Refactor texture compressors into separate files
R=robertphillips@google.com
Author: krajcevski@google.com
Review URL: https://codereview.chromium.org/403383003
diff --git a/gyp/utils.gypi b/gyp/utils.gypi
index 52cc154..9efa280 100644
--- a/gyp/utils.gypi
+++ b/gyp/utils.gypi
@@ -85,6 +85,10 @@
'<(skia_src_path)/utils/SkRTConf.cpp',
'<(skia_src_path)/utils/SkTextureCompressor.cpp',
'<(skia_src_path)/utils/SkTextureCompressor.h',
+ '<(skia_src_path)/utils/SkTextureCompressor_R11EAC.cpp',
+ '<(skia_src_path)/utils/SkTextureCompressor_R11EAC.h',
+ '<(skia_src_path)/utils/SkTextureCompressor_LATC.cpp',
+ '<(skia_src_path)/utils/SkTextureCompressor_LATC.h',
'<(skia_src_path)/utils/SkThreadUtils.h',
'<(skia_src_path)/utils/SkThreadUtils_pthread.cpp',
'<(skia_src_path)/utils/SkThreadUtils_pthread.h',
diff --git a/src/utils/SkTextureCompressor.cpp b/src/utils/SkTextureCompressor.cpp
index a593b36..453d989 100644
--- a/src/utils/SkTextureCompressor.cpp
+++ b/src/utils/SkTextureCompressor.cpp
@@ -6,6 +6,8 @@
*/
#include "SkTextureCompressor.h"
+#include "SkTextureCompressor_R11EAC.h"
+#include "SkTextureCompressor_LATC.h"
#include "SkBitmap.h"
#include "SkData.h"
@@ -14,848 +16,32 @@
#include "SkTextureCompression_opts.h"
////////////////////////////////////////////////////////////////////////////////
-//
-// Utility Functions
-//
-////////////////////////////////////////////////////////////////////////////////
-
-// Absolute difference between two values. More correct than SkTAbs(a - b)
-// because it works on unsigned values.
-template <typename T> inline T abs_diff(const T &a, const T &b) {
- return (a > b) ? (a - b) : (b - a);
-}
-
-static bool is_extremal(uint8_t pixel) {
- return 0 == pixel || 255 == pixel;
-}
-
-typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]);
-
-// This function is used by both R11 EAC and LATC to compress 4x4 blocks
-// of 8-bit alpha into 64-bit values that comprise the compressed data.
-// For both formats, we need to make sure that the dimensions of the
-// src pixels are divisible by 4, and copy 4x4 blocks one at a time
-// for compression.
-static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src,
- int width, int height, int rowBytes,
- A84x4To64BitProc proc) {
- // Make sure that our data is well-formed enough to be considered for compression
- if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
- return false;
- }
-
- int blocksX = width >> 2;
- int blocksY = height >> 2;
-
- uint8_t block[16];
- uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
- for (int y = 0; y < blocksY; ++y) {
- for (int x = 0; x < blocksX; ++x) {
- // Load block
- for (int k = 0; k < 4; ++k) {
- memcpy(block + k*4, src + k*rowBytes + 4*x, 4);
- }
-
- // Compress it
- *encPtr = proc(block);
- ++encPtr;
- }
- src += 4 * rowBytes;
- }
-
- return true;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-//
-// LATC compressor
-//
-////////////////////////////////////////////////////////////////////////////////
-
-// LATC compressed texels down into square 4x4 blocks
-static const int kLATCPaletteSize = 8;
-static const int kLATCBlockSize = 4;
-static const int kLATCPixelsPerBlock = kLATCBlockSize * kLATCBlockSize;
-
-// Generates an LATC palette. LATC constructs
-// a palette of eight colors from LUM0 and LUM1 using the algorithm:
-//
-// LUM0, if lum0 > lum1 and code(x,y) == 0
-// LUM1, if lum0 > lum1 and code(x,y) == 1
-// (6*LUM0+ LUM1)/7, if lum0 > lum1 and code(x,y) == 2
-// (5*LUM0+2*LUM1)/7, if lum0 > lum1 and code(x,y) == 3
-// (4*LUM0+3*LUM1)/7, if lum0 > lum1 and code(x,y) == 4
-// (3*LUM0+4*LUM1)/7, if lum0 > lum1 and code(x,y) == 5
-// (2*LUM0+5*LUM1)/7, if lum0 > lum1 and code(x,y) == 6
-// ( LUM0+6*LUM1)/7, if lum0 > lum1 and code(x,y) == 7
-//
-// LUM0, if lum0 <= lum1 and code(x,y) == 0
-// LUM1, if lum0 <= lum1 and code(x,y) == 1
-// (4*LUM0+ LUM1)/5, if lum0 <= lum1 and code(x,y) == 2
-// (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3
-// (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4
-// ( LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5
-// 0, if lum0 <= lum1 and code(x,y) == 6
-// 255, if lum0 <= lum1 and code(x,y) == 7
-
-static void generate_latc_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) {
- palette[0] = lum0;
- palette[1] = lum1;
- if (lum0 > lum1) {
- for (int i = 1; i < 7; i++) {
- palette[i+1] = ((7-i)*lum0 + i*lum1) / 7;
- }
- } else {
- for (int i = 1; i < 5; i++) {
- palette[i+1] = ((5-i)*lum0 + i*lum1) / 5;
- }
- palette[6] = 0;
- palette[7] = 255;
- }
-}
-
-// Compress a block by using the bounding box of the pixels. It is assumed that
-// there are no extremal pixels in this block otherwise we would have used
-// compressBlockBBIgnoreExtremal.
-static uint64_t compress_latc_block_bb(const uint8_t pixels[]) {
- uint8_t minVal = 255;
- uint8_t maxVal = 0;
- for (int i = 0; i < kLATCPixelsPerBlock; ++i) {
- minVal = SkTMin(pixels[i], minVal);
- maxVal = SkTMax(pixels[i], maxVal);
- }
-
- SkASSERT(!is_extremal(minVal));
- SkASSERT(!is_extremal(maxVal));
-
- uint8_t palette[kLATCPaletteSize];
- generate_latc_palette(palette, maxVal, minVal);
-
- uint64_t indices = 0;
- for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) {
-
- // Find the best palette index
- uint8_t bestError = abs_diff(pixels[i], palette[0]);
- uint8_t idx = 0;
- for (int j = 1; j < kLATCPaletteSize; ++j) {
- uint8_t error = abs_diff(pixels[i], palette[j]);
- if (error < bestError) {
- bestError = error;
- idx = j;
- }
- }
-
- indices <<= 3;
- indices |= idx;
- }
-
- return
- SkEndian_SwapLE64(
- static_cast<uint64_t>(maxVal) |
- (static_cast<uint64_t>(minVal) << 8) |
- (indices << 16));
-}
-
-// Compress a block by using the bounding box of the pixels without taking into
-// account the extremal values. The generated palette will contain extremal values
-// and fewer points along the line segment to interpolate.
-static uint64_t compress_latc_block_bb_ignore_extremal(const uint8_t pixels[]) {
- uint8_t minVal = 255;
- uint8_t maxVal = 0;
- for (int i = 0; i < kLATCPixelsPerBlock; ++i) {
- if (is_extremal(pixels[i])) {
- continue;
- }
-
- minVal = SkTMin(pixels[i], minVal);
- maxVal = SkTMax(pixels[i], maxVal);
- }
-
- SkASSERT(!is_extremal(minVal));
- SkASSERT(!is_extremal(maxVal));
-
- uint8_t palette[kLATCPaletteSize];
- generate_latc_palette(palette, minVal, maxVal);
-
- uint64_t indices = 0;
- for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) {
-
- // Find the best palette index
- uint8_t idx = 0;
- if (is_extremal(pixels[i])) {
- if (0xFF == pixels[i]) {
- idx = 7;
- } else if (0 == pixels[i]) {
- idx = 6;
- } else {
- SkFAIL("Pixel is extremal but not really?!");
- }
- } else {
- uint8_t bestError = abs_diff(pixels[i], palette[0]);
- for (int j = 1; j < kLATCPaletteSize - 2; ++j) {
- uint8_t error = abs_diff(pixels[i], palette[j]);
- if (error < bestError) {
- bestError = error;
- idx = j;
- }
- }
- }
-
- indices <<= 3;
- indices |= idx;
- }
-
- return
- SkEndian_SwapLE64(
- static_cast<uint64_t>(minVal) |
- (static_cast<uint64_t>(maxVal) << 8) |
- (indices << 16));
-}
-
-
-// Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two
-// values LUM0 and LUM1, and an index into the generated palette. Details of how
-// the palette is generated can be found in the comments of generatePalette above.
-//
-// We choose which palette type to use based on whether or not 'pixels' contains
-// any extremal values (0 or 255). If there are extremal values, then we use the
-// palette that has the extremal values built in. Otherwise, we use the full bounding
-// box.
-
-static uint64_t compress_latc_block(const uint8_t pixels[]) {
- // Collect unique pixels
- int nUniquePixels = 0;
- uint8_t uniquePixels[kLATCPixelsPerBlock];
- for (int i = 0; i < kLATCPixelsPerBlock; ++i) {
- bool foundPixel = false;
- for (int j = 0; j < nUniquePixels; ++j) {
- foundPixel = foundPixel || uniquePixels[j] == pixels[i];
- }
-
- if (!foundPixel) {
- uniquePixels[nUniquePixels] = pixels[i];
- ++nUniquePixels;
- }
- }
-
- // If there's only one unique pixel, then our compression is easy.
- if (1 == nUniquePixels) {
- return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8));
-
- // Similarly, if there are only two unique pixels, then our compression is
- // easy again: place the pixels in the block header, and assign the indices
- // with one or zero depending on which pixel they belong to.
- } else if (2 == nUniquePixels) {
- uint64_t outBlock = 0;
- for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) {
- int idx = 0;
- if (pixels[i] == uniquePixels[1]) {
- idx = 1;
- }
-
- outBlock <<= 3;
- outBlock |= idx;
- }
- outBlock <<= 16;
- outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8));
- return SkEndian_SwapLE64(outBlock);
- }
-
- // Count non-maximal pixel values
- int nonExtremalPixels = 0;
- for (int i = 0; i < nUniquePixels; ++i) {
- if (!is_extremal(uniquePixels[i])) {
- ++nonExtremalPixels;
- }
- }
-
- // If all the pixels are nonmaximal then compute the palette using
- // the bounding box of all the pixels.
- if (nonExtremalPixels == nUniquePixels) {
- // This is really just for correctness, in all of my tests we
- // never take this step. We don't lose too much perf here because
- // most of the processing in this function is worth it for the
- // 1 == nUniquePixels optimization.
- return compress_latc_block_bb(pixels);
- } else {
- return compress_latc_block_bb_ignore_extremal(pixels);
- }
-}
-
-static inline bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src,
- int width, int height, int rowBytes) {
- return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_latc_block);
-}
-
-////////////////////////////////////////////////////////////////////////////////
-//
-// R11 EAC Compressor
-//
-////////////////////////////////////////////////////////////////////////////////
-
-// #define COMPRESS_R11_EAC_SLOW 1
-// #define COMPRESS_R11_EAC_FAST 1
-#define COMPRESS_R11_EAC_FASTEST 1
-
-// Blocks compressed into R11 EAC are represented as follows:
-// 0000000000000000000000000000000000000000000000000000000000000000
-// |base_cw|mod|mul| ----------------- indices -------------------
-//
-// To reconstruct the value of a given pixel, we use the formula:
-// clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8)
-//
-// mod_val is chosen from a palette of values based on the index of the
-// given pixel. The palette is chosen by the value stored in mod.
-// This formula returns a value between 0 and 2047, which is converted
-// to a float from 0 to 1 in OpenGL.
