|  | /* | 
|  | * Copyright 2016 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "tests/Test.h" | 
|  |  | 
|  | #include "include/gpu/GrDirectContext.h" | 
|  | #include "src/gpu/GrClip.h" | 
|  | #include "src/gpu/GrDirectContextPriv.h" | 
|  | #include "src/gpu/GrGpuResource.h" | 
|  | #include "src/gpu/GrImageInfo.h" | 
|  | #include "src/gpu/GrMemoryPool.h" | 
|  | #include "src/gpu/GrProxyProvider.h" | 
|  | #include "src/gpu/GrResourceProvider.h" | 
|  | #include "src/gpu/GrSurfaceDrawContext.h" | 
|  | #include "src/gpu/SkGr.h" | 
|  | #include "src/gpu/glsl/GrGLSLFragmentProcessor.h" | 
|  | #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" | 
|  | #include "src/gpu/ops/GrFillRectOp.h" | 
|  | #include "src/gpu/ops/GrMeshDrawOp.h" | 
|  | #include "tests/TestUtils.h" | 
|  |  | 
|  | #include <atomic> | 
|  | #include <random> | 
|  |  | 
|  | namespace { | 
|  | class TestOp : public GrMeshDrawOp { | 
|  | public: | 
|  | DEFINE_OP_CLASS_ID | 
|  | static GrOp::Owner Make(GrRecordingContext* rContext, | 
|  | std::unique_ptr<GrFragmentProcessor> fp) { | 
|  | return GrOp::Make<TestOp>(rContext, std::move(fp)); | 
|  | } | 
|  |  | 
|  | const char* name() const override { return "TestOp"; } | 
|  |  | 
|  | void visitProxies(const VisitProxyFunc& func) const override { | 
|  | fProcessors.visitProxies(func); | 
|  | } | 
|  |  | 
|  | FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } | 
|  |  | 
|  | GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, | 
|  | GrClampType clampType) override { | 
|  | static constexpr GrProcessorAnalysisColor kUnknownColor; | 
|  | SkPMColor4f overrideColor; | 
|  | return fProcessors.finalize( | 
|  | kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip, | 
|  | &GrUserStencilSettings::kUnused, caps, clampType, &overrideColor); | 
|  | } | 
|  |  | 
|  | private: | 
|  | friend class ::GrOp; // for ctor | 
|  |  | 
|  | TestOp(std::unique_ptr<GrFragmentProcessor> fp) | 
|  | : INHERITED(ClassID()), fProcessors(std::move(fp)) { | 
|  | this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsHairline::kNo); | 
|  | } | 
|  |  | 
|  | GrProgramInfo* programInfo() override { return nullptr; } | 
|  | void onCreateProgramInfo(const GrCaps*, | 
|  | SkArenaAlloc*, | 
|  | const GrSurfaceProxyView& writeView, | 
|  | GrAppliedClip&&, | 
|  | const GrXferProcessor::DstProxyView&, | 
|  | GrXferBarrierFlags renderPassXferBarriers, | 
|  | GrLoadOp colorLoadOp) override {} | 
|  | void onPrePrepareDraws(GrRecordingContext*, | 
|  | const GrSurfaceProxyView& writeView, | 
|  | GrAppliedClip*, | 
|  | const GrXferProcessor::DstProxyView&, | 
|  | GrXferBarrierFlags renderPassXferBarriers, | 
|  | GrLoadOp colorLoadOp) override {} | 
|  | void onPrepareDraws(Target* target) override { return; } | 
|  | void onExecute(GrOpFlushState*, const SkRect&) override { return; } | 
|  |  | 
|  | GrProcessorSet fProcessors; | 
|  |  | 
|  | using INHERITED = GrMeshDrawOp; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * FP used to test ref counts on owned GrGpuResources. Can also be a parent FP to test counts | 
|  | * of resources owned by child FPs. | 
|  | */ | 
|  | class TestFP : public GrFragmentProcessor { | 
|  | public: | 
|  | static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> child) { | 
|  | return std::unique_ptr<GrFragmentProcessor>(new TestFP(std::move(child))); | 
|  | } | 
|  | static std::unique_ptr<GrFragmentProcessor> Make(const SkTArray<GrSurfaceProxyView>& views) { | 
|  | return std::unique_ptr<GrFragmentProcessor>(new TestFP(views)); | 
|  | } | 
|  |  | 
|  | const char* name() const override { return "test"; } | 
|  |  | 
|  | void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override { | 
|  | static std::atomic<int32_t> nextKey{0}; | 
|  | b->add32(nextKey++); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<GrFragmentProcessor> clone() const override { | 
|  | return std::unique_ptr<GrFragmentProcessor>(new TestFP(*this)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | TestFP(const SkTArray<GrSurfaceProxyView>& views) | 
|  | : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) { | 
|  | for (const GrSurfaceProxyView& view : views) { | 
|  | this->registerChild(GrTextureEffect::Make(view, kUnknown_SkAlphaType)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TestFP(std::unique_ptr<GrFragmentProcessor> child) | 
|  | : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) { | 
|  | this->registerChild(std::move(child)); | 
|  | } | 
|  |  | 
|  | explicit TestFP(const TestFP& that) : INHERITED(kTestFP_ClassID, that.optimizationFlags()) { | 
|  | this->cloneAndRegisterAllChildProcessors(that); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<GrGLSLFragmentProcessor> onMakeProgramImpl() const override { | 
|  | class TestGLSLFP : public GrGLSLFragmentProcessor { | 
|  | public: | 
|  | TestGLSLFP() {} | 
|  | void emitCode(EmitArgs& args) override { | 
|  | args.fFragBuilder->codeAppendf("return half4(1);"); | 
|  | } | 
|  |  | 
|  | private: | 
|  | }; | 
|  | return std::make_unique<TestGLSLFP>(); | 
|  | } | 
|  |  | 
|  | bool onIsEqual(const GrFragmentProcessor&) const override { return false; } | 
|  |  | 
|  | using INHERITED = GrFragmentProcessor; | 
|  | }; | 
|  | }  // namespace | 
|  |  | 
|  | DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) { | 
|  | auto context = ctxInfo.directContext(); | 
|  | GrProxyProvider* proxyProvider = context->priv().proxyProvider(); | 
