|  | /* | 
|  | * Copyright 2019 Google LLC | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "tests/Test.h" | 
|  |  | 
|  | #include "src/gpu/geometry/GrQuadBuffer.h" | 
|  |  | 
|  | #include <vector> | 
|  |  | 
|  | #define ASSERT(cond) REPORTER_ASSERT(r, cond) | 
|  | #define ASSERTF(cond, ...) REPORTER_ASSERT(r, cond, __VA_ARGS__) | 
|  | #define TEST(name) DEF_TEST(GrQuadBuffer##name, r) | 
|  |  | 
|  | struct TestData { | 
|  | int fItem1; | 
|  | float fItem2; | 
|  | }; | 
|  |  | 
|  | static void assert_quad_eq(skiatest::Reporter* r, const GrQuad& expected, const GrQuad& actual) { | 
|  | ASSERTF(expected.quadType() == actual.quadType(), "Expected type %d, got %d", | 
|  | (int) expected.quadType(), (int) actual.quadType()); | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | ASSERTF(expected.x(i) == actual.x(i), "Expected x(%d) = %f, got %f", | 
|  | i, expected.x(i), actual.x(i)); | 
|  | ASSERTF(expected.y(i) == actual.y(i), "Expected y(%d) = %f, got %f", | 
|  | i, expected.y(i), actual.y(i)); | 
|  | ASSERTF(expected.w(i) == actual.w(i), "Expected w(%d) = %f, got %f", | 
|  | i, expected.w(i), actual.w(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void assert_metadata_eq(skiatest::Reporter* r, const TestData& expected, | 
|  | const TestData& actual) { | 
|  | ASSERTF(expected.fItem1 == actual.fItem1 && expected.fItem2 == actual.fItem2, | 
|  | "Expected { %d, %f } for metadata, got: { %d %f }", | 
|  | expected.fItem1, expected.fItem2, actual.fItem1, actual.fItem2); | 
|  | } | 
|  |  | 
|  | static std::vector<GrQuad> generate_quads(float seed, int cnt, const GrQuad::Type types[]) { | 
|  | // For convenience use matrix to derive each quad type, rely on different seed values to | 
|  | // differentiate between quads of the same type | 
|  | SkMatrix rotate; | 
|  | rotate.setRotate(45.f); | 
|  | SkMatrix skew; | 
|  | skew.setSkew(0.5f, 0.5f); | 
|  | SkMatrix perspective; | 
|  | perspective.setPerspX(0.01f); | 
|  | perspective.setPerspY(0.001f); | 
|  |  | 
|  | std::vector<GrQuad> quads; | 
|  | SkRect rect = SkRect::MakeXYWH(seed, 2.f * seed, 2.f * seed, seed); | 
|  | for (int i = 0; i < cnt; ++i) { | 
|  | GrQuad quad; | 
|  | switch(types[i]) { | 
|  | case GrQuad::Type::kAxisAligned: | 
|  | quad = GrQuad(rect); | 
|  | break; | 
|  | case GrQuad::Type::kRectilinear: | 
|  | quad = GrQuad::MakeFromRect(rect, rotate); | 
|  | break; | 
|  | case GrQuad::Type::kGeneral: | 
|  | quad = GrQuad::MakeFromRect(rect, skew); | 
|  | break; | 
|  | default: | 
|  | SkASSERT(types[i] == GrQuad::Type::kPerspective); | 
|  | quad = GrQuad::MakeFromRect(rect, perspective); | 
|  | break; | 
|  | } | 
|  |  | 
|  | SkASSERT(quad.quadType() == types[i]); | 
|  | quads.push_back(quad); | 
|  | } | 
|  | return quads; | 
|  | } | 
|  |  | 
|  | TEST(Append) { | 
|  | // Generate test data, which includes all quad types out of enum-order and duplicates | 
|  | static const int kQuadCount = 6; | 
|  | static const GrQuad::Type kDeviceTypes[] = { | 
|  | GrQuad::Type::kAxisAligned, GrQuad::Type::kRectilinear, GrQuad::Type::kGeneral, | 
|  | GrQuad::Type::kPerspective, GrQuad::Type::kRectilinear, GrQuad::Type::kAxisAligned | 