-//
-// If mul is zero, then we set mul = 1/8, so that the formula becomes
-// clamp[0, 2047](base_cw * 8 + 4 + mod_val)
-
-#if COMPRESS_R11_EAC_SLOW
-
-static const int kNumR11EACPalettes = 16;
-static const int kR11EACPaletteSize = 8;
-static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] = {
- {-3, -6, -9, -15, 2, 5, 8, 14},
- {-3, -7, -10, -13, 2, 6, 9, 12},
- {-2, -5, -8, -13, 1, 4, 7, 12},
- {-2, -4, -6, -13, 1, 3, 5, 12},
- {-3, -6, -8, -12, 2, 5, 7, 11},
- {-3, -7, -9, -11, 2, 6, 8, 10},
- {-4, -7, -8, -11, 3, 6, 7, 10},
- {-3, -5, -8, -11, 2, 4, 7, 10},
- {-2, -6, -8, -10, 1, 5, 7, 9},
- {-2, -5, -8, -10, 1, 4, 7, 9},
- {-2, -4, -8, -10, 1, 3, 7, 9},
- {-2, -5, -7, -10, 1, 4, 6, 9},
- {-3, -4, -7, -10, 2, 3, 6, 9},
- {-1, -2, -3, -10, 0, 1, 2, 9},
- {-4, -6, -8, -9, 3, 5, 7, 8},
- {-3, -5, -7, -9, 2, 4, 6, 8}
-};
-
-// Pack the base codeword, palette, and multiplier into the 64 bits necessary
-// to decode it.
-static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier,
- uint64_t indices) {
- SkASSERT(palette < 16);
- SkASSERT(multiplier < 16);
- SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
-
- const uint64_t b = static_cast<uint64_t>(base_cw) << 56;
- const uint64_t m = static_cast<uint64_t>(multiplier) << 52;
- const uint64_t p = static_cast<uint64_t>(palette) << 48;
- return SkEndian_SwapBE64(b | m | p | indices);
-}
-
-// Given a base codeword, a modifier, and a multiplier, compute the proper
-// pixel value in the range [0, 2047].
-static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) {
- int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8);
- return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret);
-}
-
-// Compress a block into R11 EAC format.
-// The compression works as follows:
-// 1. Find the center of the span of the block's values. Use this as the base codeword.
-// 2. Choose a multiplier based roughly on the size of the span of block values
-// 3. Iterate through each palette and choose the one with the most accurate
-// modifiers.
-static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
- // Find the center of the data...
- uint16_t bmin = block[0];
- uint16_t bmax = block[0];
- for (int i = 1; i < 16; ++i) {
- bmin = SkTMin<uint16_t>(bmin, block[i]);
- bmax = SkTMax<uint16_t>(bmax, block[i]);
- }
-
- uint16_t center = (bmax + bmin) >> 1;
- SkASSERT(center <= 255);
-
- // Based on the min and max, we can guesstimate a proper multiplier
- // This is kind of a magic choice to start with.
- uint16_t multiplier = (bmax - center) / 10;
-
- // Now convert the block to 11 bits and transpose it to match
- // the proper layout
- uint16_t cblock[16];
- for (int i = 0; i < 4; ++i) {
- for (int j = 0; j < 4; ++j) {
- int srcIdx = i*4+j;
- int dstIdx = j*4+i;
- cblock[dstIdx] = (block[srcIdx] << 3) | (block[srcIdx] >> 5);
- }
- }
-
- // Finally, choose the proper palette and indices
- uint32_t bestError = 0xFFFFFFFF;
- uint64_t bestIndices = 0;
- uint16_t bestPalette = 0;
- for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) {
- const int *palette = kR11EACModifierPalettes[paletteIdx];
-
- // Iterate through each pixel to find the best palette index
- // and update the indices with the choice. Also store the error
- // for this palette to be compared against the best error...
- uint32_t error = 0;
- uint64_t indices = 0;
- for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) {
- const uint16_t pixel = cblock[pixelIdx];
-
- // Iterate through each palette value to find the best index
- // for this particular pixel for this particular palette.
- uint16_t bestPixelError =
- abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multiplier));
- int bestIndex = 0;
- for (int i = 1; i < kR11EACPaletteSize; ++i) {
- const uint16_t p = compute_r11eac_pixel(center, palette[i], multiplier);
- const uint16_t perror = abs_diff(pixel, p);
-
- // Is this index better?
- if (perror < bestPixelError) {
- bestIndex = i;
- bestPixelError = perror;
- }
- }
-
- SkASSERT(bestIndex < 8);
-
- error += bestPixelError;
- indices <<= 3;
- indices |= bestIndex;
- }
-
- SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
-
- // Is this palette better?
- if (error < bestError) {
- bestPalette = paletteIdx;
- bestIndices = indices;
- bestError = error;
- }
- }
-
- // Finally, pack everything together...
- return pack_r11eac_block(center, bestPalette, multiplier, bestIndices);
-}
-#endif // COMPRESS_R11_EAC_SLOW
-
-#if COMPRESS_R11_EAC_FAST
-// This function takes into account that most blocks that we compress have a gradation from
-// fully opaque to fully transparent. The compression scheme works by selecting the
-// palette and multiplier that has the tightest fit to the 0-255 range. This is encoded
-// as the block header (0x8490). The indices are then selected by considering the top
-// three bits of each alpha value. For alpha masks, this reduces the dynamic range from
-// 17 to 8, but the quality is still acceptable.
-//
-// There are a few caveats that need to be taken care of...
-//
-// 1. The block is read in as scanlines, so the indices are stored as:
-// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-// However, the decomrpession routine reads them in column-major order, so they
-// need to be packed as:
-// 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
-// So when reading, they must be transposed.
-//
-// 2. We cannot use the top three bits as an index directly, since the R11 EAC palettes
-// above store the modulation values first decreasing and then increasing:
-// e.g. {-3, -6, -9, -15, 2, 5, 8, 14}
-// Hence, we need to convert the indices with the following mapping:
-// From: 0 1 2 3 4 5 6 7
-// To: 3 2 1 0 4 5 6 7
-static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
- uint64_t retVal = static_cast<uint64_t>(0x8490) << 48;
- for(int i = 0; i < 4; ++i) {
- for(int j = 0; j < 4; ++j) {
- const int shift = 45-3*(j*4+i);
- SkASSERT(shift <= 45);
- const uint64_t idx = block[i*4+j] >> 5;
- SkASSERT(idx < 8);
-
- // !SPEED! This is slightly faster than having an if-statement.
- switch(idx) {
- case 0:
- case 1:
- case 2:
- case 3:
- retVal |= (3-idx) << shift;
- break;
- default:
- retVal |= idx << shift;
- break;
- }
- }
- }
-
- return SkEndian_SwapBE64(retVal);
-}
-#endif // COMPRESS_R11_EAC_FAST
-
-#if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
-static uint64_t compress_r11eac_block(const uint8_t block[16]) {
- // Are all blocks a solid color?
- bool solid = true;
- for (int i = 1; i < 16; ++i) {
- if (block[i] != block[0]) {
- solid = false;
- break;
- }
- }
-
- if (solid) {
- switch(block[0]) {
- // Fully transparent? We know the encoding...
- case 0:
- // (0x0020 << 48) produces the following:
- // basw_cw: 0
- // mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14}
- // multiplier: 2
- // mod_val: -3
- //
- // this gives the following formula:
- // clamp[0, 2047](0*8+4+(-3)*2*8) = 0
- //
- // Furthermore, it is impervious to endianness:
- // 0x0020000000002000ULL
- // Will produce one pixel with index 2, which gives:
- // clamp[0, 2047](0*8+4+(-9)*2*8) = 0
- return 0x0020000000002000ULL;
-
- // Fully opaque? We know this encoding too...
- case 255:
-
- // -1 produces the following:
- // basw_cw: 255
- // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8}
- // mod_val: 8
- //
- // this gives the following formula:
- // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047
- return 0xFFFFFFFFFFFFFFFFULL;
-
- default:
- // !TODO! krajcevski:
- // This will probably never happen, since we're using this format
- // primarily for compressing alpha maps. Usually the only
- // non-fullly opaque or fully transparent blocks are not a solid
- // intermediate color. If we notice that they are, then we can
- // add another optimization...
- break;
- }
- }
-
- return compress_heterogeneous_r11eac_block(block);
-}
-#endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
-
-#if COMPRESS_R11_EAC_FASTEST
-static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) {
- // If our 3-bit block indices are laid out as:
- // a b c d
- // e f g h
- // i j k l
- // m n o p
- //
- // This function expects topRows and bottomRows to contain the first two rows
- // of indices interleaved in the least significant bits of a and b. In other words...
- //
- // If the architecture is big endian, then topRows and bottomRows will contain the following:
- // Bits 31-0:
- // a: 00 a e 00 b f 00 c g 00 d h
- // b: 00 i m 00 j n 00 k o 00 l p
- //
- // If the architecture is little endian, then topRows and bottomRows will contain
- // the following:
- // Bits 31-0:
- // a: 00 d h 00 c g 00 b f 00 a e
- // b: 00 l p 00 k o 00 j n 00 i m
- //
- // This function returns a 48-bit packing of the form:
- // a e i m b f j n c g k o d h l p
- //
- // !SPEED! this function might be even faster if certain SIMD intrinsics are
- // used..
-
- // For both architectures, we can figure out a packing of the bits by
- // using a shuffle and a few shift-rotates...
- uint64_t x = (static_cast<uint64_t>(topRows) << 32) | static_cast<uint64_t>(bottomRows);
-
- // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p
-
- uint64_t t = (x ^ (x >> 10)) & 0x3FC0003FC00000ULL;
- x = x ^ t ^ (t << 10);
-
- // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p
-
- x = (x | ((x << 52) & (0x3FULL << 52)) | ((x << 20) & (0x3FULL << 28))) >> 16;
-
- // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n
-
- t = (x ^ (x >> 6)) & 0xFC0000ULL;
- x = x ^ t ^ (t << 6);
-
-#if defined (SK_CPU_BENDIAN)
- // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n
-
- t = (x ^ (x >> 36)) & 0x3FULL;
- x = x ^ t ^ (t << 36);
-
- // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p
-
- t = (x ^ (x >> 12)) & 0xFFF000000ULL;
- x = x ^ t ^ (t << 12);
-
- // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p
- return x;
-#else
- // If our CPU is little endian, then the above logic will
- // produce the following indices:
- // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o
-
- t = (x ^ (x >> 36)) & 0xFC0ULL;
- x = x ^ t ^ (t << 36);
-
- // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o
-
- x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFULL);
-
- // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p
-
- return x;
-#endif
-}
-
-// This function converts an integer containing four bytes of alpha
-// values into an integer containing four bytes of indices into R11 EAC.
-// Note, there needs to be a mapping of indices:
-// 0 1 2 3 4 5 6 7
-// 3 2 1 0 4 5 6 7
-//
-// To compute this, we first negate each byte, and then add three, which
-// gives the mapping
-// 3 2 1 0 -1 -2 -3 -4
-//
-// Then we mask out the negative values, take their absolute value, and
-// add three.
-//
-// Most of the voodoo in this function comes from Hacker's Delight, section 2-18
-static inline uint32_t convert_indices(uint32_t x) {
- // Take the top three bits...
- x = (x & 0xE0E0E0E0) >> 5;
-
- // Negate...
- x = ~((0x80808080 - x) ^ 0x7F7F7F7F);
-
- // Add three
- const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303;
- x = ((x ^ 0x03030303) & 0x80808080) ^ s;
-
- // Absolute value
- const uint32_t a = x & 0x80808080;
- const uint32_t b = a >> 7;
-
- // Aside: mask negatives (m is three if the byte was negative)
- const uint32_t m = (a >> 6) | b;
-
- // .. continue absolute value
- x = (x ^ ((a - b) | a)) + b;
-
- // Add three
- return x + m;
-}
-
-// This function follows the same basic procedure as compress_heterogeneous_r11eac_block
-// above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and
-// tries to optimize where it can using SIMD.
