|  | /* | 
|  | * Copyright 2011 Google Inc. | 
|  | * | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | #include "include/utils/SkRandom.h" | 
|  | #include "src/core/SkGeometry.h" | 
|  | #include "src/core/SkPointPriv.h" | 
|  | #include "tests/Test.h" | 
|  |  | 
|  | #include <array> | 
|  | #include <numeric> | 
|  |  | 
|  | static bool nearly_equal(const SkPoint& a, const SkPoint& b) { | 
|  | return SkScalarNearlyEqual(a.fX, b.fX) && SkScalarNearlyEqual(a.fY, b.fY); | 
|  | } | 
|  |  | 
|  | static void testChopCubic(skiatest::Reporter* reporter) { | 
|  | /* | 
|  | Inspired by this test, which used to assert that the tValues had dups | 
|  |  | 
|  | <path stroke="#202020" d="M0,0 C0,0 1,1 2190,5130 C2190,5070 2220,5010 2205,4980" /> | 
|  | */ | 
|  | const SkPoint src[] = { | 
|  | { SkIntToScalar(2190), SkIntToScalar(5130) }, | 
|  | { SkIntToScalar(2190), SkIntToScalar(5070) }, | 
|  | { SkIntToScalar(2220), SkIntToScalar(5010) }, | 
|  | { SkIntToScalar(2205), SkIntToScalar(4980) }, | 
|  | }; | 
|  | SkPoint dst[13]; | 
|  | SkScalar tValues[3]; | 
|  | // make sure we don't assert internally | 
|  | int count = SkChopCubicAtMaxCurvature(src, dst, tValues); | 
|  | if (false) { // avoid bit rot, suppress warning | 
|  | REPORTER_ASSERT(reporter, count); | 
|  | } | 
|  | // Make sure src and dst can be the same pointer. | 
|  | SkPoint pts[7]; | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | pts[i].set(i, i); | 
|  | } | 
|  | SkChopCubicAt(pts, pts, .5f); | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | REPORTER_ASSERT(reporter, pts[i].fX == pts[i].fY); | 
|  | REPORTER_ASSERT(reporter, pts[i].fX == i * .5f); | 
|  | } | 
|  |  | 
|  | static const float chopTs[] = { | 
|  | 0, 3/83.f, 3/79.f, 3/73.f, 3/71.f, 3/67.f, 3/61.f, 3/59.f, 3/53.f, 3/47.f, 3/43.f, 3/41.f, | 
|  | 3/37.f, 3/31.f, 3/29.f, 3/23.f, 3/19.f, 3/17.f, 3/13.f, 3/11.f, 3/7.f, 3/5.f, 1, | 
|  | }; | 
|  | float ones[] = {1,1,1,1,1}; | 
|  |  | 
|  | // Ensure an odd number of T values so we exercise the single chop code at the end of | 
|  | // SkChopCubicAt form multiple T. | 
|  | static_assert(SK_ARRAY_COUNT(chopTs) % 2 == 1); | 
|  | static_assert(SK_ARRAY_COUNT(ones) % 2 == 1); | 
|  |  | 
|  | SkRandom rand; | 
|  | for (int iterIdx = 0; iterIdx < 5; ++iterIdx) { | 
|  | SkPoint pts[4] = {{rand.nextF(), rand.nextF()}, {rand.nextF(), rand.nextF()}, | 
|  | {rand.nextF(), rand.nextF()}, {rand.nextF(), rand.nextF()}}; | 
|  |  | 
|  | SkPoint allChops[4 + SK_ARRAY_COUNT(chopTs)*3]; | 
|  | SkChopCubicAt(pts, allChops, chopTs, SK_ARRAY_COUNT(chopTs)); | 
|  | int i = 3; | 
|  | for (float chopT : chopTs) { | 
|  | // Ensure we chop at approximately the correct points when we chop an entire list. | 
|  | SkPoint expectedPt; | 
|  | SkEvalCubicAt(pts, chopT, &expectedPt, nullptr, nullptr); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(allChops[i].x(), expectedPt.x())); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(allChops[i].y(), expectedPt.y())); | 
|  | if (chopT == 0) { | 
|  | REPORTER_ASSERT(reporter, allChops[i] == pts[0]); | 
|  | } | 
|  | if (chopT == 1) { | 
|  | REPORTER_ASSERT(reporter, allChops[i] == pts[3]); | 
|  | } | 
|  | i += 3; | 
|  |  | 
|  | // Ensure the middle is exactly degenerate when we chop at two equal points. | 
|  | SkPoint localChops[10]; | 
|  | SkChopCubicAt(pts, localChops, chopT, chopT); | 
|  | REPORTER_ASSERT(reporter, localChops[3] == localChops[4]); | 
