip *));
if (!s)
return FcFalse;
s->cache = cache;
s->size = cache->size;
s->ref = 1;
if (cache_stat)
{
s->cache_dev = cache_stat->st_dev;
s->cache_ino = cache_stat->st_ino;
s->cache_mtime = cache_stat->st_mtime;
}
else
{
s->cache_dev = 0;
s->cache_ino = 0;
s->cache_mtime = 0;
}
/*
* Insert into all fcCacheChains
*/
for (i = 0; i < level; i++)
{
s->next[i] = *update[i];
*update[i] = s;
}
return FcTrue;
}
static FcCacheSkip *
FcCacheFindByAddr (void *object)
{
int i;
FcCacheSkip **next = fcCacheChains;
FcCacheSkip *s;
/*
* Walk chain pointers one level at a time
*/
for (i = fcCacheMaxLevel; --i >= 0;)
while (next[i] && (char *) object >= ((char *) next[i]->cache + next[i]->size))
next = next[i]->next;
/*
* Here we are
*/
s = next[0];
if (s && (char *) object < ((char *) s->cache + s->size))
return s;
return NULL;
}
static void
FcCacheRemove (FcCache *cache)
{
FcCacheSkip **update[FC_CACHE_MAX_LEVEL];
FcCacheSkip *s, **next;
int i;
/*
* Find links along each chain
*/
next = fcCacheChains;
for (i = fcCacheMaxLevel; --i >= 0; )
{
for (; (s = next[i]); next = s->next)
if (s->cache >= cache)
break;
update[i] = &next[i];
}
s = next[0];
for (i = 0; i < fcCacheMaxLevel && *update[i] == s; i++)
*update[i] = s->next[i];
while (fcCacheMaxLevel > 0 && fcCacheChains[fcCacheMaxLevel - 1] == NULL)
fcCacheMaxLevel--;
free (s);
}
static FcCache *
FcCacheFindByStat (struct stat *cache_stat)
{
FcCacheSkip *s;
for (s = fcCacheChains[0]; s; s = s->next[0])
if (s->cache_dev == cache_stat->st_dev &&
s->cache_ino == cache_stat->st_ino &&
s->cache_mtime == cache_stat->st_mtime)
{
s->ref++;
return s->cache;
}
return NULL;
}
static void
FcDirCacheDispose (FcCache *cache)
{
switch (cache->magic) {
case FC_CACHE_MAGIC_ALLOC:
free (cache);
break;
case FC_CACHE_MAGIC_MMAP:
#if defined(HAVE_MMAP) || defined(__CYGWIN__)
munmap (cache, cache->size);
#elif defined(_WIN32)
UnmapViewOfFile (cache);
#endif
break;
}
FcCacheRemove (cache);
}
void
FcCacheObjectReference (void *object)
{
FcCacheSkip *skip = FcCacheFindByAddr (object);
if (skip)
skip->ref++;
}
void
FcCacheObjectDereference (void *object)
{
FcCacheSkip *skip = FcCacheFindByAddr (object);
if (skip)
{
skip->ref--;
if (skip->ref <= 0)
FcDirCacheDispose (skip->cache);
}
}
void
FcCacheFini (void)
{
int i;
for (i = 0; i < FC_CACHE_MAX_LEVEL; i++)
assert (fcCacheChains[i] == NULL);
assert (fcCacheMaxLevel == 0);
}
static FcBool
FcCacheTimeValid (FcCache *cache, struct stat *dir_stat)
{
struct stat dir_static;
if (!dir_stat)
{
if (FcStat (FcCacheDir (cache), &dir_static) < 0)
return FcFalse;
dir_stat = &dir_static;
}
if (FcDebug () & FC_DBG_CACHE)
printf ("FcCacheTimeValid dir \"%s\" cache time %d dir time %d\n",
FcCacheDir (cache), cache->mtime, (int) dir_stat->st_mtime);
return cache->mtime == (int) dir_stat->st_mtime;
}
/*
* Map a cache file into memory
*/
static FcCache *
FcDirCacheMapFd (int fd, struct stat *fd_stat, struct stat *dir_stat)
{
FcCache *cache;
FcBool allocated = FcFalse;
if (fd_stat->st_size < sizeof (FcCache))
return NULL;
cache = FcCacheFindByStat (fd_stat);
if (cache)
{
if (FcCacheTimeValid (cache, dir_stat))
return cache;
FcDirCacheUnload (cache);
cache = NULL;
}
/*
* Lage cache files are mmap'ed, smaller cache files are read. This
* balances the system cost of mmap against per-process memory usage.