-static uint64_t compress_r11eac_block_fast(const uint8_t* src, int rowBytes) {
- // Store each row of alpha values in an integer
- const uint32_t alphaRow1 = *(reinterpret_cast<const uint32_t*>(src));
- const uint32_t alphaRow2 = *(reinterpret_cast<const uint32_t*>(src + rowBytes));
- const uint32_t alphaRow3 = *(reinterpret_cast<const uint32_t*>(src + 2*rowBytes));
- const uint32_t alphaRow4 = *(reinterpret_cast<const uint32_t*>(src + 3*rowBytes));
-
- // Check for solid blocks. The explanations for these values
- // can be found in the comments of compress_r11eac_block above
- if (alphaRow1 == alphaRow2 && alphaRow1 == alphaRow3 && alphaRow1 == alphaRow4) {
- if (0 == alphaRow1) {
- // Fully transparent block
- return 0x0020000000002000ULL;
- } else if (0xFFFFFFFF == alphaRow1) {
- // Fully opaque block
- return 0xFFFFFFFFFFFFFFFFULL;
- }
- }
-
- // Convert each integer of alpha values into an integer of indices
- const uint32_t indexRow1 = convert_indices(alphaRow1);
- const uint32_t indexRow2 = convert_indices(alphaRow2);
- const uint32_t indexRow3 = convert_indices(alphaRow3);
- const uint32_t indexRow4 = convert_indices(alphaRow4);
-
- // Interleave the indices from the top two rows and bottom two rows
- // prior to passing them to interleave6. Since each index is at most
- // three bits, then each byte can hold two indices... The way that the
- // compression scheme expects the packing allows us to efficiently pack
- // the top two rows and bottom two rows. Interleaving each 6-bit sequence
- // and tightly packing it into a uint64_t is a little trickier, which is
- // taken care of in interleave6.
- const uint32_t r1r2 = (indexRow1 << 3) | indexRow2;
- const uint32_t r3r4 = (indexRow3 << 3) | indexRow4;
- const uint64_t indices = interleave6(r1r2, r3r4);
-
- // Return the packed incdices in the least significant bits with the magic header
- return SkEndian_SwapBE64(0x8490000000000000ULL | indices);
-}
-
-static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src,
- int width, int height, int rowBytes) {
- // Make sure that our data is well-formed enough to be considered for compression
- if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
- return false;
- }
-
- const int blocksX = width >> 2;
- const int blocksY = height >> 2;
-
- uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
- for (int y = 0; y < blocksY; ++y) {
- for (int x = 0; x < blocksX; ++x) {
- // Compress it
- *encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes);
- ++encPtr;
- }
- src += 4 * rowBytes;
- }
- return true;
-}
-#endif // COMPRESS_R11_EAC_FASTEST
-
-// The R11 EAC format expects that indices are given in column-major order. Since
-// we receive alpha values in raster order, this usually means that we have to use
-// pack6 above to properly pack our indices. However, if our indices come from the
-// blitter, then each integer will be a column of indices, and hence can be efficiently
-// packed. This function takes the bottom three bits of each byte and places them in
-// the least significant 12 bits of the resulting integer.
-static inline uint32_t pack_indices_vertical(uint32_t x) {
-#if defined (SK_CPU_BENDIAN)
- return
- (x & 7) |
- ((x >> 5) & (7 << 3)) |
- ((x >> 10) & (7 << 6)) |
- ((x >> 15) & (7 << 9));
-#else
- return
- ((x >> 24) & 7) |
- ((x >> 13) & (7 << 3)) |
- ((x >> 2) & (7 << 6)) |
- ((x << 9) & (7 << 9));
-#endif
-}
-
-// This function returns the compressed format of a block given as four columns of
-// alpha values. Each column is assumed to be loaded from top to bottom, and hence
-// must first be converted to indices and then packed into the resulting 64-bit
-// integer.
-static inline uint64_t compress_block_vertical(const uint32_t alphaColumn0,
- const uint32_t alphaColumn1,
- const uint32_t alphaColumn2,
- const uint32_t alphaColumn3) {
-
- if (alphaColumn0 == alphaColumn1 &&
- alphaColumn2 == alphaColumn3 &&
- alphaColumn0 == alphaColumn2) {
-
- if (0 == alphaColumn0) {
- // Transparent
- return 0x0020000000002000ULL;
- }
- else if (0xFFFFFFFF == alphaColumn0) {
- // Opaque
- return 0xFFFFFFFFFFFFFFFFULL;
- }
- }
-
- const uint32_t indexColumn0 = convert_indices(alphaColumn0);
- const uint32_t indexColumn1 = convert_indices(alphaColumn1);
- const uint32_t indexColumn2 = convert_indices(alphaColumn2);
- const uint32_t indexColumn3 = convert_indices(alphaColumn3);
-
- const uint32_t packedIndexColumn0 = pack_indices_vertical(indexColumn0);
- const uint32_t packedIndexColumn1 = pack_indices_vertical(indexColumn1);
- const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2);
- const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3);
-
- return SkEndian_SwapBE64(0x8490000000000000ULL |
- (static_cast<uint64_t>(packedIndexColumn0) << 36) |
- (static_cast<uint64_t>(packedIndexColumn1) << 24) |
- static_cast<uint64_t>(packedIndexColumn2 << 12) |
- static_cast<uint64_t>(packedIndexColumn3));
-
-}
-
-static inline bool compress_a8_to_r11eac(uint8_t* dst, const uint8_t* src,
- int width, int height, int rowBytes) {
-#if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
- return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block);
-#elif COMPRESS_R11_EAC_FASTEST
- return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes);
-#else
-#error "Must choose R11 EAC algorithm"
-#endif
-}
-
-// Updates the block whose columns are stored in blockColN. curAlphai is expected
-// to store, as an integer, the four alpha values that will be placed within each
-// of the columns in the range [col, col+colsLeft).
-static inline void update_block_columns(
- uint32_t* blockCol1, uint32_t* blockCol2, uint32_t* blockCol3, uint32_t* blockCol4,
- const int col, const int colsLeft, const uint32_t curAlphai) {
- SkASSERT(NULL != blockCol1);
- SkASSERT(NULL != blockCol2);
- SkASSERT(NULL != blockCol3);
- SkASSERT(NULL != blockCol4);
- SkASSERT(col + colsLeft <= 4);
- for (int i = col; i < (col + colsLeft); ++i) {
- switch(i) {
- case 0:
- *blockCol1 = curAlphai;
- break;
- case 1:
- *blockCol2 = curAlphai;
- break;
- case 2:
- *blockCol3 = curAlphai;
- break;
- case 3:
- *blockCol4 = curAlphai;
- break;
- }
- }
-}
-
-////////////////////////////////////////////////////////////////////////////////
namespace SkTextureCompressor {
-static inline size_t get_compressed_data_size(Format fmt, int width, int height) {
+int GetCompressedDataSize(Format fmt, int width, int height) {
switch (fmt) {
// These formats are 64 bits per 4x4 block.
case kR11_EAC_Format:
case kLATC_Format:
{
- static const int kLATCEncodedBlockSize = 8;
+ static const int kBlockDimension = 4;
+ static const int kEncodedBlockSize = 8;
- const int blocksX = width / kLATCBlockSize;
- const int blocksY = height / kLATCBlockSize;
+ if(((width % kBlockDimension) == 0) && ((height % kBlockDimension) == 0)) {
- return blocksX * blocksY * kLATCEncodedBlockSize;
+ const int blocksX = width / kBlockDimension;
+ const int blocksY = height / kBlockDimension;
+
+ return blocksX * blocksY * kEncodedBlockSize;
+ }
+
+ return -1;
}
default:
SkFAIL("Unknown compressed format!");
- return 0;
+ return -1;
}
}
@@ -872,10 +58,10 @@
{
switch (format) {
case kLATC_Format:
- proc = compress_a8_to_latc;
+ proc = CompressA8ToLATC;
break;
case kR11_EAC_Format:
- proc = compress_a8_to_r11eac;
+ proc = CompressA8ToR11EAC;
break;
default:
// Do nothing...
@@ -900,9 +86,14 @@
SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) {
SkAutoLockPixels alp(bitmap);
- int compressedDataSize = get_compressed_data_size(format, bitmap.width(), bitmap.height());
+ int compressedDataSize = GetCompressedDataSize(format, bitmap.width(), bitmap.height());
+ if (compressedDataSize < 0) {
+ return NULL;
+ }
+
const uint8_t* src = reinterpret_cast<const uint8_t*>(bitmap.getPixels());
uint8_t* dst = reinterpret_cast<uint8_t*>(sk_malloc_throw(compressedDataSize));
+
if (CompressBufferToFormat(dst, src, bitmap.colorType(), bitmap.width(), bitmap.height(),
bitmap.rowBytes(), format)) {
return SkData::NewFromMalloc(dst, compressedDataSize);
@@ -912,221 +103,19 @@
return NULL;
}
-R11_EACBlitter::R11_EACBlitter(int width, int height, void *latcBuffer)
- // 0x7FFE is one minus the largest positive 16-bit int. We use it for
- // debugging to make sure that we're properly setting the nextX distance
- // in flushRuns().
- : kLongestRun(0x7FFE), kZeroAlpha(0)
- , fNextRun(0)
- , fWidth(width)
- , fHeight(height)
- , fBuffer(reinterpret_cast<uint64_t*const>(latcBuffer))
-{
- SkASSERT((width % kR11_EACBlockSz) == 0);
- SkASSERT((height % kR11_EACBlockSz) == 0);
-}
+SkBlitter* CreateBlitterForFormat(int width, int height, void* compressedBuffer, Format format) {
+ switch(format) {
+ case kLATC_Format:
+ return CreateLATCBlitter(width, height, compressedBuffer);
-void R11_EACBlitter::blitAntiH(int x, int y,
- const SkAlpha* antialias,
- const int16_t* runs) {
- // Make sure that the new row to blit is either the first
- // row that we're blitting, or it's exactly the next scan row
- // since the last row that we blit. This is to ensure that when
- // we go to flush the runs, that they are all the same four
- // runs.
- if (fNextRun > 0 &&
- ((x != fBufferedRuns[fNextRun-1].fX) ||
- (y-1 != fBufferedRuns[fNextRun-1].fY))) {
- this->flushRuns();
+ case kR11_EAC_Format:
+ return CreateR11EACBlitter(width, height, compressedBuffer);
+
+ default:
+ return NULL;
}
- // Align the rows to a block boundary. If we receive rows that
- // are not on a block boundary, then fill in the preceding runs
- // with zeros. We do this by producing a single RLE that says
- // that we have 0x7FFE pixels of zero (0x7FFE = 32766).
- const int row = y & ~3;
- while ((row + fNextRun) < y) {
- fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha;
- fBufferedRuns[fNextRun].fRuns = &kLongestRun;
- fBufferedRuns[fNextRun].fX = 0;
- fBufferedRuns[fNextRun].fY = row + fNextRun;
- ++fNextRun;
- }
-
- // Make sure that our assumptions aren't violated...
- SkASSERT(fNextRun == (y & 3));
- SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y);
-
- // Set the values of the next run
- fBufferedRuns[fNextRun].fAlphas = antialias;
- fBufferedRuns[fNextRun].fRuns = runs;
- fBufferedRuns[fNextRun].fX = x;
- fBufferedRuns[fNextRun].fY = y;
-
- // If we've output four scanlines in a row that don't violate our
- // assumptions, then it's time to flush them...
- if (4 == ++fNextRun) {
- this->flushRuns();
- }
-}
-
-void R11_EACBlitter::flushRuns() {
-
- // If we don't have any runs, then just return.
- if (0 == fNextRun) {
- return;
- }
-
-#ifndef NDEBUG
- // Make sure that if we have any runs, they all match
- for (int i = 1; i < fNextRun; ++i) {
- SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1);
- SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX);
- }
-#endif
-
- // If we dont have as many runs as we have rows, fill in the remaining
- // runs with constant zeros.
- for (int i = fNextRun; i < kR11_EACBlockSz; ++i) {
- fBufferedRuns[i].fY = fBufferedRuns[0].fY + i;
- fBufferedRuns[i].fX = fBufferedRuns[0].fX;
- fBufferedRuns[i].fAlphas = &kZeroAlpha;
- fBufferedRuns[i].fRuns = &kLongestRun;
- }
-
- // Make sure that our assumptions aren't violated.