|  | REPORTER_ASSERT(reporter, localChops[3] == localChops[5]); | 
|  | REPORTER_ASSERT(reporter, localChops[3] == localChops[6]); | 
|  | if (chopT == 0) { | 
|  | // Also ensure the first curve is exactly p0 when we chop at T=0. | 
|  | REPORTER_ASSERT(reporter, localChops[0] == pts[0]); | 
|  | REPORTER_ASSERT(reporter, localChops[1] == pts[0]); | 
|  | REPORTER_ASSERT(reporter, localChops[2] == pts[0]); | 
|  | REPORTER_ASSERT(reporter, localChops[3] == pts[0]); | 
|  | } | 
|  | if (chopT == 1) { | 
|  | // Also ensure the last curve is exactly p3 when we chop at T=1. | 
|  | REPORTER_ASSERT(reporter, localChops[6] == pts[3]); | 
|  | REPORTER_ASSERT(reporter, localChops[7] == pts[3]); | 
|  | REPORTER_ASSERT(reporter, localChops[8] == pts[3]); | 
|  | REPORTER_ASSERT(reporter, localChops[9] == pts[3]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now test what happens when SkChopCubicAt does 0/0 and gets NaN values. | 
|  | SkPoint oneChops[4 + SK_ARRAY_COUNT(ones)*3]; | 
|  | SkChopCubicAt(pts, oneChops, ones, SK_ARRAY_COUNT(ones)); | 
|  | REPORTER_ASSERT(reporter, oneChops[0] == pts[0]); | 
|  | REPORTER_ASSERT(reporter, oneChops[1] == pts[1]); | 
|  | REPORTER_ASSERT(reporter, oneChops[2] == pts[2]); | 
|  | for (size_t i = 3; i < SK_ARRAY_COUNT(oneChops); ++i) { | 
|  | REPORTER_ASSERT(reporter, oneChops[i] == pts[3]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void check_pairs(skiatest::Reporter* reporter, int index, SkScalar t, const char name[], | 
|  | SkScalar x0, SkScalar y0, SkScalar x1, SkScalar y1) { | 
|  | bool eq = SkScalarNearlyEqual(x0, x1) && SkScalarNearlyEqual(y0, y1); | 
|  | if (!eq) { | 
|  | SkDebugf("%s [%d %g] p0 [%10.8f %10.8f] p1 [%10.8f %10.8f]\n", | 
|  | name, index, t, x0, y0, x1, y1); | 
|  | REPORTER_ASSERT(reporter, eq); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_evalquadat(skiatest::Reporter* reporter) { | 
|  | SkRandom rand; | 
|  | for (int i = 0; i < 1000; ++i) { | 
|  | SkPoint pts[3]; | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | pts[j].set(rand.nextSScalar1() * 100, rand.nextSScalar1() * 100); | 
|  | } | 
|  | const SkScalar dt = SK_Scalar1 / 128; | 
|  | SkScalar t = dt; | 
|  | for (int j = 1; j < 128; ++j) { | 
|  | SkPoint r0; | 
|  | SkEvalQuadAt(pts, t, &r0); | 
|  | SkPoint r1 = SkEvalQuadAt(pts, t); | 
|  | check_pairs(reporter, i, t, "quad-pos", r0.fX, r0.fY, r1.fX, r1.fY); | 
|  |  | 
|  | SkVector v0; | 
|  | SkEvalQuadAt(pts, t, nullptr, &v0); | 
|  | SkVector v1 = SkEvalQuadTangentAt(pts, t); | 
|  | check_pairs(reporter, i, t, "quad-tan", v0.fX, v0.fY, v1.fX, v1.fY); | 
|  |  | 
|  | t += dt; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_conic_eval_pos(skiatest::Reporter* reporter, const SkConic& conic, SkScalar t) { | 
|  | SkPoint p0, p1; | 
|  | conic.evalAt(t, &p0, nullptr); | 
|  | p1 = conic.evalAt(t); | 
|  | check_pairs(reporter, 0, t, "conic-pos", p0.fX, p0.fY, p1.fX, p1.fY); | 
|  | } | 
|  |  | 
|  | static void test_conic_eval_tan(skiatest::Reporter* reporter, const SkConic& conic, SkScalar t) { | 
|  | SkVector v0, v1; | 
|  | conic.evalAt(t, nullptr, &v0); | 
|  | v1 = conic.evalTangentAt(t); | 
|  | check_pairs(reporter, 0, t, "conic-tan", v0.fX, v0.fY, v1.fX, v1.fY); | 
|  | } | 
|  |  | 
|  | static void test_conic(skiatest::Reporter* reporter) { | 
|  | SkRandom rand; | 
|  | for (int i = 0; i < 1000; ++i) { | 
|  | SkPoint pts[3]; | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | pts[j].set(rand.nextSScalar1() * 100, rand.nextSScalar1() * 100); | 