|  |  | 
|  | static constexpr SkISize kDims = {10, 10}; | 
|  |  | 
|  | const GrBackendFormat format = | 
|  | context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888, | 
|  | GrRenderable::kNo); | 
|  | GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kRGBA_8888); | 
|  |  | 
|  | for (bool makeClone : {false, true}) { | 
|  | for (int parentCnt = 0; parentCnt < 2; parentCnt++) { | 
|  | auto surfaceDrawContext = GrSurfaceDrawContext::Make( | 
|  | context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kApprox, {1, 1}, | 
|  | SkSurfaceProps()); | 
|  | { | 
|  | sk_sp<GrTextureProxy> proxy = proxyProvider->createProxy( | 
|  | format, kDims, GrRenderable::kNo, 1, GrMipmapped::kNo, SkBackingFit::kExact, | 
|  | SkBudgeted::kYes, GrProtected::kNo); | 
|  |  | 
|  | { | 
|  | SkTArray<GrSurfaceProxyView> views; | 
|  | views.push_back({proxy, kTopLeft_GrSurfaceOrigin, swizzle}); | 
|  | auto fp = TestFP::Make(std::move(views)); | 
|  | for (int i = 0; i < parentCnt; ++i) { | 
|  | fp = TestFP::Make(std::move(fp)); | 
|  | } | 
|  | std::unique_ptr<GrFragmentProcessor> clone; | 
|  | if (makeClone) { | 
|  | clone = fp->clone(); | 
|  | } | 
|  | GrOp::Owner op = TestOp::Make(context, std::move(fp)); | 
|  | surfaceDrawContext->addDrawOp(std::move(op)); | 
|  | if (clone) { | 
|  | op = TestOp::Make(context, std::move(clone)); | 
|  | surfaceDrawContext->addDrawOp(std::move(op)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the fp is cloned the number of refs should increase by one (for the clone) | 
|  | int expectedProxyRefs = makeClone ? 3 : 2; | 
|  |  | 
|  | CheckSingleThreadedProxyRefs(reporter, proxy.get(), expectedProxyRefs, -1); | 
|  |  | 
|  | context->flushAndSubmit(); | 
|  |  | 
|  | // just one from the 'proxy' sk_sp | 
|  | CheckSingleThreadedProxyRefs(reporter, proxy.get(), 1, 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #include "tools/flags/CommandLineFlags.h" | 
|  | static DEFINE_bool(randomProcessorTest, false, | 
|  | "Use non-deterministic seed for random processor tests?"); | 
|  | static DEFINE_int(processorSeed, 0, | 
|  | "Use specific seed for processor tests. Overridden by --randomProcessorTest."); | 
|  |  | 
|  | #if GR_TEST_UTILS | 
|  |  | 
|  | static GrColor input_texel_color(int i, int j, SkScalar delta) { | 
|  | // Delta must be less than 0.5 to prevent over/underflow issues with the input color | 
|  | SkASSERT(delta <= 0.5); | 
|  |  | 
|  | SkColor color = SkColorSetARGB((uint8_t)(i & 0xFF), | 
|  | (uint8_t)(j & 0xFF), | 
|  | (uint8_t)((i + j) & 0xFF), | 
|  | (uint8_t)((2 * j - i) & 0xFF)); | 
|  | SkColor4f color4f = SkColor4f::FromColor(color); | 
|  | // We only apply delta to the r,g, and b channels. This is because we're using this | 
|  | // to test the canTweakAlphaForCoverage() optimization. A processor is allowed | 
|  | // to use the input color's alpha in its calculation and report this optimization. | 
|  | for (int i = 0; i < 3; i++) { | 
|  | if (color4f[i] > 0.5) { | 
|  | color4f[i] -= delta; | 
|  | } else { | 
|  | color4f[i] += delta; | 
|  | } | 
|  | } | 
|  | return color4f.premul().toBytes_RGBA(); | 
|  | } | 
|  |  | 
|  | void test_draw_op(GrRecordingContext* rContext, | 
|  | GrSurfaceDrawContext* rtc, | 
|  | std::unique_ptr<GrFragmentProcessor> fp) { | 
|  | GrPaint paint; | 
|  | paint.setColorFragmentProcessor(std::move(fp)); | 
|  | paint.setPorterDuffXPFactory(SkBlendMode::kSrc); | 
|  |  | 
|  | auto op = GrFillRectOp::MakeNonAARect(rContext, std::move(paint), SkMatrix::I(), | 
|  | SkRect::MakeWH(rtc->width(), rtc->height())); | 
|  | rtc->addDrawOp(std::move(op)); | 
|  | } | 
|  |  | 
|  | // The output buffer must be the same size as the render-target context. | 
|  | void render_fp(GrDirectContext* dContext, | 
|  | GrSurfaceDrawContext* rtc, | 
|  | std::unique_ptr<GrFragmentProcessor> fp, | 
|  | GrColor* outBuffer) { | 
|  | test_draw_op(dContext, rtc, std::move(fp)); | 
|  | std::fill_n(outBuffer, rtc->width() * rtc->height(), 0); | 
|  | auto ii = SkImageInfo::Make(rtc->dimensions(), kRGBA_8888_SkColorType, kPremul_SkAlphaType); | 
|  | GrPixmap resultPM(ii, outBuffer, rtc->width()*sizeof(uint32_t)); | 
|  | rtc->readPixels(dContext, resultPM, {0, 0}); | 
|  | } | 
|  |  | 
|  | // This class is responsible for reproducibly generating a random fragment processor. | 
|  | // An identical randomly-designed FP can be generated as many times as needed. | 
|  | class TestFPGenerator { | 
|  | public: | 
|  | TestFPGenerator() = delete; | 
|  | TestFPGenerator(GrDirectContext* context, GrResourceProvider* resourceProvider) | 
|  | : fContext(context) | 
|  | , fResourceProvider(resourceProvider) | 
|  | , fInitialSeed(synthesizeInitialSeed()) | 
|  | , fRandomSeed(fInitialSeed) {} | 
|  |  | 
|  | uint32_t initialSeed() { return fInitialSeed; } | 
|  |  | 
|  | bool init() { | 
|  | // Initializes the two test texture proxies that are available to the FP test factories. | 
|  | SkRandom random{fRandomSeed}; | 
|  | static constexpr int kTestTextureSize = 256; | 
|  |  | 
|  | { | 
|  | // Put premul data into the RGBA texture that the test FPs can optionally use. | 
|  | GrColor* rgbaData = new GrColor[kTestTextureSize * kTestTextureSize]; | 
|  | for (int y = 0; y < kTestTextureSize; ++y) { | 
|  | for (int x = 0; x < kTestTextureSize; ++x) { | 
|  | rgbaData[kTestTextureSize * y + x] = input_texel_color( | 