|  | }; | 
|  | // Odd indexed quads will be ignored and not stored in the buffer | 
|  | static const GrQuad::Type kLocalTypes[] = { | 
|  | GrQuad::Type::kGeneral, GrQuad::Type::kGeneral, GrQuad::Type::kRectilinear, | 
|  | GrQuad::Type::kRectilinear, GrQuad::Type::kAxisAligned, GrQuad::Type::kAxisAligned | 
|  | }; | 
|  | static_assert(SK_ARRAY_COUNT(kDeviceTypes) == kQuadCount, "device quad count"); | 
|  | static_assert(SK_ARRAY_COUNT(kLocalTypes) == kQuadCount, "local quad count"); | 
|  |  | 
|  | std::vector<GrQuad> expectedDeviceQuads = generate_quads(1.f, kQuadCount, kDeviceTypes); | 
|  | std::vector<GrQuad> expectedLocalQuads = generate_quads(2.f, kQuadCount, kLocalTypes); | 
|  |  | 
|  | // Fill in the buffer with the device quads, and a local quad if the index is even | 
|  | GrQuadBuffer<TestData> buffer; | 
|  | for (int i = 0; i < kQuadCount; ++i) { | 
|  | buffer.append(expectedDeviceQuads[i],                          // device quad | 
|  | { 2 * i, 3.f * i },                              // metadata | 
|  | i % 2 == 0 ? &expectedLocalQuads[i] : nullptr);  // optional local quad | 
|  | } | 
|  |  | 
|  | // Confirm the state of the buffer | 
|  | ASSERT(kQuadCount == buffer.count()); | 
|  | ASSERT(GrQuad::Type::kPerspective == buffer.deviceQuadType()); | 
|  | ASSERT(GrQuad::Type::kGeneral == buffer.localQuadType()); | 
|  |  | 
|  | int i = 0; | 
|  | auto iter = buffer.iterator(); | 
|  | while(iter.next()) { | 
|  | // Each entry always has the device quad | 
|  | assert_quad_eq(r, expectedDeviceQuads[i], *iter.deviceQuad()); | 
|  | assert_metadata_eq(r, {2 * i, 3.f * i}, iter.metadata()); | 
|  |  | 
|  | if (i % 2 == 0) { | 
|  | // Confirm local quads included on even entries | 
|  | ASSERT(iter.isLocalValid()); | 
|  | assert_quad_eq(r, expectedLocalQuads[i], *iter.localQuad()); | 
|  | } else { | 
|  | // Should not have locals | 
|  | ASSERT(!iter.isLocalValid()); | 
|  | ASSERT(!iter.localQuad()); | 
|  | } | 
|  |  | 
|  | i++; | 
|  | } | 
|  | ASSERTF(i == kQuadCount, "Expected %d iterations, got: %d", kQuadCount, i); | 
|  | } | 
|  |  | 
|  | TEST(Concat) { | 
|  | static const int kQuadCount = 2; | 
|  | static const GrQuad::Type kTypesA[] = { GrQuad::Type::kAxisAligned, GrQuad::Type::kRectilinear }; | 
|  | static const GrQuad::Type kTypesB[] = { GrQuad::Type::kGeneral, GrQuad::Type::kPerspective }; | 
|  | static_assert(SK_ARRAY_COUNT(kTypesA) == kQuadCount, "quadsA count"); | 
|  | static_assert(SK_ARRAY_COUNT(kTypesB) == kQuadCount, "quadsB count"); | 
|  |  | 
|  | std::vector<GrQuad> quadsA = generate_quads(1.f, kQuadCount, kTypesA); | 
|  | std::vector<GrQuad> quadsB = generate_quads(2.f, kQuadCount, kTypesB); | 
|  | // Make two buffers, the first uses 'quadsA' for device quads and 'quadsB' for local quads | 
|  | // on even indices. The second uses 'quadsB' for device quads and 'quadsA' for local quads | 
|  | // on odd indices. | 
|  | GrQuadBuffer<TestData> buffer1; | 
|  | GrQuadBuffer<TestData> buffer2; | 
|  | for (int i = 0; i < kQuadCount; ++i) { | 
|  | buffer1.append(quadsA[i], {i, 2.f * i}, i % 2 == 0 ? &quadsB[i] : nullptr); | 