|  | } | 
|  | for (int k = 0; k < 10; ++k) { | 
|  | SkScalar w = rand.nextUScalar1() * 2; | 
|  | SkConic conic(pts, w); | 
|  |  | 
|  | const SkScalar dt = SK_Scalar1 / 128; | 
|  | SkScalar t = dt; | 
|  | for (int j = 1; j < 128; ++j) { | 
|  | test_conic_eval_pos(reporter, conic, t); | 
|  | test_conic_eval_tan(reporter, conic, t); | 
|  | t += dt; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_quad_tangents(skiatest::Reporter* reporter) { | 
|  | SkPoint pts[] = { | 
|  | {10, 20}, {10, 20}, {20, 30}, | 
|  | {10, 20}, {15, 25}, {20, 30}, | 
|  | {10, 20}, {20, 30}, {20, 30}, | 
|  | }; | 
|  | int count = (int) SK_ARRAY_COUNT(pts) / 3; | 
|  | for (int index = 0; index < count; ++index) { | 
|  | SkConic conic(&pts[index * 3], 0.707f); | 
|  | SkVector start = SkEvalQuadTangentAt(&pts[index * 3], 0); | 
|  | SkVector mid = SkEvalQuadTangentAt(&pts[index * 3], .5f); | 
|  | SkVector end = SkEvalQuadTangentAt(&pts[index * 3], 1); | 
|  | REPORTER_ASSERT(reporter, start.fX && start.fY); | 
|  | REPORTER_ASSERT(reporter, mid.fX && mid.fY); | 
|  | REPORTER_ASSERT(reporter, end.fX && end.fY); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyZero(start.cross(mid))); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyZero(mid.cross(end))); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_conic_tangents(skiatest::Reporter* reporter) { | 
|  | SkPoint pts[] = { | 
|  | { 10, 20}, {10, 20}, {20, 30}, | 
|  | { 10, 20}, {15, 25}, {20, 30}, | 
|  | { 10, 20}, {20, 30}, {20, 30} | 
|  | }; | 
|  | int count = (int) SK_ARRAY_COUNT(pts) / 3; | 
|  | for (int index = 0; index < count; ++index) { | 
|  | SkConic conic(&pts[index * 3], 0.707f); | 
|  | SkVector start = conic.evalTangentAt(0); | 
|  | SkVector mid = conic.evalTangentAt(.5f); | 
|  | SkVector end = conic.evalTangentAt(1); | 
|  | REPORTER_ASSERT(reporter, start.fX && start.fY); | 
|  | REPORTER_ASSERT(reporter, mid.fX && mid.fY); | 
|  | REPORTER_ASSERT(reporter, end.fX && end.fY); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyZero(start.cross(mid))); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyZero(mid.cross(end))); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_this_conic_to_quad(skiatest::Reporter* r, const SkPoint pts[3], SkScalar w) { | 
|  | SkAutoConicToQuads quadder; | 
|  | const SkPoint* qpts = quadder.computeQuads(pts, w, 0.25); | 
|  | const int qcount = quadder.countQuads(); | 
|  | const int pcount = qcount * 2 + 1; | 
|  |  | 
|  | REPORTER_ASSERT(r, SkPointPriv::AreFinite(qpts, pcount)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  We need to ensure that when a conic is approximated by quads, that we always return finite | 
|  | *  values in the quads. | 
|  | * | 
|  | *  Inspired by crbug_627414 | 
|  | */ | 
|  | static void test_conic_to_quads(skiatest::Reporter* reporter) { | 
|  | const SkPoint triples[] = { | 
|  | { 0, 0 }, { 1, 0 }, { 1, 1 }, | 
|  | { 0, 0 }, { 3.58732e-43f, 2.72084f }, { 3.00392f, 3.00392f }, | 
|  | { 0, 0 }, { 100000, 0 }, { 100000, 100000 }, | 
|  | { 0, 0 }, { 1e30f, 0 }, { 1e30f, 1e30f }, | 
|  | }; | 
|  | const int N = sizeof(triples) / sizeof(SkPoint); | 
|  |  | 
|  | for (int i = 0; i < N; i += 3) { | 
|  | const SkPoint* pts = &triples[i]; | 
|  |  | 
|  | SkScalar w = 1e30f; | 
|  | do { | 
|  | w *= 2; | 
|  | test_this_conic_to_quad(reporter, pts, w); | 
|  | } while (SkScalarIsFinite(w)); | 
|  | test_this_conic_to_quad(reporter, pts, SK_ScalarNaN); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_cubic_tangents(skiatest::Reporter* reporter) { | 