|  | random.nextULessThan(256), random.nextULessThan(256), 0.0f); | 
|  | } | 
|  | } | 
|  |  | 
|  | SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize, | 
|  | kRGBA_8888_SkColorType, kPremul_SkAlphaType); | 
|  | SkBitmap bitmap; | 
|  | bitmap.installPixels( | 
|  | ii, rgbaData, ii.minRowBytes(), | 
|  | [](void* addr, void* context) { delete[](GrColor*) addr; }, nullptr); | 
|  | bitmap.setImmutable(); | 
|  | auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap)); | 
|  | if (!view || !view.proxy()->instantiate(fResourceProvider)) { | 
|  | SkDebugf("Unable to instantiate RGBA8888 test texture."); | 
|  | return false; | 
|  | } | 
|  | fTestViews[0] = GrProcessorTestData::ViewInfo{view, GrColorType::kRGBA_8888, | 
|  | kPremul_SkAlphaType}; | 
|  | } | 
|  |  | 
|  | { | 
|  | // Put random values into the alpha texture that the test FPs can optionally use. | 
|  | uint8_t* alphaData = new uint8_t[kTestTextureSize * kTestTextureSize]; | 
|  | for (int y = 0; y < kTestTextureSize; ++y) { | 
|  | for (int x = 0; x < kTestTextureSize; ++x) { | 
|  | alphaData[kTestTextureSize * y + x] = random.nextULessThan(256); | 
|  | } | 
|  | } | 
|  |  | 
|  | SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize, | 
|  | kAlpha_8_SkColorType, kPremul_SkAlphaType); | 
|  | SkBitmap bitmap; | 
|  | bitmap.installPixels( | 
|  | ii, alphaData, ii.minRowBytes(), | 
|  | [](void* addr, void* context) { delete[](uint8_t*) addr; }, nullptr); | 
|  | bitmap.setImmutable(); | 
|  | auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap)); | 
|  | if (!view || !view.proxy()->instantiate(fResourceProvider)) { | 
|  | SkDebugf("Unable to instantiate A8 test texture."); | 
|  | return false; | 
|  | } | 
|  | fTestViews[1] = GrProcessorTestData::ViewInfo{view, GrColorType::kAlpha_8, | 
|  | kPremul_SkAlphaType}; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void reroll() { | 
|  | // Feed our current random seed into SkRandom to generate a new seed. | 
|  | SkRandom random{fRandomSeed}; | 
|  | fRandomSeed = random.nextU(); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth, | 
|  | std::unique_ptr<GrFragmentProcessor> inputFP) { | 
|  | // This will generate the exact same randomized FP (of each requested type) each time | 
|  | // it's called. Call `reroll` to get a different FP. | 
|  | SkRandom random{fRandomSeed}; | 
|  | GrProcessorTestData testData{&random, fContext, randomTreeDepth, | 
|  | SK_ARRAY_COUNT(fTestViews), fTestViews, | 
|  | std::move(inputFP)}; | 
|  | return GrFragmentProcessorTestFactory::MakeIdx(type, &testData); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth, | 
|  | GrSurfaceProxyView view, | 
|  | SkAlphaType alpha = kPremul_SkAlphaType) { | 
|  | return make(type, randomTreeDepth, GrTextureEffect::Make(view, alpha)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | static uint32_t synthesizeInitialSeed() { | 
|  | if (FLAGS_randomProcessorTest) { | 
|  | std::random_device rd; | 
|  | return rd(); | 
|  | } else { | 
|  | return FLAGS_processorSeed; | 
|  | } | 
|  | } | 
|  |  | 
|  | GrDirectContext* fContext;              // owned by caller | 
|  | GrResourceProvider* fResourceProvider;  // owned by caller | 
|  | const uint32_t fInitialSeed; | 
|  | uint32_t fRandomSeed; | 
|  | GrProcessorTestData::ViewInfo fTestViews[2]; | 
|  | }; | 
|  |  | 
|  | // Creates an array of color values from input_texel_color(), to be used as an input texture. | 
|  | std::vector<GrColor> make_input_pixels(int width, int height, SkScalar delta) { | 
|  | std::vector<GrColor> pixel(width * height); | 
|  | for (int y = 0; y < width; ++y) { | 
|  | for (int x = 0; x < height; ++x) { | 
|  | pixel[width * y + x] = input_texel_color(x, y, delta); | 
|  | } | 
|  | } | 
|  |  | 
|  | return pixel; | 
|  | } | 
|  |  | 
|  | // Creates a texture of premul colors used as the output of the fragment processor that precedes | 
|  | // the fragment processor under test. An array of W*H colors are passed in as the texture data. | 
|  | GrSurfaceProxyView make_input_texture(GrRecordingContext* context, | 
|  | int width, int height, GrColor* pixel) { | 
|  | SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType); | 
|  | SkBitmap bitmap; | 
|  | bitmap.installPixels(ii, pixel, ii.minRowBytes()); | 
|  | bitmap.setImmutable(); | 
|  | return std::get<0>(GrMakeUncachedBitmapProxyView(context, bitmap)); | 
|  | } | 
|  |  | 
|  | // We tag logged data as unpremul to avoid conversion when encoding as PNG. The input texture | 
|  | // actually contains unpremul data. Also, even though we made the result data by rendering into | 
|  | // a "unpremul" GrSurfaceDrawContext, our input texture is unpremul and outside of the random | 
|  | // effect configuration, we didn't do anything to ensure the output is actually premul. We just | 
|  | // don't currently allow kUnpremul GrSurfaceDrawContexts. | 
|  | static constexpr auto kLogAlphaType = kUnpremul_SkAlphaType; | 
|  |  | 
|  | bool log_pixels(GrColor* pixels, int widthHeight, SkString* dst) { | 
|  | SkImageInfo info = | 
|  | SkImageInfo::Make(widthHeight, widthHeight, kRGBA_8888_SkColorType, kLogAlphaType); | 
|  | SkBitmap bmp; | 
|  | bmp.installPixels(info, pixels, widthHeight * sizeof(GrColor)); | 
|  | return BipmapToBase64DataURI(bmp, dst); | 
|  | } | 
|  |  | 
|  | bool log_texture_view(GrDirectContext* dContext, GrSurfaceProxyView src, SkString* dst) { | 