- SkASSERT(fNextRun > 0 && fNextRun <= 4);
- SkASSERT((fBufferedRuns[0].fY & 3) == 0);
-
- // The following logic walks four rows at a time and outputs compressed
- // blocks to the buffer passed into the constructor.
- // We do the following:
- //
- // c1 c2 c3 c4
- // -----------------------------------------------------------------------
- // ... | | | | | ----> fBufferedRuns[0]
- // -----------------------------------------------------------------------
- // ... | | | | | ----> fBufferedRuns[1]
- // -----------------------------------------------------------------------
- // ... | | | | | ----> fBufferedRuns[2]
- // -----------------------------------------------------------------------
- // ... | | | | | ----> fBufferedRuns[3]
- // -----------------------------------------------------------------------
- //
- // curX -- the macro X value that we've gotten to.
- // c1, c2, c3, c4 -- the integers that represent the columns of the current block
- // that we're operating on
- // curAlphaColumn -- integer containing the column of alpha values from fBufferedRuns.
- // nextX -- for each run, the next point at which we need to update curAlphaColumn
- // after the value of curX.
- // finalX -- the minimum of all the nextX values.
- //
- // curX advances to finalX outputting any blocks that it passes along
- // the way. Since finalX will not change when we reach the end of a
- // run, the termination criteria will be whenever curX == finalX at the
- // end of a loop.
-
- // Setup:
- uint32_t c1 = 0;
- uint32_t c2 = 0;
- uint32_t c3 = 0;
- uint32_t c4 = 0;
-
- uint32_t curAlphaColumn = 0;
- SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn);
-
- int nextX[kR11_EACBlockSz];
- for (int i = 0; i < kR11_EACBlockSz; ++i) {
- nextX[i] = 0x7FFFFF;
- }
-
- uint64_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY);
-
- // Populate the first set of runs and figure out how far we need to
- // advance on the first step
- int curX = 0;
- int finalX = 0xFFFFF;
- for (int i = 0; i < kR11_EACBlockSz; ++i) {
- nextX[i] = *(fBufferedRuns[i].fRuns);
- curAlpha[i] = *(fBufferedRuns[i].fAlphas);
-
- finalX = SkMin32(nextX[i], finalX);
- }
-
- // Make sure that we have a valid right-bound X value
- SkASSERT(finalX < 0xFFFFF);
-
- // Run the blitter...
- while (curX != finalX) {
- SkASSERT(finalX >= curX);
-
- // Do we need to populate the rest of the block?
- if ((finalX - (curX & ~3)) >= kR11_EACBlockSz) {
- const int col = curX & 3;
- const int colsLeft = 4 - col;
- SkASSERT(curX + colsLeft <= finalX);
-
- update_block_columns(&c1, &c2, &c3, &c4, col, colsLeft, curAlphaColumn);
-
- // Write this block
- *outPtr = compress_block_vertical(c1, c2, c3, c4);
- ++outPtr;
- curX += colsLeft;
- }
-
- // If we can advance even further, then just keep memsetting the block
- if ((finalX - curX) >= kR11_EACBlockSz) {
- SkASSERT((curX & 3) == 0);
-
- const int col = 0;
- const int colsLeft = kR11_EACBlockSz;
-
- update_block_columns(&c1, &c2, &c3, &c4, col, colsLeft, curAlphaColumn);
-
- // While we can keep advancing, just keep writing the block.
- uint64_t lastBlock = compress_block_vertical(c1, c2, c3, c4);
- while((finalX - curX) >= kR11_EACBlockSz) {
- *outPtr = lastBlock;
- ++outPtr;
- curX += kR11_EACBlockSz;
- }
- }
-
- // If we haven't advanced within the block then do so.
- if (curX < finalX) {
- const int col = curX & 3;
- const int colsLeft = finalX - curX;
-
- update_block_columns(&c1, &c2, &c3, &c4, col, colsLeft, curAlphaColumn);
-
- curX += colsLeft;
- }
-
- SkASSERT(curX == finalX);
-
- // Figure out what the next advancement is...
- for (int i = 0; i < kR11_EACBlockSz; ++i) {
- if (nextX[i] == finalX) {
- const int16_t run = *(fBufferedRuns[i].fRuns);
- fBufferedRuns[i].fRuns += run;
- fBufferedRuns[i].fAlphas += run;
- curAlpha[i] = *(fBufferedRuns[i].fAlphas);
- nextX[i] += *(fBufferedRuns[i].fRuns);
- }
- }
-
- finalX = 0xFFFFF;
- for (int i = 0; i < kR11_EACBlockSz; ++i) {
- finalX = SkMin32(nextX[i], finalX);
- }
- }
-
- // If we didn't land on a block boundary, output the block...
- if ((curX & 3) > 1) {
- *outPtr = compress_block_vertical(c1, c2, c3, c4);
- }
-
- fNextRun = 0;
+ return NULL;
}
} // namespace SkTextureCompressor
diff --git a/src/utils/SkTextureCompressor.h b/src/utils/SkTextureCompressor.h
index ea57934..a7afe03 100644
--- a/src/utils/SkTextureCompressor.h
+++ b/src/utils/SkTextureCompressor.h
@@ -18,13 +18,18 @@
// Various texture compression formats that we support.
enum Format {
// Alpha only formats.
- kLATC_Format,
- kR11_EAC_Format,
+ kLATC_Format, // 4x4 blocks, compresses A8
+ kR11_EAC_Format, // 4x4 blocks, compresses A8
kLast_Format = kR11_EAC_Format
};
static const int kFormatCnt = kLast_Format + 1;
+ // Returns the size of the compressed data given the width, height, and
+ // desired compression format. If the width and height are not an appropriate
+ // multiple of the block size, then this function returns an error (-1).
+ int GetCompressedDataSize(Format fmt, int width, int height);
+
// Returns an SkData holding a blob of compressed data that corresponds
// to the bitmap. If the bitmap colorType cannot be compressed using the
// associated format, then we return NULL. The caller is responsible for
@@ -44,166 +49,11 @@
typedef bool (*CompressionProc)(uint8_t* dst, const uint8_t* src,
int width, int height, int rowBytes);
- // This class implements a blitter that blits directly into a buffer that will
- // be used as an R11 EAC compressed texture. We compute this buffer by
- // buffering four scan lines and then outputting them all at once. This blitter
- // is only expected to be used with alpha masks, i.e. kAlpha8_SkColorType.
- class R11_EACBlitter : public SkBlitter {
- public:
- R11_EACBlitter(int width, int height, void *compressedBuffer);
- virtual ~R11_EACBlitter() { this->flushRuns(); }
-
- // Blit a horizontal run of one or more pixels.
- virtual void blitH(int x, int y, int width) SK_OVERRIDE {
- // This function is intended to be called from any standard RGB
- // buffer, so we should never encounter it. However, if some code
- // path does end up here, then this needs to be investigated.
- SkFAIL("Not implemented!");
- }
-
- /// Blit a horizontal run of antialiased pixels; runs[] is a *sparse*
- /// zero-terminated run-length encoding of spans of constant alpha values.
- virtual void blitAntiH(int x, int y,
- const SkAlpha antialias[],
- const int16_t runs[]) SK_OVERRIDE;
-
- // Blit a vertical run of pixels with a constant alpha value.
- virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE {
- // This function is currently not implemented. It is not explicitly
- // required by the contract, but if at some time a code path runs into
- // this function (which is entirely possible), it needs to be implemented.
- //
- // TODO (krajcevski):
- // This function will be most easily implemented in one of two ways:
- // 1. Buffer each vertical column value and then construct a list
- // of alpha values and output all of the blocks at once. This only
- // requires a write to the compressed buffer
- // 2. Replace the indices of each block with the proper indices based
- // on the alpha value. This requires a read and write of the compressed
- // buffer, but much less overhead.
- SkFAIL("Not implemented!");
- }
-
- // Blit a solid rectangle one or more pixels wide.
- virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE {
- // Analogous to blitRow, this function is intended for RGB targets
- // and should never be called by this blitter. Any calls to this function
- // are probably a bug and should be investigated.
- SkFAIL("Not implemented!");
- }
-
- // Blit a rectangle with one alpha-blended column on the left,
- // width (zero or more) opaque pixels, and one alpha-blended column
- // on the right. The result will always be at least two pixels wide.
- virtual void blitAntiRect(int x, int y, int width, int height,
- SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE {
- // This function is currently not implemented. It is not explicitly
- // required by the contract, but if at some time a code path runs into
- // this function (which is entirely possible), it needs to be implemented.
- //
- // TODO (krajcevski):
- // This function will be most easily implemented as follows:
- // 1. If width/height are smaller than a block, then update the
- // indices of the affected blocks.
- // 2. If width/height are larger than a block, then construct a 9-patch
- // of block encodings that represent the rectangle, and write them
- // to the compressed buffer as necessary. Whether or not the blocks
- // are overwritten by zeros or just their indices are updated is up
- // to debate.
- SkFAIL("Not implemented!");
- }
-
- // Blit a pattern of pixels defined by a rectangle-clipped mask;
- // typically used for text.
- virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE {
- // This function is currently not implemented. It is not explicitly
- // required by the contract, but if at some time a code path runs into
- // this function (which is entirely possible), it needs to be implemented.
- //
- // TODO (krajcevski):
- // This function will be most easily implemented in the same way as
- // blitAntiRect above.
- SkFAIL("Not implemented!");
- }
-
- // If the blitter just sets a single value for each pixel, return the
- // bitmap it draws into, and assign value. If not, return NULL and ignore
- // the value parameter.
- virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE {
- return NULL;
- }
-
- /**
- * Compressed texture blitters only really work correctly if they get
- * four blocks at a time. That being said, this blitter tries it's best
- * to preserve semantics if blitAntiH doesn't get called in too many
- * weird ways...
- */
- virtual int requestRowsPreserved() const { return kR11_EACBlockSz; }
-
- protected:
- virtual void onNotifyFinished() { this->flushRuns(); }
-
- private:
- static const int kR11_EACBlockSz = 4;
- static const int kPixelsPerBlock = kR11_EACBlockSz * kR11_EACBlockSz;
-
- // The longest possible run of pixels that this blitter will receive.
- // This is initialized in the constructor to 0x7FFE, which is one less
- // than the largest positive 16-bit integer. We make sure that it's one
- // less for debugging purposes. We also don't make this variable static
- // in order to make sure that we can construct a valid pointer to it.
- const int16_t kLongestRun;
-
- // Usually used in conjunction with kLongestRun. This is initialized to
- // zero.
- const SkAlpha kZeroAlpha;
-
- // This is the information that we buffer whenever we're asked to blit
- // a row with this blitter.
- struct BufferedRun {
- const SkAlpha* fAlphas;
- const int16_t* fRuns;
- int fX, fY;
- } fBufferedRuns[kR11_EACBlockSz];
-
- // The next row (0-3) that we need to blit. This value should never exceed
- // the number of rows that we have (kR11_EACBlockSz)
- int fNextRun;
-
- // The width and height of the image that we're blitting
- const int fWidth;
- const int fHeight;
-
- // The R11 EAC buffer that we're blitting into. It is assumed that the buffer
- // is large enough to store a compressed image of size fWidth*fHeight.
- uint64_t* const fBuffer;
-
- // Various utility functions
- int blocksWide() const { return fWidth / kR11_EACBlockSz; }
- int blocksTall() const { return fHeight / kR11_EACBlockSz; }
- int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; }
-
- // Returns the block index for the block containing pixel (x, y). Block
- // indices start at zero and proceed in raster order.
- int getBlockOffset(int x, int y) const {
- SkASSERT(x < fWidth);
- SkASSERT(y < fHeight);
- const int blockCol = x / kR11_EACBlockSz;
- const int blockRow = y / kR11_EACBlockSz;
- return blockRow * this->blocksWide() + blockCol;
- }
-
- // Returns a pointer to the block containing pixel (x, y)
- uint64_t *getBlock(int x, int y) const {
- return fBuffer + this->getBlockOffset(x, y);
- }
-
- // The following function writes the buffered runs to compressed blocks.