|  | SkPoint pts[] = { | 
|  | { 10, 20}, {10, 20}, {20, 30}, {30, 40}, | 
|  | { 10, 20}, {15, 25}, {20, 30}, {30, 40}, | 
|  | { 10, 20}, {20, 30}, {30, 40}, {30, 40}, | 
|  | }; | 
|  | int count = (int) SK_ARRAY_COUNT(pts) / 4; | 
|  | for (int index = 0; index < count; ++index) { | 
|  | SkConic conic(&pts[index * 3], 0.707f); | 
|  | SkVector start, mid, end; | 
|  | SkEvalCubicAt(&pts[index * 4], 0, nullptr, &start, nullptr); | 
|  | SkEvalCubicAt(&pts[index * 4], .5f, nullptr, &mid, nullptr); | 
|  | SkEvalCubicAt(&pts[index * 4], 1, nullptr, &end, nullptr); | 
|  | REPORTER_ASSERT(reporter, start.fX && start.fY); | 
|  | REPORTER_ASSERT(reporter, mid.fX && mid.fY); | 
|  | REPORTER_ASSERT(reporter, end.fX && end.fY); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyZero(start.cross(mid))); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyZero(mid.cross(end))); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void check_cubic_type(skiatest::Reporter* reporter, | 
|  | const std::array<SkPoint, 4>& bezierPoints, SkCubicType expectedType, | 
|  | bool undefined = false) { | 
|  | // Classify the cubic even if the results will be undefined: check for crashes and asserts. | 
|  | SkCubicType actualType = SkClassifyCubic(bezierPoints.data()); | 
|  | if (!undefined) { | 
|  | REPORTER_ASSERT(reporter, actualType == expectedType); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void check_cubic_around_rect(skiatest::Reporter* reporter, | 
|  | float x1, float y1, float x2, float y2, | 
|  | bool undefined = false) { | 
|  | static constexpr SkCubicType expectations[24] = { | 
|  | SkCubicType::kLoop, | 
|  | SkCubicType::kCuspAtInfinity, | 
|  | SkCubicType::kLocalCusp, | 
|  | SkCubicType::kLocalCusp, | 
|  | SkCubicType::kCuspAtInfinity, | 
|  | SkCubicType::kLoop, | 
|  | SkCubicType::kCuspAtInfinity, | 
|  | SkCubicType::kLoop, | 
|  | SkCubicType::kCuspAtInfinity, | 
|  | SkCubicType::kLoop, | 
|  | SkCubicType::kLocalCusp, | 
|  | SkCubicType::kLocalCusp, | 
|  | SkCubicType::kLocalCusp, | 
|  | SkCubicType::kLocalCusp, | 
|  | SkCubicType::kLoop, | 
|  | SkCubicType::kCuspAtInfinity, | 
|  | SkCubicType::kLoop, | 
|  | SkCubicType::kCuspAtInfinity, | 
|  | SkCubicType::kLoop, | 
|  | SkCubicType::kCuspAtInfinity, | 
|  | SkCubicType::kLocalCusp, | 
|  | SkCubicType::kLocalCusp, | 
|  | SkCubicType::kCuspAtInfinity, | 
|  | SkCubicType::kLoop, | 
|  | }; | 
|  | SkPoint points[] = {{x1, y1}, {x2, y1}, {x2, y2}, {x1, y2}}; | 
|  | std::array<SkPoint, 4> bezier; | 
|  | for (int i=0; i < 4; ++i) { | 
|  | bezier[0] = points[i]; | 
|  | for (int j=0; j < 3; ++j) { | 
|  | int jidx = (j < i) ? j : j+1; | 
|  | bezier[1] = points[jidx]; | 
|  | for (int k=0, kidx=0; k < 2; ++k, ++kidx) { | 
|  | for (int n = 0; n < 2; ++n) { | 
|  | kidx = (kidx == i || kidx == jidx) ? kidx+1 : kidx; | 
|  | } | 
|  | bezier[2] = points[kidx]; | 
|  | for (int l = 0; l < 4; ++l) { | 
|  | if (l != i && l != jidx && l != kidx) { | 
|  | bezier[3] = points[l]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | check_cubic_type(reporter, bezier, expectations[i*6 + j*2 + k], undefined); | 
|  | } | 
|  | } | 
|  | } | 
|  | for (int i=0; i < 4; ++i) { | 
|  | bezier[0] = points[i]; | 
|  | for (int j=0; j < 3; ++j) { | 
|  | int jidx = (j < i) ? j : j+1; | 
|  | bezier[1] = points[jidx]; | 
|  | bezier[2] = points[jidx]; | 
|  | for (int k=0, kidx=0; k < 2; ++k, ++kidx) { | 