|  | SkImageInfo ii = SkImageInfo::Make(src.proxy()->dimensions(), kRGBA_8888_SkColorType, | 
|  | kLogAlphaType); | 
|  |  | 
|  | auto sContext = GrSurfaceContext::Make(dContext, std::move(src), ii.colorInfo()); | 
|  | SkBitmap bm; | 
|  | SkAssertResult(bm.tryAllocPixels(ii)); | 
|  | SkAssertResult(sContext->readPixels(dContext, bm.pixmap(), {0, 0})); | 
|  | return BipmapToBase64DataURI(bm, dst); | 
|  | } | 
|  |  | 
|  | bool fuzzy_color_equals(const SkPMColor4f& c1, const SkPMColor4f& c2) { | 
|  | // With the loss of precision of rendering into 32-bit color, then estimating the FP's output | 
|  | // from that, it is not uncommon for a valid output to differ from estimate by up to 0.01 | 
|  | // (really 1/128 ~ .0078, but frequently floating point issues make that tolerance a little | 
|  | // too unforgiving). | 
|  | static constexpr SkScalar kTolerance = 0.01f; | 
|  | for (int i = 0; i < 4; i++) { | 
|  | if (!SkScalarNearlyEqual(c1[i], c2[i], kTolerance)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Given three input colors (color preceding the FP being tested) provided to the FP at the same | 
|  | // local coord and the three corresponding FP outputs, this ensures that either: | 
|  | //   out[0] = fp * in[0].a, out[1] = fp * in[1].a, and out[2] = fp * in[2].a | 
|  | // where fp is the pre-modulated color that should not be changing across frames (FP's state doesn't | 
|  | // change), OR: | 
|  | //   out[0] = fp * in[0], out[1] = fp * in[1], and out[2] = fp * in[2] | 
|  | // (per-channel modulation instead of modulation by just the alpha channel) | 
|  | // It does this by estimating the pre-modulated fp color from one of the input/output pairs and | 
|  | // confirms the conditions hold for the other two pairs. | 
|  | // It is required that the three input colors have the same alpha as fp is allowed to be a function | 
|  | // of the input alpha (but not r, g, or b). | 
|  | bool legal_modulation(const GrColor in[3], const GrColor out[3]) { | 
|  | // Convert to floating point, which is the number space the FP operates in (more or less) | 
|  | SkPMColor4f inf[3], outf[3]; | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | inf[i]  = SkPMColor4f::FromBytes_RGBA(in[i]); | 
|  | outf[i] = SkPMColor4f::FromBytes_RGBA(out[i]); | 
|  | } | 
|  | // This test is only valid if all the input alphas are the same. | 
|  | SkASSERT(inf[0].fA == inf[1].fA && inf[1].fA == inf[2].fA); | 
|  |  | 
|  | // Reconstruct the output of the FP before the shader modulated its color with the input value. | 
|  | // When the original input is very small, it may cause the final output color to round | 
|  | // to 0, in which case we estimate the pre-modulated color using one of the stepped frames that | 
|  | // will then have a guaranteed larger channel value (since the offset will be added to it). | 
|  | SkPMColor4f fpPreColorModulation = {0,0,0,0}; | 
|  | SkPMColor4f fpPreAlphaModulation = {0,0,0,0}; | 
|  | for (int i = 0; i < 4; i++) { | 
|  | // Use the most stepped up frame | 
|  | int maxInIdx = inf[0][i] > inf[1][i] ? 0 : 1; | 
|  | maxInIdx = inf[maxInIdx][i] > inf[2][i] ? maxInIdx : 2; | 
|  | const SkPMColor4f& in = inf[maxInIdx]; | 
|  | const SkPMColor4f& out = outf[maxInIdx]; | 
|  | if (in[i] > 0) { | 
|  | fpPreColorModulation[i] = out[i] / in[i]; | 
|  | } | 
|  | if (in[3] > 0) { | 
|  | fpPreAlphaModulation[i] = out[i] / in[3]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // With reconstructed pre-modulated FP output, derive the expected value of fp * input for each | 
|  | // of the transformed input colors. | 
|  | SkPMColor4f expectedForAlphaModulation[3]; | 
|  | SkPMColor4f expectedForColorModulation[3]; | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | expectedForAlphaModulation[i] = fpPreAlphaModulation * inf[i].fA; | 
|  | expectedForColorModulation[i] = fpPreColorModulation * inf[i]; | 
|  | // If the input alpha is 0 then the other channels should also be zero | 
|  | // since the color is assumed to be premul. Modulating zeros by anything | 
|  | // should produce zeros. | 
|  | if (inf[i].fA == 0) { | 
|  | SkASSERT(inf[i].fR == 0 && inf[i].fG == 0 && inf[i].fB == 0); | 
|  | expectedForColorModulation[i] = expectedForAlphaModulation[i] = {0, 0, 0, 0}; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool isLegalColorModulation = fuzzy_color_equals(outf[0], expectedForColorModulation[0]) && | 
|  | fuzzy_color_equals(outf[1], expectedForColorModulation[1]) && | 
|  | fuzzy_color_equals(outf[2], expectedForColorModulation[2]); | 
|  |  | 
|  | bool isLegalAlphaModulation = fuzzy_color_equals(outf[0], expectedForAlphaModulation[0]) && | 
|  | fuzzy_color_equals(outf[1], expectedForAlphaModulation[1]) && | 
|  | fuzzy_color_equals(outf[2], expectedForAlphaModulation[2]); | 
|  |  | 
|  | // This can be enabled to print the values that caused this check to fail. | 
|  | if (0 && !isLegalColorModulation && !isLegalAlphaModulation) { | 
|  | SkDebugf("Color modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n", | 
|  | fpPreColorModulation[0], | 
|  | fpPreColorModulation[1], | 
|  | fpPreColorModulation[2], | 
|  | fpPreColorModulation[3]); | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> " | 
|  | "(%.03f, %.03f, %.03f, %.03f) | " | 
|  | "(%.03f, %.03f, %.03f, %.03f), ok: %d\n", | 
|  | inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA, | 
|  | outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA, | 