- // If fNextRun < 4, then we fill the runs that we haven't buffered with
- // the constant zero buffer.
- void flushRuns();
- };
+ // Returns the blitter for the given compression format. Note, the blitter
+ // is intended to be used with the proper input. I.e. if you try to blit
+ // RGB source data into an R11 EAC texture, you're gonna have a bad time.
+ SkBlitter* CreateBlitterForFormat(int width, int height, void* compressedBuffer,
+ Format format);
}
#endif
diff --git a/src/utils/SkTextureCompressor_LATC.cpp b/src/utils/SkTextureCompressor_LATC.cpp
new file mode 100644
index 0000000..d042a84
--- /dev/null
+++ b/src/utils/SkTextureCompressor_LATC.cpp
@@ -0,0 +1,294 @@
+/*
+ * Copyright 2014 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "SkTextureCompressor_LATC.h"
+
+#include "SkEndian.h"
+
+////////////////////////////////////////////////////////////////////////////////
+//
+// Utility Functions
+//
+////////////////////////////////////////////////////////////////////////////////
+
+// Absolute difference between two values. More correct than SkTAbs(a - b)
+// because it works on unsigned values.
+template <typename T> inline T abs_diff(const T &a, const T &b) {
+ return (a > b) ? (a - b) : (b - a);
+}
+
+static bool is_extremal(uint8_t pixel) {
+ return 0 == pixel || 255 == pixel;
+}
+
+typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]);
+
+// This function is used by both R11 EAC and LATC to compress 4x4 blocks
+// of 8-bit alpha into 64-bit values that comprise the compressed data.
+// For both formats, we need to make sure that the dimensions of the
+// src pixels are divisible by 4, and copy 4x4 blocks one at a time
+// for compression.
+static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src,
+ int width, int height, int rowBytes,
+ A84x4To64BitProc proc) {
+ // Make sure that our data is well-formed enough to be considered for compression
+ if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
+ return false;
+ }
+
+ int blocksX = width >> 2;
+ int blocksY = height >> 2;
+
+ uint8_t block[16];
+ uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
+ for (int y = 0; y < blocksY; ++y) {
+ for (int x = 0; x < blocksX; ++x) {
+ // Load block
+ for (int k = 0; k < 4; ++k) {
+ memcpy(block + k*4, src + k*rowBytes + 4*x, 4);
+ }
+
+ // Compress it
+ *encPtr = proc(block);
+ ++encPtr;
+ }
+ src += 4 * rowBytes;
+ }
+
+ return true;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+//
+// LATC compressor
+//
+////////////////////////////////////////////////////////////////////////////////
+
+// LATC compressed texels down into square 4x4 blocks
+static const int kLATCPaletteSize = 8;
+static const int kLATCBlockSize = 4;
+static const int kLATCPixelsPerBlock = kLATCBlockSize * kLATCBlockSize;
+
+// Generates an LATC palette. LATC constructs
+// a palette of eight colors from LUM0 and LUM1 using the algorithm:
+//
+// LUM0, if lum0 > lum1 and code(x,y) == 0
+// LUM1, if lum0 > lum1 and code(x,y) == 1
+// (6*LUM0+ LUM1)/7, if lum0 > lum1 and code(x,y) == 2
+// (5*LUM0+2*LUM1)/7, if lum0 > lum1 and code(x,y) == 3
+// (4*LUM0+3*LUM1)/7, if lum0 > lum1 and code(x,y) == 4
+// (3*LUM0+4*LUM1)/7, if lum0 > lum1 and code(x,y) == 5
+// (2*LUM0+5*LUM1)/7, if lum0 > lum1 and code(x,y) == 6
+// ( LUM0+6*LUM1)/7, if lum0 > lum1 and code(x,y) == 7
+//
+// LUM0, if lum0 <= lum1 and code(x,y) == 0
+// LUM1, if lum0 <= lum1 and code(x,y) == 1
+// (4*LUM0+ LUM1)/5, if lum0 <= lum1 and code(x,y) == 2
+// (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3
+// (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4
+// ( LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5
+// 0, if lum0 <= lum1 and code(x,y) == 6
+// 255, if lum0 <= lum1 and code(x,y) == 7
+
+static void generate_latc_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) {
+ palette[0] = lum0;
+ palette[1] = lum1;
+ if (lum0 > lum1) {
+ for (int i = 1; i < 7; i++) {
+ palette[i+1] = ((7-i)*lum0 + i*lum1) / 7;
+ }
+ } else {
+ for (int i = 1; i < 5; i++) {
+ palette[i+1] = ((5-i)*lum0 + i*lum1) / 5;
+ }
+ palette[6] = 0;
+ palette[7] = 255;
+ }
+}
+
+// Compress a block by using the bounding box of the pixels. It is assumed that
+// there are no extremal pixels in this block otherwise we would have used
+// compressBlockBBIgnoreExtremal.
+static uint64_t compress_latc_block_bb(const uint8_t pixels[]) {
+ uint8_t minVal = 255;
+ uint8_t maxVal = 0;
+ for (int i = 0; i < kLATCPixelsPerBlock; ++i) {
+ minVal = SkTMin(pixels[i], minVal);
+ maxVal = SkTMax(pixels[i], maxVal);
+ }
+
+ SkASSERT(!is_extremal(minVal));
+ SkASSERT(!is_extremal(maxVal));
+
+ uint8_t palette[kLATCPaletteSize];
+ generate_latc_palette(palette, maxVal, minVal);
+
+ uint64_t indices = 0;
+ for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) {
+
+ // Find the best palette index
+ uint8_t bestError = abs_diff(pixels[i], palette[0]);
+ uint8_t idx = 0;
+ for (int j = 1; j < kLATCPaletteSize; ++j) {
+ uint8_t error = abs_diff(pixels[i], palette[j]);
+ if (error < bestError) {
+ bestError = error;
+ idx = j;
+ }
+ }
+
+ indices <<= 3;
+ indices |= idx;
+ }
+
+ return
+ SkEndian_SwapLE64(
+ static_cast<uint64_t>(maxVal) |
+ (static_cast<uint64_t>(minVal) << 8) |
+ (indices << 16));
+}
+
+// Compress a block by using the bounding box of the pixels without taking into
+// account the extremal values. The generated palette will contain extremal values
+// and fewer points along the line segment to interpolate.
+static uint64_t compress_latc_block_bb_ignore_extremal(const uint8_t pixels[]) {
+ uint8_t minVal = 255;
+ uint8_t maxVal = 0;
+ for (int i = 0; i < kLATCPixelsPerBlock; ++i) {
+ if (is_extremal(pixels[i])) {
+ continue;
+ }
+
+ minVal = SkTMin(pixels[i], minVal);
+ maxVal = SkTMax(pixels[i], maxVal);
+ }
+
+ SkASSERT(!is_extremal(minVal));
+ SkASSERT(!is_extremal(maxVal));
+
+ uint8_t palette[kLATCPaletteSize];
+ generate_latc_palette(palette, minVal, maxVal);
+
+ uint64_t indices = 0;
+ for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) {
+
+ // Find the best palette index
+ uint8_t idx = 0;
+ if (is_extremal(pixels[i])) {
+ if (0xFF == pixels[i]) {
+ idx = 7;
+ } else if (0 == pixels[i]) {
+ idx = 6;
+ } else {
+ SkFAIL("Pixel is extremal but not really?!");
+ }
+ } else {
+ uint8_t bestError = abs_diff(pixels[i], palette[0]);
+ for (int j = 1; j < kLATCPaletteSize - 2; ++j) {
+ uint8_t error = abs_diff(pixels[i], palette[j]);
+ if (error < bestError) {
+ bestError = error;
+ idx = j;
+ }
+ }
+ }
+
+ indices <<= 3;
+ indices |= idx;
+ }
+
+ return
+ SkEndian_SwapLE64(
+ static_cast<uint64_t>(minVal) |
+ (static_cast<uint64_t>(maxVal) << 8) |
+ (indices << 16));
+}
+
+
+// Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two
+// values LUM0 and LUM1, and an index into the generated palette. Details of how
+// the palette is generated can be found in the comments of generatePalette above.
+//
+// We choose which palette type to use based on whether or not 'pixels' contains
+// any extremal values (0 or 255). If there are extremal values, then we use the
+// palette that has the extremal values built in. Otherwise, we use the full bounding
+// box.
+
+static uint64_t compress_latc_block(const uint8_t pixels[]) {
+ // Collect unique pixels
+ int nUniquePixels = 0;
+ uint8_t uniquePixels[kLATCPixelsPerBlock];
+ for (int i = 0; i < kLATCPixelsPerBlock; ++i) {
+ bool foundPixel = false;
+ for (int j = 0; j < nUniquePixels; ++j) {
+ foundPixel = foundPixel || uniquePixels[j] == pixels[i];
+ }
+
+ if (!foundPixel) {
+ uniquePixels[nUniquePixels] = pixels[i];
+ ++nUniquePixels;
+ }
+ }
+
+ // If there's only one unique pixel, then our compression is easy.
+ if (1 == nUniquePixels) {
+ return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8));
+
+ // Similarly, if there are only two unique pixels, then our compression is
+ // easy again: place the pixels in the block header, and assign the indices
+ // with one or zero depending on which pixel they belong to.
+ } else if (2 == nUniquePixels) {
+ uint64_t outBlock = 0;
+ for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) {
+ int idx = 0;
+ if (pixels[i] == uniquePixels[1]) {
+ idx = 1;
+ }
+
+ outBlock <<= 3;
+ outBlock |= idx;
+ }
+ outBlock <<= 16;
+ outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8));
+ return SkEndian_SwapLE64(outBlock);
+ }
+
+ // Count non-maximal pixel values
+ int nonExtremalPixels = 0;
+ for (int i = 0; i < nUniquePixels; ++i) {
+ if (!is_extremal(uniquePixels[i])) {
+ ++nonExtremalPixels;
+ }
+ }
+
+ // If all the pixels are nonmaximal then compute the palette using
+ // the bounding box of all the pixels.
+ if (nonExtremalPixels == nUniquePixels) {
+ // This is really just for correctness, in all of my tests we
+ // never take this step. We don't lose too much perf here because
+ // most of the processing in this function is worth it for the
+ // 1 == nUniquePixels optimization.
+ return compress_latc_block_bb(pixels);
+ } else {
+ return compress_latc_block_bb_ignore_extremal(pixels);
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+namespace SkTextureCompressor {
+
+bool CompressA8ToLATC(uint8_t* dst, const uint8_t* src, int width, int height, int rowBytes) {
+ return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_latc_block);
+}
+
+SkBlitter* CreateLATCBlitter(int width, int height, void* outputBuffer) {
+ // TODO (krajcevski)
+ return NULL;
+}
+
+} // SkTextureCompressor
diff --git a/src/utils/SkTextureCompressor_LATC.h b/src/utils/SkTextureCompressor_LATC.h
new file mode 100644
index 0000000..e3446b5
--- /dev/null
+++ b/src/utils/SkTextureCompressor_LATC.h
@@ -0,0 +1,21 @@
+/*
+ * Copyright 2014 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkTextureCompressor_LATC_DEFINED
+#define SkTextureCompressor_LATC_DEFINED
+
+#include "SkBlitter.h"
+
+namespace SkTextureCompressor {
+
+ bool CompressA8ToLATC(uint8_t* dst, const uint8_t* src,
+ int width, int height, int rowBytes);
+
+ SkBlitter* CreateLATCBlitter(int width, int height, void* outputBuffer);
+}
+
+#endif // SkTextureCompressor_LATC_DEFINED
diff --git a/src/utils/SkTextureCompressor_R11EAC.cpp b/src/utils/SkTextureCompressor_R11EAC.cpp
new file mode 100644
index 0000000..3ce0120
--- /dev/null
+++ b/src/utils/SkTextureCompressor_R11EAC.cpp
@@ -0,0 +1,964 @@
+/*
+ * Copyright 2014 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "SkTextureCompressor.h"
+
+#include "SkEndian.h"
+
+// #define COMPRESS_R11_EAC_SLOW 1
+// #define COMPRESS_R11_EAC_FAST 1
+#define COMPRESS_R11_EAC_FASTEST 1
+
+// Blocks compressed into R11 EAC are represented as follows:
+// 0000000000000000000000000000000000000000000000000000000000000000
+// |base_cw|mod|mul| ----------------- indices -------------------
+//
+// To reconstruct the value of a given pixel, we use the formula:
+// clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8)
+//
+// mod_val is chosen from a palette of values based on the index of the
+// given pixel. The palette is chosen by the value stored in mod.