|  | for (int n = 0; n < 2; ++n) { | 
|  | kidx = (kidx == i || kidx == jidx) ? kidx+1 : kidx; | 
|  | } | 
|  | bezier[3] = points[kidx]; | 
|  | check_cubic_type(reporter, bezier, SkCubicType::kSerpentine, undefined); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static std::array<SkPoint, 4> kSerpentines[] = { | 
|  | {{{149.325f, 107.705f}, {149.325f, 103.783f}, {151.638f, 100.127f}, {156.263f, 96.736f}}}, | 
|  | {{{225.694f, 223.15f}, {209.831f, 224.837f}, {195.994f, 230.237f}, {184.181f, 239.35f}}}, | 
|  | {{{4.873f, 5.581f}, {5.083f, 5.2783f}, {5.182f, 4.8593f}, {5.177f, 4.3242f}}}, | 
|  | {{{285.625f, 499.687f}, {411.625f, 808.188f}, {1064.62f, 135.688f}, {1042.63f, 585.187f}}} | 
|  | }; | 
|  |  | 
|  | static std::array<SkPoint, 4> kLoops[] = { | 
|  | {{{635.625f, 614.687f}, {171.625f, 236.188f}, {1064.62f, 135.688f}, {516.625f, 570.187f}}}, | 
|  | {{{653.050f, 725.049f}, {663.000f, 176.000f}, {1189.000f, 508.000f}, {288.050f, 564.950f}}}, | 
|  | {{{631.050f, 478.049f}, {730.000f, 302.000f}, {870.000f, 350.000f}, {905.050f, 528.950f}}}, | 
|  | {{{631.050f, 478.0499f}, {221.000f, 230.000f}, {1265.000f, 451.000f}, {905.050f, 528.950f}}} | 
|  | }; | 
|  |  | 
|  | static std::array<SkPoint, 4> kLinearCubics[] = { | 
|  | {{{0, 0}, {0, 1}, {0, 2}, {0, 3}}},  // 0-degree flat line. | 
|  | {{{0, 0}, {1, 0}, {1, 0}, {0, 0}}},  // 180-degree flat line | 
|  | {{{0, 1}, {0, 0}, {0, 2}, {0, 3}}},  // 180-degree flat line | 
|  | {{{0, 1}, {0, 0}, {0, 3}, {0, 2}}},  // 360-degree flat line | 
|  | {{{0, 0}, {2, 0}, {1, 0}, {64, 0}}},  // 360-degree flat line | 
|  | {{{1, 0}, {0, 0}, {3, 0}, {-64, 0}}}  // 360-degree flat line | 
|  | }; | 
|  |  | 
|  | static void test_classify_cubic(skiatest::Reporter* reporter) { | 
|  | for (const auto& serp : kSerpentines) { | 
|  | check_cubic_type(reporter, serp, SkCubicType::kSerpentine); | 
|  | } | 
|  | for (const auto& loop : kLoops) { | 
|  | check_cubic_type(reporter, loop, SkCubicType::kLoop); | 
|  | } | 
|  | for (const auto& loop : kLinearCubics) { | 
|  | check_cubic_type(reporter, loop, SkCubicType::kLineOrPoint); | 
|  | } | 
|  | check_cubic_around_rect(reporter, 0, 0, 1, 1); | 
|  | check_cubic_around_rect(reporter, | 
|  | -std::numeric_limits<float>::max(), | 
|  | -std::numeric_limits<float>::max(), | 
|  | +std::numeric_limits<float>::max(), | 
|  | +std::numeric_limits<float>::max()); | 
|  | check_cubic_around_rect(reporter, 1, 1, | 
|  | +std::numeric_limits<float>::min(), | 
|  | +std::numeric_limits<float>::max()); | 
|  | check_cubic_around_rect(reporter, | 
|  | -std::numeric_limits<float>::min(), | 
|  | -std::numeric_limits<float>::min(), | 
|  | +std::numeric_limits<float>::min(), | 
|  | +std::numeric_limits<float>::min()); | 
|  | check_cubic_around_rect(reporter, +1, -std::numeric_limits<float>::min(), -1, -1); | 
|  | check_cubic_around_rect(reporter, | 
|  | -std::numeric_limits<float>::infinity(), | 
|  | -std::numeric_limits<float>::infinity(), | 
|  | +std::numeric_limits<float>::infinity(), | 
|  | +std::numeric_limits<float>::infinity(), | 
|  | true); | 
|  | check_cubic_around_rect(reporter, 0, 0, 1, +std::numeric_limits<float>::infinity(), true); | 
|  | check_cubic_around_rect(reporter, | 
|  | -std::numeric_limits<float>::quiet_NaN(), | 
|  | -std::numeric_limits<float>::quiet_NaN(), | 
|  | +std::numeric_limits<float>::quiet_NaN(), | 
|  | +std::numeric_limits<float>::quiet_NaN(), | 
|  | true); | 