|  | expectedForColorModulation[i].fR, expectedForColorModulation[i].fG, | 
|  | expectedForColorModulation[i].fB, expectedForColorModulation[i].fA, | 
|  | fuzzy_color_equals(outf[i], expectedForColorModulation[i])); | 
|  | } | 
|  | SkDebugf("Alpha modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n", | 
|  | fpPreAlphaModulation[0], | 
|  | fpPreAlphaModulation[1], | 
|  | fpPreAlphaModulation[2], | 
|  | fpPreAlphaModulation[3]); | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> " | 
|  | "(%.03f, %.03f, %.03f, %.03f) | " | 
|  | "(%.03f, %.03f, %.03f, %.03f), ok: %d\n", | 
|  | inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA, | 
|  | outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA, | 
|  | expectedForAlphaModulation[i].fR, expectedForAlphaModulation[i].fG, | 
|  | expectedForAlphaModulation[i].fB, expectedForAlphaModulation[i].fA, | 
|  | fuzzy_color_equals(outf[i], expectedForAlphaModulation[i])); | 
|  | } | 
|  | } | 
|  | return isLegalColorModulation || isLegalAlphaModulation; | 
|  | } | 
|  |  | 
|  | DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) { | 
|  | GrDirectContext* context = ctxInfo.directContext(); | 
|  | GrResourceProvider* resourceProvider = context->priv().resourceProvider(); | 
|  | using FPFactory = GrFragmentProcessorTestFactory; | 
|  |  | 
|  | TestFPGenerator fpGenerator{context, resourceProvider}; | 
|  | if (!fpGenerator.init()) { | 
|  | ERRORF(reporter, "Could not initialize TestFPGenerator"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Make the destination context for the test. | 
|  | static constexpr int kRenderSize = 256; | 
|  | auto rtc = GrSurfaceDrawContext::Make( | 
|  | context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact, | 
|  | {kRenderSize, kRenderSize}, SkSurfaceProps()); | 
|  |  | 
|  | // Coverage optimization uses three frames with a linearly transformed input texture.  The first | 
|  | // frame has no offset, second frames add .2 and .4, which should then be present as a fixed | 
|  | // difference between the frame outputs if the FP is properly following the modulation | 
|  | // requirements of the coverage optimization. | 
|  | static constexpr SkScalar kInputDelta = 0.2f; | 
|  | std::vector<GrColor> inputPixels1 = make_input_pixels(kRenderSize, kRenderSize, 0.0f); | 
|  | std::vector<GrColor> inputPixels2 = | 
|  | make_input_pixels(kRenderSize, kRenderSize, 1 * kInputDelta); | 
|  | std::vector<GrColor> inputPixels3 = | 
|  | make_input_pixels(kRenderSize, kRenderSize, 2 * kInputDelta); | 
|  | GrSurfaceProxyView inputTexture1 = | 
|  | make_input_texture(context, kRenderSize, kRenderSize, inputPixels1.data()); | 
|  | GrSurfaceProxyView inputTexture2 = | 
|  | make_input_texture(context, kRenderSize, kRenderSize, inputPixels2.data()); | 
|  | GrSurfaceProxyView inputTexture3 = | 
|  | make_input_texture(context, kRenderSize, kRenderSize, inputPixels3.data()); | 
|  |  | 
|  | // Encoded images are very verbose and this tests many potential images, so only export the | 
|  | // first failure (subsequent failures have a reasonable chance of being related). | 
|  | bool loggedFirstFailure = false; | 
|  | bool loggedFirstWarning = false; | 
|  |  | 
|  | // Storage for the three frames required for coverage compatibility optimization testing. | 
|  | // Each frame uses the correspondingly numbered inputTextureX. | 
|  | std::vector<GrColor> readData1(kRenderSize * kRenderSize); | 
|  | std::vector<GrColor> readData2(kRenderSize * kRenderSize); | 
|  | std::vector<GrColor> readData3(kRenderSize * kRenderSize); | 
|  |  | 
|  | // Because processor factories configure themselves in random ways, this is not exhaustive. | 
|  | for (int i = 0; i < FPFactory::Count(); ++i) { | 
|  | int optimizedForOpaqueInput = 0; | 
|  | int optimizedForCoverageAsAlpha = 0; | 
|  | int optimizedForConstantOutputForInput = 0; | 
|  |  | 
|  | #ifdef __MSVC_RUNTIME_CHECKS | 
|  | // This test is infuriatingly slow with MSVC runtime checks enabled | 
|  | static constexpr int kMinimumTrials = 1; | 
|  | static constexpr int kMaximumTrials = 1; | 
|  | static constexpr int kExpectedSuccesses = 1; | 
|  | #else | 
|  | // We start by testing each fragment-processor 100 times, watching the optimization bits | 
|  | // that appear. If we see an optimization bit appear in those first 100 trials, we keep | 
|  | // running tests until we see at least five successful trials that have this optimization | 
|  | // bit enabled. If we never see a particular optimization bit after 100 trials, we assume | 
|  | // that this FP doesn't support that optimization at all. | 
|  | static constexpr int kMinimumTrials = 100; | 
|  | static constexpr int kMaximumTrials = 2000; | 
|  | static constexpr int kExpectedSuccesses = 5; | 
|  | #endif | 
|  |  | 
|  | for (int trial = 0;; ++trial) { | 
|  | // Create a randomly-configured FP. | 
|  | fpGenerator.reroll(); | 
|  | std::unique_ptr<GrFragmentProcessor> fp = | 
|  | fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1); | 
|  |  | 
|  | // If we have iterated enough times and seen a sufficient number of successes on each | 
|  | // optimization bit that can be returned, stop running trials. | 
|  | if (trial >= kMinimumTrials) { | 
|  | bool moreTrialsNeeded = (optimizedForOpaqueInput > 0 && | 
|  | optimizedForOpaqueInput < kExpectedSuccesses) || | 
|  | (optimizedForCoverageAsAlpha > 0 && | 
|  | optimizedForCoverageAsAlpha < kExpectedSuccesses) || | 