*/
if (fd_stat->st_size >= FC_CACHE_MIN_MMAP)
{
#if defined(HAVE_MMAP) || defined(__CYGWIN__)
cache = mmap (0, fd_stat->st_size, PROT_READ, MAP_SHARED, fd, 0);
if (cache == MAP_FAILED)
cache = NULL;
#elif defined(_WIN32)
{
HANDLE hFileMap;
cache = NULL;
hFileMap = CreateFileMapping((HANDLE) _get_osfhandle(fd), NULL,
PAGE_READONLY, 0, 0, NULL);
if (hFileMap != NULL)
{
cache = MapViewOfFile (hFileMap, FILE_MAP_READ, 0, 0,
fd_stat->st_size);
CloseHandle (hFileMap);
}
}
#endif
}
if (!cache)
{
cache = malloc (fd_stat->st_size);
if (!cache)
return NULL;
if (read (fd, cache, fd_stat->st_size) != fd_stat->st_size)
{
free (cache);
return NULL;
}
allocated = FcTrue;
}
if (cache->magic != FC_CACHE_MAGIC_MMAP ||
cache->version < FC_CACHE_CONTENT_VERSION ||
cache->size != fd_stat->st_size ||
!FcCacheTimeValid (cache, dir_stat) ||
!FcCacheInsert (cache, fd_stat))
{
if (allocated)
free (cache);
else
{
#if defined(HAVE_MMAP) || defined(__CYGWIN__)
munmap (cache, fd_stat->st_size);
#elif defined(_WIN32)
UnmapViewOfFile (cache);
#endif
}
return NULL;
}
/* Mark allocated caches so they're freed rather than unmapped */
if (allocated)
cache->magic = FC_CACHE_MAGIC_ALLOC;
return cache;
}
void
FcDirCacheReference (FcCache *cache, int nref)
{
FcCacheSkip *skip = FcCacheFindByAddr (cache);
if (skip)
skip->ref += nref;
}
void
FcDirCacheUnload (FcCache *cache)
{
FcCacheObjectDereference (cache);
}
static FcBool
FcDirCacheMapHelper (int fd, struct stat *fd_stat, struct stat *dir_stat, void *closure)
{
FcCache *cache = FcDirCacheMapFd (fd, fd_stat, dir_stat);
if (!cache)
return FcFalse;
*((FcCache **) closure) = cache;
return FcTrue;
}
FcCache *
FcDirCacheLoad (const FcChar8 *dir, FcConfig *config, FcChar8 **cache_file)
{
FcCache *cache = NULL;
if (!FcDirCacheProcess (config, dir,
FcDirCacheMapHelper,
&cache, cache_file))
return NULL;
return cache;
}
FcCache *
FcDirCacheLoadFile (const FcChar8 *cache_file, struct stat *file_stat)
{
int fd;
FcCache *cache;
struct stat my_file_stat;
if (!file_stat)
file_stat = &my_file_stat;
fd = FcDirCacheOpenFile (cache_file, file_stat);
if (fd < 0)
return NULL;
cache = FcDirCacheMapFd (fd, file_stat, NULL);
close (fd);
return cache;
}
/*
* Validate a cache file by reading the header and checking
* the magic number and the size field
*/
static FcBool
FcDirCacheValidateHelper (int fd, struct stat *fd_stat, struct stat *dir_stat, void *closure)
{
FcBool ret = FcTrue;
FcCache c;
if (read (fd, &c, sizeof (FcCache)) != sizeof (FcCache))
ret = FcFalse;
else if (c.magic != FC_CACHE_MAGIC_MMAP)
ret = FcFalse;