|  | check_cubic_around_rect(reporter, 0, 0, 1, +std::numeric_limits<float>::quiet_NaN(), true); | 
|  | } | 
|  |  | 
|  | static std::array<SkPoint, 4> kCusps[] = { | 
|  | {{{0, 0}, {1, 1}, {1, 0}, {0, 1}}}, | 
|  | {{{0, 0}, {1, 1}, {0, 1}, {1, 0}}}, | 
|  | {{{0, 1}, {1, 0}, {0, 0}, {1, 1}}}, | 
|  | {{{0, 1}, {1, 0}, {1, 1}, {0, 0}}}, | 
|  | }; | 
|  |  | 
|  | static void test_cubic_cusps(skiatest::Reporter* reporter) { | 
|  | std::array<SkPoint, 4> noCusps[] = { | 
|  | {{{0, 0}, {1, 1}, {2, 2}, {3, 3}}}, | 
|  | {{{0, 0}, {1, 0}, {1, 1}, {0, 1}}}, | 
|  | {{{0, 0}, {1, 0}, {2, 1}, {2, 2}}}, | 
|  | {{{0, 0}, {1, 0}, {1, 1}, {2, 1}}}, | 
|  | }; | 
|  | for (auto noCusp : noCusps) { | 
|  | REPORTER_ASSERT(reporter, SkFindCubicCusp(noCusp.data()) < 0); | 
|  | } | 
|  | for (auto cusp : kCusps) { | 
|  | REPORTER_ASSERT(reporter, SkFindCubicCusp(cusp.data()) > 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SkMatrix kSkewMatrices[] = { | 
|  | SkMatrix::MakeAll(1,0,0, 0,1,0, 0,0,1), | 
|  | SkMatrix::MakeAll(1,-1,0, 1,1,0, 0,0,1), | 
|  | SkMatrix::MakeAll(.889f,.553f,0, -.443f,.123f,0, 0,0,1), | 
|  | }; | 
|  |  | 
|  | static void test_chop_quad_at_midtangent(skiatest::Reporter* reporter, const SkPoint pts[3]) { | 
|  | constexpr float kTolerance = 1e-3f; | 
|  | for (const SkMatrix& m : kSkewMatrices) { | 
|  | SkPoint mapped[3]; | 
|  | m.mapPoints(mapped, pts, 3); | 
|  | float fullRotation = SkMeasureQuadRotation(pts); | 
|  | SkPoint chopped[5]; | 
|  | SkChopQuadAtMidTangent(pts, chopped); | 
|  | float leftRotation = SkMeasureQuadRotation(chopped); | 
|  | float rightRotation = SkMeasureQuadRotation(chopped+2); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(leftRotation, fullRotation/2, kTolerance)); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rightRotation, fullRotation/2, kTolerance)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_chop_cubic_at_midtangent(skiatest::Reporter* reporter, const SkPoint pts[4], | 
|  | SkCubicType cubicType) { | 
|  | constexpr float kTolerance = 1e-3f; | 
|  | int n = SK_ARRAY_COUNT(kSkewMatrices); | 
|  | if (cubicType == SkCubicType::kLocalCusp || cubicType == SkCubicType::kLineOrPoint) { | 
|  | // FP precision isn't always enough to get the exact correct T value of the mid-tangent on | 
|  | // cusps and lines. Only test the identity matrix and the matrix with all 1's. | 
|  | n = 2; | 
|  | } | 
|  | for (int i = 0; i < n; ++i) { | 
|  | SkPoint mapped[4]; | 
|  | kSkewMatrices[i].mapPoints(mapped, pts, 4); | 
|  | float fullRotation = SkMeasureNonInflectCubicRotation(mapped); | 
|  | SkPoint chopped[7]; | 
|  | SkChopCubicAtMidTangent(mapped, chopped); | 
|  | float leftRotation = SkMeasureNonInflectCubicRotation(chopped); | 
|  | float rightRotation = SkMeasureNonInflectCubicRotation(chopped+3); | 
|  | if (cubicType == SkCubicType::kLineOrPoint && | 
|  | (SkScalarNearlyEqual(fullRotation, 2*SK_ScalarPI, kTolerance) || | 
|  | SkScalarNearlyEqual(fullRotation, 0, kTolerance))) { | 
|  | // 0- and 360-degree flat lines don't have single points of midtangent. | 
|  | // (tangent == midtangent at every point on these curves except the cusp points.) | 
|  | // Instead verify the promise from SkChopCubicAtMidTangent that neither side will rotate | 
|  | // more than 180 degrees. | 
|  | REPORTER_ASSERT(reporter, std::abs(leftRotation) - kTolerance <= SK_ScalarPI); | 
|  | REPORTER_ASSERT(reporter, std::abs(rightRotation) - kTolerance <= SK_ScalarPI); | 
|  | continue; | 
|  | } | 