|  | (optimizedForConstantOutputForInput > 0 && | 
|  | optimizedForConstantOutputForInput < kExpectedSuccesses); | 
|  | if (!moreTrialsNeeded) break; | 
|  |  | 
|  | if (trial >= kMaximumTrials) { | 
|  | SkDebugf("Abandoning ProcessorOptimizationValidationTest after %d trials. " | 
|  | "Seed: 0x%08x, processor:\n%s", | 
|  | kMaximumTrials, fpGenerator.initialSeed(), fp->dumpTreeInfo().c_str()); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Skip further testing if this trial has no optimization bits enabled. | 
|  | if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() && | 
|  | !fp->compatibleWithCoverageAsAlpha()) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We can make identical copies of the test FP in order to test coverage-as-alpha. | 
|  | if (fp->compatibleWithCoverageAsAlpha()) { | 
|  | // Create and render two identical versions of this FP, but using different input | 
|  | // textures, to check coverage optimization. We don't need to do this step for | 
|  | // constant-output or preserving-opacity tests. | 
|  | render_fp(context, rtc.get(), | 
|  | fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture2), | 
|  | readData2.data()); | 
|  | render_fp(context, rtc.get(), | 
|  | fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture3), | 
|  | readData3.data()); | 
|  | ++optimizedForCoverageAsAlpha; | 
|  | } | 
|  |  | 
|  | if (fp->hasConstantOutputForConstantInput()) { | 
|  | ++optimizedForConstantOutputForInput; | 
|  | } | 
|  |  | 
|  | if (fp->preservesOpaqueInput()) { | 
|  | ++optimizedForOpaqueInput; | 
|  | } | 
|  |  | 
|  | // Draw base frame last so that rtc holds the original FP behavior if we need to dump | 
|  | // the image to the log. | 
|  | render_fp(context, rtc.get(), fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1), | 
|  | readData1.data()); | 
|  |  | 
|  | // This test has a history of being flaky on a number of devices. If an FP is logically | 
|  | // violating the optimizations, it's reasonable to expect it to violate requirements on | 
|  | // a large number of pixels in the image. Sporadic pixel violations are more indicative | 
|  | // of device errors and represents a separate problem. | 
|  | #if defined(SK_BUILD_FOR_SKQP) | 
|  | static constexpr int kMaxAcceptableFailedPixels = 0; // Strict when running as SKQP | 
|  | #else | 
|  | static constexpr int kMaxAcceptableFailedPixels = 2 * kRenderSize; // ~0.7% of the image | 
|  | #endif | 
|  |  | 
|  | // Collect first optimization failure message, to be output later as a warning or an | 
|  | // error depending on whether the rendering "passed" or failed. | 
|  | int failedPixelCount = 0; | 
|  | SkString coverageMessage; | 
|  | SkString opaqueMessage; | 
|  | SkString constMessage; | 
|  | for (int y = 0; y < kRenderSize; ++y) { | 
|  | for (int x = 0; x < kRenderSize; ++x) { | 
|  | bool passing = true; | 
|  | GrColor input = inputPixels1[y * kRenderSize + x]; | 
|  | GrColor output = readData1[y * kRenderSize + x]; | 
|  |  | 
|  | if (fp->compatibleWithCoverageAsAlpha()) { | 
|  | GrColor ins[3]; | 
|  | ins[0] = input; | 
|  | ins[1] = inputPixels2[y * kRenderSize + x]; | 
|  | ins[2] = inputPixels3[y * kRenderSize + x]; | 
|  |  | 
|  | GrColor outs[3]; | 
|  | outs[0] = output; | 
|  | outs[1] = readData2[y * kRenderSize + x]; | 
|  | outs[2] = readData3[y * kRenderSize + x]; | 
|  |  | 
|  | if (!legal_modulation(ins, outs)) { | 
|  | passing = false; | 
|  | if (coverageMessage.isEmpty()) { | 
|  | coverageMessage.printf( | 
|  | "\"Modulating\" processor did not match alpha-modulation " | 
|  | "nor color-modulation rules.\n" | 
|  | "Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).", | 
|  | input, output, x, y); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SkPMColor4f input4f = SkPMColor4f::FromBytes_RGBA(input); | 
|  | SkPMColor4f output4f = SkPMColor4f::FromBytes_RGBA(output); | 
|  | SkPMColor4f expected4f; | 
|  | if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) { | 
|  | float rDiff = fabsf(output4f.fR - expected4f.fR); | 
|  | float gDiff = fabsf(output4f.fG - expected4f.fG); | 
|  | float bDiff = fabsf(output4f.fB - expected4f.fB); | 
|  | float aDiff = fabsf(output4f.fA - expected4f.fA); | 
|  | static constexpr float kTol = 4 / 255.f; | 
|  | if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) { | 
|  | if (constMessage.isEmpty()) { | 
|  | passing = false; | 
|  |  | 
|  | constMessage.printf( | 
|  | "Processor claimed output for const input doesn't match " | 
|  | "actual output.\n" | 
|  | "Error: %f, Tolerance: %f, input: (%f, %f, %f, %f), " | 
|  | "actual: (%f, %f, %f, %f), expected(%f, %f, %f, %f).", | 
|  | std::max(rDiff, std::max(gDiff, std::max(bDiff, aDiff))), | 
|  | kTol, input4f.fR, input4f.fG, input4f.fB, input4f.fA, | 
|  | output4f.fR, output4f.fG, output4f.fB, output4f.fA, | 
|  | expected4f.fR, expected4f.fG, expected4f.fB, expected4f.fA); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (input4f.isOpaque() && fp->preservesOpaqueInput() && !output4f.isOpaque()) { | 
|  | passing = false; | 
|  |  | 
|  | if (opaqueMessage.isEmpty()) { | 
|  | opaqueMessage.printf( | 
|  | "Processor claimed opaqueness is preserved but " | 
|  | "it is not. Input: 0x%08x, Output: 0x%08x.", | 
|  | input, output); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!passing) { | 
|  | // Regardless of how many optimizations the pixel violates, count it as a | 