else if (c.version < FC_CACHE_CONTENT_VERSION)
ret = FcFalse;
else if (fd_stat->st_size != c.size)
ret = FcFalse;
else if (c.mtime != (int) dir_stat->st_mtime)
ret = FcFalse;
return ret;
}
static FcBool
FcDirCacheValidConfig (const FcChar8 *dir, FcConfig *config)
{
return FcDirCacheProcess (config, dir,
FcDirCacheValidateHelper,
NULL, NULL);
}
FcBool
FcDirCacheValid (const FcChar8 *dir)
{
FcConfig *config;
config = FcConfigGetCurrent ();
if (!config)
return FcFalse;
return FcDirCacheValidConfig (dir, config);
}
/*
* Build a cache structure from the given contents
*/
FcCache *
FcDirCacheBuild (FcFontSet *set, const FcChar8 *dir, struct stat *dir_stat, FcStrSet *dirs)
{
FcSerialize *serialize = FcSerializeCreate ();
FcCache *cache;
int i;
FcChar8 *dir_serialize;
intptr_t *dirs_serialize;
FcFontSet *set_serialize;
if (!serialize)
return NULL;
/*
* Space for cache structure
*/
FcSerializeReserve (serialize, sizeof (FcCache));
/*
* Directory name
*/
if (!FcStrSerializeAlloc (serialize, dir))
goto bail1;
/*
* Subdirs
*/
FcSerializeAlloc (serialize, dirs, dirs->num * sizeof (FcChar8 *));
for (i = 0; i < dirs->num; i++)
if (!FcStrSerializeAlloc (serialize, dirs->strs[i]))
goto bail1;
/*
* Patterns
*/
if (!FcFontSetSerializeAlloc (serialize, set))
goto bail1;
/* Serialize layout complete. Now allocate space and fill it */
cache = malloc (serialize->size);
if (!cache)
goto bail1;
/* shut up valgrind */
memset (cache, 0, serialize->size);
serialize->linear = cache;
cache->magic = FC_CACHE_MAGIC_ALLOC;
cache->version = FC_CACHE_CONTENT_VERSION;
cache->size = serialize->size;
cache->mtime = (int) dir_stat->st_mtime;
/*
* Serialize directory name
*/
dir_serialize = FcStrSerialize (serialize, dir);
if (!dir_serialize)
goto bail2;
cache->dir = FcPtrToOffset (cache, dir_serialize);
/*
* Serialize sub dirs
*/
dirs_serialize = FcSerializePtr (serialize, dirs);
if (!dirs_serialize)
goto bail2;
cache->dirs = FcPtrToOffset (cache, dirs_serialize);
cache->dirs_count = dirs->num;
for (i = 0; i < dirs->num; i++)
{
FcChar8 *d_serialize = FcStrSerialize (serialize, dirs->strs[i]);
if (!d_serialize)
goto bail2;
dirs_serialize[i] = FcPtrToOffset (dirs_serialize, d_serialize);
}
/*
* Serialize font set
*/
set_serialize = FcFontSetSerialize (serialize, set);
if (!set_serialize)
goto bail2;
cache->set = FcPtrToOffset (cache, set_serialize);
FcSerializeDestroy (serialize);
FcCacheInsert (cache, NULL);
return cache;
bail2:
free (cache);
bail1:
FcSerializeDestroy (serialize);
return NULL;
}
#ifdef _WIN32
#define mkdir(path,mode) _mkdir(path)
#endif
static FcBool
