blob: 35e92e5dc32e968a15d904d40c73f714f867f216 [file] [log] [blame] [edit]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/effects/Sk1DPathEffect.h"
#include "include/core/SkFlattenable.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPath.h"
#include "include/core/SkPathBuilder.h"
#include "include/core/SkPathEffect.h"
#include "include/core/SkPathMeasure.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkStrokeRec.h"
#include "include/core/SkTypes.h"
#include "include/private/base/SkFloatingPoint.h"
#include "src/core/SkPathEffectBase.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkWriteBuffer.h"
struct SkRect;
// Since we are stepping by a float, the do/while loop might go on forever (or nearly so).
// Put in a governor to limit crash values from looping too long (and allocating too much ram).
#define MAX_REASONABLE_ITERATIONS 100000
class Sk1DPathEffect : public SkPathEffectBase {
public:
protected:
bool onFilterPath(SkPathBuilder* builder, const SkPath& src, SkStrokeRec*, const SkRect*,
const SkMatrix&) const override {
SkPathMeasure meas(src, false);
do {
int governor = MAX_REASONABLE_ITERATIONS;
SkScalar length = meas.getLength();
SkScalar distance = this->begin(length);
while (distance < length && --governor >= 0) {
SkScalar delta = this->next(builder, distance, meas);
if (delta <= 0) {
break;
}
distance += delta;
}
if (governor < 0) {
return false;
}
} while (meas.nextContour());
return true;
}
/** Called at the start of each contour, returns the initial offset
into that contour.
*/
virtual SkScalar begin(SkScalar contourLength) const = 0;
/** Called with the current distance along the path, with the current matrix
for the point/tangent at the specified distance.
Return the distance to travel for the next call. If return <= 0, then that
contour is done.
*/
virtual SkScalar next(SkPathBuilder* dst, SkScalar dist, SkPathMeasure&) const = 0;
private:
// For simplicity, assume fast bounds cannot be computed
bool computeFastBounds(SkRect*) const override { return false; }
};
///////////////////////////////////////////////////////////////////////////////
class SkPath1DPathEffectImpl : public Sk1DPathEffect {
public:
SkPath1DPathEffectImpl(const SkPath& path, SkScalar advance, SkScalar phase,
SkPath1DPathEffect::Style style) : fPath(path) {
SkASSERT(advance > 0 && !path.isEmpty());
// Make the path thread-safe.
fPath.updateBoundsCache();
(void)fPath.getGenerationID();
// cleanup their phase parameter, inverting it so that it becomes an
// offset along the path (to match the interpretation in PostScript)
if (phase < 0) {
phase = -phase;
if (phase > advance) {
phase = SkScalarMod(phase, advance);
}
} else {
if (phase > advance) {
phase = SkScalarMod(phase, advance);
}
phase = advance - phase;
}
// now catch the edge case where phase == advance (within epsilon)
if (phase >= advance) {
phase = 0;
}
SkASSERT(phase >= 0);
fAdvance = advance;
fInitialOffset = phase;
fStyle = style;
}
bool onFilterPath(SkPathBuilder* builder, const SkPath& src, SkStrokeRec* rec,
const SkRect* cullRect, const SkMatrix& ctm) const override {
rec->setFillStyle();
return this->INHERITED::onFilterPath(builder, src, rec, cullRect, ctm);
}
SkScalar begin(SkScalar contourLength) const override {
return fInitialOffset;
}
SkScalar next(SkPathBuilder*, SkScalar, SkPathMeasure&) const override;
static sk_sp<SkFlattenable> CreateProc(SkReadBuffer& buffer) {
sk_sp<SkFlattenable> result;
SkScalar advance = buffer.readScalar();
if (auto path = buffer.readPath()) {
SkScalar phase = buffer.readScalar();
SkPath1DPathEffect::Style style = buffer.read32LE(SkPath1DPathEffect::kLastEnum_Style);