+// This formula returns a value between 0 and 2047, which is converted
+// to a float from 0 to 1 in OpenGL.
+//
+// If mul is zero, then we set mul = 1/8, so that the formula becomes
+// clamp[0, 2047](base_cw * 8 + 4 + mod_val)
+
+#if COMPRESS_R11_EAC_SLOW
+
+static const int kNumR11EACPalettes = 16;
+static const int kR11EACPaletteSize = 8;
+static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] = {
+ {-3, -6, -9, -15, 2, 5, 8, 14},
+ {-3, -7, -10, -13, 2, 6, 9, 12},
+ {-2, -5, -8, -13, 1, 4, 7, 12},
+ {-2, -4, -6, -13, 1, 3, 5, 12},
+ {-3, -6, -8, -12, 2, 5, 7, 11},
+ {-3, -7, -9, -11, 2, 6, 8, 10},
+ {-4, -7, -8, -11, 3, 6, 7, 10},
+ {-3, -5, -8, -11, 2, 4, 7, 10},
+ {-2, -6, -8, -10, 1, 5, 7, 9},
+ {-2, -5, -8, -10, 1, 4, 7, 9},
+ {-2, -4, -8, -10, 1, 3, 7, 9},
+ {-2, -5, -7, -10, 1, 4, 6, 9},
+ {-3, -4, -7, -10, 2, 3, 6, 9},
+ {-1, -2, -3, -10, 0, 1, 2, 9},
+ {-4, -6, -8, -9, 3, 5, 7, 8},
+ {-3, -5, -7, -9, 2, 4, 6, 8}
+};
+
+// Pack the base codeword, palette, and multiplier into the 64 bits necessary
+// to decode it.
+static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier,
+ uint64_t indices) {
+ SkASSERT(palette < 16);
+ SkASSERT(multiplier < 16);
+ SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
+
+ const uint64_t b = static_cast<uint64_t>(base_cw) << 56;
+ const uint64_t m = static_cast<uint64_t>(multiplier) << 52;
+ const uint64_t p = static_cast<uint64_t>(palette) << 48;
+ return SkEndian_SwapBE64(b | m | p | indices);
+}
+
+// Given a base codeword, a modifier, and a multiplier, compute the proper
+// pixel value in the range [0, 2047].
+static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) {
+ int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8);
+ return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret);
+}
+
+// Compress a block into R11 EAC format.
+// The compression works as follows:
+// 1. Find the center of the span of the block's values. Use this as the base codeword.
+// 2. Choose a multiplier based roughly on the size of the span of block values
+// 3. Iterate through each palette and choose the one with the most accurate
+// modifiers.
+static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
+ // Find the center of the data...
+ uint16_t bmin = block[0];
+ uint16_t bmax = block[0];
+ for (int i = 1; i < 16; ++i) {
+ bmin = SkTMin<uint16_t>(bmin, block[i]);
+ bmax = SkTMax<uint16_t>(bmax, block[i]);
+ }
+
+ uint16_t center = (bmax + bmin) >> 1;
+ SkASSERT(center <= 255);
+
+ // Based on the min and max, we can guesstimate a proper multiplier
+ // This is kind of a magic choice to start with.
+ uint16_t multiplier = (bmax - center) / 10;
+
+ // Now convert the block to 11 bits and transpose it to match
+ // the proper layout
+ uint16_t cblock[16];
+ for (int i = 0; i < 4; ++i) {
+ for (int j = 0; j < 4; ++j) {
+ int srcIdx = i*4+j;
+ int dstIdx = j*4+i;
+ cblock[dstIdx] = (block[srcIdx] << 3) | (block[srcIdx] >> 5);
+ }
+ }
+
+ // Finally, choose the proper palette and indices
+ uint32_t bestError = 0xFFFFFFFF;
+ uint64_t bestIndices = 0;
+ uint16_t bestPalette = 0;
+ for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) {
+ const int *palette = kR11EACModifierPalettes[paletteIdx];
+
+ // Iterate through each pixel to find the best palette index
+ // and update the indices with the choice. Also store the error
+ // for this palette to be compared against the best error...
+ uint32_t error = 0;
+ uint64_t indices = 0;
+ for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) {
+ const uint16_t pixel = cblock[pixelIdx];
+
+ // Iterate through each palette value to find the best index
+ // for this particular pixel for this particular palette.
+ uint16_t bestPixelError =
+ abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multiplier));
+ int bestIndex = 0;
+ for (int i = 1; i < kR11EACPaletteSize; ++i) {
+ const uint16_t p = compute_r11eac_pixel(center, palette[i], multiplier);
+ const uint16_t perror = abs_diff(pixel, p);
+
+ // Is this index better?
+ if (perror < bestPixelError) {
+ bestIndex = i;
+ bestPixelError = perror;
+ }
+ }
+
+ SkASSERT(bestIndex < 8);
+
+ error += bestPixelError;
+ indices <<= 3;
+ indices |= bestIndex;
+ }
+
+ SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
+
+ // Is this palette better?
+ if (error < bestError) {
+ bestPalette = paletteIdx;
+ bestIndices = indices;
+ bestError = error;
+ }
+ }
+
+ // Finally, pack everything together...
+ return pack_r11eac_block(center, bestPalette, multiplier, bestIndices);
+}
+#endif // COMPRESS_R11_EAC_SLOW
+
+#if COMPRESS_R11_EAC_FAST
+// This function takes into account that most blocks that we compress have a gradation from
+// fully opaque to fully transparent. The compression scheme works by selecting the
+// palette and multiplier that has the tightest fit to the 0-255 range. This is encoded
+// as the block header (0x8490). The indices are then selected by considering the top
+// three bits of each alpha value. For alpha masks, this reduces the dynamic range from
+// 17 to 8, but the quality is still acceptable.
+//
+// There are a few caveats that need to be taken care of...
+//
+// 1. The block is read in as scanlines, so the indices are stored as:
+// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+// However, the decomrpession routine reads them in column-major order, so they
+// need to be packed as:
+// 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
+// So when reading, they must be transposed.
+//
+// 2. We cannot use the top three bits as an index directly, since the R11 EAC palettes
+// above store the modulation values first decreasing and then increasing:
+// e.g. {-3, -6, -9, -15, 2, 5, 8, 14}
+// Hence, we need to convert the indices with the following mapping:
+// From: 0 1 2 3 4 5 6 7
+// To: 3 2 1 0 4 5 6 7
+static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
+ uint64_t retVal = static_cast<uint64_t>(0x8490) << 48;
+ for(int i = 0; i < 4; ++i) {
+ for(int j = 0; j < 4; ++j) {
+ const int shift = 45-3*(j*4+i);
+ SkASSERT(shift <= 45);
+ const uint64_t idx = block[i*4+j] >> 5;
+ SkASSERT(idx < 8);
+
+ // !SPEED! This is slightly faster than having an if-statement.
+ switch(idx) {
+ case 0:
+ case 1:
+ case 2:
+ case 3:
+ retVal |= (3-idx) << shift;
+ break;
+ default:
+ retVal |= idx << shift;
+ break;
+ }
+ }
+ }
+
+ return SkEndian_SwapBE64(retVal);
+}
+#endif // COMPRESS_R11_EAC_FAST
+
+#if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
+static uint64_t compress_r11eac_block(const uint8_t block[16]) {
+ // Are all blocks a solid color?
+ bool solid = true;
+ for (int i = 1; i < 16; ++i) {
+ if (block[i] != block[0]) {
+ solid = false;
+ break;
+ }
+ }
+
+ if (solid) {
+ switch(block[0]) {
+ // Fully transparent? We know the encoding...
+ case 0:
+ // (0x0020 << 48) produces the following:
+ // basw_cw: 0
+ // mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14}
+ // multiplier: 2
+ // mod_val: -3
+ //
+ // this gives the following formula:
+ // clamp[0, 2047](0*8+4+(-3)*2*8) = 0
+ //
+ // Furthermore, it is impervious to endianness:
+ // 0x0020000000002000ULL
+ // Will produce one pixel with index 2, which gives:
+ // clamp[0, 2047](0*8+4+(-9)*2*8) = 0
+ return 0x0020000000002000ULL;
+
+ // Fully opaque? We know this encoding too...
+ case 255:
+
+ // -1 produces the following:
+ // basw_cw: 255
+ // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8}
+ // mod_val: 8
+ //
+ // this gives the following formula:
+ // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047
+ return 0xFFFFFFFFFFFFFFFFULL;
+
+ default:
+ // !TODO! krajcevski:
+ // This will probably never happen, since we're using this format
+ // primarily for compressing alpha maps. Usually the only
+ // non-fullly opaque or fully transparent blocks are not a solid
+ // intermediate color. If we notice that they are, then we can
+ // add another optimization...
+ break;
+ }
+ }
+
+ return compress_heterogeneous_r11eac_block(block);
+}
+
+// This function is used by R11 EAC to compress 4x4 blocks
+// of 8-bit alpha into 64-bit values that comprise the compressed data.
+// We need to make sure that the dimensions of the src pixels are divisible
+// by 4, and copy 4x4 blocks one at a time for compression.
+typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]);
+
+static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src,
+ int width, int height, int rowBytes,
+ A84x4To64BitProc proc) {
+ // Make sure that our data is well-formed enough to be considered for compression
+ if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
+ return false;
+ }
+
+ int blocksX = width >> 2;
+ int blocksY = height >> 2;
+
+ uint8_t block[16];
+ uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
+ for (int y = 0; y < blocksY; ++y) {
+ for (int x = 0; x < blocksX; ++x) {
+ // Load block
+ for (int k = 0; k < 4; ++k) {
+ memcpy(block + k*4, src + k*rowBytes + 4*x, 4);
+ }
+
+ // Compress it
+ *encPtr = proc(block);
+ ++encPtr;
+ }
+ src += 4 * rowBytes;
+ }
+
+ return true;
+}
+#endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
+
+#if COMPRESS_R11_EAC_FASTEST
+template<unsigned shift>
+static inline uint64_t swap_shift(uint64_t x, uint64_t mask) {
+ const uint64_t t = (x ^ (x >> shift)) & mask;
+ return x ^ t ^ (t << shift);
+}
+
+static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) {
+ // If our 3-bit block indices are laid out as:
+ // a b c d
+ // e f g h
+ // i j k l
+ // m n o p
+ //
+ // This function expects topRows and bottomRows to contain the first two rows
+ // of indices interleaved in the least significant bits of a and b. In other words...
+ //
+ // If the architecture is big endian, then topRows and bottomRows will contain the following:
+ // Bits 31-0:
+ // a: 00 a e 00 b f 00 c g 00 d h
+ // b: 00 i m 00 j n 00 k o 00 l p
+ //
+ // If the architecture is little endian, then topRows and bottomRows will contain
+ // the following:
+ // Bits 31-0:
+ // a: 00 d h 00 c g 00 b f 00 a e
+ // b: 00 l p 00 k o 00 j n 00 i m
+ //
+ // This function returns a 48-bit packing of the form:
+ // a e i m b f j n c g k o d h l p
+ //
+ // !SPEED! this function might be even faster if certain SIMD intrinsics are
+ // used..
+
+ // For both architectures, we can figure out a packing of the bits by
+ // using a shuffle and a few shift-rotates...