FcMakeDirectory (const FcChar8 *dir)
{
FcChar8 *parent;
FcBool ret;
if (strlen ((char *) dir) == 0)
return FcFalse;
parent = FcStrDirname (dir);
if (!parent)
return FcFalse;
if (access ((char *) parent, F_OK) == 0)
ret = mkdir ((char *) dir, 0755) == 0 && chmod ((char *) dir, 0755) == 0;
else if (access ((char *) parent, F_OK) == -1)
ret = FcMakeDirectory (parent) && (mkdir ((char *) dir, 0755) == 0) && chmod ((char *) dir, 0755) == 0;
else
ret = FcFalse;
FcStrFree (parent);
return ret;
}
/* write serialized state to the cache file */
FcBool
FcDirCacheWrite (FcCache *cache, FcConfig *config)
{
FcChar8 *dir = FcCacheDir (cache);
FcChar8 cache_base[CACHEBASE_LEN];
FcChar8 *cache_hashed;
int fd;
FcAtomic *atomic;
FcStrList *list;
FcChar8 *cache_dir = NULL;
FcChar8 *test_dir;
FcCacheSkip *skip;
struct stat cache_stat;
int magic;
int written;
/*
* Write it to the first directory in the list which is writable
*/
list = FcStrListCreate (config->cacheDirs);
if (!list)
return FcFalse;
while ((test_dir = FcStrListNext (list))) {
if (access ((char *) test_dir, W_OK|X_OK) == 0)
{
cache_dir = test_dir;
break;
}
else
{
/*
* If the directory doesn't exist, try to create it
*/
if (access ((char *) test_dir, F_OK) == -1) {
if (FcMakeDirectory (test_dir))
{
cache_dir = test_dir;
break;
}
}
/*
* Otherwise, try making it writable
*/
else if (chmod ((char *) test_dir, 0755) == 0)
{
cache_dir = test_dir;
break;
}
}
}
FcStrListDone (list);
if (!cache_dir)
return FcFalse;
FcDirCacheBasename (dir, cache_base);
cache_hashed = FcStrPlus (cache_dir, cache_base);
if (!cache_hashed)
return FcFalse;
if (FcDebug () & FC_DBG_CACHE)
printf ("FcDirCacheWriteDir dir \"%s\" file \"%s\"\n",
dir, cache_hashed);
atomic = FcAtomicCreate ((FcChar8 *)cache_hashed);
if (!atomic)
goto bail1;
if (!FcAtomicLock (atomic))
goto bail3;
fd = open((char *)FcAtomicNewFile (atomic), O_RDWR | O_CREAT | O_BINARY, 0666);
if (fd == -1)
goto bail4;
/* Temporarily switch magic to MMAP while writing to file */
magic = cache->magic;
if (magic != FC_CACHE_MAGIC_MMAP)
cache->magic = FC_CACHE_MAGIC_MMAP;
/*
* Write cache contents to file
*/
written = write (fd, cache, cache->size);
/* Switch magic back */
if (magic != FC_CACHE_MAGIC_MMAP)
cache->magic = magic;
if (written != cache->size)
{
perror ("write cache");
goto bail5;
}
close(fd);
if (!FcAtomicReplaceOrig(atomic))
goto bail4;
/* If the file is small, update the cache chain entry such that the
* new cache file is not read again. If it's large, we don't do that
* such that we reload it, using mmap, which is shared across processes.