|  | buffer2.append(quadsB[i], {2 * i, 0.5f * i}, i % 2 == 0 ? nullptr : &quadsA[i]); | 
|  | } | 
|  |  | 
|  | ASSERT(kQuadCount == buffer1.count()); | 
|  | ASSERT(kQuadCount == buffer2.count()); | 
|  |  | 
|  | // Perform the concatenation and then confirm the new state of buffer1 | 
|  | buffer1.concat(buffer2); | 
|  |  | 
|  | ASSERT(2 * kQuadCount == buffer1.count()); | 
|  | int i = 0; | 
|  | auto iter = buffer1.iterator(); | 
|  | while(iter.next()) { | 
|  | if (i < kQuadCount) { | 
|  | // First half should match original buffer1 | 
|  | assert_quad_eq(r, quadsA[i], *iter.deviceQuad()); | 
|  | assert_metadata_eq(r, {i, 2.f * i}, iter.metadata()); | 
|  | if (i % 2 == 0) { | 
|  | ASSERT(iter.isLocalValid()); | 
|  | assert_quad_eq(r, quadsB[i], *iter.localQuad()); | 
|  | } else { | 
|  | ASSERT(!iter.isLocalValid()); | 
|  | ASSERT(!iter.localQuad()); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | // Second half should match buffer2 | 
|  | int j = i - kQuadCount; | 
|  | assert_quad_eq(r, quadsB[j], *iter.deviceQuad()); | 
|  | assert_metadata_eq(r, {2 * j, 0.5f * j}, iter.metadata()); | 
|  | if (j % 2 == 0) { | 
|  | ASSERT(!iter.isLocalValid()); | 
|  | ASSERT(!iter.localQuad()); | 
|  | } else { | 
|  | ASSERT(iter.isLocalValid()); | 
|  | assert_quad_eq(r, quadsA[j], *iter.localQuad()); | 
|  | } | 
|  | } | 
|  |  | 
|  | i++; | 
|  | } | 
|  | ASSERTF(i == 2 * kQuadCount, "Expected %d iterations, got: %d",2 * kQuadCount, i); | 
|  | } | 
|  |  | 
|  | TEST(Metadata) { | 
|  | static const int kQuadCount = 3; | 
|  |  | 
|  | // This test doesn't really care about the quad coordinates (except that they aren't modified | 
|  | // when mutating the metadata) | 
|  | GrQuad quad(SkRect::MakeLTRB(1.f, 2.f, 3.f, 4.f)); | 
|  |  | 
|  | GrQuadBuffer<TestData> buffer; | 
|  | for (int i = 0; i < kQuadCount; ++i) { | 
|  | buffer.append(quad, {i, 2.f * i}, i % 2 == 0 ? &quad : nullptr); | 
|  | } | 
|  |  | 
|  | // Iterate once using the metadata iterator, confirm the test data and rewrite | 
|  | int i = 0; | 
|  | auto meta = buffer.metadata(); | 
|  | while(meta.next()) { | 
|  | // Confirm initial state | 
|  | assert_metadata_eq(r, {i, 2.f * i}, *meta); | 
|  | // Rewrite | 
|  | *meta = {2 * i, 0.5f * i}; | 
|  | i++; | 
|  | } | 
|  | ASSERTF(i == kQuadCount, "Expected %d iterations, got: %d", kQuadCount, i); | 
|  |  | 
|  | // Now that all metadata has been touched, read with regular iterator and confirm updated state | 
|  | // and that no quad coordinates have been changed. | 
|  | i = 0; | 
|  | auto iter = buffer.iterator(); | 
|  | while(iter.next()) { | 
|  | // New metadata | 
|  | assert_metadata_eq(r, {2 * i, 0.5f * i}, iter.metadata()); | 
|  |  | 
|  | // Quad coordinates are unchanged | 
|  | assert_quad_eq(r, quad, *iter.deviceQuad()); | 
|  | if (i % 2 == 0) { | 
|  | ASSERT(iter.isLocalValid()); | 
|  | assert_quad_eq(r, quad, *iter.localQuad()); | 
|  | } else { | 
|  | ASSERT(!iter.isLocalValid()); | 
|  | ASSERT(!iter.localQuad()); | 
|  | } | 
|  | i++; | 
|  | } | 
|  | ASSERTF(i == kQuadCount, "Expected %d iterations, got: %d", kQuadCount, i); | 
|  | } |