+ uint64_t x = (static_cast<uint64_t>(topRows) << 32) | static_cast<uint64_t>(bottomRows);
+
+ // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p
+
+ x = swap_shift<10>(x, 0x3FC0003FC00000ULL);
+
+ // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p
+
+ x = (x | ((x << 52) & (0x3FULL << 52)) | ((x << 20) & (0x3FULL << 28))) >> 16;
+
+ // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n
+
+ x = swap_shift<6>(x, 0xFC0000ULL);
+
+#if defined (SK_CPU_BENDIAN)
+ // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n
+
+ x = swap_shift<36>(x, 0x3FULL);
+
+ // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p
+
+ x = swap_shift<12>(x, 0xFFF000000ULL);
+#else
+ // If our CPU is little endian, then the above logic will
+ // produce the following indices:
+ // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o
+
+ x = swap_shift<36>(x, 0xFC0ULL);
+
+ // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o
+
+ x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFULL);
+#endif
+
+ // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p
+ return x;
+}
+
+// This function converts an integer containing four bytes of alpha
+// values into an integer containing four bytes of indices into R11 EAC.
+// Note, there needs to be a mapping of indices:
+// 0 1 2 3 4 5 6 7
+// 3 2 1 0 4 5 6 7
+//
+// To compute this, we first negate each byte, and then add three, which
+// gives the mapping
+// 3 2 1 0 -1 -2 -3 -4
+//
+// Then we mask out the negative values, take their absolute value, and
+// add three.
+//
+// Most of the voodoo in this function comes from Hacker's Delight, section 2-18
+static inline uint32_t convert_indices(uint32_t x) {
+ // Take the top three bits...
+ x = (x & 0xE0E0E0E0) >> 5;
+
+ // Negate...
+ x = ~((0x80808080 - x) ^ 0x7F7F7F7F);
+
+ // Add three
+ const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303;
+ x = ((x ^ 0x03030303) & 0x80808080) ^ s;
+
+ // Absolute value
+ const uint32_t a = x & 0x80808080;
+ const uint32_t b = a >> 7;
+
+ // Aside: mask negatives (m is three if the byte was negative)
+ const uint32_t m = (a >> 6) | b;
+
+ // .. continue absolute value
+ x = (x ^ ((a - b) | a)) + b;
+
+ // Add three
+ return x + m;
+}
+
+// This function follows the same basic procedure as compress_heterogeneous_r11eac_block
+// above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and
+// tries to optimize where it can using SIMD.
+static uint64_t compress_r11eac_block_fast(const uint8_t* src, int rowBytes) {
+ // Store each row of alpha values in an integer
+ const uint32_t alphaRow1 = *(reinterpret_cast<const uint32_t*>(src));
+ const uint32_t alphaRow2 = *(reinterpret_cast<const uint32_t*>(src + rowBytes));
+ const uint32_t alphaRow3 = *(reinterpret_cast<const uint32_t*>(src + 2*rowBytes));
+ const uint32_t alphaRow4 = *(reinterpret_cast<const uint32_t*>(src + 3*rowBytes));
+
+ // Check for solid blocks. The explanations for these values
+ // can be found in the comments of compress_r11eac_block above
+ if (alphaRow1 == alphaRow2 && alphaRow1 == alphaRow3 && alphaRow1 == alphaRow4) {
+ if (0 == alphaRow1) {
+ // Fully transparent block
+ return 0x0020000000002000ULL;
+ } else if (0xFFFFFFFF == alphaRow1) {
+ // Fully opaque block
+ return 0xFFFFFFFFFFFFFFFFULL;
+ }
+ }
+
+ // Convert each integer of alpha values into an integer of indices
+ const uint32_t indexRow1 = convert_indices(alphaRow1);
+ const uint32_t indexRow2 = convert_indices(alphaRow2);
+ const uint32_t indexRow3 = convert_indices(alphaRow3);
+ const uint32_t indexRow4 = convert_indices(alphaRow4);
+
+ // Interleave the indices from the top two rows and bottom two rows
+ // prior to passing them to interleave6. Since each index is at most
+ // three bits, then each byte can hold two indices... The way that the
+ // compression scheme expects the packing allows us to efficiently pack
+ // the top two rows and bottom two rows. Interleaving each 6-bit sequence
+ // and tightly packing it into a uint64_t is a little trickier, which is
+ // taken care of in interleave6.
+ const uint32_t r1r2 = (indexRow1 << 3) | indexRow2;
+ const uint32_t r3r4 = (indexRow3 << 3) | indexRow4;
+ const uint64_t indices = interleave6(r1r2, r3r4);
+
+ // Return the packed incdices in the least significant bits with the magic header
+ return SkEndian_SwapBE64(0x8490000000000000ULL | indices);
+}
+
+static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src,
+ int width, int height, int rowBytes) {
+ // Make sure that our data is well-formed enough to be considered for compression
+ if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
+ return false;
+ }
+
+ const int blocksX = width >> 2;
+ const int blocksY = height >> 2;
+
+ uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
+ for (int y = 0; y < blocksY; ++y) {
+ for (int x = 0; x < blocksX; ++x) {
+ // Compress it
+ *encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes);
+ ++encPtr;
+ }
+ src += 4 * rowBytes;
+ }
+ return true;
+}
+#endif // COMPRESS_R11_EAC_FASTEST
+
+////////////////////////////////////////////////////////////////////////////////
+//
+// Utility functions used by the blitter
+//
+////////////////////////////////////////////////////////////////////////////////
+
+// The R11 EAC format expects that indices are given in column-major order. Since
+// we receive alpha values in raster order, this usually means that we have to use
+// pack6 above to properly pack our indices. However, if our indices come from the
+// blitter, then each integer will be a column of indices, and hence can be efficiently
+// packed. This function takes the bottom three bits of each byte and places them in
+// the least significant 12 bits of the resulting integer.
+static inline uint32_t pack_indices_vertical(uint32_t x) {
+#if defined (SK_CPU_BENDIAN)
+ return
+ (x & 7) |
+ ((x >> 5) & (7 << 3)) |
+ ((x >> 10) & (7 << 6)) |
+ ((x >> 15) & (7 << 9));
+#else
+ return
+ ((x >> 24) & 7) |
+ ((x >> 13) & (7 << 3)) |
+ ((x >> 2) & (7 << 6)) |
+ ((x << 9) & (7 << 9));
+#endif
+}
+
+// This function returns the compressed format of a block given as four columns of
+// alpha values. Each column is assumed to be loaded from top to bottom, and hence
+// must first be converted to indices and then packed into the resulting 64-bit
+// integer.
+static inline uint64_t compress_block_vertical(const uint32_t alphaColumn0,
+ const uint32_t alphaColumn1,
+ const uint32_t alphaColumn2,
+ const uint32_t alphaColumn3) {
+
+ if (alphaColumn0 == alphaColumn1 &&
+ alphaColumn2 == alphaColumn3 &&
+ alphaColumn0 == alphaColumn2) {
+
+ if (0 == alphaColumn0) {
+ // Transparent
+ return 0x0020000000002000ULL;
+ }
+ else if (0xFFFFFFFF == alphaColumn0) {
+ // Opaque
+ return 0xFFFFFFFFFFFFFFFFULL;
+ }
+ }
+
+ const uint32_t indexColumn0 = convert_indices(alphaColumn0);
+ const uint32_t indexColumn1 = convert_indices(alphaColumn1);
+ const uint32_t indexColumn2 = convert_indices(alphaColumn2);
+ const uint32_t indexColumn3 = convert_indices(alphaColumn3);
+
+ const uint32_t packedIndexColumn0 = pack_indices_vertical(indexColumn0);
+ const uint32_t packedIndexColumn1 = pack_indices_vertical(indexColumn1);
+ const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2);
+ const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3);
+
+ return SkEndian_SwapBE64(0x8490000000000000ULL |
+ (static_cast<uint64_t>(packedIndexColumn0) << 36) |
+ (static_cast<uint64_t>(packedIndexColumn1) << 24) |
+ static_cast<uint64_t>(packedIndexColumn2 << 12) |
+ static_cast<uint64_t>(packedIndexColumn3));
+
+}
+
+// Updates the block whose columns are stored in blockColN. curAlphai is expected
+// to store, as an integer, the four alpha values that will be placed within each
+// of the columns in the range [col, col+colsLeft).
+static inline void update_block_columns(uint32_t* block, const int col,
+ const int colsLeft, const uint32_t curAlphai) {
+ SkASSERT(NULL != block);
+ SkASSERT(col + colsLeft <= 4);
+
+ for (int i = col; i < (col + colsLeft); ++i) {
+ block[i] = curAlphai;
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+namespace SkTextureCompressor {
+
+bool CompressA8ToR11EAC(uint8_t* dst, const uint8_t* src, int width, int height, int rowBytes) {
+
+#if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
+
+ return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block);
+
+#elif COMPRESS_R11_EAC_FASTEST
+
+ return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes);
+
+#else
+#error "Must choose R11 EAC algorithm"
+#endif
+}
+
+// This class implements a blitter that blits directly into a buffer that will
+// be used as an R11 EAC compressed texture. We compute this buffer by
+// buffering four scan lines and then outputting them all at once. This blitter
+// is only expected to be used with alpha masks, i.e. kAlpha8_SkColorType.
+class R11_EACBlitter : public SkBlitter {
+public:
+ R11_EACBlitter(int width, int height, void *compressedBuffer);
+ virtual ~R11_EACBlitter() { this->flushRuns(); }
+
+ // Blit a horizontal run of one or more pixels.
+ virtual void blitH(int x, int y, int width) SK_OVERRIDE {
+ // This function is intended to be called from any standard RGB
+ // buffer, so we should never encounter it. However, if some code
+ // path does end up here, then this needs to be investigated.
+ SkFAIL("Not implemented!");
+ }
+
+ // Blit a horizontal run of antialiased pixels; runs[] is a *sparse*
+ // zero-terminated run-length encoding of spans of constant alpha values.
+ virtual void blitAntiH(int x, int y,
+ const SkAlpha antialias[],
+ const int16_t runs[]) SK_OVERRIDE;
+
+ // Blit a vertical run of pixels with a constant alpha value.
+ virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE {
+ // This function is currently not implemented. It is not explicitly
+ // required by the contract, but if at some time a code path runs into
+ // this function (which is entirely possible), it needs to be implemented.
+ //
+ // TODO (krajcevski):
+ // This function will be most easily implemented in one of two ways:
+ // 1. Buffer each vertical column value and then construct a list
+ // of alpha values and output all of the blocks at once. This only
+ // requires a write to the compressed buffer
+ // 2. Replace the indices of each block with the proper indices based
+ // on the alpha value. This requires a read and write of the compressed
+ // buffer, but much less overhead.
+ SkFAIL("Not implemented!");
+ }
+
+ // Blit a solid rectangle one or more pixels wide.
+ virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE {
+ // Analogous to blitRow, this function is intended for RGB targets
+ // and should never be called by this blitter. Any calls to this function
+ // are probably a bug and should be investigated.
+ SkFAIL("Not implemented!");
+ }
+
+ // Blit a rectangle with one alpha-blended column on the left,
+ // width (zero or more) opaque pixels, and one alpha-blended column
+ // on the right. The result will always be at least two pixels wide.
+ virtual void blitAntiRect(int x, int y, int width, int height,
+ SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE {
+ // This function is currently not implemented. It is not explicitly
+ // required by the contract, but if at some time a code path runs into
+ // this function (which is entirely possible), it needs to be implemented.
+ //
+ // TODO (krajcevski):
+ // This function will be most easily implemented as follows:
+ // 1. If width/height are smaller than a block, then update the
+ // indices of the affected blocks.
+ // 2. If width/height are larger than a block, then construct a 9-patch
+ // of block encodings that represent the rectangle, and write them
+ // to the compressed buffer as necessary. Whether or not the blocks
+ // are overwritten by zeros or just their indices are updated is up
+ // to debate.
+ SkFAIL("Not implemented!");
+ }
+
+ // Blit a pattern of pixels defined by a rectangle-clipped mask;
+ // typically used for text.
+ virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE {
+ // This function is currently not implemented. It is not explicitly
+ // required by the contract, but if at some time a code path runs into
+ // this function (which is entirely possible), it needs to be implemented.