*/
if (cache->size < FC_CACHE_MIN_MMAP &&
(skip = FcCacheFindByAddr (cache)) &&
FcStat (cache_hashed, &cache_stat))
{
skip->cache_dev = cache_stat.st_dev;
skip->cache_ino = cache_stat.st_ino;
skip->cache_mtime = cache_stat.st_mtime;
}
FcStrFree (cache_hashed);
FcAtomicUnlock (atomic);
FcAtomicDestroy (atomic);
return FcTrue;
bail5:
close (fd);
bail4:
FcAtomicUnlock (atomic);
bail3:
FcAtomicDestroy (atomic);
bail1:
FcStrFree (cache_hashed);
return FcFalse;
}
/*
* Hokey little macro trick to permit the definitions of C functions
* with the same name as CPP macros
*/
#define args1(x) (x)
#define args2(x,y) (x,y)
const FcChar8 *
FcCacheDir args1(const FcCache *c)
{
return FcCacheDir (c);
}
FcFontSet *
FcCacheCopySet args1(const FcCache *c)
{
FcFontSet *old = FcCacheSet (c);
FcFontSet *new = FcFontSetCreate ();
int i;
if (!new)
return NULL;
for (i = 0; i < old->nfont; i++)
{
FcPattern *font = FcFontSetFont (old, i);
FcPatternReference (font);
if (!FcFontSetAdd (new, font))
{
FcFontSetDestroy (new);
return NULL;
}
}
return new;
}
const FcChar8 *
FcCacheSubdir args2(const FcCache *c, int i)
{
return FcCacheSubdir (c, i);
}
int
FcCacheNumSubdir args1(const FcCache *c)
{
return c->dirs_count;
}
int
FcCacheNumFont args1(const FcCache *c)
{
return FcCacheSet(c)->nfont;
}
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to MD5Init, call MD5Update as
* needed on buffers full of bytes, and then call MD5Final, which
* will fill a supplied 16-byte array with the digest.
*/
#ifndef HIGHFIRST
#define byteReverse(buf, len) /* Nothing */
#else
/*
* Note: this code is harmless on little-endian machines.
*/
void byteReverse(unsigned char *buf, unsigned longs)
{
FcChar32 t;
do {
t = (FcChar32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
((unsigned) buf[1] << 8 | buf[0]);
*(FcChar32 *) buf = t;
buf += 4;
} while (--longs);
}
#endif
/*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*/
static void MD5Init(struct MD5Context *ctx)
{
ctx->buf[0] = 0x67452301;
ctx->buf[1] = 0xefcdab89;
ctx->buf[2] = 0x98badcfe;
ctx->buf[3] = 0x10325476;
ctx->bits[0] = 0;
ctx->bits[1] = 0;
}
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
static void MD5Update(struct MD5Context *ctx, const unsigned char *buf, unsigned len)
{
FcChar32 t;
/* Update bitcount */
t = ctx->bits[0];
if ((ctx->bits[0] = t + ((FcChar32) len << 3)) < t)
ctx->bits[1]++; /* Carry from low to high */
ctx->bits[1] += len >> 29;
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if (t) {
unsigned char *p = (unsigned char *) ctx->in + t;
t = 64 - t;
if (len < t) {
memcpy(p, buf, len);
return;
}
memcpy(p, buf, t);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (FcChar32 *) ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
while (len >= 64) {
memcpy(ctx->in, buf, 64);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (FcChar32 *) ctx->in);
buf += 64;
len -= 64;
}
/* Handle any remaining bytes of data. */
memcpy(ctx->in, buf, len);
}
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
static void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
{
unsigned count;
unsigned char *p;
/* Compute number of bytes mod 64 */
count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
p = ctx->in + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8) {
/* Two lots of padding: Pad the first block to 64 bytes */
memset(p, 0, count);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (FcChar32 *) ctx->in);
/* Now fill the next block with 56 bytes */
memset(ctx->in, 0, 56);
} else {
/* Pad block to 56 bytes */
memset(p, 0, count - 8);
}
byteReverse(ctx->in, 14);
/* Append length in bits and transform */
((FcChar32 *) ctx->in)[14] = ctx->bits[0];
((FcChar32 *) ctx->in)[15] = ctx->bits[1];
MD5Transform(ctx->buf, (FcChar32 *) ctx->in);
byteReverse((unsigned char *) ctx->buf, 4);
memcpy(digest, ctx->buf, 16);
memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
}
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
static void MD5Transform(FcChar32 buf[4], FcChar32 in[16])
{
register FcChar32 a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
#define __fccache__
#include "fcaliastail.h"
#undef __fccache__