|  | // single bad pixel. | 
|  | failedPixelCount++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finished analyzing the entire image, see if the number of pixel failures meets the | 
|  | // threshold for an FP violating the optimization requirements. | 
|  | if (failedPixelCount > kMaxAcceptableFailedPixels) { | 
|  | ERRORF(reporter, | 
|  | "Processor violated %d of %d pixels, seed: 0x%08x.\n" | 
|  | "Processor:\n%s\nFirst failing pixel details are below:", | 
|  | failedPixelCount, kRenderSize * kRenderSize, fpGenerator.initialSeed(), | 
|  | fp->dumpTreeInfo().c_str()); | 
|  |  | 
|  | // Print first failing pixel's details. | 
|  | if (!coverageMessage.isEmpty()) { | 
|  | ERRORF(reporter, coverageMessage.c_str()); | 
|  | } | 
|  | if (!constMessage.isEmpty()) { | 
|  | ERRORF(reporter, constMessage.c_str()); | 
|  | } | 
|  | if (!opaqueMessage.isEmpty()) { | 
|  | ERRORF(reporter, opaqueMessage.c_str()); | 
|  | } | 
|  |  | 
|  | if (!loggedFirstFailure) { | 
|  | // Print with ERRORF to make sure the encoded image is output | 
|  | SkString input; | 
|  | log_texture_view(context, inputTexture1, &input); | 
|  | SkString output; | 
|  | log_pixels(readData1.data(), kRenderSize, &output); | 
|  | ERRORF(reporter, "Input image: %s\n\n" | 
|  | "===========================================================\n\n" | 
|  | "Output image: %s\n", input.c_str(), output.c_str()); | 
|  | loggedFirstFailure = true; | 
|  | } | 
|  | } else if (failedPixelCount > 0) { | 
|  | // Don't trigger an error, but don't just hide the failures either. | 
|  | INFOF(reporter, "Processor violated %d of %d pixels (below error threshold), seed: " | 
|  | "0x%08x, processor: %s", failedPixelCount, kRenderSize * kRenderSize, | 
|  | fpGenerator.initialSeed(), fp->dumpInfo().c_str()); | 
|  | if (!coverageMessage.isEmpty()) { | 
|  | INFOF(reporter, coverageMessage.c_str()); | 
|  | } | 
|  | if (!constMessage.isEmpty()) { | 
|  | INFOF(reporter, constMessage.c_str()); | 
|  | } | 
|  | if (!opaqueMessage.isEmpty()) { | 
|  | INFOF(reporter, opaqueMessage.c_str()); | 
|  | } | 
|  | if (!loggedFirstWarning) { | 
|  | SkString input; | 
|  | log_texture_view(context, inputTexture1, &input); | 
|  | SkString output; | 
|  | log_pixels(readData1.data(), kRenderSize, &output); | 
|  | INFOF(reporter, "Input image: %s\n\n" | 
|  | "===========================================================\n\n" | 
|  | "Output image: %s\n", input.c_str(), output.c_str()); | 
|  | loggedFirstWarning = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void assert_processor_equality(skiatest::Reporter* reporter, | 
|  | const GrFragmentProcessor& fp, | 
|  | const GrFragmentProcessor& clone) { | 
|  | REPORTER_ASSERT(reporter, !strcmp(fp.name(), clone.name()), | 
|  | "\n%s", fp.dumpTreeInfo().c_str()); | 
|  | REPORTER_ASSERT(reporter, fp.compatibleWithCoverageAsAlpha() == | 
|  | clone.compatibleWithCoverageAsAlpha(), | 
|  | "\n%s", fp.dumpTreeInfo().c_str()); | 
|  | REPORTER_ASSERT(reporter, fp.isEqual(clone), | 
|  | "\n%s", fp.dumpTreeInfo().c_str()); | 
|  | REPORTER_ASSERT(reporter, fp.preservesOpaqueInput() == clone.preservesOpaqueInput(), | 
|  | "\n%s", fp.dumpTreeInfo().c_str()); | 
|  | REPORTER_ASSERT(reporter, fp.hasConstantOutputForConstantInput() == | 
|  | clone.hasConstantOutputForConstantInput(), | 
|  | "\n%s", fp.dumpTreeInfo().c_str()); | 
|  | REPORTER_ASSERT(reporter, fp.numChildProcessors() == clone.numChildProcessors(), | 
|  | "\n%s", fp.dumpTreeInfo().c_str()); | 
|  | REPORTER_ASSERT(reporter, fp.usesVaryingCoords() == clone.usesVaryingCoords(), | 
|  | "\n%s", fp.dumpTreeInfo().c_str()); | 
|  | REPORTER_ASSERT(reporter, fp.referencesSampleCoords() == clone.referencesSampleCoords(), | 
|  | "\n%s", fp.dumpTreeInfo().c_str()); | 
|  | } | 
|  |  | 
|  | static bool verify_identical_render(skiatest::Reporter* reporter, int renderSize, | 
|  | const char* processorType, | 
|  | const GrColor readData1[], const GrColor readData2[]) { | 
|  | // The ProcessorClone test has a history of being flaky on a number of devices. If an FP clone | 
|  | // is logically wrong, it's reasonable to expect it produce a large number of pixel differences | 
|  | // in the image. Sporadic pixel violations are more indicative device errors and represents a | 
|  | // separate problem. | 
|  | #if defined(SK_BUILD_FOR_SKQP) | 
|  | const int maxAcceptableFailedPixels = 0;  // Strict when running as SKQP | 
|  | #else | 
|  | const int maxAcceptableFailedPixels = 2 * renderSize;  // ~0.002% of the pixels (size 1024*1024) | 
|  | #endif | 
|  |  | 
|  | int failedPixelCount = 0; | 
|  | int firstWrongX = 0; | 
|  | int firstWrongY = 0; | 
|  | int idx = 0; | 
|  | for (int y = 0; y < renderSize; ++y) { | 
|  | for (int x = 0; x < renderSize; ++x, ++idx) { | 
|  | if (readData1[idx] != readData2[idx]) { | 
|  | if (!failedPixelCount) { | 
|  | firstWrongX = x; | 
|  | firstWrongY = y; | 
|  | } | 
|  | ++failedPixelCount; | 
|  | } | 
|  | if (failedPixelCount > maxAcceptableFailedPixels) { | 
|  | idx = firstWrongY * renderSize + firstWrongX; | 
|  | ERRORF(reporter, | 
|  | "%s produced different output at (%d, %d). " | 
|  | "Input color: 0x%08x, Original Output Color: 0x%08x, " | 
|  | "Clone Output Color: 0x%08x.", | 
|  | processorType, firstWrongX, firstWrongY, input_texel_color(x, y, 0.0f), | 
|  | readData1[idx], readData2[idx]); | 