+ //
+ // TODO (krajcevski):
+ // This function will be most easily implemented in the same way as
+ // blitAntiRect above.
+ SkFAIL("Not implemented!");
+ }
+
+ // If the blitter just sets a single value for each pixel, return the
+ // bitmap it draws into, and assign value. If not, return NULL and ignore
+ // the value parameter.
+ virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE {
+ return NULL;
+ }
+
+ /**
+ * Compressed texture blitters only really work correctly if they get
+ * four blocks at a time. That being said, this blitter tries it's best
+ * to preserve semantics if blitAntiH doesn't get called in too many
+ * weird ways...
+ */
+ virtual int requestRowsPreserved() const { return kR11_EACBlockSz; }
+
+protected:
+ virtual void onNotifyFinished() { this->flushRuns(); }
+
+private:
+ static const int kR11_EACBlockSz = 4;
+ static const int kPixelsPerBlock = kR11_EACBlockSz * kR11_EACBlockSz;
+
+ // The longest possible run of pixels that this blitter will receive.
+ // This is initialized in the constructor to 0x7FFE, which is one less
+ // than the largest positive 16-bit integer. We make sure that it's one
+ // less for debugging purposes. We also don't make this variable static
+ // in order to make sure that we can construct a valid pointer to it.
+ const int16_t kLongestRun;
+
+ // Usually used in conjunction with kLongestRun. This is initialized to
+ // zero.
+ const SkAlpha kZeroAlpha;
+
+ // This is the information that we buffer whenever we're asked to blit
+ // a row with this blitter.
+ struct BufferedRun {
+ const SkAlpha* fAlphas;
+ const int16_t* fRuns;
+ int fX, fY;
+ } fBufferedRuns[kR11_EACBlockSz];
+
+ // The next row (0-3) that we need to blit. This value should never exceed
+ // the number of rows that we have (kR11_EACBlockSz)
+ int fNextRun;
+
+ // The width and height of the image that we're blitting
+ const int fWidth;
+ const int fHeight;
+
+ // The R11 EAC buffer that we're blitting into. It is assumed that the buffer
+ // is large enough to store a compressed image of size fWidth*fHeight.
+ uint64_t* const fBuffer;
+
+ // Various utility functions
+ int blocksWide() const { return fWidth / kR11_EACBlockSz; }
+ int blocksTall() const { return fHeight / kR11_EACBlockSz; }
+ int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; }
+
+ // Returns the block index for the block containing pixel (x, y). Block
+ // indices start at zero and proceed in raster order.
+ int getBlockOffset(int x, int y) const {
+ SkASSERT(x < fWidth);
+ SkASSERT(y < fHeight);
+ const int blockCol = x / kR11_EACBlockSz;
+ const int blockRow = y / kR11_EACBlockSz;
+ return blockRow * this->blocksWide() + blockCol;
+ }
+
+ // Returns a pointer to the block containing pixel (x, y)
+ uint64_t *getBlock(int x, int y) const {
+ return fBuffer + this->getBlockOffset(x, y);
+ }
+
+ // The following function writes the buffered runs to compressed blocks.
+ // If fNextRun < 4, then we fill the runs that we haven't buffered with
+ // the constant zero buffer.
+ void flushRuns();
+};
+
+
+R11_EACBlitter::R11_EACBlitter(int width, int height, void *latcBuffer)
+ // 0x7FFE is one minus the largest positive 16-bit int. We use it for
+ // debugging to make sure that we're properly setting the nextX distance
+ // in flushRuns().
+ : kLongestRun(0x7FFE), kZeroAlpha(0)
+ , fNextRun(0)
+ , fWidth(width)
+ , fHeight(height)
+ , fBuffer(reinterpret_cast<uint64_t*const>(latcBuffer))
+{
+ SkASSERT((width % kR11_EACBlockSz) == 0);
+ SkASSERT((height % kR11_EACBlockSz) == 0);
+}
+
+void R11_EACBlitter::blitAntiH(int x, int y,
+ const SkAlpha* antialias,
+ const int16_t* runs) {
+ // Make sure that the new row to blit is either the first
+ // row that we're blitting, or it's exactly the next scan row
+ // since the last row that we blit. This is to ensure that when
+ // we go to flush the runs, that they are all the same four
+ // runs.
+ if (fNextRun > 0 &&
+ ((x != fBufferedRuns[fNextRun-1].fX) ||
+ (y-1 != fBufferedRuns[fNextRun-1].fY))) {
+ this->flushRuns();
+ }
+
+ // Align the rows to a block boundary. If we receive rows that
+ // are not on a block boundary, then fill in the preceding runs
+ // with zeros. We do this by producing a single RLE that says
+ // that we have 0x7FFE pixels of zero (0x7FFE = 32766).
+ const int row = y & ~3;
+ while ((row + fNextRun) < y) {
+ fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha;
+ fBufferedRuns[fNextRun].fRuns = &kLongestRun;
+ fBufferedRuns[fNextRun].fX = 0;
+ fBufferedRuns[fNextRun].fY = row + fNextRun;
+ ++fNextRun;
+ }
+
+ // Make sure that our assumptions aren't violated...
+ SkASSERT(fNextRun == (y & 3));
+ SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y);
+
+ // Set the values of the next run
+ fBufferedRuns[fNextRun].fAlphas = antialias;
+ fBufferedRuns[fNextRun].fRuns = runs;
+ fBufferedRuns[fNextRun].fX = x;
+ fBufferedRuns[fNextRun].fY = y;
+
+ // If we've output four scanlines in a row that don't violate our
+ // assumptions, then it's time to flush them...
+ if (4 == ++fNextRun) {
+ this->flushRuns();
+ }
+}
+
+void R11_EACBlitter::flushRuns() {
+
+ // If we don't have any runs, then just return.
+ if (0 == fNextRun) {
+ return;
+ }
+
+#ifndef NDEBUG
+ // Make sure that if we have any runs, they all match
+ for (int i = 1; i < fNextRun; ++i) {
+ SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1);
+ SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX);
+ }
+#endif
+
+ // If we dont have as many runs as we have rows, fill in the remaining
+ // runs with constant zeros.
+ for (int i = fNextRun; i < kR11_EACBlockSz; ++i) {
+ fBufferedRuns[i].fY = fBufferedRuns[0].fY + i;
+ fBufferedRuns[i].fX = fBufferedRuns[0].fX;
+ fBufferedRuns[i].fAlphas = &kZeroAlpha;
+ fBufferedRuns[i].fRuns = &kLongestRun;
+ }
+
+ // Make sure that our assumptions aren't violated.
+ SkASSERT(fNextRun > 0 && fNextRun <= 4);
+ SkASSERT((fBufferedRuns[0].fY & 3) == 0);
+
+ // The following logic walks four rows at a time and outputs compressed
+ // blocks to the buffer passed into the constructor.
+ // We do the following:
+ //
+ // c1 c2 c3 c4
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[0]
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[1]
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[2]
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[3]
+ // -----------------------------------------------------------------------
+ //
+ // curX -- the macro X value that we've gotten to.
+ // c1, c2, c3, c4 -- the integers that represent the columns of the current block
+ // that we're operating on
+ // curAlphaColumn -- integer containing the column of alpha values from fBufferedRuns.
+ // nextX -- for each run, the next point at which we need to update curAlphaColumn
+ // after the value of curX.
+ // finalX -- the minimum of all the nextX values.
+ //
+ // curX advances to finalX outputting any blocks that it passes along
+ // the way. Since finalX will not change when we reach the end of a
+ // run, the termination criteria will be whenever curX == finalX at the
+ // end of a loop.
+
+ // Setup:
+ uint32_t c[4] = { 0, 0, 0, 0 };
+ uint32_t curAlphaColumn = 0;
+ SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn);
+
+ int nextX[kR11_EACBlockSz];
+ for (int i = 0; i < kR11_EACBlockSz; ++i) {
+ nextX[i] = 0x7FFFFF;
+ }
+
+ uint64_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY);
+
+ // Populate the first set of runs and figure out how far we need to
+ // advance on the first step
+ int curX = 0;
+ int finalX = 0xFFFFF;
+ for (int i = 0; i < kR11_EACBlockSz; ++i) {
+ nextX[i] = *(fBufferedRuns[i].fRuns);
+ curAlpha[i] = *(fBufferedRuns[i].fAlphas);
+
+ finalX = SkMin32(nextX[i], finalX);
+ }
+
+ // Make sure that we have a valid right-bound X value
+ SkASSERT(finalX < 0xFFFFF);
+
+ // Run the blitter...
+ while (curX != finalX) {
+ SkASSERT(finalX >= curX);
+
+ // Do we need to populate the rest of the block?
+ if ((finalX - (curX & ~3)) >= kR11_EACBlockSz) {
+ const int col = curX & 3;
+ const int colsLeft = 4 - col;
+ SkASSERT(curX + colsLeft <= finalX);
+
+ update_block_columns(c, col, colsLeft, curAlphaColumn);
+
+ // Write this block
+ *outPtr = compress_block_vertical(c[0], c[1], c[2], c[3]);
+ ++outPtr;
+ curX += colsLeft;
+ }
+
+ // If we can advance even further, then just keep memsetting the block
+ if ((finalX - curX) >= kR11_EACBlockSz) {
+ SkASSERT((curX & 3) == 0);
+
+ const int col = 0;
+ const int colsLeft = kR11_EACBlockSz;
+
+ update_block_columns(c, col, colsLeft, curAlphaColumn);
+
+ // While we can keep advancing, just keep writing the block.
+ uint64_t lastBlock = compress_block_vertical(c[0], c[1], c[2], c[3]);
+ while((finalX - curX) >= kR11_EACBlockSz) {
+ *outPtr = lastBlock;
+ ++outPtr;
+ curX += kR11_EACBlockSz;
+ }
+ }
+
+ // If we haven't advanced within the block then do so.
+ if (curX < finalX) {
+ const int col = curX & 3;
+ const int colsLeft = finalX - curX;
+
+ update_block_columns(c, col, colsLeft, curAlphaColumn);
+
+ curX += colsLeft;
+ }
+
+ SkASSERT(curX == finalX);
+
+ // Figure out what the next advancement is...
+ for (int i = 0; i < kR11_EACBlockSz; ++i) {
+ if (nextX[i] == finalX) {
+ const int16_t run = *(fBufferedRuns[i].fRuns);
+ fBufferedRuns[i].fRuns += run;
+ fBufferedRuns[i].fAlphas += run;
+ curAlpha[i] = *(fBufferedRuns[i].fAlphas);
+ nextX[i] += *(fBufferedRuns[i].fRuns);
+ }
+ }
+
+ finalX = 0xFFFFF;
+ for (int i = 0; i < kR11_EACBlockSz; ++i) {
+ finalX = SkMin32(nextX[i], finalX);
+ }
+ }
+
+ // If we didn't land on a block boundary, output the block...
+ if ((curX & 3) > 1) {
+ *outPtr = compress_block_vertical(c[0], c[1], c[2], c[3]);
+ }
+
+ fNextRun = 0;
+}
+
+SkBlitter* CreateR11EACBlitter(int width, int height, void* outputBuffer) {
+ return new R11_EACBlitter(width, height, outputBuffer);
+}
+
+} // namespace SkTextureCompressor
diff --git a/src/utils/SkTextureCompressor_R11EAC.h b/src/utils/SkTextureCompressor_R11EAC.h
new file mode 100644
index 0000000..5f981ef
--- /dev/null
+++ b/src/utils/SkTextureCompressor_R11EAC.h
@@ -0,0 +1,21 @@
+/*
+ * Copyright 2014 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkTextureCompressor_R11EAC_DEFINED
+#define SkTextureCompressor_R11EAC_DEFINED
+
+#include "SkBlitter.h"
+
+namespace SkTextureCompressor {
+
+ bool CompressA8ToR11EAC(uint8_t* dst, const uint8_t* src,
+ int width, int height, int rowBytes);
+
+ SkBlitter* CreateR11EACBlitter(int width, int height, void* outputBuffer);
+}
+
+#endif // SkTextureCompressor_R11EAC_DEFINED