|  | float expectedChoppedRotation = fullRotation/2; | 
|  | if (cubicType == SkCubicType::kLocalCusp || | 
|  | (cubicType == SkCubicType::kLineOrPoint && | 
|  | SkScalarNearlyEqual(fullRotation, SK_ScalarPI, kTolerance))) { | 
|  | // If we chop a cubic at a cusp, we lose 180 degrees of rotation. | 
|  | expectedChoppedRotation = (fullRotation - SK_ScalarPI)/2; | 
|  | } | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(leftRotation, expectedChoppedRotation, | 
|  | kTolerance)); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rightRotation, expectedChoppedRotation, | 
|  | kTolerance)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static std::array<SkPoint, 3> kQuads[] = { | 
|  | {{{10, 20}, {15, 35}, {30, 40}}}, | 
|  | {{{176.324f, 392.705f}, {719.325f, 205.782f}, {297.263f, 347.735f}}}, | 
|  | {{{652.050f, 602.049f}, {481.000f, 533.000f}, {288.050f, 564.950f}}}, | 
|  | {{{460.625f, 557.187f}, {707.121f, 209.688f}, {779.628f, 577.687f}}}, | 
|  | {{{359.050f, 578.049f}, {759.000f, 274.000f}, {288.050f, 564.950f}}} | 
|  | }; | 
|  |  | 
|  | SkPoint lerp(const SkPoint& a, const SkPoint& b, float t) { | 
|  | return a * (1 - t) + b * t; | 
|  | } | 
|  |  | 
|  | static void test_measure_rotation(skiatest::Reporter* reporter) { | 
|  | static SkPoint kFlatCubic[4] = {{0, 0}, {0, 1}, {0, 2}, {0, 3}}; | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyZero(SkMeasureNonInflectCubicRotation(kFlatCubic))); | 
|  |  | 
|  | static SkPoint kFlatCubic180_1[4] = {{0, 0}, {1, 0}, {3, 0}, {2, 0}}; | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(kFlatCubic180_1), | 
|  | SK_ScalarPI)); | 
|  |  | 
|  | static SkPoint kFlatCubic180_2[4] = {{0, 1}, {0, 0}, {0, 2}, {0, 3}}; | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(kFlatCubic180_2), | 
|  | SK_ScalarPI)); | 
|  |  | 
|  | static SkPoint kFlatCubic360[4] = {{0, 1}, {0, 0}, {0, 3}, {0, 2}}; | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(kFlatCubic360), | 
|  | 2*SK_ScalarPI)); | 
|  |  | 
|  | static SkPoint kSquare180[4] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(kSquare180), | 
|  | SK_ScalarPI)); | 
|  |  | 
|  | auto checkQuadRotation = [=](const SkPoint pts[3], float expectedRotation) { | 
|  | float r = SkMeasureQuadRotation(pts); | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(r, expectedRotation)); | 
|  |  | 
|  | SkPoint cubic1[4] = {pts[0], pts[0], pts[1], pts[2]}; | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(cubic1), | 
|  | expectedRotation)); | 
|  |  | 
|  | SkPoint cubic2[4] = {pts[0], pts[1], pts[1], pts[2]}; | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(cubic2), | 
|  | expectedRotation)); | 
|  |  | 
|  | SkPoint cubic3[4] = {pts[0], pts[1], pts[2], pts[2]}; | 
|  | REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(cubic3), | 
|  | expectedRotation)); | 
|  | }; | 
|  |  | 
|  | static SkPoint kFlatQuad[4] = {{0, 0}, {0, 1}, {0, 2}}; | 
|  | checkQuadRotation(kFlatQuad, 0); | 
|  |  | 
|  | static SkPoint kFlatQuad180_1[4] = {{1, 0}, {0, 0}, {2, 0}}; | 
|  | checkQuadRotation(kFlatQuad180_1, SK_ScalarPI); | 
|  |  | 
|  | static SkPoint kFlatQuad180_2[4] = {{0, 0}, {0, 2}, {0, 1}}; | 
|  | checkQuadRotation(kFlatQuad180_2, SK_ScalarPI); | 
|  |  | 
|  | static SkPoint kTri120[3] = {{0, 0}, {.5f, std::sqrt(3.f)/2}, {1, 0}}; | 
|  | checkQuadRotation(kTri120, 2*SK_ScalarPI/3); | 
|  | } | 
|  |  | 
|  | static void test_chop_at_midtangent(skiatest::Reporter* reporter) { | 
|  | SkPoint chops[10]; | 