if (buffer.isValid()) {
result = SkPath1DPathEffect::Make(*path, advance, phase, style);
}
}
return result;
}
void flatten(SkWriteBuffer& buffer) const override {
buffer.writeScalar(fAdvance);
buffer.writePath(fPath);
buffer.writeScalar(fInitialOffset);
buffer.writeUInt(fStyle);
}
Factory getFactory() const override { return CreateProc; }
const char* getTypeName() const override { return "SkPath1DPathEffect"; }
private:
SkPath fPath; // copied from constructor
SkScalar fAdvance; // copied from constructor
SkScalar fInitialOffset; // computed from phase
SkPath1DPathEffect::Style fStyle; // copied from constructor
using INHERITED = Sk1DPathEffect;
};
static bool morphpoints(SkSpan<SkPoint> dst, SkSpan<const SkPoint> src,
SkPathMeasure& meas, SkScalar dist) {
SkASSERT(dst.size() >= src.size());
for (size_t i = 0; i < src.size(); i++) {
SkPoint pos;
SkVector tangent;
SkScalar sx = src[i].fX;
SkScalar sy = src[i].fY;
if (!meas.getPosTan(dist + sx, &pos, &tangent)) {
return false;
}
SkMatrix matrix;
SkPoint pt;
pt.set(sx, sy);
matrix.setSinCos(tangent.fY, tangent.fX, 0, 0);
matrix.preTranslate(-sx, 0);
matrix.postTranslate(pos.fX, pos.fY);
dst[i] = matrix.mapPoint(pt);
}
return true;
}
/* TODO
Need differentially more subdivisions when the follow-path is curvy. Not sure how to
determine that, but we need it. I guess a cheap answer is let the caller tell us,
but that seems like a cop-out. Another answer is to get Rob Johnson to figure it out.
*/
static void morphpath(SkPathBuilder* dst, const SkPath& src, SkPathMeasure& meas,
SkScalar dist) {
SkPath::Iter iter(src, false);
SkPoint dstP[3], scratch[3];
while (auto rec = iter.next()) {
SkSpan<const SkPoint> srcP = rec->fPoints;
switch (rec->fVerb) {
case SkPathVerb::kMove:
if (morphpoints(dstP, srcP, meas, dist)) {
dst->moveTo(dstP[0]);
}
break;
case SkPathVerb::kLine:
scratch[0] = srcP[0];
scratch[1].set(sk_float_midpoint(srcP[0].fX, srcP[1].fX),
sk_float_midpoint(srcP[0].fY, srcP[1].fY));
scratch[2] = srcP[1];
srcP = scratch; // now we look like a quad
[[fallthrough]];
case SkPathVerb::kQuad:
if (morphpoints(dstP, srcP.subspan(1), meas, dist)) {
dst->quadTo(dstP[0], dstP[1]);
}
break;
case SkPathVerb::kConic:
if (morphpoints(dstP, srcP.subspan(1), meas, dist)) {
dst->conicTo(dstP[0], dstP[1], rec->conicWeight());
}
break;
case SkPathVerb::kCubic:
if (morphpoints(dstP, srcP.subspan(1), meas, dist)) {
dst->cubicTo(dstP[0], dstP[1], dstP[2]);
}
break;
case SkPathVerb::kClose:
dst->close();
break;
}
}
}
SkScalar SkPath1DPathEffectImpl::next(SkPathBuilder* builder, SkScalar distance,
SkPathMeasure& meas) const {
#if defined(SK_BUILD_FOR_FUZZER)
if (builder->countPoints() > 100000) {
return fAdvance;
}
#endif
switch (fStyle) {
case SkPath1DPathEffect::kTranslate_Style: {
SkPoint pos;
if (meas.getPosTan(distance, &pos, nullptr)) {
builder->addPath(fPath, pos.fX, pos.fY);
}
} break;
case SkPath1DPathEffect::kRotate_Style: {
SkMatrix matrix;
if (meas.getMatrix(distance, &matrix)) {
builder->addPath(fPath, matrix);
}
} break;
case SkPath1DPathEffect::kMorph_Style:
morphpath(builder, fPath, meas, distance);
break;
}
return fAdvance;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
sk_sp<SkPathEffect> SkPath1DPathEffect::Make(const SkPath& path, SkScalar advance, SkScalar phase,
Style style) {
if (advance <= 0 || !SkIsFinite(advance, phase) || path.isEmpty()) {
return nullptr;
}
return sk_sp<SkPathEffect>(new SkPath1DPathEffectImpl(path, advance, phase, style));
}
void SkPath1DPathEffect::RegisterFlattenables() {
SK_REGISTER_FLATTENABLE(SkPath1DPathEffectImpl);
}