|  |  | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void log_clone_failure(skiatest::Reporter* reporter, int renderSize, | 
|  | GrDirectContext* context, const GrSurfaceProxyView& inputTexture, | 
|  | GrColor pixelsFP[], GrColor pixelsClone[], GrColor pixelsRegen[]) { | 
|  | // Write the images out as data URLs for inspection. | 
|  | SkString inputURL, origURL, cloneURL, regenURL; | 
|  | if (log_texture_view(context, inputTexture, &inputURL) && | 
|  | log_pixels(pixelsFP, renderSize, &origURL) && | 
|  | log_pixels(pixelsClone, renderSize, &cloneURL) && | 
|  | log_pixels(pixelsRegen, renderSize, ®enURL)) { | 
|  | ERRORF(reporter, | 
|  | "\nInput image:\n%s\n\n" | 
|  | "===========================================================" | 
|  | "\n\n" | 
|  | "Orig output image:\n%s\n" | 
|  | "===========================================================" | 
|  | "\n\n" | 
|  | "Clone output image:\n%s\n" | 
|  | "===========================================================" | 
|  | "\n\n" | 
|  | "Regen output image:\n%s\n", | 
|  | inputURL.c_str(), origURL.c_str(), cloneURL.c_str(), regenURL.c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Tests that a fragment processor returned by GrFragmentProcessor::clone() is equivalent to its | 
|  | // progenitor. | 
|  | DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest, reporter, ctxInfo) { | 
|  | GrDirectContext* context = ctxInfo.directContext(); | 
|  | GrResourceProvider* resourceProvider = context->priv().resourceProvider(); | 
|  |  | 
|  | TestFPGenerator fpGenerator{context, resourceProvider}; | 
|  | if (!fpGenerator.init()) { | 
|  | ERRORF(reporter, "Could not initialize TestFPGenerator"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Make the destination context for the test. | 
|  | static constexpr int kRenderSize = 1024; | 
|  | auto rtc = GrSurfaceDrawContext::Make( | 
|  | context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact, | 
|  | {kRenderSize, kRenderSize}, SkSurfaceProps()); | 
|  |  | 
|  | std::vector<GrColor> inputPixels = make_input_pixels(kRenderSize, kRenderSize, 0.0f); | 
|  | GrSurfaceProxyView inputTexture = | 
|  | make_input_texture(context, kRenderSize, kRenderSize, inputPixels.data()); | 
|  |  | 
|  | // On failure we write out images, but just write the first failing set as the print is very | 
|  | // large. | 
|  | bool loggedFirstFailure = false; | 
|  |  | 
|  | // Storage for the original frame's readback and the readback of its clone. | 
|  | std::vector<GrColor> readDataFP(kRenderSize * kRenderSize); | 
|  | std::vector<GrColor> readDataClone(kRenderSize * kRenderSize); | 
|  | std::vector<GrColor> readDataRegen(kRenderSize * kRenderSize); | 
|  |  | 
|  | // Because processor factories configure themselves in random ways, this is not exhaustive. | 
|  | for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) { | 
|  | static constexpr int kTimesToInvokeFactory = 10; | 
|  | for (int j = 0; j < kTimesToInvokeFactory; ++j) { | 
|  | fpGenerator.reroll(); | 
|  | std::unique_ptr<GrFragmentProcessor> fp = | 
|  | fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr); | 
|  | std::unique_ptr<GrFragmentProcessor> regen = | 
|  | fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr); | 
|  | std::unique_ptr<GrFragmentProcessor> clone = fp->clone(); | 
|  | if (!clone) { | 
|  | ERRORF(reporter, "Clone of processor %s failed.", fp->dumpTreeInfo().c_str()); | 
|  | continue; | 
|  | } | 
|  | assert_processor_equality(reporter, *fp, *clone); | 
|  |  | 
|  | // Draw with original and read back the results. | 
|  | render_fp(context, rtc.get(), std::move(fp), readDataFP.data()); | 
|  |  | 
|  | // Draw with clone and read back the results. | 
|  | render_fp(context, rtc.get(), std::move(clone), readDataClone.data()); | 
|  |  | 
|  | // Check that the results are the same. | 
|  | if (!verify_identical_render(reporter, kRenderSize, "Processor clone", | 
|  | readDataFP.data(), readDataClone.data())) { | 
|  | // Dump a description from the regenerated processor (since the original FP has | 
|  | // already been consumed). | 
|  | ERRORF(reporter, "FP hierarchy:\n%s", regen->dumpTreeInfo().c_str()); | 
|  |  | 
|  | // Render and readback output from the regenerated FP. If this also mismatches, the | 
|  | // FP itself doesn't generate consistent output. This could happen if: | 
|  | // - the FP's TestCreate() does not always generate the same FP from a given seed | 
|  | // - the FP's Make() does not always generate the same FP when given the same inputs | 
|  | // - the FP itself generates inconsistent pixels (shader UB?) | 
|  | // - the driver has a bug | 
|  | render_fp(context, rtc.get(), std::move(regen), readDataRegen.data()); | 
|  |  | 
|  | if (!verify_identical_render(reporter, kRenderSize, "Regenerated processor", | 
|  | readDataFP.data(), readDataRegen.data())) { | 
|  | ERRORF(reporter, "Output from regen did not match original!\n"); | 
|  | } else { | 
|  | ERRORF(reporter, "Regenerated processor output matches original results.\n"); | 
|  | } | 
|  |  | 
|  | // If this is the first time we've encountered a cloning failure, log the generated | 
|  | // images to the reporter as data URLs. | 
|  | if (!loggedFirstFailure) { | 
|  | log_clone_failure(reporter, kRenderSize, context, inputTexture, | 
|  | readDataFP.data(), readDataClone.data(), | 
|  | readDataRegen.data()); | 
|  | loggedFirstFailure = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif  // GR_TEST_UTILS |