|  | for (const auto& serp : kSerpentines) { | 
|  | REPORTER_ASSERT(reporter, SkClassifyCubic(serp.data()) == SkCubicType::kSerpentine); | 
|  | int n = SkChopCubicAtInflections(serp.data(), chops); | 
|  | for (int i = 0; i < n; ++i) { | 
|  | test_chop_cubic_at_midtangent(reporter, chops + i*3, SkCubicType::kSerpentine); | 
|  | } | 
|  | } | 
|  | for (const auto& loop : kLoops) { | 
|  | REPORTER_ASSERT(reporter, SkClassifyCubic(loop.data()) == SkCubicType::kLoop); | 
|  | test_chop_cubic_at_midtangent(reporter, loop.data(), SkCubicType::kLoop); | 
|  | } | 
|  | for (const auto& line : kLinearCubics) { | 
|  | REPORTER_ASSERT(reporter, SkClassifyCubic(line.data()) == SkCubicType::kLineOrPoint); | 
|  | test_chop_cubic_at_midtangent(reporter, line.data(), SkCubicType::kLineOrPoint); | 
|  | } | 
|  | for (const auto& cusp : kCusps) { | 
|  | REPORTER_ASSERT(reporter, SkClassifyCubic(cusp.data()) == SkCubicType::kLocalCusp); | 
|  | test_chop_cubic_at_midtangent(reporter, cusp.data(), SkCubicType::kLocalCusp); | 
|  | } | 
|  | for (const auto& quad : kQuads) { | 
|  | test_chop_quad_at_midtangent(reporter, quad.data()); | 
|  | SkPoint asCubic[4] = { | 
|  | quad[0], lerp(quad[0], quad[1], 2/3.f), lerp(quad[1], quad[2], 1/3.f), quad[2]}; | 
|  | test_chop_cubic_at_midtangent(reporter, asCubic, SkCubicType::kQuadratic); | 
|  | } | 
|  |  | 
|  | static const SkPoint kExactQuad[4] = {{0,0}, {6,2}, {10,2}, {12,0}}; | 
|  | REPORTER_ASSERT(reporter, SkClassifyCubic(kExactQuad) == SkCubicType::kQuadratic); | 
|  | test_chop_cubic_at_midtangent(reporter, kExactQuad, SkCubicType::kQuadratic); | 
|  |  | 
|  | static const SkPoint kExactCuspAtInf[4] = {{0,0}, {1,0}, {0,1}, {1,1}}; | 
|  | REPORTER_ASSERT(reporter, SkClassifyCubic(kExactCuspAtInf) == SkCubicType::kCuspAtInfinity); | 
|  | int n = SkChopCubicAtInflections(kExactCuspAtInf, chops); | 
|  | for (int i = 0; i < n; ++i) { | 
|  | test_chop_cubic_at_midtangent(reporter, chops + i*3, SkCubicType::kCuspAtInfinity); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEF_TEST(Geometry, reporter) { | 
|  | SkPoint pts[5]; | 
|  |  | 
|  | pts[0].set(0, 0); | 
|  | pts[1].set(100, 50); | 
|  | pts[2].set(0, 100); | 
|  |  | 
|  | int count = SkChopQuadAtMaxCurvature(pts, pts);  // Ensure src and dst can be the same pointer. | 
|  | REPORTER_ASSERT(reporter, count == 1 || count == 2); | 
|  |  | 
|  | // This previously crashed because the computed t of max curvature is NaN and SkChopQuadAt | 
|  | // asserts that the passed t is in 0..1. Passes by not asserting. | 
|  | pts[0].set(15.1213f, 7.77647f); | 
|  | pts[1].set(6.2168e+19f, 1.51338e+20f); | 
|  | pts[2].set(1.4579e+19f, 1.55558e+21f); | 
|  | count = SkChopQuadAtMaxCurvature(pts, pts); | 
|  |  | 
|  | pts[0].set(0, 0); | 
|  | pts[1].set(3, 0); | 
|  | pts[2].set(3, 3); | 
|  | SkConvertQuadToCubic(pts, pts); | 
|  | const SkPoint cubic[] = { | 
|  | { 0, 0, }, { 2, 0, }, { 3, 1, }, { 3, 3 }, | 
|  | }; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | REPORTER_ASSERT(reporter, nearly_equal(cubic[i], pts[i])); | 
|  | } | 
|  |  | 
|  | testChopCubic(reporter); | 
|  | test_evalquadat(reporter); | 
|  | test_conic(reporter); | 
|  | test_cubic_tangents(reporter); | 
|  | test_quad_tangents(reporter); | 
|  | test_conic_tangents(reporter); | 
|  | test_conic_to_quads(reporter); | 
|  | test_classify_cubic(reporter); | 
|  | test_cubic_cusps(reporter); | 
|  | test_measure_rotation(reporter); | 
|  | test_chop_at_midtangent(reporter); | 
|  | } |